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I. NUMERICAL RESULTS OF FIG.4B

U 0.0 0.4 0.8 1.2 1.6 2.0 2.4
C 1.0 0.92 0.88 0.96 0.89 0.96 1.18

TABLE I. Constants C used in the collapse of Fig. 4 (b) of
the main text.

To achieve the universal collapse shown in Fig. 4 (b) of
the main text we have numerically determined the con-
stants C listed in Table I.

II. BOUNDARY CHARGE FLUCTUATIONS

Here we present a general analysis of the boundary
charge fluctuations without assuming that the gap is
small compared to the band width. This means that
the length scale ξg = vF /Eg is not assumed to be much
larger than the lattice spacing a. As in the main part
of the letter we assume fixed particle number N (i.e.,
a canonical ensemble) and zero temperature here (other
cases are discussed in Section II C). We take an effec-
tively one-dimensional system with Ns lattice sites and
NB channels per site, labeled by m = 1, . . . , Ns and
σ = 1, . . . , NB , respectively. Besides different spins, or-
bitals and other flavors, the channel indizes include also
the degrees of freedom in transverse direction, i.e., par-
allel to the surface. The size of the one-dimensional unit
cell is denoted by Za. For the real space position of a
lattice site we write x = ma, and L = Nsa defines the
system size perpendicular to the boundary. Finally, we
take the thermodynamic limit Ns, N →∞ such that the
average charge per site ρ̄ = N/Ns is kept constant. We
use units ~ = e = 1.

In Section II A we analyse the relation of the boundary
charge fluctuations to the second moment of the longitu-
dinal density-density correlation function. In Section II C
we discuss the case of a grandcanonical ensemble and fi-
nite temperature.

A. Relation to the density-density correlation
function

Our aim is to calculate the fluctuations of the bound-
ary charge operator at one end of the system defined by

Q̂B =

Ns∑
m=1

fm(ρ̂m − ρ̄) , (1)

where ρ̂m =
∑
σ a
†
mσamσ is the charge operator at site m,

and a†mσ creates a fermion on site m in channel σ. The
macroscopic average is described by an envelope function
fm ≡ f(x) = 1− θlp(x−Lp), with L & Lp + lp/2 & lp �
ξg, where θδx(x) is some representation of the θ-function
broadened with δx. The scale Lp describes the length of
a charge measurement probe and lp is the scale on which
the probe smoothly looses the contact to the sample. By
convention, we define the scale lp by the integral

l−1
p =

∫
dx[f ′(x)]2 . (2)

The envelope function is assumed to be smooth on the
microscopic length scales ξg and a, i.e., lp � ξg, a. As
shown below the length scales L, Lp, and lp can even be
of the same order of magnitude, provided that |L−Lp−
lp/2| & O(ξg) and |Lp − lp/2| & O(ξg). This condition
means that the fall-off of the envelope function fits into
the system size (up to O(ξg)). Otherwise, as we will
see below, the length scale Lp does not enter the final
solution for the boundary charge fluctuations.

Defining the correlation function

Cmm′ = 〈ρ̂mρ̂m′〉 − 〈ρ̂m〉〈ρ̂m′〉 , (3)

we can express the fluctuations ∆Q2
B = 〈Q̂2

B〉−〈Q̂B〉
2

as

∆Q2
B =

Ns∑
m,m′=1

fmfm′Cmm′ . (4)

In the following we call Cmm′ the density-density corre-
lation function of the effectively one-dimensional system
but it should be kept in mind that it is the correlation
between the charges ρm and ρm′ including the sum over
all channel indizes. In particular, this includes also the
sum over all transverse quasimomenta. Therefore, for
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higher-dimensional systems, it describes rather the cor-
relation between the total charge of two stripes and not
the correlation between the densities at two points in real
space.

Using the sum rule (which is exact at fixed particle
number)

Ns∑
m′=1

Cmm′ = 0 , (5)

together with Cmm′ = Cm′m, we can replace fmfm′ →
−(1/2)(fm−fm′)2 in (4) and obtain the very useful form

∆Q2
B = −1

2

Ns∑
m,m′=1

(fm − fm′)2Cmm′ . (6)

This formula is very helpful since the correlation function
Cmm′ is exponentially small for an insulator for |x−x′| �
ξg, with x = ma and x′ = m′a. Therefore, only the
part |x − x′| . ξg is relevant. Since fm ≡ f(x) varies
slowly on the scale ξg due to ξg � lp, we can expand

fm−fm′ ≈ f ′(x+x′

2 )(x−x′) in (6). Using in addition that
the derivative f ′(x) ∼ 1/lp is only non-zero for x = Lp +
O(lp/2), we find that both x, x′ ∼ Lp+O(lp/2)� ξg are
located away from the boundary far beyond the length
scale ξg. This holds even in the case when Lp and lp/2
have the same order of magnitude (up to O(ξg)) since
the contribution from all x, x′ ∼ ξg gives a contribution

.
( ξg
lp

)2
to the fluctuations. Therefore, we can replace

the correlation function Cmm′ by its bulk value

Cbulk
mm′ = a2Cbulk(x, x′) , (7)

and obtain for lp � ξg

∆Q2
B = −1

2
a2

Ns∑
m,m′=1

[
f ′(

x+ x′

2
)

]2

× (x− x′)2Cbulk(x, x′) +O(
ξg
lp

)2 . (8)

As a result, the double sum scales as a2
∑
m,m′ . ξglp

and one can see that the fluctuations are finite in the
thermodynamic limit. In this formula the bulk correla-
tion function can be calculated in the thermodynamic
limit for any ensemble and for any boundary condition.
Note that this is not possible in the form (4) since the
sum rule (5) does no longer hold exactly in a grandcanon-
ical ensemble at finite temperature (see the discussion in
Section II C).

