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Abstract

For the inner wall material of a future fusion reactor, typically low-sputtering metals
such as tungsten are considered. However, due to the interaction with energetic
hydrogen particles from the plasma, the surface may be altered. In some cases,
especially for metals with an endothermic heat of solution, hydrogen-filled bubbles
can emerge on the surface of the metal. These features are called blisters and can
influence the retention of hydrogen and its diffusion into the material, which raises
concerns especially with regards to the inventory of radioactive tritium in the wall. So
far, the investigation of blistering phenomena was limited to before-after comparisons
and required the manual identification and characterization of blister features. This
allowed only qualitative analysis of a small number of blisters. These limitations
prevented a thorough investigation and deferred the understanding of the underlying
processes of blister formation. For the first time, a large-scale and time-resolved
investigation of blisters is conducted in the present thesis. This involves the in-situ
observation of a plasma-exposed molybdenum sample with a high-resolution camera
and the automated evaluation of the acquired images with appropriate techniques.
For the observation of the sample, a pre-existing experimental setup (called PlaQ) is
used, while for the automated evaluation of the image data, a sophisticated procedure
is developed that comprises, among other things, the application of three separate
convolutional neural networks. These networks perform the main task of localizing
and characterizing individual blisters and were trained with artificially generated
images. The developed framework performs well especially for low blister densities
and makes the blister identification process transparent and reproducible for the first
time. In the course of the present thesis, several investigations on a molybdenum
sample were conducted. A study of the abundance and surface coverage of blisters
reveals a distinct saturation effect. The analysis of the growth dynamics of blisters
indicates that blisters exhibit larger growth rates when they emerge at higher fluences.
In addition, the outcome of a nearest-neighbor analysis of the spatial distribution of
blisters on the surface suggests that blisters exhibit no discernible medium- to long-
range impact on their surroundings. The results obtained by these investigations
indicate that the in-situ and large-scale investigation of blistering is feasible and can
contribute to a better understanding of blistering phenomena and the underlying
physics. In addition, the techniques developed in the present thesis can be utilized for
the consistent analysis of other sample materials or applied to different experimental
scenarios.
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Chapter 1

Introduction

Climate change constitutes one of the biggest challenges of our time. Its main cause is
the carbon dioxide (CO2) that is emitted in the context of modern human civilization
[1]. The majority of 70% of these CO2 emissions originate from the energy sector [2].
The global energy demand is expected to grow by up to 60% in the 2010-2050 period
[3] due to a rising population and an increasing living standard. Hence, there is a
desperate need for sustainable energy sources which also need to be clean, secure, and
reliable. A promising technology that can satisfy these demands is nuclear fusion.
It strives to harness the energy that is released by the fusion of the atomic nuclei
of deuterium (D) and tritium (T). For this reaction to happen efficiently, extreme
conditions are required that can for example be achieved in a hot plasma.

One of the two main designs for a potential fusion reactor is the so-called Tokamak,
which has a toroidal shape and is operated in pulses. The ionized particles in the
fusion plasma are confined within a vacuum vessel by strong magnetic fields. The
components inside the vessel and in particular the material of the inner vessel wall
are exposed to high fluxes of energetic particles and have to withstand extreme
conditions. Therefore, metals with a low sputtering yield, a high melting point, and
good thermal conductivity, such as tungsten, are currently considered as material
for in-vessel components and the plasma-facing wall. Since the fusion plasma will
mainly consist of hydrogen isotopes, the material will be exposed to large fluences of
hydrogen atoms and ions with various impact energies. Thus, the interaction of these
energetic particles with the material and in particular the transport and retention
of hydrogen isotopes therein are of great relevance. One of the major issues is the
retention of radioactive tritium in the wall since it would pose a serious safety concern
if large amounts of tritium were retained in the vessel wall [4].

During the interaction of hydrogen isotopes with metals under conditions as they
are expected to occur in a fusion chamber, gas-filled cavities, which are also called
blisters, can arise near the surface [5]. These features influence the diffusion and
retention of hydrogen isotopes in the material, including tritium, and thus it is very
important to investigate the emergence of blisters as well as the underlying processes.
So far, no comprehensive theory regarding the formation and evolution of blisters and
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Chapter 1 Introduction

their influence on the diffusion and retention of hydrogen has been developed. In par-
ticular, researchers have not yet been able to study the dynamics of blister evolution
in detail, but only considered isolated and static observations of blisters before and
after plasma exposure. However, the time-resolved and in-situ investigation of a large
number of blisters yields additional information about the development of blisters and
may thereby allow to derive conclusions about the underlying processes. Such invest-
igations are advantageously realized by means of an automated analysis procedure
that provides stable identification, tracking, and characterization of blisters. A prom-
ising approach exploits the fact that the surface morphology formed by blisters can
be observed with an optical system that provides sufficient resolution. This would
involve the observation of a sample with a high-resolution camera while it is exposed
to a plasma and the evaluation of the resulting images with appropriate techniques.
An appropriate camera system was recently added to the experimental setup [6] de-
scribed in Section 4.1, which allows to perform in-situ video analysis of a specimen
during plasma exposure. However, no appropriate methodology for the automated
evaluation of the acquired images has been developed so far. For the solution of such
generic image recognition tasks, convolutional neural networks (CNNs) have proven
to be a suitable and efficient technique.

The present work will employ an ensemble of different CNNs to address the above
stated challenges in the study of blistering phenomena.1 The specific goal of the
present work is to develop automated routines that can identify and localize blisters,
estimate important blister parameters such as their size, and track individual blisters
over time. Thereby, it aims at providing a comprehensive framework for the auto-
mated evaluation of image data to enable large-scale dynamic investigations of blis-
tering processes. This framework will allow researchers to gain information on the
behaviour of individual blisters as well as acquire statistics on aggregated blister-
ing parameters. It will provide the means by which other researchers can examine
additional samples consistently while making the identification procedure of blisters
transparent and reproducible. This will contribute to the understanding of blister
formation and the underlying processes.

The following chapters will give a detailed description of the data acquisition, the
preprocessing, and the implementation of the automated detection with CNNs. Also,
an evaluation of the detection quality and results on image data from a molybdenum
(Mo) sample will be presented. The results of these analyses indicate a high reliability
of the detection for those blister densities it was adjusted to and yield first insights
into the dynamics of blister formation and the potential interaction of blisters among
each other.

