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Abstract 
Background​: After a year of the global SARS-CoV-2 pandemic, a highly dynamic genetic             
diversity is surfacing. Among nearly 1000 reported virus lineages, dominant lineages such as             
B.1.1.7 or B.1.351 attract media attention with questions regarding vaccine efficiency and            
transmission potential. In response to the pandemic, the Jena University Hospital began            
sequencing SARS-CoV-2 samples in Thuringia in early 2020.  
Methods ​: Viral RNA was sequenced in tiled amplicons using Nanopore sequencing.           
Subsequently, bioinformatic workflows were used to process the generated data. As a            
genomic background, 9,642 representative SARS-CoV-2 genomes (1,917 of German origin)          
were extracted from more than 300.000 genomes. 
Results​: In a comprehensive bioinformatics analysis, we have set Thuringian isolates in the             
German, European and global context. In Thuringia, a largely rural German region without             
an international airport and a population density below the German average, we discovered             
many of the common "EU lineages". German samples are scattered across eight major             
clades, and Thuringian samples occupy four of them.  
Conclusion ​: The rapid emergence and spread of novel variants are of great concern as              
these lineages could transmit more efficiently, evade current vaccine efforts or undermine            
diagnostic test accuracy. To anticipate and mitigate these threats, a continuous molecular            
surveillance is essential. 
 

Key messages 
● Bioinformatics analysis of 1,917, 4,251, and 3,474 SARS-CoV-2 genomes from          

Germany, the EU (except Germany), and non-EU, respectively, subsampled from          
more than 300,000 public genomes and placed in the context of Thuringian            
sequences 

● Constant antigenic drift for SARS-CoV-2 and no clear pattern or clustering is visible             
in Thuringia based on the current number of samples 
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● Currently over 100 described lineages are identified in Germany and only a subset             
(9) are detected in Thuringia so far, most likely due to genetic undersampling 

● From a national perspective, it is likely that high-frequency lineages, which are            
currently spreading throughout Europe, will eventually also reach Thuringia 

● Systematic and dense molecular surveillance via whole-genome sequencing is         
needed to detect concerning new lineages early, limit spread and adjust vaccines if             
necessary 
 

Introduction 
In December 2019, health authorities in China reported an outbreak of pneumonia of             
unknown origin in Wuhan ​(1)​. A novel betacoronavirus called SARS-CoV-2 (severe acute            
respiratory syndrome coronavirus 2) was ultimately identified as the causative agent.           
SARS-CoV-2 has since spread around the world, causing a global pandemic with more than              
80 million confirmed cases and over 1.8 million deaths worldwide in 2020. In response to the                
pandemic, many countries started to sequence SARS-CoV-2 genomes to track its evolution.            
To date (January 2021), more than 300,000 SARS-CoV-2 genomes are freely available in             
public databases such as GISAID or ENA. 
 
Each time the virus replicates, mutants are created that convey genetic flexibility due to the               
high error rate of the RNA polymerase. Because the virus spread so quickly around the               
world, it has a huge effective population size, which provides ample opportunity for the virus               
to adapt to its environment and escape host immunity ​(2,3)​. In contrast to other              
RNA-viruses, SARS-CoV-2 includes a proofreading capability for its RNA polymerase (for           
viral replication) to reduce mutations ​(4)​. However, mutations in this polymerase gene itself             
have been described, which may affect its proofreading activity and potentially alter the             
mutation rates of SARS-CoV-2 ​(5)​. In general, the spontaneous mutation rate of            
SARS-CoV-2 is 0.80 - 2.38 × 10 ​-​³ nucleotide substitutions/site/year, the same order of             
magnitude as influenza A, which lacks a proofreading RNA polymerase ​(6,7)​. The higher              
the overall number of infections, the higher the likelihood that new virus variants, so-called              
"lineages" will arise, which may be better adapted and spread more effectively ​(8)​.  
The three main virus nomenclatures introduced for SARS-CoV-2 represent the respective           
clade names used by Pangolin, Nextstrain and GISAID ​(8–10) and there is an active              
discussion to unify and update the system (nature.com        
https://doi.org/10.1038/d41586-021-00097-w​). SARS-CoV-2 is highly dynamic in this regard,        
reflected in more than 1000 described "lineages" (​https://cov-lineages.org/lineages.html ​) ​(8)​.         
The UK observed over 1000 transmission lineages to date ​(11) and sets an example of               
molecular surveillance by contributing 151,860 of all 348,089 SARS-CoV-2 genomes stored           
on GISAID (data from 11.01.2021). So far they showed that larger regional epidemics had a               
greater diversity of lineages, and that the proximity to airports in UK areas led to an increase                 
in lineages and their frequency​ ​(11)​.  
 