Using m = Z(n−1)+j, where j = 1, . . . , Z denotes the
site index within a unit cell and n = 1, 2, . . . labels the
unit cells, we can write Cbulk(x, x′) = Cbulk

jj′ (Zna,Zn′a).
Due to translational invariance on the size Za of a unit
cell (which holds on average also in the presence of ran-
dom disorder) the bulk correlation function depends only
on the difference n− n′ and we can write

Cbulk(x, x′) = Cbulk
jj′

(
Z(n− n′)a

)
. (9)

Using f ′(x+x′

2 ) = f ′(Znsa)(1 + O(a/lp), with ns =
n+n′

2 , we find that the sum over ns in (8) gives∑
ns
f ′(Znsa)2 = 1

Zalp

(
1 + O(Za/lp)

)
according to (2).

Again neglecting boundary effects ∼ O(
ξg
lp

)2, we obtain

lp ∆Q2
B = − a

2Z

∑
n

∑
jj′

×
(
Zna+ (j − j′)a

)2
Cbulk
jj′ (Zna) . (10)

We note that this result is exact when performing the
limits L,Lp, lp →∞ with L & Lp+lp/2 & lp. Eq. (10) es-
tablishes a universal relation of the boundary charge fluc-
tuations to the density-density correlation function of the
bulk, including all microscopic details of the unit cell. As
one can see only the product lp ∆Q2

B is related in a uni-
versal way to the bulk correlation function Cbulk

jj′ (Zna),

where lp is defined by Eq. (2) in terms of the envelope
function. Since the bulk correlation function can be cal-
culated in any ensemble and with any boundary condition
this equation is the most convenient starting point to cal-
culate the boundary charge fluctuations very efficiently
from bulk quantities without any need to determine the
complicated eigenfunctions of finite or half-infinite sys-
tems.

As one can see from the proof only the condition lp �
ξg enters together with the property that the support of
the function f ′(x) fits into the system size such that

−
∫ L

0

dxf ′(x) = 1 +O(ξg/lp) , (11)∫ L

0

dx
[
f ′(x)

]2
= l−1

p

(
1 +O(ξg/lp)

)
. (12)

This is the reason why the length scales L, Lp, lp can all
be of the same order of magnitude (in the sense defined
above) without changing the leading order contribution
of the fluctuations. This is very helpful for numerical cal-
culations and the experimental observability since only
the condition lp � ξg � a has to be fulfilled to find
universal properties of the boundary charge fluctuations.

To proceed we note at this point that all universal
properties of ∆Q2

B derived in this section follow from
two fundamental properties of Cbulk

jj′ (x) which have to be
checked for the concrete model under consideration

Cbulk
jj′ (x) =

∑
σ

1

ξ2
σ

g
(σ)
jj′ (x/ξσ)e−x/ξσ , (13)

s2g
(σ)
jj′ (s) ∼ O(1) for |s| < 1 . (14)

The first condition (13) states exponential decay and in-
dicates that the correlation function is in general a lin-
ear combination of many terms, each with its own decay
length ξσ < ξg. This occurs generically in the presence
of channel indizes describing flavor degrees of freedom
(spin, orbital, etc.) or the transverse quasimomentum
(see Section V). Due to the second condition (14) the
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pre-exponential function should scale as g
(σ)
jj′ (s) ∼ 1/s2

for |s| < 1. We find this scaling independent of the mi-
croscopic details of the model. For ξg ∼ a this property
is obvious since there is only a single length scale. In
the low-energy regime ξg � a, we show in Section III C
explicitly that the two properties are fulfilled for single-
channel and noninteracting models. The physical reason
for the general case is obvious. For |x| ∼ a � ξσ < ξg
one probes high-energy scales where the gap is unim-
portant. Therefore, the correlation function will scale
∼ 1/a2. For |x| ∼ ξσ � a, the lattice spacing does not
play any role and a low-energy continuum theory is pos-
sible to describe the corresponding term of the correla-
tion function. This theory is expected to depend mainly
on a single length scale ξσ, such that the corresponding
term of the correlation function will scale ∼ 1/ξ2

σ. In
contrast, for |x| � ξσ or |s| � 1, the scaling depends
crucially on the low-energy properties of the model and
a pre-exponential power-law with an interaction depen-
dent exponent is expected. The latter is difficult to de-
termine for interacting systems. For clean single-channel
systems one obtains 1/|s| in the noninteracting case, see
Section III. However, this regime is of no relevance for
the fluctuations since the corresponding term of the cor-
relation function is exponentially small for |x| � ξσ. We
note that the exponential decay property (13) is also valid
for the correlation function Cmm′ with a boundary but
the scaling of the pre-exponential function for n, n′ close
to the boundary might be more subtle.

Using (13) and (14) one can estimate the order of mag-
nitude of the fluctuations (10) as

lp ∆Q2
B =

∑
σ

cσξσ ≡ NB ξ̄ . NBξg , (15)

with cσ ∼ O(1), and ξ̄ = 1
NB

∑
σ cσξσ ≤ ξg defining some

average exponential decay length. This result shows that
the boundary charge fluctuations ∆QB .

√
NBξg/lp �√

NB are always much smaller than the boundary charge
QB ∼ NB , even for NB ∼ O(1), showing that the bound-
ary charge is a well-defined observable for lp � ξg

1, in
analogy to interface charges studied in Refs. [2–7].