1All algorithmic routines in the present thesis were implemented in the Python programming
language and will be provided in a GitLab repository [7] along with an appropriate virtual
environment. Additionally, the source codes of the most important components are given in the
appendix.
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Chapter 2

Blistering on Plasma-Exposed
Metal Surfaces

The purpose of this chapter is twofold. On the one hand, a general introduction to
the interaction of hydrogen with metals and the state of research concerning blis-
tering on plasma-exposed metal surfaces will be given. This introduction will also
include the identification of open research questions and the outline of methodological
requirements for their investigation. On the other hand, this chapter will provide an
overview of the approach that is used to fill some of the gaps in the current state of
research and defines the goals this thesis strives to achieve. To accomplish both these
purposes, the following sections will first give a brief outline of the absorption and
diffusion processes of hydrogen in metals. Afterwards, the interaction of hydrogen
with lattice defects will be discussed. Subsequently, the hydrogen-induced blistering
of metal surfaces and its influence on the retention and diffusion of hydrogen in the
material will be treated. The last section will outline open research questions and
how they will be addressed in this thesis.

2.1 Hydrogen Absorption and Diffusion in Metals

One of the first researchers to study the energetic properties of hydrogen molecules
and atoms near metal surfaces was Lennard-Jones. As a result of his studies, he
proposed a schematic description of the potential energy relations in the vacuum,
near the surface, and in the bulk of metals [8]. An illustration of these relations is
given in Fig. 2.1. In this model, the basic state of two hydrogen atoms is assumed to
be an isolated H2 molecule in vacuum and hence the energy for this state is defined as
zero. This means that an isolated hydrogen atom has a potential energy of 2.25 eV,
which is equivalent to half the dissociation energy of the molecule. The energy
curves of both the hydrogen molecule and the hydrogen atom have minima before
the surface, the depth of which are labeled with QP and QC . These are the heat of
physisorption in the case of the molecule and the heat of chemisorption in the case

3
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of the atom, respectively. Close to the surface, the energy of the isolated hydrogen
atom is much lower than for the molecule and the intersection of the two energy
curves indicates the distance at which the molecule will dissociate. The activation
energy that is necessary to achieve dissociation of the molecule and allow the two
dissociated atoms to chemisorb individually is denoted by EC . It is much lower
than the dissociation energy of the molecule in vacuum. In order to be absorbed by
the metal, the hydrogen atoms must be, aside from QC , provided with an additional
energy Esb. This energy, which typically is a few eV, allows the atom to penetrate the
surface and diffuse into the bulk. Kinetic ions, for example originating from a plasma
source, can surpass this energy barrier and directly penetrate the surface and diffuse
into the bulk. They lose their energy by elastic collisions with the lattice atoms as
well as friction with electrons until their energy is insufficient for further propagation.
The ions or atoms finally come to a halt at an interstitial site or get trapped in a
defect (cf. Fig. 2.1). Ebisuzaki and O’Keefe [9] proposed that the dissolved hydrogen
contributes its electron to the conduction band of the metal, which has for example
been verified by Zamir [10], and thereafter exists as proton. The authors further argue
that the positive potential of the proton is screened by an increased local electron
density.

Thermodynamically, the absorption and desorption of hydrogen in the metal rep-
resents a two-phase system. On the one hand, there is hydrogen in the gas phase and
on the other hand there is hydrogen that is absorbed into the metal. In equilibrium,
the processes of dissolution in and desorption from the metal balance each other.
The equilibrium hydrogen concentration C in the bulk is described by Sieverts’ law
[12]:

C = S
√
p , (2.1)

where p is the pressure of the gas phase and S is the solubility of hydrogen in the
metal for a given temperature T . It is applicable only for conditions under which the
hydrogen gas phase can be treated as an ideal gas and the hydrogen concentration
is small enough so that hydrogen-hydrogen interactions or hydride formation can be
neglected [13]. The solubility is given by

S = S0 exp

(
− ES
kBT

)
, (2.2)

where ES is the heat of solution of hydrogen in the metal, which is illustrated in
Fig. 2.1, and S0 is just a constant. For metals with large heat of solutions, such
as tungsten (1.1 eV) or molybdenum (0.54 eV) [13], the uptake of hydrogen from
the molecular state is endothermic and these metals will exhibit smaller hydrogen
solubilities and concentrations than those with a lower heat of solution. However,
when regarding the atomic state, the uptake of hydrogen is exothermic for metals
with larger heat of solutions as well.
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Figure 2.1: Illustration of the potential energy of atomic (full line) and molecular
(dashed line) hydrogen in the vacuum, at the surface of a metal, and in its bulk.
The heats of physisorption and chemisorption are denoted by Qp and Qc and the
respective activation energies by Ep and Ec. Es is the heat of solution, while Esb,
ED, Etr, and Edt are the activation energies for absorption, diffusion, trapping, and
detrapping respectively. Eb is the binding energy of a hydrogen atom in a defect.
The figure was kindly provided by Mikhail Zibrov [11].

2.2 Hydrogen Interaction with Defects

The discussion above regards the case of a single-crystalline, defect-free metal lattice.
However, any real sample has some defects in its structure due to finite temperatures.
In addition, some imperfections are caused by the mechanical manipulation during
the manufacturing process. Among these defects are geometrical aberrations such as
edge dislocations and screw dislocations, impurities consisting of atoms of another
element, and grain boundaries. Some of these defects are illustrated in Fig. 2.2. Apart
from these intrinsic alterations of the lattice structure, defects can also be introduced
for example by the irradiation of the metal with ions of sufficiently high energy. These
in particular include vacancies, vacancy clusters, and voids. These defects represent
energetically favorable positions for the hydrogen which will consequently start to
accumulate at these locations [14, 15].
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Figure 2.2: Various types of defects in metal lattices. Especially in voids caused
by vacancies or vacancy clusters, hydrogen can accumulate and leads to blister
formation. Figure adapted from [11].