An increasing number of variants of concern (VOC) have been arising recently, including             
B.1.1.7 first detected ​in the UK ​(12)​, B.1.351 ​first detected in South Africa (medRxiv              
https://doi.org/10.1101/2020.12.21.20248640), B.1.346 first detected in the US       
(https://virological.org/t/identification-of-a-novel-sars-cov-2-spike-69-70-deletion-lineage-circ
ulating-in-the-united-states) and a mutated variant of B.1.1.28, first detected from four North            
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Brazilian travelers in Japan and recently confirmed in Manaus, Brazil (currently labeled P.1;             
https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-mana
us-preliminary-findings​). B.1.1.7 garnered high media attention due to its increasingly high           
prevalence in the South East of England and the increased detection of the lineage in other                
European countries including Germany. Noteworthy, lineage B.1.1.7 shows a large number           
of mutations with potentially immunologic significance, for instance, in the spike protein            
(such as N501Y and P681H), compared to the Wuhan strain in 2019. Early investigations              
indicate that this virus lineage possesses a significant transmission advantage (medRxiv           
https://doi.org/10.1101/2020.12.30.20249034). In particular, the N501Y mutation was also        
found in the emerging South African variant B.1.351 next to mutations K417N and E484K in               
the spike protein (medRxiv https://doi.org/10.1101/2020.12.21.20248640). All three       
mutations are located in the receptor-binding domain (RBD) of the spike protein and are              
involved in binding to the human ACE2 receptor. The mutated lineage B.1.1.28 (P.1)             
harbors, amongst others, the same three RBD mutations (K417N/E484K/N501Y). If these           
mutations in the RBD indeed provide a selective advantage for viral transmissibility, we             
expect an increasing frequency of such viral lineages around the world. Only limited changes              
to the epitope were observed for the strain B.1.1.7 so far, suggesting that it is highly unlikely                 
that current RNA vaccines won’t be effective (medRxiv        
https://doi.org/10.1101/2021.01.06.20248960). 
 
Overall, numerous lineages have increased and decreased in 2020. Multiple factors           
influence the spread, like seasonal changes, regional counter measurements, and people's           
adherence to these. So far, there has been substantial heterogeneity in the transmissibility of              
SARS-CoV-2 infection. Adam et al. described that only 19% of cases were responsible for              
80% of all SARS-CoV-2 transmissions in Hong Kong ​(13)​. Also, Endo et al. suggest a               
stronger focus on super spreading interventions due to transmission heterogeneity ​(14)​. 
 
In early 2020, the Jena Universal Hospital (responsible for Thuringia, Germany) quickly            
implemented nanopore-based sequencing of SARS-CoV-2 to track viral diversity in the           
region. Here, we describe 40 Thuringian SARS-CoV-2 genomes and investigate their           
molecular context within Germany and the rest of the world. 

Methods 

Nanopore sequencing and genome reconstruction 
Viral RNA was extracted directly from swabs, transcribed, and amplified via the ARTIC             
protocol using V3 amplicon primers (​dx.doi.org/10.17504/protocols.io.bdp7i5rn ​). The       
sequencing was carried out with the MinION sequencer (Oxford Nanopore Technologies),           
which allows, similar to the more well-known Illumina sequencing, accurate construction of            
consensus-level SARS-CoV-2 sequences ​(15)​. All genomes sequenced at the Jena          
University Hospital are stored on GISAID under the search term “TH-IIMK-CaSe” (Field:            
Virus Name). The raw sequence data were processed using the standard settings of the              
poreCov workflow (v0.3.5; ​https://github.com/replikation/poreCov​) ​(16)​, comprising      
base-calling, genome reconstruction, and SARS-CoV-2 lineage determination via Pangolin         
(​https://github.com/cov-lineages/pangolin ​). 
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Time tree creation 
The Nextstrain workflow ​(10,17) was used for the phylogenetic analysis of the Thuringian             
samples. To this end, the following subsampling approach was used to reduce the 316,771              
genomes from GISAID with a stepwise focus from a German to an EU to a global context.                 
Genomes were grouped if the three criteria “division, year, and month” were the same.              
German groups were allowed to contain up to 200 genomes, other European countries up to               
20, and other non-EU countries up to 10. Excess genomes were removed. This resulted in               
1,917, 4,251, and 3,474 genomes from Germany, the EU (except Germany), and non-EU,             
respectively. Results were visualized via auspice (​https://auspice.us/​). The tree origin ist the            
strain “Wuhan/IVDC-HB-01/2019” (Accession Number: NC_045512.2). 