In the low-energy regime when ξg � Za, one can ne-
glect all terms in (15) with ξσ ∼ Za� ξg. For the terms
with ξσ � Za, we can neglect the part (j− j′)a ∼ Za�
ξσ ∼ Zna in (8) and the sum can be replaced by an
integral. This leads to the compact formula

lp ∆Q2
B = −1

2

∫
dxx2C̄bulk(x) , (16)

where C̄bulk(x) is the correlation function averaged over
j and j′

C̄bulk(x) =
1

Z2

∑
jj′

Cbulk
jj′ (x) . (17)

B. Numerics in the infinite system size limit
Ns →∞

One of the many important implications of the pre-
vious subsection is that the boundary charge fluctua-
tions lp ∆Q2

B can be extracted either directly or equiv-
alently (in the Lp, lp → ∞ limit) from the right hand
side of Eq. (10) via the bulk correlation functions. In
the translationally invariant case this can be utilized to
significantly speed up the numerical determination of
lp ∆Q2

B as one can work directly in the desired limit of
Ns → ∞, which is often more convenient. We use this
in Fig. 1 of the main text to determine the non-zero U ,
but d = 0 data from a highly efficient infinite system size
density matrix renormalization group approach. With
this the problem is directly phrased in the correct limit
of Ns, Lp, lp → ∞, with Nsa & Lp + lp/2 & lp � ξg,
but the evaluation of Eq. (10) requires the evaluation of
an infinite sum

∑
n. As usual in numerical approaches

we truncate this infinite sum at finite, but large index by∑∞
n=−∞ →

∑nc
n=−nc , where nc needs to be converged to

nca� ξg (akin, but not exactly equal to keeping a finite
lp) . We choose nc = 499 for the data shown in Fig. 1 of
the main text.

C. Finite temperature and grandcanonical
ensemble

For a canonical ensemble at fixed particle number, all
our results are also valid at finite temperature T , pro-
vided that T � ∆ is much smaller than the gap Eg = 2∆.
In this case the finite temperature corrections to ∆Q2

B
can be shown to be exponentially small of relative order
∼
√
T/∆ e−∆/T , see Section III B 1. This changes for

a grandcanonical ensemble where the sum rule (5) is no
longer fulfilled exactly. For an estimation we consider a
non-interacting system and find after a straightforward
calculation using Wick’s theorem

Ns∑
m′=1

Cmm′ =

=
∑
s

nF (εs)[1− nF (εs)]
∑
σ

|ψs(mσ)|2

∼ NB
T

W
e−∆/T , (18)

where ψs(mσ) are the single-particle eigenstates with en-
ergy εs, nF (εs) denotes the Fermi function, and W is the
band width. As a result we find that in the steps to get
Eq. (6) from (4), the contributions from f2

m and f2
m′ lead

to corrections of order

∆Q2
B(T )−∆Q2

B(T = 0) ∼ NB
Lp
a

T

W
e−∆/T . (19)

With ∆Q2
B(T = 0) ∼ NB

ξ̄
lp

, and the thermal length

LT ∼ vF /T ∼ aW/T we conclude that the temperature
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dependent correction is of relative order

∆Q2
B(T )−∆Q2

B(T = 0)

∆Q2
B(T = 0)

∼ Lplp
ξ̄2

ξ̄

LT
e−∆/T . (20)

However, even though Lplp � ξ2
g > ξ̄2, we expect these

corrections to be very small at low temperatures ξ̄ <
ξg � LT due to the exponentially small factor e−∆/T .
As a consequence we conclude that all our central results
remain valid for a grandcanonical ensemble as well.

III. NONINTERACTING AND CLEAN
MODELS

In this section we analyse the special case of nonin-
teracting and clean systems. In Section III A we provide
general reasons for the properties (13) and (14) by ex-
pressing the correlation function via the propagator. For
the special case of the Rice-Mele model we present the
exact solution for the fluctuations of the boundary charge
in Section III B. Finally, in Section III C we present the
generic low-energy theory for all single channel models in
the low-energy regime in terms of a noninteracting Dirac
model following the ideas of Ref. 8.

A. Properties of the density-density correlation
function and the propagator

Here we provide qualitative reasons why the properties
(13) and (14) are fulfilled. Due to translational invariance
perpendicular to the effectively one-dimensional system
(i.e., parallel to the boundary), we consider in the fol-
lowing a fixed value for the transverse quasimomentum,
restricting the sum over the channels only to a finite and
small number Nc of other flavor degree of freedom.

For any noninteracting and clean lattice model in a
grandcanonical ensemble one can use Wick’s theorem and
obtains for the density-density correlation function

Cbulk
mm′ = δmm′ρm −

Nc∑
σ,σ′=1

|〈a†mσam′σ′〉|2 . (21)

The propagator 〈a†mσam′σ′〉 can be expressed via the
single-particle Bloch eigenfunctions

ψ
(α)
k (m,σ) =

1√
2π
χ

(α)
k (j, σ)eikn , (22)

with energy ε
(α)
k , where α is the band index and −π <

k < π denotes the quasimomentum in units of the inverse

lattice spacing. With a†mσ =
∑
α

∫ π
−π dk c

†
kαψ

(α)
k (m,σ)

and 〈c†kαck′α′〉 = δαα′δ(k − k′)nF (ε
(α)
k ), we obtain

〈a†mσam′σ′〉 =
∑
α

∫ π

−π
dk

× ψ(α)
k (m,σ)∗ψ

(α)
k (m′, σ′)nF (ε

(α)
k ) , (23)

which, for the case of small temperatures T � ∆ and by
inserting (22), can be written as

〈a†mσam′σ′〉 =

ν∑
α=1

∫ π

−π

dk

2π

× χ(α)
k (j, σ)∗χ

(α)
k (j′, σ′)e−ik(n−n′) . (24)

Here
∑ν
α=1 denotes the sum over the occupied bands.

