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The nuclear many-body problem for medium-mass systems is commonly addressed using wave-function ex-
pansion methods that build upon a second-quantized representation of many-body operators with respect to a
chosen computational basis. While various options for the computational basis are available, perturbatively
constructed natural orbitals recently have been shown to lead to significant improvement in many-body ap-
plications yielding faster model-space convergence and lower sensitivity to basis set parameters in large-scale
no-core shell model diagonalizations. This work provides a detailed comparison of single-particle basis sets and
a systematic benchmark of natural orbitals in non-perturbative many-body calculations using the in-medium
similarity renormalization group approach. As a key outcome we find that the construction of natural orbitals
in a large single-particle basis enables for performing the many-body calculation in a reduced space of much
lower dimension, thus offering significant computational savings in practice that help extend the reach of ab
initio methods towards heavier masses and higher accuracy.

I. INTRODUCTION

Nuclear many-body theory has witnessed major develop-
ments over the last two decades, extending the reach of the
ab initio solution of the stationary Schrödinger equation over
a wide range of mass numbers in the nuclear chart, cover-
ing closed- and open-shell nuclei and including exotic nu-
clei [11, 22]. This progress is mainly based on i) the construction
of improved nucleon-nucleon (NN) and three-nucleon (3N)
interactions based on chiral effective field theory (EFT) [33–
1414] and ii) the extension of many-body theories applicable to
medium-mass nuclei [1515–1818]. The advances of many-body
calculations are intimately linked to the use of wave-function
expansion methods, which exhibit mild computational scal-
ing in mass number, instead of the exponential scaling re-
quired by exact methods, resulting in the recent milestone ab
initio calculation of 100Sn [1919]. In practice, various many-
body approaches exist for medium-mass nuclei, e.g., many-
body perturbation theory (MBPT) [1818, 2020–2222], coupled clus-
ter (CC) theory [1616, 2323], the in-medium similarity renormal-
ization group (IMSRG) [1717, 2424, 2525], self-consistent Green’s
function (SCGF) theory [1515, 2626], and nuclear lattice simula-
tions [2727]. In particular, the recent use of non-perturbative
many-body approaches has generated an unprecedented level
of accuracy in medium-mass applications for a diverse set of
nuclear observables, see, e.g., [2828–3030].

All these frameworks require the introduction of a compu-
tational basis for the representation of the (second-quantized)
many-body operators. In the limit of a one-body Hilbert space
of infinite dimension, different choices of the computational
basis yield identical results. However, due to computational
limitations, in practice one is always restricted to using a finite
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basis size and, consequently, the resulting observables will de-
pend on the underlying computational basis.

It has been realized only recently in nuclear physics that
the optimization of the single-particle basis provides a pow-
erful tool to stabilize many-body calculations and enables a
more reliable extraction of physical observables from large-
scale calculations [3131, 3232]. In other fields of many-body re-
search, like quantum chemistry, this is much more explored
and the construction of suitable single-particle basis functions
has been an integral part of the ab initio endeavor, yielding a
rich variety of basis sets. In this work, we investigate bene-
fits and limitations of various single-particle bases used in the
solution of the nuclear many-body problem.

Choosing the single-particle basis in nuclear many-body
theory primarily requires addressing the following questions:

i) What is the best choice for obtaining rapid convergence
with respect to the model-space size?

ii) What is the best strategy to minimize the dependence of
physical observables on basis set parameters?

iii) To what extent is the factorization of center-of-mass and
intrinsic motion contaminated?

In practice, optimizing with respect to all of the above simulta-
neously is not possible. Historically, most many-body calcula-
tions either employ harmonic oscillator (HO) or Hartree-Fock
(HF) single-particle states. Harmonic oscillator basis states
rigorously ensure factorization of center-of-mass and intrin-
sic degrees of freedom of the many-body wave function when
combined with an Nmax-truncation, as in no-core shell model
(NCSM) approaches [3333, 3434]. However, in practice a strong
dependence on the basis set parameters such as the oscillator
frequency of the confining potential is observed, especially
for heavier nuclei or for observables that are more sensitive to
the long-range part of the nuclear wave function. This makes
the extraction of such observables challenging. Using HF or-
bitals based on a prior mean-field solution typically lowers
the frequency dependence, while numerically still leading to
a factorization of the center-of-mass and intrinsic wave func-
tion in large enough model spaces [3535]. However, selected
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nuclear observables may still show sensitivity to the oscillator
frequency in HF basis as observed, e.g., for charge radii of
medium-mass nuclei in IMSRG calculations [1010].

Recently, applications of natural orbitals (NAT), defined as
eigenvectors of the one-body density matrix, revealed faster
model-space convergence and significantly reduced sensitiv-
ity to basis parameters in large-scale NCSM calculations [3232].
Furthermore, they have been shown to drastically reduce the
required amount of three-particle–three-hole amplitudes in
CC applications [3636], allowing for novel calculations with
leading triples corrections, e.g., for deformed nuclei [3636] and
nuclear matrix elements of the neutrinoless double-beta de-
cay [3737]. In this work, the natural orbital basis is inspected in
detail and systematically applied in non-perturbative medium-
mass studies using modern chiral interactions.

This paper is organized as follows. In Sec. IIII various op-
tions of single-particle bases are shown and discussed. Sec-
tion IIIIII introduces the concept of normal ordering as well as
the impact of the reference state on the many-body formal-
ism. In Sec. IVIV the IMSRG approach is briefly introduced.
The different single-particle bases considered are compared
in detail in Sec. VV and applied to medium-mass systems using
the IMSRG formalism in Sec. VIVI. Finally, we summarize and
conclude in Sec. VIIVII.

II. BASIS OPTIMIZATION

A. Rationale

While HO basis sets have been used extensively for a long
time in various many-body frameworks, they constitute an
agnostic choice with respect to any specific properties of
the target system, e.g., in terms of mass number or mean-
field effects. This can be addressed by using HF orbitals in-
stead. Hartree-Fock orbitals account for bulk properties of
the nucleus stemming from a variational minimization of the
ground-state energy. Observables like the energy or the radius
are therefore well captured at the HF level as long as the nu-
clear interaction is soft enough, and the single-particle wave
functions possess an improved radial dependence as opposed
to the Gaussian fall off of HO eigenfunctions. Proton and neu-
tron single-particle potentials in general differ in the HF ap-
proach, thus accounting for mean-field contributions induced
by Coulomb and isospin-breaking effects.