Results 
Forty Thuringian SARS-CoV-2 isolates collected between December 2019 and January          
2021 were analyzed. To bring the reconstructed SARS-CoV-2 genomes into a molecular            
context with the rest of Germany and the world, they were phylogenetically compared with              
9,642 SARS-CoV-2 genomes. For this purpose, all GISAID sequences (316,771 genomes)           
were subsampled (for details, see method section), with an emphasis on Germany (n =              
1,917). The results are visualized in a phylogenetic time tree (Fig. 1 - samples are placed                
according to collection date) and a divergence tree (Figure 2 - samples are placed according               
to nucleotide mutations), in which all German isolates are marked, and the Thuringian             
isolates are highlighted in red. Both trees are colored by the major Nextstrain clades. These               
major clades are named based on their year of occurrence and a letter (e.g., 2019 as 19A).                 
A major clade needs to reach >20% global frequency or >30% regional frequency for two or                
more months to be added as a major clade. Certain clades such as 20 A/B/C are globally                 
distributed and found in most countries ​(10)​. 

Most highly prevalent SARS-CoV-2 lineages in Germany detected in         
Thuringia 
Thuringia, a region that is geographically in the middle of Germany and Europe, does not               
have its own international airport. We, therefore, expected lower genetic diversity/frequency           
in contrast to regions with higher density and international airports ​(11)​. However, Thuringian             
samples (colored red, Fig. 1) are scattered throughout the tree in close proximity to other               
German samples from other regions, with only a few noticeable exceptions like 19A/B and              
20C. Up until now, no clear pattern or clustering is visible in Thuringia based on the current                 
number of samples. 
 
The 1,917 German samples are scattered throughout the major nextstrain clades 19A/B,            
20A/B/C, 20A.EU1/2. Four of these clades can be found in Thuringian isolates (20A,             
20A.EU1, 20A.EU2, and 20B). In contrast to the beginning of the year, certain major clades               
such as 19A, 19B are underrepresented in the 2nd wave in Germany up until now, even                
though isolates have been identified in other countries (colored lines Fig. 1). Noteworthy, a              
reduction in sampling is clearly visible around June to August when viral prevalence was              
lowest in Germany (Fig. 1).  
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More generally, German samples are scattered throughout all of the tree and clades with the               
exception of the smaller subclades 20B/15867G and 20B/22992A. It is worth noting that             
SARS-CoV-2 virus nomenclatures are continuously updated and reassigned throughout the          
pandemic to better reflect current trends and frequencies. 
 
 

 
Fig. 1: Radial time tree visualization of 9,642 SARS-CoV-2 genomes subsampled from            
316,771 genomes. The tree contains 1,917 German samples (country - colored circles),            
including 40 Thuringian samples (region - red circles). The tree is colored and labeled by the                
major SARS-CoV-2 clades defined by Nextstrain. Tree origin (center of the tree) is the strain               
“Wuhan/IVDC-HB-01/2019” collected on 30-12-2019. Rings around the tree represent the          
time past and are labeled by year-month. The histogram shows the number of German              
samples included here by collection date.  
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Genetic divergence and current lineage distribution 
Although SARS-CoV-2 is not a recombinant of any sarbecoviruses detected to date,            
recombination likely played a role in its emergence ​(18,19)​. A recombination event between             
SARS-CoV-2 lineages has, to our knowledge, not yet been observed or proven            
(https://observablehq.com/@spond/linkage-disequilibirum-in-sars-cov-2). The virus has been     
subject to constant antigenic drift with around 22.8 substitutions per year. To better             
understand the molecular viral epidemiology and clonality in Thuringia, the 9,642           
SARS-CoV-2 isolates were visualized on the basis of their divergence from the Wuhan             
isolate (Fig. 2). We detected over 110 different lineages in the 1,917 German samples, and               
highlighted the frequent lineages of “wave 2” (winter 2020/21; Fig. 2). 
 