The Bloch vectors χ
(α)
k depend parametrically on eik

and on the dispersion ε
(α)
k . The latter has a branch-

ing point in the complex plane with an imaginary part
Im(k) ∼ a/ξc9–12, where ξc is some length scale averaged
over all channel indizes. Closing the integration contour
in the complex plane this gives the exponential decay of
the propagator ∼ e−Z|n−n

′|a/ξc , leading via (21) to the
corresponding exponential decay (13) of the correlation
function. For scales |n − n′|a ∼ ξc and ξc � a we get
k ∼ |n − n′|−1 ∼ a/ξc � 1 such that all eik ≈ 1 and

ε
(α)
k ∼ ∆. Therefore, the integral

∫
dk ∼ a/ξc and the

propagator scales in the same way. For very short scales
|n−n′| ∼ O(1) and ξc � a, the gap is not relevant and the
propagator is of O(1). The same occurs if |n−n′| ∼ O(1)
and ξc ∼ a. This proves (14).

Finally we note that it is quite useful to express the
propagator (24) and the fluctuations via the density ma-
trix introduced in Ref. [11]. For the propagator we get

〈a†mσam′σ′〉 =
Z

2π

∫ π/Z

−π/Z
dk̄ n̂j′σ′,jσ(k̄) e−ik̄(m−m′),

(25)

where k̄ = k/Z,

χ̄
(α)

k̄
(j, σ) = ei

k
Z (Z−j)χ

(α)
k (j, σ) , (26)

and the density matrix (written as an operator in unit
cell space)

n̂(k̄) =

ν∑
α=1

|χ̄(α)

k̄
〉〈χ̄(α)

k̄
| = n̂(k̄)† . (27)

We note the properties

n̂(k̄)2 = n̂(k̄) , (28)

tr n̂(k̄) = ν , (29)

which follow immediately from the orthogonality relation

〈χ̄(α)

k̄
|χ̄(α′)

k̄
〉 = δαα′ .

Using (25) one finds after integration by parts

(m−m′)〈a†mσam′σ′〉 = −i Z
2π

∫ π/Z

−π/Z
dk̄

×
[
∂k̄n̂j′σ′,jσ(k̄)

]
e−ik̄(m−m′) . (30)
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Therefore, from (10) and (21) one can write the fluctua-
tions in terms of the density matrix as

lp ∆Q2
B =

a

2

∫ π/Z

−π/Z

dk̄

2π
tr{[∂k̄n̂(k̄)]2} . (31)

The formula (31) can be equivalently rewritten in
terms of the Bloch momentum k (instead of k̄):

lp ∆Q2
B =

Za

2

∫ π

−π

dk

2π
tr{[∂kn̂(k)]2}. (32)

At finite temperature we have to use the following form
of the density matrix

n̂(k̄)→ ñ(k̄) =
∑
α

|χ̄(α)

k̄
〉〈χ̄(α)

k̄
|nF (ε

(α)

k̄
) . (33)

B. Example: Rice-Mele model

The Rice-Mele model is defined by Z = 2 with two hop-
pings t1/2 > 0 and staggered on-site potentials v = v1 =
−v2. The Bloch Hamiltonian hk in the two-dimensional
unit cell reads

hk =

(
v −t1 − t2e−ik

−t1 − t2eik −v

)
(34)

and has eigenvalues

ε
(±)
k = ±εk = ±

√
∆2 + 4t1t2 cos2

k

2
, (35)

where ∆ =
√
v2 + (t1 − t2)2 is half the energy gap

Eg = 2∆ between the valence ε
(−)
k and the conduction

ε
(+)
k bands. The corresponding eigenstates read

χ
(±)
k =

1√
2εk(εk ∓ v)

(
t1 + t2e

−ik

v ∓ εk

)
. (36)

The expectation value for the boundary charge has
been analysed in all detail in Ref. [13]. To calculate the
fluctuations of the boundary charge we first insert the
eigenstates (36) in (26), and find from (27) for the den-
sity matrix of the valence band

n̂(k) =
1

2εk

(
εk − v t1e

i
2k + t2e

− i
2k

t1e
− i

2k + t2e
i
2k εk + v

)
. (37)

Computing the k-derivative we obtain

∂kn̂(k) (38)

=∂k(
1

2εk
)

(
−v t1e

i
2k + t2e

− i
2k

t1e
− i

2k + t2e
i
2k v

)
+

i

4εk

(
0 t1e

i
2k − t2e−

i
2k

−t1e−
i
2k + t2e

i
2k 0

)
.

Using ∂k( 1
εk

) = t1t2 sin k
ε3k

, we evaluate

1

2

∫ π

−π

dk

2π
tr{[∂kn̂(k)]2} =

∫ π

−π

dk

2π

1

16ε6k

× [(∆2 + 4t1t2)2(t1 − t2)2 cos2 k

2

+ ∆4(t1 + t2)2 sin2 k

2
+ 4v2t21t

2
2 sin2 k]. (39)

Performing this integral, we obtain from (32)

lp ∆Q2
B = a

t21 + t22
8∆

1√
∆2 + 4t1t2

. (40)

In the wide-band limit t1+t2
2 ≡ t� ∆ we estimate

lp ∆Q2
B ≈

ta

8∆
=

vF
16∆

, (41)

with vF = 2ta.

1. Finite temperature

At finite temperature (but still at fixed particle num-
ber) we replace n̂(k) by ñ(k) defined in (33) (here we use
k instead of k̄ = k/2). For a two-band model (α = ±)

with the particle-hole symmetry ε
(−)
k = −ε(+)

k ≡ −εk, we

use the completeness relation
∑
α=± |χ̄

(α)
k 〉〈χ̄

(α)
k | = 1̂ in

order to simplify (33)

ñ(k) = nF (−εk) n̂(k) + nF (εk) (1̂− n̂(k)). (42)

Hence

∂kñ(k) = [nF (−εk)− nF (εk)]∂kn̂(k)

+{[1̂− n̂(k)]n′F (εk)− n̂(k)n′F (−εk)}dεk
dk

. (43)

Squaring this expression and using the properties (28),

(29) as well as tr[n̂(k)∂kn̂(k)] = tr[(1̂− n̂(k))∂kn̂(k)] = 0,
we find the wide-band limit expression

lp ∆Q2
B ≈

≈ Za
∫ ∞
−∞

dk

2π

{
v2
F∆2

4a2ε4k
[nF (−εk)− nF (εk)]2

+
1

2
[(n′F (−εk))2 + (n′F (εk))2]

(
dεk
dk

)2
}
. (44)

Note that the first term in the integrand follows from its
finite-band counterpart in (39) in the limit under consid-
eration.