Still, the HF procedure by construction only provides an
optimization of occupied single-particle states (holes) while
leaving virtual single-particle states (particles) untouched be-
yond fixing the normalization. However, wave-function ex-
pansion methods aim at capturing dynamic correlations linked
to particle-hole excitations, which also involve single-particle
orbitals that are not optimized by the HF approach. Therefore,
incorporating such effects in the construction of the computa-
tional basis is key when trying to robustly determine observ-
ables to high precision.

B. Notation

In the following, we denote second-quantized n-body (nB)
operators via

O(nB) ≡
1

(n!)2

∑
k1...k2n

o(nB)
k1...k2n

a†k1
· · · a†kn

ak2n · · · akn+1 , (1)

where the lower-case letters o(nB)
k1...k2n

represent their matrix el-
ements and a†k (ak) denote the single-particle creation (anni-
hilation) operators. Normal-ordering techniques are exploited
to re-express the operator with respect to an A-body reference
state,

Õ(nB) ≡
1

(n!)2

∑
k1...k2n

õ(nB)
k1...k2n

: a†k1
· · · a†kn

ak2n · · · akn+1 : , (2)

where strings of normal-ordered creation and annihilation op-
erators are denoted by colons and we use the tilde to distin-
guish the reference-state normal-ordered operator and its ma-
trix elements from the initial one. While the specific vacuum
is absent in this notation, it will be clear from the context what
reference state we are referring to.

For the particular case of the nuclear Hamiltonian the fol-
lowing notation is employed to denote its normal-ordered con-
tributions

H = E0 +
∑
pq

fpq : a†paq :

+
1
4

∑
pqrs

Γpqrs : a†pa†qasar :

+
1
36

∑
pqrstu

Wpqrstu : a†pa†qa†r auatas : , (3)

where E0, f , Γ, and W denote the zero-, one-, two-, and three-
body matrix elements. Because the operator in Eq. (33) is in
reference-state normal order the expectation value is given by
its normal-ordered zero-body part

〈Φ|H|Φ〉 = E0 , (4)

where |Φ〉 denotes the reference state. In the case of a Hartree-
Fock reference state |Φ〉 = |HF〉 this corresponds to the
Hartree-Fock mean-field energy, E0 = EHF.

C. Natural orbitals

Natural orbitals are defined as the eigenbasis of the one-
body density matrix with its matrix elements given by

γpq ≡
〈Ψ| : a†paq : |Ψ〉
〈Ψ|Ψ〉

, (5)

where |Ψ〉 denotes the exact ground state. The calculation of
the exact one-body density matrix requires the full solution of
the Schrödinger equation, which is out of reach beyond the
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lightest systems. However, early attempts in quantum chem-
istry revealed that approximate natural orbitals can be very
useful [3838, 3939]. Such basis sets are obtained by using an ap-
proximate many-body state |Ψapprox.〉 to obtain an approximate
one-body density matrix,

γ
approx.
pq ≡

〈Ψapprox.| : a†paq : |Ψapprox.〉

〈Ψapprox.|Ψapprox.〉
. (6)

In regions of the nuclear chart where the exact wave function
is computationally inaccessible, this provides an alternative
option for defining a basis for the many-body calculation. In
practice, a reasonable trade-off between the accuracy of the
many-body truncation for the construction of the approximate
wave function and the associated computational cost needs to
be found.

In the case where the approximate wave function is an HF
Slater determinant |HF〉 the density matrix

γHF
pq ≡

〈HF| : a†paq : |HF〉
〈HF|HF〉

(7)

has the particularly simple form

γHF =

(
1hh 0
0 0

)
, (8)

where 1hh denotes the identity in the sub-block of hole states.
As the HF state is normalized to unity, the presence of the
mean-field overlap 〈HF|HF〉 does not affect the HF density
matrix. Furthermore, the density matrix corresponds to a nor-
malized many-body state, meaning that its trace yields the par-
ticle number of the state, i.e., tr(γHF) = A.

For an HF reference state, the canonical orbitals, defined
as the eigenbasis of the one-body HF Hamiltonian, and the
natural orbitals based on the HF density matrix in Eq. (88) co-
incide. Therefore, one must include correlations beyond mean
field in the construction of the density matrix to gain a benefit
from the natural orbitals.

D. Perturbatively improved density matrix

As discussed in the previous section, accounting for
particle-hole couplings in the density matrix is essential for
providing a more refined computational basis. The simplest
approach to including such effects is by employing a pertur-
batively corrected one-body density matrix. Following the
description in Ref. [4040], the one-body density matrix up to
second order in the interaction (λ2), based on expanding the
eigenstate of the approximate wave function up to second or-
der in MBPT (MP2), can be written as

γMP2 ≡ γHF + γ(02) + γ(20) + γ(11) + O(λ3) , (9)

where

γ(mn)
pq ≡ 〈Φ(m)| : a†paq : |Φ(n)〉 (10)

is the MBPT contribution for the density matrix arising from
the bra and ket wave function corrections at order m and n,

respectively. Terms of order λ3 or higher in the interaction are
discarded. Moreover, terms of the form γ(01)/(10) are absent
when using a canonical HF reference state due to Brillouin’s
theorem [4141]. Explicit expressions for the various contribu-
tions in terms of single-particle orbitals are given by

D(hp)1
i′a′ =

1
2

∑
abi

Γi′iabΓaba′i

εa′
i′ ε

ab
i′i

, (11a)

D(hp)2
i′a′ = −

1
2

∑
ai j

Γi′ai jΓi ja′a

εa′
i′ ε

a′a
i j

, (11b)

D(hh)
i′ j′ = −

1
2

∑
abi

Γi′iabΓab j′i

εab
i′i ε

ab
j′i

, (11c)

D(pp)
a′b′ =

1
2

∑
ai j

Γa′ai jΓi jb′a

εa′a
i j ε

b′a
i j

, (11d)

where the labels i, j, k, ... (a, b, c, ...) correspond to single-
particle states occupied (unoccupied) in the reference determi-
nant, i.e., the HF state in our case. The matrix elements Γpqrs
are given in the HF basis, thus corresponding to an HF par-
titioning in the MBPT expansion of the density matrix [2121].
Furthermore, the short-hand notation

εab
i j ≡ εi + ε j − εa − εb (12)

is used, with εp ≡ fpp denoting the HF single-particle energy
of orbital p. Consequently, the MP2 density matrix is given
by

γMP2 =

(
γhh γhp

γph γpp

)
, (13)

where the hole-particle and particle-hole blocks are non-zero
and given by

γhp = D(hp)1 + D(hp)2 =
(
γph

)ᵀ
, (14)

and the hole-hole and particle-particle blocks by

γhh = γHF + D(hh) , (15a)

γpp = D(pp) , (15b)

respectively. Note that in contrast to the HF density matrix,
the MP2 density matrix contains particle-particle and particle-
hole couplings as shown for 16O in Fig. 11. Since∑

i

D(hh)
ii +

∑
a

D(pp)
aa = 0 , (16)

the second-order density matrix still fulfills the trace normal-
ization condition tr(γMP2) = A as in the HF case.