2.3 Hydrogen-Induced Blistering

Metals with an endothermic heat of solution for hydrogen like molybdenum and
tungsten can be easily oversaturated, for example by exposing them to a deuterium
plasma. This leads to phenomena that are not observed in experiments with gas
loading. As described before, the energetic ions can directly penetrate the surface
and start diffusing into the bulk. The concentration of hydrogen at a certain depth is
then governed by the incoming flux and the diffusivity. For ion energies of just a few
eV, the corresponding chemical potential suffices to allow for very high concentrations
which can cause extraordinarily high equilibrium pressures as estimated by Eq. (2.1).
The relation does not hold exactly since the gas cannot be assumed to behave as an
ideal gas under these conditions, however thorough calculations of this have been
conducted by some researchers [16]. At some defect locations, the hydrogen starts to
form molecules [16] and the pressure of the hydrogen gas may become high enough for
the stress at the cavity boundaries to rise far beyond the yield strength of the metal
[17]. This can cause an active displacement of lattice atoms and thereby increase the
volume of the cavity [18, 19]. These defects therefore cannot be saturated and will
continue to grow, which leads to the formation of hydrogen gas bubbles in the material
[5]. When the cavity lies close to the plasma-exposed surface, the displacement may
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2.3 Hydrogen-Induced Blistering

Figure 2.3: Sample images of some blisters on rolled tungsten. Panels a) and
b) were obtained by confocal laser scanning microscopy. In panel b), detailed
information on the parameters of the blister that is visible is given. Panel c)
is a scanning electron microscope cross-section view of a blister that was degassed
before cross-sectioning by puncturing it with a focused ion beam. The cross-section
is horizontally tilted by 38◦ with respect to the viewing plane. Images kindly
provided by Martin Balden.

become visible on the surface. These features take the form of blister-like structures
[20, 21] and are therefore called blisters. Some sample images of blisters, including
cross-sectional views, are given in Fig. 2.3.

Important blister parameters such as their size and abundance can be very different
depending on the experimental setting. These parameters in particular depend on
the material, the implantation temperature, the fluence1, and the microstructure
of the specimen [22]. For example, it has been shown that low fluxes with much
longer exposure times correlate with fewer but larger blisters. As explanation it is
put forward that hydrogen can reach larger depths and accumulate at weak grain
boundaries [23]. At the same time, the size and density of blisters strongly increases

1The fluence is the flux density integrated over time and typically measured in incoming deuterons
per square meter, i.e. Dm−2.
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with fluence [23]. The formation of blisters can be reduced or suppressed entirely
at high temperatures [18] and on rough surfaces [24]. Blisters can also vanish due
to degassing, for example during thermal desorption spectroscopy or when their cap
is penetrated [17, 25]. However, after degassing, the deformation around the grain
boundary that is caused by the inflation of the blister cannot be recovered elastically.

In the discussion so far, it has not been distinguished between the different hydro-
gen isotopes, i.e. protium, deuterium, and tritium. In fact, their interaction with
metals is likely to be very similar in most regards. However, there is an important
difference with regards to the diffusivity. Deuterium and tritium usually have a lower
diffusivity than protium due to their larger mass. This general mass dependence of
diffusion velocity is in fact used for isotope fractionation [26]. From this effect it fol-
lows that the hydrogen concentrations below the surface, in particular in the region
where blistering occurs, will be higher for the heavier isotopes given a certain flux.
Therefore, it is reasonable to assume that blistering features occur at lower fluences
for deuterium and tritium.

2.4 Influence of Blisters on Hydrogen Retention

It has been shown by A. Manhard that blisters significantly increase the retention
of deuterium [22], which takes place in or close to the cavities [23]. The spatial
distribution of the deuterium inventory depends on the size and shape of the blister
and hence on several experimental settings. On the one hand, in large and round
blisters, up to half of the deuterium inventory can be stored as D2 gas inside the
main cavity of the blister. On the other hand, in smaller and more flat blisters, a
substantial fraction of the deuterium can apparently be retained in lattice defects
localized around the blister [27], which stands in contrast to what was suspected for
example by Causey et al. [28]. These lattice defects are induced by the expansion
of the cavity [29, 30], which is caused by the high pressure of the D2 gas. Manhard
supposes that dislocations emitted in the stress field of the crack-tip [31] may be
the main reason for the increased deuterium retention. Overall, blisters and blister-
like structures can amplify and even dominate other factors affecting the hydrogen
retention such as the microstructure [22]. At the same time, Bauer et al. have shown
that near-surface blisters with open caps increase the hydrogen reemission rate and
thereby reduce the hydrogen transport into the bulk [32]. In their investigation, the
deuterium flux into the bulk was reduced by 60% compared to the unblistered case.
In summary, the occurrence of blisters has an ambiguous effect on the retention of
hydrogen. More research is required to clarify the role of blisters in the build up of
hydrogen inventories and in the reduction of the permeation flux.
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2.5 Open Research Questions

So far, no comprehensive theory regarding the formation and evolution of blisters,
the production of additional defects, and their role in the retention and diffusion of
hydrogen has been developed. For example, it has not yet been confirmed whether
blisters increase the probability for the occurrence of further blisters nearby, i.e.
clustering. On the other hand, on vanished blisters less new blisters may occur
because the cap may act as a degassing channel causing the deuterium to escape
and preventing the build up of high pressures. In addition, the dynamics of their
evolution have not been studied in detail so far.

To thoroughly investigate the occurrence and behavior of blisters, an extensive
parameter study needs to be conducted. It should comprise variation on the ex-
perimental parameters such as the type of hydrogen isotopes in the plasma, the
temperature, and the ion energy. In addition, sample parameters like the type of
preparation and the material should be varied independently. The analysis of the
sample should ideally provide time-resolved information on blister abundance, loc-
ations, and sizes. So far, only selective and isolated observations of blisters were
made where the specimen was analyzed statically before and after plasma exposure.
This limitation can be resolved with the experimental setup described in Section 4.1,
which allows to perform in-situ video analysis of the specimen during plasma expos-
ure. This enables a detailed and time-resolved study of individual blisters. However,
to enable meaningful statistical statements about blister parameters, the identifica-
tion, tracking, and analysis of a large amount of blisters over a time-series of images
is necessary. Additionally, this needs to be done for a variety of samples subjec-
ted to different experimental conditions and the analysis process should ideally be
stable, transparent, and reproducible. This can only be accomplished by means of a
blister analysis framework that is automated to a great degree. This thesis strives to
achieve this by exploiting the fact that the surface morphologies formed by blisters
can in many cases be observed with an appropriate optical system (cf. Section 4.1).
The evaluation of the acquired images represents a classic image recognition task.
This problem will be addressed with convolutional neural networks, which will be
introduced in the next chapter.
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Chapter 3

Computer Vision with
Convolutional Neural Networks

The purpose of this chapter is to give an introduction to the methodology used in
the present thesis and to explain why its application is appropriate. The first two
introductory sections will give an overview of the topic of artificial neural networks
in general and of its history. Subsequently, the setup and functional components
of such networks will be discussed. Section 3.7 will give a detailed outline of how
neural networks are trained while Section 3.8 presents regularization techniques that
ensure the proper functioning of the networks. The specific method of convolutional
neural networks (CNNs) along with it’s major features will be treated in depth in
Section 3.9. Finally, Section 3.10 will outline why this method is in particular suitable
for the analysis in the present thesis.