Choosing µ = 0, we evaluate (44)

lp ∆Q2
B ≈

≈ 2
vF
∆

∫ ∞
0

dx

2π

{
tanh2( ∆

2T

√
x2 + 1)

2(1 + x2)2

+
(∆/T )2

8 cosh4( ∆
2T

√
x2 + 1)

x2

x2 + 1

}
,
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with the rescaled integration variable x = vF k
a∆ . This

function decays monotonically in T , and at T & ∆ it
behaves like ∼ vF

12πT . At zero T we recover (41), finding
additionally the low-temperature correction

≈ − 2vF

∆
√

2π∆/T
e−∆/T . (45)

C. Low-energy theory for single channel models

For the case of a noninteracting and clean single chan-
nel lattice model in the limit of small gap Eg �W , where
ξg � a, one can describe the low-energy physics by an
effective Dirac Hamiltonian in 1 + 1 dimensions8

Hbulk =

∫
dxψ†(x) {−ivF∂xσz

+∆ cos γ σx −∆ sin γ σy}ψ(x) , (46)

where Eg = 2∆ is the gap size, kF = πν/(Za) is
the Fermi momentum at which the gap opens, vF =
2ta sin(kFa) denotes the Fermi velocity (t ∼ W is the
average hopping), and ψ(x) is a two-component field
consisting of slowly varying right- and left-moving fields
ψ±(x) such that the physical field operator can be ex-
pressed as

ψ(x) =
∑
p=±

ψp(x)eipkF x . (47)

The variable γ describes the phase of the order parameter
such that ∆eiγ describes the transition matrix element
from −kF to kF , see Ref. 8.

The Dirac model has two bands with dispersion ±εk =
±
√
v2
F k

2 + ∆2. For a chemical potential in the gap and
T � ∆ all states of the valence band are filled. The
eigenstates of the valence band states are given by

ψ
k
(x) =

1√
2πNk

(
−∆eiγ

vF k + εk

)
eikx , (48)

with normalization factor Nk = ∆2 + (vF k + εk)2 =
2εk(εk+vF k). Using this result one can straightforwardly
calculate the propagators

〈ψ†p(x)ψp′(x
′)〉 =

∫
dk〈ψ†k,p(x)ψk,p′(x

′)〉

=
1

2
δ(x− x′)δpp′ +

1

4πξg

[
iσzK1

(
x− x′

2ξg

)
− (cos γ σx + sin γ σy)K0

(
x− x′

2ξg

)]
pp′

, (49)

where Kν denotes the modified Bessel function of the sec-
ond kind, σi are the Pauli matrices, and ξg = vF

2∆ = vF
Eg

is the exponential decay length. Using (47) and omit-
ting the divergent contribution at x = x′ (which can not

be determined from a low-energy model) we find for the
density-density correlation function the form

Cbulk(x, x′) = −|〈ψ†(x)ψ(x′)〉|2

= − 1

4π2ξ2
g

{
K1

(
x− x′

2ξg

)
sin[kF (x− x′)]

−K0

(
x− x′

2ξg

)
cos[kF (x+ x′) + γ]

}2

. (50)

To calculate Cbulk
jj′

(
Z(n − n′)a

)
of the original lattice

model, we insert x = ma and x′ = m′a into this equa-
tion. Using m = Z(n − 1) + j and m′ = Z(n′ − 1) + j′

together with kF = πν/(Za), one finds (except for n = 0
and j = j′) the final result

Cbulk
jj′ (Zn) = − 1

4π2ξ2
g

×
{
K1

(
Zn+ j − j′

2ξg

)
sin[π

ν

Z
(j − j′)]

−K0

(
Zn+ j − j′

2ξg

)
cos[π

ν

Z
(j + j′) + γ]

}2

. (51)

Comparing this analytical result in the low-energy limit
with exact numerical ones for the original lattice model
we find for small gaps a surprisingly perfect agreement
even for small values of n. Using the asymptotic forms

K0(s)→

{√
π

2|s| e
−|s| for |s| � 1

− ln |s| for |s| � 1
(52)

K1(s)→

{
sign(s)

√
π

2|s| e
−|s| for |s| � 1

1
s for |s| � 1

, (53)

we find that the properties (13) and (14) are fulfilled.
Averaging the correlation function over j and j′ accord-
ing to (17) we find for |n| � 1 (where we can neglect
j−j′ in the argument of the Bessel functions in (51)) the
compact form

C̄bulk(x) ≈

− 1

8π2ξ2
g

{[
K0

(
x

2ξg

)]2
+
[
K1

(
x

2ξg

)]2}
, (54)

with the following asymptotics for small and large |x|

C̄bulk(x)→

− 1

2π

{
1

2ξg|x|e
−|x|/ξg for |x| � ξg

1
πx2 for |x| � ξg

. (55)

Inserting the result (54) in (16) gives the following re-
sult for the boundary charge fluctuations close to the
phase transition point

lp ∆Q2
B =

ξg
8

=
vF

16∆
. (56)

This result generalizes the result (41) obtained for the
Rice-Mele model to any single channel model.
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IV. SSH MODEL WITH DISORDER

Here we treat the disordered Su-Schrieffer-Heeger
(SSH) model in Born approximation to calculate the gap
at moderate disorder strength. The infinite bulk model
is defined by the single-particle Hamiltonian

h = h0 + V , (57)

h0 = −
∑
m

tm|m+ 1〉〈m|+ h.c. , (58)