In practice, the construction of the MP2 density matrix is
realized using a spherically constrained scheme, i.e., enforc-
ing angular-momentum conservation throughout the initial HF
solution and the following MBPT calculation. Specifically,
the single-particle orbitals are then characterized by the quan-
tum numbers n, l, j, t, which are (2 j + 1)-fold degenerate.
Here n is the radial quantum number, l the orbital angular mo-
mentum, j the total angular momentum, and t the isospin pro-
jection. In actual calculations, we truncate the single-particle
states at e ≤ emax, with quantum numbers e = 2n + l.
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FIG. 1. Correlated one-body proton density matrix γMP2 in the HF
basis for 16O in an emax = 4 model space using the N3LO 450 in-
teraction based on the N3LO NN potential from Ref. [88] with N3LO
3N forces constructed in Ref. [99]. The first three proton orbitals are
occupied in the 16O reference state, while the remaining ones are un-
occupied. The perturbative corrections beyond HF can be seen in the
diagonal particle-particle contributions and the off-diagonal particle-
hole and hole-particle contributions. Note that for this N = Z nucleus
the neutron density matrix is very similar.

Consequently, the resulting MP2 density matrix is block di-
agonal in the quantum numbers l jt as only states with different
radial quantum number n couple. The diagonalization of the
MP2 density matrix is performed in sub-blocks to ensure sym-
metry conservation. The resulting eigenvectors and eigenval-
ues correspond to the transformation coefficients from the HF
to the natural orbital (NAT) basis and the occupation numbers
of the natural orbitals, respectively.

E. Basis transformation

The natural orbital states are obtained as linear combina-
tions of the HF states, mixing radial excitations only

|nαp〉NAT =
∑

n′

NATCαp

nn′ |n
′αp〉HF , (17)

where αp is a collective index for the quantum numbers
lp, jp, tp and NATCαp

nn′ denotes the expansion coefficients in the
HF basis obtained by the diagonalization, i.e.,

HF〈n′αp|nαp〉NAT = NATCαp

nn′ , (18)

where the m-projection of the total angular momentum is
suppressed since the transformation coefficients and single-
particle states do not depend on it as long as rotational sym-
metry is enforced. By expanding the HF states in the HO ba-
sis, we can also express the natural orbital states in the HO
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1.00
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0.08

n p

16O

HF
NAT emax = 2
NAT emax = 10

FIG. 2. Occupation numbers np of the single-particle proton orbitals
for the HF and NAT basis in 16O, using the 1.8/2.0 EM interaction [55]
and an oscillator frequency ~ω = 16 MeV. We show results for two
model-space truncations emax = 2 and emax = 10 in the NAT basis
construction. As for Fig. 11, the occupations of the neutron orbitals
are nearly identical.

basis

|nαp〉NAT =
∑
n′n′′

NATCαp

nn′
HFCαp

n′n′′ |n
′′αp〉HO

=
∑
n′′

NAT/HFCαp

nn′′ |n
′′αp〉HO , (19)

where the coefficients NAT/HFCαp

nn′′ now combine the transfor-
mation from the HO to the HF and from the HF to the NAT
basis.

Note that the set of occupation numbers for the natural or-
bitals np ∈ [0, 1] obtained from the eigenvalues now leads to
a fractional filling of all orbitals, in contrast to the occupa-
tion numbers np ∈ {0, 1} obtained from the HF solution. This
feature is illustrated in Fig. 22 comparing the NAT and HF oc-
cupation numbers for an 16O reference state.

Since the reference state for the MP2 density matrix is not
a single Slater determinant due to mixing of particle-hole ex-
citations the occupation numbers must differ from the mean-
field picture. As will be discussed in the following, this also
affects the normal-ordering procedure with respect to natural-
orbital basis states.

While the employed MP2 density matrix provides a sim-
ple approximation to the exact one-body density matrix, non-
perturbative many-body schemes can be used to refine the ap-
proximation, e.g., a Λ-approach in CC theory [4242], dressed
propagators from Green’s function theory [4343], or a fully cor-
related CI calculation [4444]. A balance between accuracy and
computational complexity needs to be found, and a low-order
MBPT approach provides a reasonable approximation to the
one-body density matrix at low computational cost.
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F. Intrinsic kinetic energy

The intrinsic Hamiltonian, here considered up to three-body
contributions, can be split into a kinetic part and an interaction
part

H = T − Tcm + V (2) + V (3) = Tint + V (2) + V (3) , (20)

with the intrinsic kinetic energy Tint and the two- and three-
body potentials V (2) and V (3), respectively. The intrinsic ki-
netic energy is obtained by subtracting the center-of-mass ki-
netic energy Tcm from the full kinetic energy T . The intrinsic
kinetic energy can be represented either as a sum of one- and
two-body operators

T (1+2)
int =

(
1 −

1
A

)∑
i

p2
i

2m
−

1
A

∑
i< j

pi · p j

m
(21)

or as a pure two-body operator

T (2)
int =

1
A

∑
i< j

(pi − p j)
2

2m
. (22)

Of course, both cases are equal and can be transformed into
each other by

∑
i< j

(pi − p j)
2

2m
=

∑
i< j

(p2
i + p2

j − 2pi · p j)

2m

= (A − 1)
∑

i

p2
i

2m
−

∑
i< j

pi · p j

m
.

(23)

The one- and two-body matrix elements of the Hamiltonian
obviously differ depending on the choice of Tint. Nevertheless
both cases result in the same HF determinant with identical
total HF energy, as studied in detail in Refs. [4545, 4646]. The HF
single-particle energies are different for both choices and can
be related by a unitary transformation of the occupied single-
particle states [4545]. These findings are based on the assump-
tion of a reference state with well-defined particle number A.
For a discussion of particle-number breaking theories, e.g., the
Hartree-Fock-Bogoliubov approach, see Ref. [4747].