3.1 Subsumption Under the Machine Learning
Landscape

Traditionally, the automated analysis of data and the derivation of information for
the support of decision-making processes involved the application of expert-designed
rule systems. This approach is suitable for some applications, in particular those
where humans have a good understanding of the task or the complexity and required
flexibility is low. However, many relevant problems in automated data analysis do
not fall into this category. For example in the case of image recognition, the computer
may perceive images and objects differently than humans. It remains contentious to
what degree the perceptive processes of state-of-the-art image recognition tools like
CNNs match the process in the visual cortex of humans [33–35]. Hence, it is difficult
for a human to come up with a good set of rules that describes the object or the
process of object recognition well. For this kind of problems, computers must be able
to learn from data without relying on a human to program every possible case more
or less explicitly. This is the realm of machine learning, which can be defined as “[. . . ]
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Chapter 3 Computer Vision with Convolutional Neural Networks

algorithms that can learn from data without relying on rules-based programming.”
[36]. It is used to address tasks as diverse as regression, forecasting, classification,
clustering, image recognition, and artificial intelligence and employs a large variety
of techniques ranging from simple linear regression to artificial neural networks. For
each technique, there can be a range of different algorithmic implementations. The
multitude of techniques and algorithms that are subsumed under machine learning
can be categorized along the following criteria: whether or not the system is trained
with human supervision and known outcomes (supervised vs. unsupervised learning);
whether or not they can learn incrementally on the fly (online vs. batch learning) and
whether they just compare new data to known data points (instance-based learning)
or instead detect patterns in the training data and infer a predictive model (model-
based learning). For more details on this categorization, see the book on machine
learning by Géron [37].

This thesis deals with the automatic detection of blisters in images and therefore
falls into the realm of computer vision, which can be defined in the following way:
“Computer vision is the construction of explicit, meaningful descriptions of physical
objects from images.” [38]. This general definition can be divided into several specific
tasks, as was done for example by Voulodimos et al. [39]. A good introduction to some
major tasks is also given in a course by the Stanford University School of Engineering
[40]. One important class of problems involves the identification of several individual
object instances in the same image. This kind of problem is called object detection
[41] and plays an important role in applications like autonomous driving. In this case,
several parameters are of interest: the total number of object instances, the classes
these instances belong to, their location in the image, and additional parameters like
their size. Since a major aim of this thesis is to develop a tool for the automated
detection of blisters in images, it represents a classic object detection task. A state-of-
the-art method for addressing this kind of problem are CNNs [39, 42]. This versatile
technique will be applied in a supervised setting for the analysis in the present thesis
(cf. Section 3.9). Model-based methods and a combination of online as well as batch
learning techniques will be applied. The details of this approach will be discussed in
the following sections and Chapter 6.

3.2 History of Artificial Neural Networks

In 2006, Hinton et al. published their paper on the recognition of handwritten digits
via a deep neural network [43]. In the aftermath of this breakthrough paper, deep
learning as well as machine learning in general have drawn a lot of attention and
have since developed rapidly. They are now powering many techniques and features
in the processing of information in the digital world. Deep learning has become a
synonym for machine learning with artificial neural networks in general but originally
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referred to networks with a specific setup only. This setup would comprise a layered
structure with at least two so called hidden layers, which will be explained further
below. However, this structure has become prevalent in most of today’s networks.

In the realm of artificial intelligence, intelligence is understood to be a rather broad
concept and not limited to specific human capabilities. Its main components encom-
pass learning, reasoning, problem solving, perception, and the use of language [44].
When scientists first began to try to build intelligent machines, it was natural to look
for inspiration in nature, since this has often initiated the development of innovations.
The brains of humans and animals perform incredibly difficult and complex tasks and
can adapt to a wide array of problems. Hence, it was logical to let natural neural
networks that make up these brains serve as a blueprint for the design of artificial
neural networks (ANNs) in order to create a general problem-solving machine. The
supplement "artificial" will be dropped in in the following to improve readability.
Generally speaking, ANNs are meant to provide an approximation of information
processing in biological systems. In natural brains, the neurons are connected to
each other via synapses and can be either inactive or activated. In computer science,
the neurons are represented by computational units and the synapses are equivalent
to the mathematical input and output relations between units.

The theoretical foundation for ANNs was laid by various authors [45–47]. First
attempts to realize ANNs were made as early as 1960 [48]. Since then, the attention
given and resources allocated to this field of research have experienced several ups
and downs, some of them being nicely described in chapter 10 in Ref. [37]. In recent
years, interest and research activity have grown exponentially and are very likely to
continue doing so in the future. There are two major trends driving this development.
On the one hand, the availability of both training data and computational resources
has increased rapidly. The former allows to train ever more complex networks and
the latter enables to conduct their training in a reasonable amount of time. On the
other hand, the development of open source libraries such as Tensorflow and PyTorch
as well as user-friendly high level APIs such as Keras have increased the deep learning
community and boosted the development of new networks and their application in
industry.