V = −
∑
m

wm|m+ 1〉〈m|+ h.c. , (59)

where tm = tm+2 are alternating hoppings with t1/2 > 0,
and wm describes random bond disorder taken from a
uniform distribution wm ∈ [−dm/2, dm/2), with dm =
dm+2 > 0 describing the strength of disorder on site
m. The disorder-averaged progagator can be written in
terms of the self-energy as

Ḡ(E) =

(∏
m

1

dm

∫ dm/2

−dm/2
dwm

)
1

E − h

=
1

E − h0 − Σ(E)
. (60)

From the definition we get the useful properties (for any
E in the complex plane)

Ḡ(E)† = Ḡ(E∗) , Σ(E)† = Σ(E∗) , (61)

or

Ḡ(E)T = Ḡ∗(E) , Σ(E)T = Σ∗(E) , (62)

where A(E)T is the transposed matrix and A∗(E) de-
notes the conjugate complex of the matrix (without tak-
ing the conjugate complex of E). Due to translational
invariance we can write the SSH Hamiltonian h0 and the
self-energy Σ(E) in diagonal form with respect to the
quasimomentum k

h0 =

∫ π

−π
dk|k〉〈k| ⊗ h(0)

k , (63)

Σ(E) =

∫ π

−π
dk|k〉〈k| ⊗ Σk(E) , (64)

where

〈n|k〉 =
1√
2π
eikn (65)

are plane waves with respect to the unit cell index n,

and h
(0)
k and Σk(E) are 2 × 2-matrices within the 2-

dimensional unit cell space. For the SSH model we get
the form

h
(0)
k =

(
0 −t1 − t2e−ik

−t1 − t2eik 0

)
. (66)

In this notation matrix elements of the free propagator
g(E) = 1/(E − h0) can be written as

g(E)mm′ = ĝ(E,n− n′)jj′ , (67)

where m = 2(n− 1) + j, m′ = 2(n′ − 1) + j′ and

ĝ(E,n) =

∫ π

−π

dk

2π
eikn

1

E − h(0)
k

=

∫ π

−π

dk

2π
eikn

E − (t1 + t2 cos k)σx − (t2 sin k)σy
E2 − t21 − t22 − 2t1t2 cos k

(68)

is a 2× 2-matrix with σx,y,z denoting the Pauli matrices.
In standard Born approximation (see, e.g., Ref. 14) we

find for the nonvanishing matrix elements

Σ(E)m,m+1 =
d2
m

12
g(E)m+1,m , (69)

Σ(E)m+1,m =
d2
m

12
g(E)m,m+1 , (70)

Σ(E)m,m =
d2
m

12
g(E)m+1,m+1 +

d2
m−1

12
g(E)m−1,m−1 .

(71)

Since, according to (67) and (68), the diagonal elements
g(E)mm of the propagator are independent of m, (71)
describes only a constant shift of the energy leading to
the renormalized energy

Ẽ = E

(
1− d2

1 + d2
2

12

∫ π

−π

dk

2π

1

E2 − t21 − t22 − 2t1t2 cos k

)
,

(72)

such that the averaged propagator in Born approxima-
tion can be written as

Ḡ(E) =
1

Ẽ − h(E)
, (73)

with h(E) = h0 + Σ(E). Using the matrix elements of
the self-energy in Born approximation we can write

h(E) = −
∑
m

{
tm(E)|m+ 1〉〈m|+ t∗m(E)|m〉〈m+ 1|

}
,

(74)

where tm(E) = tm+2(E) and

t1(E) = t1 − Σ(E)21 = t1 −
d2

1

12
g(E)12 , (75)

t2(E) = t2 − Σ(E)32 = t2 −
d2

2

12
g(E)23 , (76)

and t∗j (E) follows from the conjugate complex (but leav-
ing E invariant). Using (67) we get g(E)12 = ĝ(E, 0)12

and g(E)23 = ĝ(E,−1)21 which, together with (68), leads
to

g(E)12 =

∫ π

−π

dk

2π

t1 + t2e
ik

|t1 + t2eik|2 − E2
, (77)

g(E)23 =

∫ π

−π

dk

2π

t2 + t1e
ik

|t2 + t1eik|2 − E2
. (78)
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At zero energy we get

g(0)12 =
1

t1
θ(t1 − t2) , (79)

g(0)23 =
1

t2
θ(t2 − t1) , (80)

leading to the following final result for the gap in the
presence of disorder

Eg = 2|t1(0)− t2(0)|

= |2(t1 − t2)− d2
1

6 t1
θ(t1 − t2) +

d2
2

6 t2
θ(t2 − t1)| . (81)

For t1 > t2 this leads to the gap closing condition

r =
t1
t2

=
1

2

{
1 +

√
1 +

d2
1

3t22

}
, (82)

which agrees rather well with the numerical result up to
d1 ∼ 2−3. For t1 < t2, Born approximation turns out to
be insufficient, which will be studied in a future work15.

V. HIGHER DIMENSIONS

In this section we calculate the fluctuations for nonin-
teracting and clean models in higher dimensionsD = 2, 3.
We start with D = 2 and combine a standard 2D quan-
tum Hall insulator16 with an additional modulation of
the on-site potentials and nearest-neighbor hoppings in
x-direction. Such models were studied extensively in
Refs. [1, 8, 12, 13, 17, and 18] to study the expec-
tation value of the boundary charge. We start from
a 2D tight-binding model with sites labeled by (m,σ)
with m = 1, . . . , Ns in x-direction and σ = 1, . . . , N⊥
in y-direction. The lattice spacing a = ax = ay is
assumed to be the same in both directions. We take
open boundary conditions in x-direction and periodic
ones in y-direction. We consider a constant magnetic
field B perpendicular to the sample in Landau gauge
A(m,σ) = (0, Bm, 0). As a result, the hopping in y-
direction from (m,σ)→ (m,σ+s) aquires a phase factor
ei2πsm/Z , where λB = Za is the magnetic length defined
by λB/a = Z = Φ0/(Ba

2), where Φ0 = hc/e denotes
the flux quantum. For simplicity we assume that Z is
an integer. If an additional flux Φ is applied through the
hole of the cylinder when the system is deformed to a
ring in y-direction, an additional phase factor e−isθ/N⊥

with θ = 2πΦ/Φ0 has to be considered for the hopping
in y-direction by s sites.