The partitioning of the kinetic energy operator also affects
the construction of the natural orbital basis. By employ-
ing T (2)

int the initial Hamiltonian (before normal ordering) no
longer has a one-body part, and the two-body matrix elements
in the construction of γMP2, see Eqs. (11a11a)-(11d11d), differ from
the ones obtained by using the one- plus two-body form of
the kinetic energy, resulting in altered transformation coeffi-
cients and NAT occupation numbers. The partitioning also
changes the single-particle energies, further changing the re-
sulting γMP2.

In general, we apply the intrinsic kinetic energy operator of
Eq. (2121) with a one- and two-body part for the IMSRG calcu-
lations performed in this work. However, in the following we
will additionally study the impact of using a pure two-body
kinetic energy operator T (2)

int .

III. NORMAL ORDERING

The concept of normal ordering facilitates the formulation
of Wick’s theorem [4848] and defines an in-medium optimized
representation of the operator [4949]. For this reason, it is com-
monly employed in many-body frameworks applied to nuclei
and nuclear matter. In the following, we first address the for-
mal details of working with a correlated reference state.

A. Multi-reference formulation

When employing a perturbatively improved one-body den-
sity matrix the associated reference state is no longer a sin-
gle Slater determinant. Consequently, the notion of nor-
mal ordering needs to be extended to cope with the multi-
configurational character of the vacuum. Such an exten-
sion can be naturally addressed in terms of the generalized
Mukherjee-Kutzelnigg normal ordering [5050]. Even though
this scheme is not numerically benchmarked in this work, it is
still worth anticipating the additional complications that arise
from a multi-reference treatment of the MP2 density matrix.

For simplicity, we neglect three-body contributions in the
following analysis and start from an arbitrary many-body op-
erator O containing up to two-body contributions

O ≡ O(0B) + O(1B) + O(2B) . (24)

Performing the normal ordering of the operator O in Eq. (2424)
with respect to a non-product-type vacuum yields [5151]

õ(0B) = o(0B) +
∑
pq

o(1B)
pq γpq +

1
4

∑
pqrs

o(2B)
pqrsγpqrs , (25a)

õ(1B)
pq = o(1B)

pq +
∑

rs

o(2B)
prqsγrs , (25b)

õ(2B)
pqrs = o(2B)

pqrs , (25c)

involving one- and two-body density matrices γpq and γpqrs,
respectively. The two-body density matrix, which contributes
to the zero-body part of the normal-ordered operator, is given
by

γpqrs ≡
〈Ψ| : a†pa†qasar : |Ψ〉

〈Ψ|Ψ〉
(26)

and can be decomposed into a factorized part of products of
one-body operators and an irreducible two-body part λpqrs,

γpqrs =
(
γprγqs − γpsγqr

)
+ λpqrs . (27)

The appearance of λpqrs is a consequence of the reference state
being no longer of mean-field character11. In the following,

1 In practice, such states are obtained, e.g., from particle-number-broken and
-restored Hartree-Fock-Bogoliubov vacua [5252] or small-scale CI diagonal-
izations [5353].
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the irreducible two-body part is discarded for simplicity and a
mean-field-like approximation is employed

γpqrs ≈ γprγqs − γpsγqr . (28)

Equation (2828) is exact as long as a many-body state of
product-type is used22. While in principle it is straightfor-
ward to derive two-body density matrices in MBPT, the factor-
ized approximation is expected to provide a reasonably good
choice for basis optimization.

Considerable simplifications are obtained by working in the
natural orbital basis, i.e.,

γpq = npδpq , np ∈ [0, 1] , (29)

where the lack of a well-defined particle-hole picture means
the occupation numbers are no longer zero or one. Expres-
sions for the normal-ordered matrix elements in Eq. (3333) are

õ(0B) = o(0B) +
∑

p

o(1B)
pp np +

1
4

∑
pq

o(2B)
pqpqnpnq , (30a)

õ(1B)
pq = o(1B)

pq +
∑

r

o(2B)
prqrnr , (30b)

õ(2B)
pqrs = o(2B)

pqrs , (30c)

now involving single-particle summations running over the
full one-body Hilbert space for the summation indices p, q,
and r instead of hole orbitals only, a consequence of the
smeared-out Fermi distributions in the occupation numbers
np, as shown in Fig 22.

B. Single-reference case

In the simplest case, a single Slater-determinant reference
state is employed in the many-body expansion,

|Φ〉 =

A∏
i=1

a†i |0〉 , (31)

where {a†i } denotes the single-particle creation operators in the
computational basis. For the occupation numbers of the indi-
vidual orbitals one has

np =

1, if p is a hole state
0, if p is a particle state .

(32)

Performing the single-reference normal ordering with respect
to the reference state in Eq. (3131), the corresponding normal-
ordered matrix elements of the operator are obtained as [4949]

2 Approximating a two-body density matrix from one-body density matri-
ces is closely related to the approach followed in SCGF theory, where
higher-order Green’s function are typically factorized products of one-body
Green’s functions, thus neglecting their irreducible higher-body contribu-
tions [4343].

õ(0B) = o(0B) +
∑

i

o(1B)
ii +

1
2

∑
i j

o(2B)
i ji j +

1
6

∑
i jk

o(3B)
i jki jk , (33a)

õ(1B)
pq = o(1B)

pq +
∑

i

o(2B)
piqi +

1
2

∑
i j

o(3B)
pi jqi j , (33b)

õ(2B)
pqrs = o(2B)

pqrs +
∑

i

o(3B)
pqirsi , (33c)

õ(3B)
pqrstu = o(3B)

pqrstu , (33d)

where the labels i, j indicate hole states occupied in the ref-
erence state |Φ〉. In Eqs. (33a33a)-(33d33d) three-body contributions
are explicitly included. In practice, the normal-ordered two-
body approximation (NO2B) is employed [5454, 5555], where the
residual three-body part, Eq. (33d33d), is discarded to lower the
computational complexity.