3.3 Artificial Neurons: The Basic Building Blocks

What gives neural networks their name are their fundamental computational units,
the so called neurons. Each neuron has the same structural components, which
comprise the weighting and summation of the inputs, the application of a certain
activation function, and the transfer of the output to the subsequent layer. Different
network architectures only differ in the arrangement of these units. Fig. 3.1 shows
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Figure 3.1: Illustration of the working principle of a single artificial neuron. The
inputs are multiplied by individual weights and summed up. The activation level
of the node that represents the bias has a fixed value of one. The result is subjected
to the activation function which then determines the final output activation level.

the basic components of a single neuron. It can be mathematically described by the
following equation:

y = ϕ

(
n∑
j=0

wjxj

)
. (3.1)

The inputs xj can represent any information as long as it can be represented in
numbers. Those inputs with j = 1, ..., n are multiplied by individual weights wj.
An additional input node is used to function as an anchor for the bias, which is
represented by an additional weight w0. The activation value of this anchor node is
fixed at 1. The sum of the weighed inputs including the bias term is the overall input
to the neuron. Given this input, the activation function ϕ determines the response
y of the neuron. This response is called the activation level of the neuron.

3.4 Multi-Layer Neural Networks

In order to solve complex computational problems, the combination of a large num-
ber of neural units is necessary. Over time, this lead to the development of neural
networks. A standard reference that covers all basic aspects of neural networks with
great diligence is the book "Neural Networks for Pattern Recognition" by Christopher
M. Bishop [49]. A common way of arranging the large number of units in ANNs is
in successive layers. This layered structure has become prevalent in modern neural
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Figure 3.2: Network diagram for a feedforward multi-layer ANN with one hidden
layer. The neural units of the input, hidden, and output layers are represented
by nodes. The links between the nodes represent the weight parameters and the
information flows from left to right during inference. The biases are included in
the network diagram by additional nodes with a fixed output value of 1. The
individual bias parameters are represented by links coming from these anchors and
are denoted by wi,0. The w(n) denote all the weights between the layer n and the
successive layer. The overall network function that corresponds to this network is
given in Eq. (3.2).

networks. They were first investigated under the term multi-layer perceptron [50] by
Frank Rosenblatt [46]. However, modern neural networks usually make use of con-
tinuous nonlinear activation functions instead of discontinuous activation functions
as in these first setups. This difference is of major importance because it means that
the overall network function is differentiable with respect to the network paramet-
ers. This feature will be vital for the application of training algorithms, which are
discussed in Sections 3.7.3 and 3.7.4.

There are different ways of defining the number of layers in a neural network. In
this thesis, the convention of counting the number of computational stages that are
applied in the network will be used. An example of a simple two-layered network is
depicted in Fig. 3.2. In general, ANNs such as this one consist of an input layer, an
output layer, and an arbitrary number of hidden layers in between. The neurons are
represented by nodes and the input and output relations are represented by links. In
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feedforward networks as employed in this thesis, the information flows from the input
to the output layer. Nodes in one layer combine and alter the information contained
in the outputs of the previous layer and pass it on to the next layer. There are also
recursive NNs in which the information can also be passed to preceding layers. If all
neurons in a layer are connected to all neurons in the previous layer it is called a
dense or fully connected layer. The weights, biases, and activation functions can be
chosen individually for every neuron or neural connection respectively. Hence, the
number of free parameters in the network can become very large which allows for a
high complexity of the model that the network represents. The terms network and
model are often used synonymously and will so in the following. The weights and
biases are optimized during training of the network (cf. Section 3.7). The activation
function is typically the same for all the hidden units in the network. Its type is
a hyperparameter that has to be set prior to training. Hyperparameters and their
tuning are discussed in detail in Chapter 6.

Every neural network can mathematically be described by a nonlinear function
from a set of input variables xi to a set of output variables yk. They can be viewed
as generalizations of linear models that use multiple stages of processing to compute
the outputs. In order to get the overall network function, one has to apply all stages
of computation to the inputs successively. For networks with more than one hidden
layer, the overall network function will have a nested structure which is reminiscent
of the layered structure of the network. For the case of the simple two-layer network
from Fig. 3.2, the overall network function for a single output neuron can be written
as

yk(x,w) = ϕ(2)

(
M∑
j=0

w
(2)
kj ϕ

(1)

(
N∑
i=0

w
(1)
ji xi

))
. (3.2)

Here, ϕ(n) is the activation function at layer n of the network, N and M are the number
of nodes in layer one and two and w(n)

αβ are the respective weights between nodes in
layer n and the following layer. In the general case, the overall network function
would imply the successive application of all the computational transformations of all
layers. Its evaluation can be viewed as a forward feeding and stage-wise modification
of information through successive layers. This is why ANNs are also called feed-
forward neural networks. The result that is obtained when evaluating the overall
network function represents the prediction of the neural network under the current
weights. The training process of a neural network involves many evaluations of the
overall network function and appropriate incremental improvements to the network
parameters (cf. Section 3.7.4).
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3.5 Activation Functions: Choosing Neural
Response

The layered structure of neural networks results in multiple successive applications
of non-linear activation functions. Thereby, the overall network function becomes
nonlinear. This is important because otherwise the network function could be reduced
to a single linear transformation and the network would hence loose its computational
power. Apart from their nonlinearity, activation functions can have other important
features which heavily influence the behaviour of the network. Therefore, the type of
activation function is an important choice to make when setting up a neural network.
There is a small number of activation functions which are employed in the majority
of use cases. These include the linear activation function, the logistic sigmoid, and
the hyperbolic tangent functions as well as the so called rectified linear unit (ReLU)
function. Linear activation functions are employed in the output layer for some
regression tasks. The definition of the ReLU function is given in Eq. (3.3) and all
of the functions are illustrated in Fig. 3.3. Out of the four depicted functions, the
sigmoid and the ReLU function will be employed in the course of this investigation.

y = max(0, x) =

{
0 for x ≤ 0

x for x > 0
(3.3)

Currently, the ReLU has become the most widely used activation function. First
investigations of it were conducted by Jarrett et al. [51] and Nair and Hinton [52].
Its main advantages are that it does not saturate for positive values and that it is very
easy to compute. Also, it has been shown that rectifying neurons are a better model
of biological neurons and yield equal or better results than sigmoidal or hyperbolic
tangent activation functions [53, 54].
Typically, all activation functions in a neural network are the same, except for the

output layer, in order to keep the structure of the network as simple as possible.
When choosing the activation function for the output layer, the nature of the data
and the assumed distribution of target variables must be considered (cf. Bishop [55],
p. 228). For example for standard regression problems, the activation function is
typically linear. For classification tasks with more than two classes, the normalized
exponential function (3.4) is applied. It is a multi-class generalization of the logistic
sigmoid function (cf. Bishop [55], p. 198) and is also known as softmax function
because it represents a smoothed version of the maximum function:

p(Ck|x) =
exp(ak)

Σj exp(aj)
. (3.4)

It gives the classification probabilities p for every possible class Ck given an input
vector x. The aj are the components of the input vector with j = 1, ..., K, where K
is the number of classes.
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Figure 3.3: Collocation of common activation functions that are regularly used in
ANN applications. Panel a) represents the identity, which is an example for a linear
activation function. This type is typically employed for output layers in regression
tasks. In panels b) and c), the sigmoidal and hyperbolic tangent activation func-
tions are given which historically have been the most popular nonlinearities applied
in neural network training. Panel d) shows the ReLU function that has drawn in-
creasing attention in recent years and exhibits superior efficiency in many cases
[53, 54].