Taking real and negative nearest-neighbor hoppings
−tm = −tm+Z in x-direction and −ty in y-direction, to-
gether with real on-site potentials vm = vm+Z , we arrive

at the following 2D tight-binding model

H =

Ns∑
m=1

N⊥∑
σ=1

vma
†
mσamσ

−
Ns−1∑
m=1

N⊥∑
σ=1

tm(a†m+1,σamσ + h.c.)

− ty
Ns∑
m=1

N⊥∑
σ=1

(
ei(2πm/Z−θ/N⊥)a†m,σ+1amσ + h.c.

)
,

(83)

with amσ = am,σ+N⊥ due to periodic boundary con-
ditions in y-direction. Using Fourier transform for the
modes in this direction

amσ =
1√
N⊥

∑
ky

eikyaσcmky , (84)

with

ky =
2π

N⊥a
s , s = 1, . . . , N⊥ , (85)

we can write the Hamiltonian as an independent sum
over all transverse quasimomenta

H =
∑
ky

H(ky) (86)

H(ky) =

Ns∑
m=1

v̄m(kya+ θ/N⊥)c†mkycmky

−
Ns−1∑
m=1

tm(c†m+1,ky
cmky + h.c.) , (87)

with

v̄m(ϕ) = vm − 2ty cos

(
2π

Z
m− ϕ

)
. (88)

The charge operator summed over all transverse modes
is given by

ρ̂m =

N⊥∑
σ=1

a†mσamσ =
∑
ky

c†mkycmky . (89)

Since the Hamiltonian does not couple the transverse
modes, the fluctuations of the boundary charge opera-
tor (1) can be written as an independent sum over the
transverse modes

∆Q2
B =

∑
ky

∆Q2
B(ky) , (90)

where ∆Q2
B(ky) describe the boundary charge fluctua-

tions of the effectively 1-dimensional Hamiltonian H(ky)
at fixed ky. Denoting by 2∆(ky) the gap of this Hamil-
tonian and by vF (ky) the Fermi velocity, we can take in
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the low-energy limit of small gap compared to the band
width the result (56), leading for N⊥ →∞ to the integral

lp∆Q
2
B =

∑
ky

vF (ky)

16∆(ky)

→ N⊥a

2π

∫ π/a

−π/a
dky

vF (ky)

16∆(ky)
. (91)

To evaluate the result (91) explicitly, we consider an il-
lustrative example in terms of the Rice-Mele model, with
Z = 2 and vm = 0. Using (88) we obtain

v̄m(ϕ) = (−1)mv(ϕ) , v(ϕ) = −2ty cos(ϕ) . (92)

The gap opens up at kF = π/(2a) which corresponds to
half-filling. In the low-energy limit ty, |t1 − t2| � t =
(t1 + t2)/2, we obtain vF (ky) = 2ta and

∆(ky) =

√[
v(kya+ θ/N⊥)

]2
+ |t1 − t2|2 . (93)

Inserting in (91) and calculating the integral leads to the
final result

lp∆Q
2
B =

N⊥
8π

vF√
4t2y + ∆2

K

(
4t2y

4t2y + ∆2

)
, (94)

where K(p) =
∫ π/2

0
dx
[
1 − p sin2(x)

]−1/2
is the elliptic

integral of first kind, and

Eg = 2∆ = 2 minky∆(ky) = 2|t1 − t2| (95)

denotes the gap for the 2-dimensional system. As ex-
pected the fluctuations are independent of the phase θ.

For ∆ � ty, we can use the asymptotics K(p) →
1
2 ln

(
16/(1 − p)

)
for p → 1, and obtain a logarithmic

scaling of the fluctuations as function of the gap close to
the phase transition

lp ∆Q2
B

∆�ty−−−−→ N⊥
16π

vF
ty

ln
8ty
∆

. (96)

For the Rice-Mele model, we can also use the exact
result (40) to calculate the fluctuations at fixed ky. Per-
forming the integral over ky this leads to the following
result for the total fluctuations

lp ∆Q2
B = N⊥a

4t2 + ∆2

32πt2y
I(

∆

2ty
,
t

ty
) , (97)

with

I(a, b) =
1

b
√

1 + a2
K

(
b2 − a2

b2(1 + a2)

)
. (98)

To compare with (94) we can rewrite this result as

lp∆Q
2
B =

N⊥
8π

2ta(1 + ∆2

4t2 )√
4t2y + ∆2

K

(
t1t2
t2

4t2y
4t2y + ∆2

)
, (99)

and find that they agree for ∆ = |t1 − t2| � t = (t1 +
t2)/2.