Because the MP2 density matrix does not correspond to a
single Slater determinant, an auxiliary many-body state |NAT〉
is constructed by filling the first A states with the highest oc-
cupation numbers. Similar to Eq. (3131) these orbitals are filled
with updated occupations ni ∈ {0, 1} to conserve the particle-
number expectation value, thus establishing a well-defined
particle-hole picture. Consequently, in the following appli-
cations standard Slater-determinant-based codes can be used
for the many-body expansion. Note that, even though this ref-
erence state has product-type character, the information about
the correlated density matrix is encoded in the transformation
matrix from the HO to the NAT basis [see Eq. (1919)] for the
one- and two-body parts of the intrinsic Hamiltonian. By us-
ing such an auxiliary vacuum the reference-state expectation
value is larger than the HF expectation value since there is no
underlying variational principle, i.e.,

〈NAT|H|NAT〉 > 〈HF|H|HF〉 . (34)

IV. IN-MEDIUM SIMILARITY RENORMALIZATION
GROUP

For the medium-mass applications in this work we use the
non-perturbative in-medium similarity renormalization group
approach. For a detailed discussion of the many-body formal-
ism the reader is referred to Refs. [1717, 2424, 5656].

A. Formalism

In the IMSRG framework the many-body Schrödinger
equation is solved by performing a decoupling of particle-hole
excitations from the reference state by a continuous unitary
transformation U(s) parametrized in terms of a real-valued
flow parameter s,

H(s) = U(s)H0U†(s) , (35)

where H(s = 0) is the initial, i.e., unevolved, Hamiltonian.
Equation (3535) can be rewritten as a first-order ordinary differ-
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ential equation (ODE) in s,

dH(s)
ds

=
[
η(s),H(s)

]
, (36)

with the anti-Hermitian generator η(s) defined by the unitary
transformation.

The in-medium character of the decoupling condition is
achieved by performing the renormalization group evolution
on the normal-ordered representation of the operator. In the
simplest case this is done with respect to a single Slater de-
terminant, as indicated in Sec. III BIII B. At s = 0, the normal-
ordered zero-body part of the Hamiltonian is the reference-
state energy expectation value, e.g., the HF energy in the case
of the HF reference state. Over the course of the evolution,
the off-diagonal matrix elements of the Hamiltonian are sup-
pressed, and the exact ground-state energy of the fully inter-
acting system is given by the normal-ordered zero-body part
of the evolved Hamiltonian

E0(s→ ∞) = lim
s→∞
〈Φ|H(s)|Φ〉 . (37)

Solving the IMSRG flow equation absorbs the dynamic cor-
relations non-perturbatively and smoothly decouples particle-
hole excitations from the reference state.

In practice, the expansion in Eq. (3636) is computation-
ally intractable since the repeated commutator evaluation in-
duces higher-body operators in each integration step, yield-
ing up to A-body operators when applied to an A-body sys-
tem. In the following, the IMSRG(2) approximation is used,
where all operators are truncated at the normal-ordered two-
body level. The IMSRG(2) provides an accurate truncation
scheme that incorporates all MBPT corrections up to order λ3

while resumming many higher-order contributions in a non-
perturbative way through the IMSRG flow [1717]. In medium-
mass applications, the many-body uncertainty related to the
IMSRG(2) approximation is estimated to be ≈ 2% for ground-
state energies (see, e.g., [1111]), thus providing a versatile and
precise many-body scheme at moderate computational cost.

In all subsequent calculations the modified normal order-
ing as discussed in Sec. III BIII B is employed, thus enabling the
use of the standard Slater-determinant-based IMSRG. Even
though various open-shell extensions have been designed and
applied within the IMSRG approach [5252, 5353, 5757], this work
is restricted to closed-shell applications to provide a simple
testbed for the natural orbital basis.

B. Magnus reformulation

In this work, the Magnus formulation of the IMSRG [5858,
5959] is employed, which provides direct access to the unitary
transformation U(s) in a computationally efficient way using
the parametrization

U(s) = eΩ(s) , (38)

where Ω(s) is the anti-Hermitian Magnus operator. Analo-
gously to Eq. (3636), an ODE for the Magnus operator can be

derived. Having the transformation matrix at hand allows
for the IMSRG-evolution of any other operator by the Baker-
Campbell-Hausdorff formula for the many-body operator ac-
cording to

O(s) = eΩ(s)O(s = 0)e−Ω(s) (39)

instead of solving an additional set of ODEs for each opera-
tor. In practice, the Baker-Campbell-Hausdorff expansion is
performed using nested commutator evaluations to some trun-
cation level. Moreover, solving the Magnus expansion has the
advantage of allowing the use of a simpler ODE solver for the
Magnus operator without loss of accuracy.

C. Correlation effects from MP2 natural orbitals

Before discussing IMSRG applications using natural or-
bitals, it is worth addressing the interplay of the correlations
built into the MP2 density matrix and the correlations that are
resummed within the IMSRG flow.

Using a natural orbital reference determinant yields a
higher ground-state energy at s = 0 compared to an HF vac-
uum due to the variational optimization of the HF orbitals
in the space of single Slater-determinant reference states, see
Eq. (3434). Moreover, the ground-state energy at s = ∞ using
the MP2 density matrix does not improve upon the IMSRG(2)
results obtained in any other single-particle basis. The MP2
density matrix only incorporates correlations to one-particle-
one-hole and two-particle-two-hole excitations. Within the
IMSRG(2) approximation such effects are resummed to all or-
ders [1717] such that no improvement on the final observable is
expected. Once higher-body excitations are included, addi-
tional correlations will enter the description which are absent
in the IMSRG(2) scheme. Practically, this is achieved by in-
cluding third-order terms in the MBPT expansion, i.e., λ3, or
allowing three-body operators in the normal-ordered Hamilto-
nian, thus generating additional contributions in the first-order
state correction. Both options will generate the leading con-
tributions to three-particle-three-hole excitations.

V. DIAGNOSTICS FOR THE DENSITY MATRIX

We begin by investigating the MP2 density matrix and the
associated NAT basis. These results allow us to gain a better
understanding of the relationship between the various compu-
tational bases and their sensitivity to the nuclear Hamiltonian
used in their construction. We focus on two sets of chiral in-
teractions, the N3LO NN potential from Ref. [88] with N3LO
3N forces constructed in Ref. [99], which in the following is re-
ferred to as “N3LO” with the corresponding cutoff value, and
the “1.8/2.0 EM” interaction of Ref. [55].