 
 

 
Figure 2: Radial divergence tree of 9,642 SARS-CoV-2 genomes representing the           
accumulated number of nucleotide mutations (grey rings) from “Wuhan/IVDC-HB-01/2019”         
submitted on 30-12-2019 (center of the tree). The tree contains 1,917 German samples             
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(country - colored circles), including 40 Thuringian samples (region - red circles). Some             
lineages of higher divergence of “wave 2” are highlighted. The tree is colored by the major                
SARS-CoV-2 clades defined by Nextstrain (same color scheme as Figure 1). 
 
The most divergent genomes sequenced in Thuringia represent lineages B.1.177, B.1.221,           
B.1.258, and B.1.160, covering most of the diversity observed in German samples, with a              
few exceptions (B.1.1.7, B.1.367, and B.1.1.70). Both B.1.177 (>72,000 sequences          
worldwide) and B.1.160 (around 10,000 sequences worldwide) increased rapidly in their           
frequency over the summer of 2020 and are now frequent and mainly identified in European               
countries (2020-08 and ongoing;    
https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-linea
ge-in-the-uk-defined-by-a-novel-set-of-spike-mutations). Both lineages make up a large part        
of the EU clades 20A.EU1 for B.1.177 and 20A.EU2 for B.1.160. Various emerging             
sublineages have been identified (e.g., B.1.160.1 to B.1.160.8; B.1.177.1 to B.1.177.27),           
reflecting their high prevalence. Similarly, B.1.258 (around 6,601 sequences worldwide) and           
B.1.221 (around 3,500 sequences worldwide) increased their frequency in Europe around           
October-December 2020 and are part of clade 20A. 

Discussion 
At the time of writing we are in the middle of the COVID-19 pandemic. Although vaccination                
has recently started, the emergence of VOCs diminishes our hope that the pandemic is              
nearly over. Molecular surveillance is invaluable in understanding a pathogen’s spread and            
evolution and can help inform public health decisions. We’ve presented a relatively sparse             
genomic overview of the Thuringian virus diversity during the pandemic so far, which was              
possible thanks to employing a low-cost nanopore-based SARS-CoV-2 sequencing         
approach, together with bioinformatic workflows to automate all subsequent analyses          
reproducibly.  
In Thuringia, a region without an international airport and with a population density below the               
German average, we detected many of the currently highly frequent lineages in Europe. The              
current data suggest that any highly frequent lineage spreading throughout Europe will reach             
Thuringia at some point. While currently over 100 described lineages are identified in             
Germany (data from GISAID; 21.01.2021), we only detected a subset (9) of these lineages,              
which may be attributed to undersampling. Denser genomic coverage would probably reveal            
higher diversity, which in turn would increase the probability to detect novel variants early.              
While it is imperative to implement systematic genomic surveillance throughout Germany           
and Europe, care needs to be taken in interpreting the results of genomic investigations.              
Viral transmission dynamics depend on a range of factors, such as social interactions,             
regional COVID measures, workplace (location, number of coworkers, space…), etc..          
Regional differences can lead to considerable fluctuations in the frequency of mutations.            
Therefore, solid estimates on transmissibility require clinical field studies and respective           
modeling, e.g. through estimation of secondary attack rates within households. Indeed,           
more within-household transmission for the new variant VOC B.1.1.7 have been reported            
(​https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsand
diseases/adhocs/12714newvariantclusteringinhouseholdsanalysis​).  
 
Further SARS-CoV-2 VOCs are likely to emerge in different regions of the world. Since most               
VOCs cannot be discriminated against by regular PCR-tests, continuous genomic          
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surveillance by sequencing is required. Although no lineages that circumvent the efficiency            
of currently used vaccines have yet been observed, vaccination induces additional selective            
pressure on the virus. Systematic and dense whole-genome sequencing will enable us to             
detect concerning new lineages early to quickly limit their spread and, if needed, adjust the               
vaccines and/or the routine diagnostic standards. 
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