In the low-energy regime one can also analyse the
boundary charge analytically. It is given as an inde-
pendent sum over the boundary charges of the effective
one-dimensional models

QB(θ) =
∑
ky

Q1D
B (kya+

θ

N⊥
) . (100)

Using (85) and the periodicity Q1D
B (ϕ) = Q1D

B (ϕ + 2π),
this can also be written as

QB(θ) =
N⊥
2π

∞∑
l=−∞

eilθ
∫ 2π

0

dϕQ1D
B (ϕ)e−ilN⊥ϕ . (101)

At zero chemical potential the boundary charge of the
one-dimensional model can be calculated from the low-
energy analysis of Ref. [12] as

Q1D
B (ϕ) =

γ(ϕ)

2π
+

1

4
− θπ/2<γ(ϕ)<π , (102)

where −π < γ(ϕ) < π and

∆(ϕ)eiγ(ϕ) = v(ϕ) + i(t2 − t1) . (103)

Since t1,2 are independent of the phase, γ(ϕ) = γ(ϕ +
2π) is bounded to an interval smaller than 2π and the
phase factor eiγ(ϕ) can not wind around the origin in the
complex plane. As a consequence, Q1D

B (ϕ) is a smooth
and periodic function of ϕ and the integral in (101) can
only contribute for l = 0. Therefore, for this special
model, the boundary charge is independent of θ and the
Hall current is zero. This result holds not only in the
low-energy regime but also at large gap.

Although the topology does not change at the phase
transition point r = t1/t2 = 1, there is a discontinu-
ous change of the appearance of edge states in the gap.
For r > 1, there is no edge state for any ky, whereas,
for r < 1, an edge state appears for all ky at energy
−v(kya + θ/N⊥) = 2ty cos(kya + θ/N⊥) which never
touches the band edges. Therefore, the gap has to close
at the transition, and the fluctuations show the same
characteristic scaling as for topological phase transitions
where the gap closing is induced by a change of the Chern
number.

The above analysis can easily be generalized to a 3D-
system by choosing a nearest-neighbor hopping tz in z-
direction and adding a magnetic field of size B in y-
direction. Omitting the additional flux Φ, we can write
the Hamiltonian as an independent sum over all ky and
kz

H =
∑
kykz

H(ky, kz) (104)

H(ky, kz) =

Ns∑
m=1

v̄m(ky, kz)c
†
mkykz

cmkykz

−
Ns−1∑
m=1

tm(c†m+1,kykz
cmkykz + h.c.) , (105)
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FIG. 1. Comparison of different system sizes L = N⊥a =
Nsa and boundary conditions of the two dimensional model
discussed in the text. The parameters are given by Z = 2,
vm = 0, t1/2 = 1.0 ± ∆/2, ty = 1.0, θ = 0, Lp = L/2 and
lp = (24, 34) whereby ∆ is varied in the interval [0.005, 1.0].

with

v̄m(ky, kz) = vm − 2ty cos

(
2π

Z
m− kya

)
− 2tz cos

(
2π

Z
m− kza

)
. (106)

Taking again the special case Z = 2 and vm = 0, we ob-
tain for each fixed (ky, kz) an effective Rice-Mele model
with potential v(ky, kz) = v̄1(ky, kz) = −v̄2(ky, kz),
where

v(ky, kz) = 2ty cos(kya) + 2tz cos(kza) . (107)

Using the exact result (40) for the calculation of the fluc-
tuations at fixed (ky, kz) and integrating over the trans-
verse momenta one arrives straightforwardly at the fol-
lowing result for the total fluctuations

lp ∆Q2
B = N2

⊥a
2 4t2 + ∆2

32π2t2y

∫ π/a

0

dkzI (g(kz), h(kz)) ,

(108)

with

g(kz) =
1

2ty

√
t2z cos2(kza) + ∆2 , (109)

h(kz) =
1

2ty

√
t2z cos2(kza) + 4t2 , (110)

and I(a, b) is defined in (98). This leads to a convergent
result for the fluctuations in the zero gap limit ∆→ 0.

To access the influence of different boundary conditions
at finite system size we consider the two-dimensional

model described above on a square lattice with L =
N⊥a = Nsa. Figure 1 summarizes the finite size scaling
(symbols) compared to the infinite limit (dashed line) for
open (OPC) and periodic (PBC) boundary conditions.
As the system size is increased the universal result is ap-
proached for increasingly smaller gaps Eg.

VI. SPECIAL PHASE TRANSITIONS

Sometimes an expansion of the Bloch Hamiltonian hk
around the quasimomentum where the gap opens does
not contain linear terms due to special symmetry con-
ditions. An exemplary model of this type has been
discussed in Ref. [19]. It contains only constant and
quadratic terms in k:

hk =

(
∆ + αk2 Γk2

Γk2 −∆− βk2

)
. (111)

The gap between the two bands is Eg = 2∆. The Bloch

eigenstates depend only on the combination ∆
k2 . It follows

immediately that the imaginary part κ of the branching

point appears to be κ ∼
√
Eg. Thus, lp∆Q

2
B ∼ E

−1/2
g .

This can be generalized to the case where the minimal
nonvanishing order of k in the expansion of hk is l. This

gives straightforwardly the scaling lp∆Q
2
B ∼ ξ ∼ E

−1/l
g .

We note in passing that in quasi-two-dimensional mod-
els the band structure of the form (111) can be realized in
the multilayer graphene with a special stacking20. How-
ever, as has been shown in Section V, for a 2D-system
the fluctuations follow from an integration over the trans-
verse momentum ky. Assuming close to the gap opening
a general dispersion relation for the conduction band of
the form

ε(kx, ky) = (∆2/l + ck2)l/2 , (112)

the solution of ε(kx, ky) = 0 for fixed ky gives in the
complex plane the solution kx = 2i/ξ(ky), with

ξ(ky) =
2
√
c√

∆2/l + ck2
y

. (113)

The gap at fixed ky is given by Eg(ky) = 2ε(0, ky) =

2(∆2/l + ck2
y)l/2, leading to an exotic scaling for the fluc-

tuations of QB at fixed ky

lp∆Q
2
B(ky) ∼ ξ(ky) ∼ Eg(ky)−1/l . (114)

However, this does not change the logarithmic scaling of
the total fluctuations in terms of the overall gap Eg = 2∆

lp∆Q
2
B ∼

∫ π/a

−π/a
dky ξ(ky)

Eg→0∼ | ln(Eg/W )| , (115)

where W defines the high-energy cutoff in terms of the
band width.
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