A. The “softness” of the interaction

“Soft” interactions are low-resolution interactions that
show weak coupling between low- and high-energy states.
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The softness of an interaction, i.e., the degree of decoupling
between low and high momenta in the Hamiltonian, can be
varied by changing the regulator scale for Hamiltonians con-
structed from an EFT as well as by applying (S)RG methods
to decouple or integrate out high-momentum degrees of free-
dom [4949, 6060]. Soft interactions applied in many-body methods
have been shown to improve convergence with respect to basis
truncation and order in the many-body expansion. In particu-
lar, the use of an SRG-evolved Hamiltonian is required to en-
able a perturbative solution even for closed-shell systems [2121].
A Weinberg-eigenvalue analysis, which provides a metric of
the perturbativeness of an interaction, shows that the softness
is intimately linked to the SRG resolution scale [6161, 6262].

Because the one-body density matrix is constructed from
an MBPT expansion, we expect the density matrix and the re-
sulting NAT basis to be more sensitive to the basis frequency
and truncation for hard interactions. For unevolved chiral po-
tentials the mean-field wave function may exhibit unphysical
properties, giving rise to an unbound HF solution. With such a
poor reference state, the many-body expansion is significantly
more complicated, in particular if perturbative techniques are
employed. The key idea of a many-body expansion is to start
from a qualitatively correct reference state while residual dy-
namic correlation effects are brought in as (small) corrections.
This rationale is obviously broken once the mean-field refer-
ence is unbound or not under control, manifesting in final re-
sults via, e.g., strong frequency dependence.

B. Single-particle wave functions

While the HF approach targets the optimization of the oc-
cupied single-particle states from a variational approach, the
unoccupied orbitals are left unmodified up to normalization.
Therefore, the HF basis is expected to properly describe oc-
cupied orbitals while failing for unoccupied ones. The natural
orbital basis, however, accounts for particle-hole admixtures
and therefore may qualitatively improve the description of un-
occupied states as will be tested in the following calculations.
In the following, a single-particle basis is employed including
states up to a principal quantum number emax. Additionally,
we introduce a truncation in three-body space keeping only
configurations with e1 + e2 + e3 ≤ E3max < 3emax due to the
extensive size of three-body matrix elements.

In Fig. 33, we show the squared absolute value of the radial
wave functions for different oscillator frequencies using the
HO, HF, and NAT bases. Different rows correspond to dif-
ferent single-particle orbitals; only the first row (0p3/2) corre-
sponds to an occupied orbital. Clearly, using a HO basis leads
to strong frequency dependence in all cases, even for the occu-
pied 0p3/2 state. Hence, HO wave functions are ruled out as a
reliable computational basis and will not be considered further
in this work. While the 0p3/2 orbitals are more robust in the
HF case as expected, unoccupied HF orbitals show frequency
dependence comparable to that of HO orbitals, a consequence
of the fact that unoccupied orbitals are not optimized in the
HF approach.

Switching to natural orbitals nicely resolves many of the re-
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FIG. 3. Squared absolute value of the radial wave function u(r) of
16O as a function of r for different proton orbitals in the HO, HF, and
NAT bases in the first, second, and third columns, respectively. We
show results for the occupied 0p3/2 and some of the first unoccupied
orbitals for the N3LO 450 interaction and oscillator frequencies ~ω
= 16−36 MeV. The HF and NAT orbitals include single-particle HO
states up to emax = 10 and E3max = 14.

maining artifacts, revealing only minor frequency dependence
for both occupied and unoccupied states. As the softer 1.8/2.0
EM interaction from Ref. [55] leads to much better reproduc-
tion of ground-state energies at the HF level [6363], this also
improves the quality of the MP2 density matrix. In Fig. 44,
we compare HF (left) and natural orbitals (middle) in a model
space with emax = 10 for this interaction, while additionally
benchmarking the effect of natural orbitals when going to a
larger basis size of emax = 14 (right). While the frequency
dependence for this softer interaction is much milder in the
HF case, high-lying single-particle states still significantly de-
pend on ~ω. A residual frequency dependence is still seen in
the 1p1/2 orbital at emax = 10 in the natural orbital basis, but
this fully vanishes when going to larger spaces of emax = 14.

In summary, properties of the HF solution strongly impact
the qualitative behavior of the natural orbital single-particle
wave functions and a bound mean-field solution is key for pro-
viding a reliable reference point for a many-body expansion.
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FIG. 4. Same as Fig. 33 but for the 1.8/2.0 EM interaction showing
results for the HF and NAT bases using emax = 10 in the left and
middle columns, respectively, as well as emax = 14 for the NAT basis
in the right column.

C. Positive definiteness as diagnostic tool

The density matrix is a positive definite operator and thus
its eigenvalues, the occupation numbers, are non-negative.
Therefore, unphysical negative occupations or occupations
larger than one should not show up during the diagonalization.
Previous investigations in quantum chemistry showed that the
appearance of negative occupation numbers can be linked to
a breakdown of a single-reference description and hint at the
onset of strong static correlations [6464]. Therefore, we aim to
utilize occupation numbers as diagnostic and investigate their
sensitivity to the softness of the nuclear interaction. As the
HF ground-state energy is directly related to the softness of
the interaction, a correlation between the HF energy and the
size of negative occupations is expected.

Figure 55 depicts the magnitude of the negative occupations
using N3LO interactions for various cutoff values in 16,22O. In
both nuclei, we observe a decrease in size for softer interac-
tions, as indicated by going from the harder potentials with
cutoff Λ = 500 MeV to Λ = 400 MeV, in both the NN-only
and the NN+3N cases. Consequently, an unbound HF solution
strongly affects the appearance of unphysical negative occu-
pations. In general, using the two-body form of the kinetic
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NN-only (T(1 + 2)
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NN+3N (T(1 + 2)
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int )

NN+3N (T(2)
int )

FIG. 5. Negative occupations of the p-orbitals scaled by (2 ji + 1) in
the NAT basis for 16O (top) and 22O (bottom) as a function of the HF
energy. We show results for various cutoffs with the NN-only N3LO
EMN and NN+3N N3LO interactions indicated by triangles and cir-
cles, respectively. We apply both choices for the kinetic energy oper-
ator, T (1+2)

int (filled symbols) and T (2)
int (open symbols), and use a model

space of emax/E3max = 14/14 with ~ω = 20 MeV. All negative occu-
pations arise only for high radial quantum number. Note that there
are no negative occupations for the softer NN-only EMN 400 and
420 interaction.

energy operator T (2)
kin results in smaller negative occupations

for both nuclei. We also verified that softening the interac-
tion by a consistent SRG evolution of NN and 3N contribu-
tions [1010, 6565] significantly reduces the magnitude of the neg-
ative occupations, eventually letting them vanish completely.
Increasing the model-space size seems to increase the magni-
tude of these occupations. Moreover, the effect is generally
less pronounced for heavier nuclei, e.g., in 78Ni.