3.6 Application of Neural Networks

Neural networks are a very powerful and versatile method and can be used to tackle
almost any machine learning task. Theoretically, the so called universal approx-
imation theorem implies that neural networks can potentially represent real-valued
continuous functions arbitrarily well. There are various variants of this theorem. Two
important ones will be briefly outlined in the following. Kurt Hornik found in 1991
that "standard multilayer feedforward networks with as few as a single hidden layer
and arbitrary bounded and nonconstant activation function are universal approxim-
ators" ([56], p. 251). Similar results for networks with one hidden layer were already
found in 1989 by Funahashi [57], Cybenko [58], and Hornik et al. [59]. However, it
has been shown that networks with two or more hidden layers have some signific-
ant advantages regarding their approximation properties (cf. Pinkus [60], p. 182 ff.).
Firstly, there is no theoretical lower bound on the error of approximation for ANNs
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with two or more hidden layers. Additionally, such networks allow for approximation
by localized functions with compact support. Furthermore, Lippmann showed in
1987 that a neural network with one hidden layer is only capable of forming convex
regions in the space spanned by the inputs, whereas a network with two hidden layers
can form arbitrarily complex decision regions (cf. Lippmann [61], p. 16). Another
variant of the universal approximation theorem deals with the type of activation
function to be used. Leshno et al. established in 1993 that "A standard multilayer
feedforward network with a locally bounded piecewise continuous activation function
can approximate any continuous function to any degree of accuracy if and only if
the network’s activation function is not a polynomial" ([62] p. 861). The key point
of the different variants on the universal approximation theorem is that multi-layer
ANNs can approximate a wide array of functions if just minor conditions regarding
the activation functions are met. Therefore, a great variety of machine learning tasks
can be approached with this kind of setup.

In practice, ANNs are typically used to tackle two kinds of problem: regression tasks
and classification tasks. In regression tasks, the outputs of the network represent
continuous variables. In classification tasks, the inputs are to be matched with one
out of several discrete classes, which represent nominal categories. In the present
thesis, both kinds of problem will be relevant. For example, the classification of
frames depending on the number of blisters visible is a classification task, whereas the
localization or parameter estimation of individual blisters both constitute a regression
task. For certain applications, special structures of neural networks have proven to
be advantageous. For computer vision tasks for example, CNNs have become an
established and widely used method. This kind of network will be used throughout
the present thesis and will be discussed in Section 3.9.

3.7 Training of Neural Networks

The main point of machine learning techniques like ANNs is that decision rules do
not have to be hand-coded but are learned automatically from training data. The
resulting network ideally provides a model-based representation of the training data
that relies on abstract features instead of idiosyncrasies of individual data points to
make predictions. In the context of neural networks, the optimization of parameters is
often called learning or training, respectively. In this section, the general procedure of
training a neural network will be discussed and an outline of common implementation
strategies will be given.
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3.7.1 Setup of a Neural Network Before Training

In the case of supervised learning, training a neural network could also be conceived
as fitting the overall network function to the training data by setting the adjustable
parameters of the model so as to minimize a certain target function. The actual
free, trainable parameters of a neural network consist of the aforementioned weight
parameters as well as the biases for every single neuron in the network. Addition-
ally, there are a lot of so called hyperparameters. These parameters are not altered
during training but have to be set beforehand. Examples for hyperparameters would
be the choice of activation functions for each neuron or the number and type of lay-
ers employed in the network. Hyperparameters greatly influence the performance
of a network and their tuning is a key part of the development of deep learning
applications. They will be discussed in Section 6.

The training of the weights and biases itself is usually conducted following the
backpropagation algorithm (see Section 3.7.3) and typically consists of many itera-
tions (cf. Section 3.7.4). Modern networks are very complex meaning that they can
easily have several million parameters. Since there is no way of making reasonable
assumptions as to which parameter values will yield the best results, they are initial-
ized randomly before training. The main purpose of this randomization is to break
the symmetry of the initial weights and thereby enable useful training. A standard
initialization technique was introduced by Glorot and Bengio in 2010 [63]. This tech-
nique will be used for all weight initializations in the networks at hand. With respect
to the biases, no theoretical reasoning as to which initialization to use is known to the
author. Therefore, the default zero-initialization that is implemented in Tensorflow
will be employed.

3.7.2 Loss Functions: Quantifying Network Performance

At the heart of the training procedure of a neural network stands the target function,
which defines to what end the network parameters will be trained. In the context
of neural networks, it is usually called loss function because it is a measure for the
disparity between the prediction of the network and the desired outcome. It defines
a distance between the predicted output vector, which is represented by the final
layer of the network, and the target vector, which is given by the known outcomes
(labels) of the training data. This quantity can be regarded as the loss or error of the
network under the current weights. During training, the loss function is aimed to be
minimized. The respective algorithms and optimization strategies will be discussed
in the next three sections. The loss function directly determines the outcome of the
training and therefore the performance of the network in general. It is therefore one
of the most important components that one has to select prior to training. Typ-
ical loss functions include the standard mean-square-error (MSE) and the so called
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cross-entropy loss. The latter is typically employed together with the softmax activ-
ation function (3.4) in the last layer. The cross-entropy of two discrete probability
distributions p and q with the same support χ is defined as

H(p, q) = −
∑
x∈χ

p(x) log q(x) . (3.5)

The designation cross-entropy for this function was established by Good [64] and is
widely accepted in the machine learning community. In the case of neural network
training, p and q represent the true and the estimated distributions. Many algorithms
require the training data to be one-hot encoded, which means that they only comprise
a single true class. Such encoding conveniently allows for extra optimization during
training. For classification problems, it has been shown that the cross-entropy loss
function is a better choice than MSE because it leads to faster training and improved
generalization [65]. In some cases, it is necessary to define a custom loss function
that is specifically designed for a certain application. In general, every loss function
can be written as

E(w) = f(y(xn,w), tn) . (3.6)

The loss E(w) is a function of the output vector y and the target vector t. The
output vector again depends on the input vector x and the network parameters w.
The input and output vector pairs are drawn from the set of known training data
points (xn, tn), with n = 1, ..., N . In the course of the present investigations, a
custom loss function will be used. Details on this will be given in Section 6.5.