In addition, we investigate the size of negative occupations
in the case of 12C. Due to the cluster structures and weak shell
closure in 12C the quality of single-reference many-body ap-
proaches is expected to deteriorate in comparison to the dou-
bly magic nucleus 16O. An analysis of the single-particle spec-
trum revealed only a small shell gap in the single-particle
spectrum, thus significantly enhancing the size of perturba-
tive corrections to the MP2 density matrix in the particle-
particle and hole-hole channel, see Eqs. (11c11c) and (11d11d). Con-
sequently, highly erratic occupation numbers were observed
(not shown). Empirically, we found that the use of T (2)

int with
a slightly larger shell gap was superior to T (1+2)

int , significantly
reducing, though not fully resolving, the large negative occu-
pations. The results of this analysis for the occupation num-
bers is also evidence for the challenges of the single reference-
state starting point for a description of 12C.
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FIG. 6. Ground-state energies (upper rows) and charge radii (lower rows) of 16O and 40Ca in the left and right plots, respectively, as a function
of the oscillator frequency, for the NN-only N3LO EMN 450 (triangles) and NN+3N N3LO 450 (circles) interactions. We show results for the
HF and NAT bases in the left and right panels of each plot, respectively, using various single-particle truncations emax with E3max = 14.

VI. IMSRG RESULTS

After addressing in detail properties of the single-particle
basis itself, the various choices are benchmarked for medium-
mass closed-shell systems using the IMSRG framework, fo-
cusing on 16O, 40Ca, and 78Ni. All many-body calcu-
lations employed the publicly available IMSRG-solver by
R. Stroberg [6666].

A. Comparing the HF and NAT basis

We compare results for ground-state energies and charge
radii of 16O and 40Ca in the HF and NAT bases in Fig. 66 for
a large range of oscillator frequencies for the NN-only and
NN+3N N3LO 450 interactions. For the NN-only potential,
we observe nearly no change when going from the HF to the
NAT basis on this scale. Since the HF solution is bound, bulk
properties are well captured at the mean-field level and ap-
plying the NAT basis does not yield an improvement in final
results. Both energies and radii are almost flat as a function
of ~ω for the largest model space and rapidly converge with
model-space size in both the HF and natural orbital bases.

When 3N forces are included, the NN+3N results similarly to
the NN-only case show almost no change from the HF to the
NAT basis, but the ~ω-dependence becomes more pronounced
for the radii.

In order to systematically understand the difference be-
tween the basis sets, we examine the converged IMSRG(2)
ground-state energies in greater detail. In Fig. 77, we show the
difference of the results in the HF and NAT bases as a function
of the SRG evolution scale for three closed-shell nuclei 16O,
40Ca, and 78Ni for the NN-only interaction. The analysis is
performed in absence of three-body interactions to eliminate
the sensitivity of the different reference states to the NO2B ap-
proximation. For harder interactions (larger λ) the difference
is of the order of 1 MeV with the natural orbitals yielding
stronger binding for 16O and 40Ca and slightly weaker bind-
ing for 78Ni. Softening the potential (small λ) significantly
reduces the effect such that, eventually, only differences of the
order of tens of keV remain at λ = 1.6 fm−1. These differences
are marginally enhanced when including 3N forces, i.e., nat-
ural orbitals provide slightly more binding compared to the
HF basis and lead to a minor decrease of the ~ω-dependence
of charge radii. We emphasize again that this NN+3N inter-
action leads to an unbound HF solution, such that the total
binding has to be produced by correlation effects during the
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FIG. 7. Difference of the ground-state energies in the NAT and HF
bases for 16O, 40Ca, and 78Ni as a function of the SRG resolution
scale λ using the NN-only N3LO EMN 450 interaction and a model
space of emax = 14 with ~ω = 20 MeV.

IMSRG flow and the mean field provides a poor reference
state as discussed in Sec. V AV A. The minor differences in con-
verged energies are assumed to be driven by induced many-
body contributions that differ in HF and natural orbital bases.
A further investigation requires systematic evaluation of lead-
ing three-body contributions beyond the IMSRG(2) approxi-
mation which is beyond the scope of the present work.

In summary, we do not observe the desired independence
of the oscillator frequency in the smaller model spaces, which
one could have guessed from Fig. 33, and do not improve on
the frequency dependence in the largest model spaces shown
here compared to the HF basis.

B. Differences between NCSM and IMSRG

Given the great performance of MP2 natural orbitals in
NCSM results as shown in Ref. [3232], the above results seem
surprising at first since no substantial improvement over HF
orbitals is obtained. The key difference between the IMSRG
calculations performed in this work so far and the NCSM cal-
culations is the model space in which the many-body solution
is obtained.

In the NCSM one conveniently employs an Nmax-truncation
where only many-body configurations up to a given relative
excitation level are included [3434]. In this case, construct-
ing the correlated one-body density matrix in a large single-
particle basis includes excitations that are absent from the
NCSM configuration space and, therefore, improves the fre-
quency dependence. On the other hand, this is inherently
different to an IMSRG application where both the reference-
state construction and IMSRG flow typically take place in the
same model space, parametrized by emax. Since the high-lying
states are included already in the initial single-particle basis
for the HF calculation, we cannot expect significant improve-
ment for the simplest natural-orbital-based IMSRG calcula-

tions over HF-based IMSRG calculations.
Consequently, the key idea in the following will be the con-

struction of the MP2 density matrix in a large space while
solving the many-body problem in a reduced space in pres-
ence of the full-space correlations embedded into the basis
transformation.