3.7.3 Error Backpropagation: Evaluating Gradients

Training a neural network means minimizing the value of the loss function given cer-
tain input and target vectors. Most training algorithms apply an iterative procedure
of reducing the loss step by step. At every iteration, the process of decreasing the loss
splits into two distinct parts. At a first stage, the derivatives of the loss function with
respect to the parameters wi are evaluated via the backpropagation algorithm. This
will be discussed below. The second stage involves the adjustment of the parameters
via certain optimization schemes like gradient descent. Those will be treated in the
following two sections. The first step in the training process is the evaluation of the
gradients. When there are multiple layers in the network, the chain rule must be
applied to the derivatives of the loss function. In order to evaluate the gradients for
all parameters in every layer of the network, the gradient information must seemingly
be propagated backwards from the output layer through the network just like the
information is passed forward through the network during inference. Rumelhart et
al. established the term backpropagation for this procedure in 1985 and 1986, re-
spectively [47, 66]. The algorithm yields the gradients of the target function with
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respect to all parameters in the network. It has superseded simpler methods such as
the perceptron-convergence procedure [46] and has become the main algorithm for
training neural networks today.

3.7.4 Gradient Descent: Updating Network Weights

The second stage in training a neural network is updating the network weights using
the gradients of the loss function. This constitutes the actual learning process of
the network. The weights are optimized so as to minimize the loss function. Hence,
the task is to find the roots of the derivatives of the loss function in the multi-
dimensional weight space. Due to the vast number of weights and the non-linearities
introduced by the activation functions, there does not exist an analytic solution to
this problem. Therefore, numerical methods must be applied. A classic root finding
algorithm that is often used in machine learning is gradient descent. Its theoretical
foundation is usually attributed to Cauchy [67]. However, he did not give a proof
for the convergence of this method. This was rectified by Temple [68], who studied
the convergence of relaxation methods of linear systems and by Curry [69], who
gave a convergence proof of the gradient descent method for non-linear optimization
problems. As in this paper by Curry, the gradient descent method is sometimes called
steepest descent because the step is made in the direction of greatest decrease of the
error function. Alternatives to the gradient descent algorithm for neural network
applications will not be discussed here but are treated in depth in chapter seven of
Bishop’s book on neural networks [49].

The gradient descent algorithm utilizes the gradient information obtained with
backpropagation so as to adjust the network parameters in such a way that the loss
function moves closer to a minimum. Like other popular root finding algorithms, it
takes an iterative approach to the problem:

1. Choose a random initialization of the weight vector w.

2. Evaluate the gradients of the loss function ∇E(w) via backpropagation.

3. Take a step of a certain length, depending on the learning rate, in the unit
−∇E(w) direction. Then, repeat from step 2.

4. Advanced optimization schemes may include another step which involves the
adaption of the learning rate before proceeding with the next iteration. This can
happen according to some preset scheme or, in some cases, based on information
that was gathered during past iterations.

The algorithm proceeds until one of the termination criteria is met. These could be:
the predefined maximum number of iterations has been reached; the current point
is close enough to a root; the gradient has become small enough so that further
training is not considered worthwhile; no improvement was achieved for a certain
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amount of iterations. Whenever the algorithm is terminated before the maximum
number of iterations has been reached, it is regarded as early stopping. This is a
popular regularization technique that will be discussed in Section 3.8.3. The weight
updates in step three of the algorithm are conducted according to (cf. Bishop [55],
p. 240):

w(τ+1) = w(τ) − η ∇E(w(τ))

|∇E(w(τ))|
(3.7)

where τ denotes the iteration index and η represents a quantity that regulates the
step size that is taken into the opposite direction of the gradient. In the context of
machine learning, the parameter η is called learning rate and is of major importance
to the training procedure. It determines how fast a network learns in the course
of a single iteration. The problem here is that if the learning rate is set too large,
the algorithm overshoots and no minimum will be found. If it is set too small, a
large number of iterations may be necessary to make significant progress towards the
minimum, which can be very inefficient. Therefore, the challenge is to balance these
conflicting demands. Since the optimal trade off is different for every network setup
and every data set, it is desirable to have an adaptive learning rate that attunes to
the respective environmental settings. This is implemented by advanced optimizers
like ADAM [70]. For more details it is referred to the succeeding section.
When using gradient descent or any other optimizer, the following circumstance is

to be considered. The ideal goal of the gradient descent algorithm is to find the global
minimum of the loss function in weight space. Since the overall network function is
nonlinear, the loss function will most likely be non-convex. This means that there
can be multiple local minima. In particular, for symmetry reasons alone a large
number of degeneracies will exist. Additionally, the huge number of dimensions will
make it unlikely that the global minimum will be found within a reasonable number
of iterations. Moreover, in practice it will typically remain unknown whether the
minimum that was reached represents the global minimum. However, in general it
is not necessary to find the global minimum. In most cases, finding a low enough
point in weight space serves the purpose. Sometimes, it may be necessary to perform
several executions of the optimization algorithm with different random initializations
of the weights w in order to reach such a point.