C. Reduced-basis calculations from NAT/HF constructed in
full space

In the following, the initial MP2 density matrix is built in
a large single-particle basis Mfull, while a smaller subspace
Mreduced ⊆ Mfull is used for performing the IMSRG evolu-
tion. We restrict the natural orbital states to orbitals included
in Mreduced and discard higher-lying orbitals in the transfor-
mation. The transformation of the single-particle states for
both model-space choices is contrasted in Eqs. (4040) and (4141):

|nαp〉ÑAT =

nreduced∑
n′

NAT/HFC̃αp

nn′ |n
′αp〉HO , (40)

|nαp〉NAT =

nfull∑
n′

NAT/HFCαp

nn′ |n
′αp〉HO . (41)

The tilde for the state indicates that it is constructed in the
reduced space and the upper bounds nreduced and nfull specify
the maximal radial quantum number contained inMreduced and
Mfull for the corresponding |αp〉 state, respectively. The tilde
on top of the transformation coefficients NAT/HFC̃ indicates that
the HF calculation and the construction of the natural orbitals
is performed inMreduced, while untilded coefficients originate
from the full model space Mfull. Even though parts of the
information contained in the natural orbital basis are lost dur-
ing this reduction process, the resulting matrix representation
of operators in Mreduced still contains information about the
large space due to the mixing of radial excitations up to nfull
included inMfull that are otherwise not contained inMreduced.
Excluding higher-lying states fromMreduced is also motivated,
because for low-resolution Hamiltonians we expect the many-
body expansion to be dominated by excitations to low-lying
states.

In practice, Mreduced and Mfull will be parametrized by
two values, emax for the IMSRG evolution (in Mreduced) and
eHF/NAT

max for the basis construction (in Mfull). For the follow-
ing results, we employ eHF/NAT

max = 14 for the 1.8/2.0 EM in-
teraction, corresponding to the radial wave functions in the
last column of Fig. 44 that show the desired frequency inde-
pendence. We investigate the impact on ground-state ener-
gies and charge radii by considering IMSRG calculations in
various reduced model spaces with truncations emax = 6, 8,
and 10 for 16O, 40Ca, and 78Ni in Figs. 88 and 99. Construct-
ing the NAT basis in the full space leads to a significant re-
duction of the ~ω-dependence for both ground-state energies
and charge radii as well as improved convergence behavior
with respect to emax. The resulting improvement is similar to
what was seen in NCSM calculations for 16O [3232] with nearly
frequency-independent energies and radii, shown in the right
column of the first plot in Fig. 88.



12

128

126

124

122

120
E

 [M
eV

]
HF

1.8/2.0 EM
16O eHF/NAT

max = 14

NAT

12 16 20 24 28 32
 [MeV]

2.4

2.5

2.6

R
ch

 [f
m

]

12 16 20 24 28 32
 [MeV]

emax =6
emax =8
emax =10

emax =14
Expt.

345

340

335

330

325

320

E
 [M

eV
]

HF

1.8/2.0 EM
40Ca eHF/NAT

max = 14

NAT

12 16 20 24 28 32
 [MeV]

3.0

3.1

3.2

3.3

3.4

R
ch

 [f
m

]

12 16 20 24 28 32
 [MeV]

emax =6
emax =8
emax =10

emax =14
Expt.

FIG. 8. Ground-state energies (upper rows) and charge radii (lower rows) of 16O and 40Ca in the left and right plots, respectively, as a function
of the oscillator frequency in the HF and NAT bases for the 1.8/2.0 EM interaction. We use a model spaceMfull with eHF/NAT

max = 14 to construct
the NAT basis, whereas the IMSRG calculations are performed for emax = 6, 8, 10, and 14, with E3max = 16 in both cases.

Analogous conclusions hold for heavier nuclei, where the
convergence pattern is improved and we obtain converged re-
sults already in smaller model spaces emax. Although we can-
not improve the results beyond the model space of eHF/NAT

max
employed for the initial transformation, we only have to solve
for the natural orbital basis once in the largest possible eHF/NAT

max
space without having to solve the computationally more ex-
pensive IMSRG equations in the full space. Assuming, we can
obtain comparable results in emax = 10 (1140 single-particle
states) using an MP2 density matrix constructed in emax = 14
(2720 single-particle states) we save a factor R ≈ 2 − 3 in
single-particle dimension. Consequently, the use of large-
space natural orbitals combined with reduced-space many-
body expansions provides a computationally efficient alter-
native to the full-space IMSRG-calculations. Very advanced
truncation schemes such as IMSRG(3) scale as N9, where N
is a measure of the size of the single-particle basis. Therefore,
naive speedups of the order R9 ≈ 103−104 can be anticipated.
Consequently, further improving the construction of single-
particle basis sets will significantly help to advance to heavier
nuclei and higher accuracies in ab initio applications.

VII. SUMMARY AND CONCLUSIONS

In this work, we performed an extensive study of single-
particle bases in nuclear ab initio applications. We focused
on a set of natural orbitals, Hartree-Fock, and harmonic-
oscillator basis states, with natural orbitals based on a per-
turbatively improved one-body density matrix. The single-
particle wave function and its dependence on the oscillator
frequency as well as the potential occurrence of negative oc-
cupations in the NAT basis have been investigated in detail.
Going to sufficiently large model spaces, the natural orbitals
provide frequency-independent wave functions for both occu-
pied and unoccupied states. A reasonable mean-field solution,
preferably bound, and a lower resolution Hamiltonian are key
factors to generate a reasonable correlated one-body density
matrix and resulting natural orbital basis. When these con-
ditions are not met, the construction of the natural orbitals
does not completely lead to the desired frequency indepen-
dence and produces states with unphysical negative occupa-
tion numbers. Using the two-body form of the kinetic energy
decreased the size of the negative occupations compared to
the one- plus two-body form of the kinetic energy.

Hartree-Fock and natural orbital basis states have been
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benchmarked in medium-mass applications using the IMSRG

as a non-perturbative many-body framework. Comparing
ground-state energies and charge radii of medium-mass nu-
clei, we observed only small differences between the HF and
NAT bases for Hamiltonians with only two-body interactions
and slightly enhanced variations when three-body forces were
included. In both cases, the results came closer in agreement
by a consistent SRG evolution of NN and 3N interactions to
smaller resolution scales. Even though we did not obtain the
desired frequency independent results by applying the NAT
basis directly, significantly improved frequency independence
and faster model-space convergence has been found by con-
structing the natural orbitals in a large model space and eval-
uating a subsequent IMSRG evolution in a reduced space.
This strategy presents a promising improvement to advance
the reach of ab initio methods to heavier nuclei and demon-
strates the benefits of investigating the computational basis in
more detail.

One possibility for further exploration is the investiga-
tion of higher-body contributions and specifically how the
difference between the HF and natural orbital basis results
arises. Another direction is to incorporate the natural or-
bitals in a multi-reference approach to avoid the single Slater-
determinant approximation and fully capitalize on the dy-
namic correlations included in the perturbatively improved
density matrix.
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