3.7.5 ADAM: An Advanced Optimization Scheme

Gradient descent as described above is one of the simplest techniques to optimize
the parameters of a neural network. Since its development, many variants and im-
provements to the method were published. Algorithms have been developed that are
specifically adapted for the optimization of neural networks and that tackle specific
issues that come along with this task. For example, standard gradient descent re-
quires all samples in the data set to be regarded for each iteration. This is called
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batch learning. The evaluation of gradients for all data points simultaneously makes
it less sensitive to idiosyncrasies of single data points and supports the learning of
meaningful abstractions based on the entire data set. In contrast, online training
approaches such as stochastic gradient descent (SGD) calculate the gradients for one
data point at a time and update the network weights accordingly. This approach
has been found to be superior to batch learning approaches when training neural
networks on large data sets (cf. LeCun et al. [71], p. 546). Intermediate scenarios
have been developed that try to harness the advantages of both online and batch
learning approaches. They consider a small ensemble (mini-batch) of independent
data points over which the gradients are averaged before they are used for updating
the network parameters. Such mini-batch scenarios will be applied for the present
network setups.

More recently, a new generation of optimization schemes has been established.
Momentum strategies [72] like the Nesterov accelerated gradient descent [73] are
used to reduce the variance in SGD and soften its convergence. They adapt the
learning step so as to increase convergence speed in the relevant directions [74].
Furthermore, algorithms like Adagrad [75] and AdaDelta [76] adapt the learning
rate for each parameter and for each optimization step individually, which again
significantly increases the convergence speed. One of the most popular state of the
art algorithms is the ADAM optimizer, which stands for adaptive moment estimation
[70]. It utilizes the advantages of the aforementioned techniques and is likewise based
on the usage of gradient updates involving exponential moving averages of squared
past gradients [77]. ADAM has been improved by different researchers, for example
through a "long-term memory" of past gradients [77]. Its main advantages are high
speed, fast convergence, and the prevention of overshooting over minima, which can
occur when the learning rate is set too large. A more detailed comparison of various
gradient descent optimization algorithms can be found in literature [78].

3.7.6 General Remarks on Training Neural Networks

At this point, a general remark on the training procedure of neural networks is
indicated. In general, any optimizer works best when the instances in the training
data set are independent and identically distributed (cf. Geron [37], p. 416). In
the case of online or mini-batch learning, it is important that the training data is
shuffled beforehand or instances are drawn randomly from the data set. If the data set
was sorted with respect to any characteristic, the network would simply consider this
specific feature and would not build a meaningful and abstracted representation. This
points to a general property of neural networks: they are very naive learners. They
will always respond to the most primitive characteristic about the training data that
enables a correct prediction for the training data set. Hence, the creation or selection
of a balanced and comprehensive training data set is one of the most important and
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also challenging tasks when it comes to training neural networks. Another issue to
regard when training neural networks is the variation in the training data. It should
be as large as possible. The more diverse the data points are, the more complex the
contour of the loss function will be in weight space. This will make it easier for the
optimization algorithm to find meaningful improvements to its model so as to better
predict the correct outcomes. This is because with a larger variance in the training
data, even in adverse regions of weight space the negative gradient will point into a
direction that improves the model at least to some extent. If the variation is low, on
the other hand, the gradient might not provide any useful information for updating
the weights in those regions.

3.8 Regularization: Ensuring Model Performance

This section will outline appropriate performance measures for neural network mod-
els and discuss typical issues like over-fitting that arise during training. Common
regularization techniques, which are employed to address these problems, will be ex-
plained. A rigorous treatment of regularization in the context of computer vision has
been performed by several researchers [79, 80].

3.8.1 Internal and External Validity: Measuring Performance

When training a neural network, one is generally interested in some kind of perform-
ance measure. It can be used to define a decision criterion for the abortion of the
training process when the quality of the model suffices or for general comparisons
between networks as well as benchmarking purposes. One could consider the value of
the loss function in the current or final training iteration since it gives a quantitative
measure of how well the model predictions match the true target values of the train-
ing data. This would be the internal validity of the model. However, the data that
was employed during training cannot be used for evaluation because the model may
start to remember the training data and will thereby likely predict the correct label.
In this case, the model does not learn a meaningful and abstract representation of
the relevant features but exploits idiosyncrasies of the training data instead. Hence,
it will not generalize well to other data. This undesirable phenomenon is called over-
fitting and will be discussed in the next section. It leads to a good internal validity
measure although the model might not be applicable to new data. In practice, one
wants to know how well a model performs on new data. This is quantified by external
validity measures. Internal and external validity can deviate significantly. In order
to determine the external validity, one can calculate the value of the loss function on
a separate data set that was not used for training. Such a hold out validation set
may be separated from the original data set for this purpose. Overall, the external
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validity represents an essential performance measure for neural networks. In order to
increase the external validity and thereby ensure model performance, regularization
techniques are employed that control the complexity of the model. Such techniques
will be discussed in Section 3.8.3.

3.8.2 The Problem of Overfitting: Balancing Model
Complexity

As mentioned before, ANNs are generally used to find model-based solutions to
classification or regression problems. An important presupposition is that although
the amount of data is large it can be explained in terms of a relatively simple model
with a small number of parameters. When setting up a neural network, two generic
problems that are closely related must be considered. If the model is too complex
for the amount of information that is contained in the training data, it will likely
overfit. This can even be the case for very large data sets since modern networks
can have up to millions of adjustable parameters. When a model overfits, it means
that it will adapt to the peculiarities of the training data and basically start to
remember the data points instead of learn abstract rules about the structure of the
data. In this case, the model may make perfect predictions for the training data but
would not generalize well to new data. The external validity would then be low. On
the other hand, when the number of adjustable parameters is too small, the model
might not be able to represent enough relevant features of the data. In this case, the
model lacks discriminatory capabilities and will not be able to perform the desired
task. This issue is called underfitting and typically results in bad performance on the
validation as well as the training set. In summary, over- and underfitting lead to an
optimization problem with regards to the model complexity. It should be complex
enough to catch all the variability in the data but also simple enough to not fit the
model too closely to the particularities of the training set. Put differently, the model
should have as few parameters as possible and as many parameters as necessary.

3.8.3 Main Regularization Techniques

To meet the aforementioned challenges of over- and underfitting, several regulariz-
ation techniques may be applied. In general, ANN models rather tend to be too
complex and the external validity is difficult to ensure. This is why most regulariz-
ation techniques address the problem of overfitting and try to regularize the model
complexity to that end. In this section, three commonly used regularization tech-
niques will be presented that are employed for the models in the present thesis. Other
techniques, for example Bayesian approaches for model comparison as described by
von Toussaint et al. [81], will not be discussed here as they were not employed in any
model.
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Early Stopping

The training error of a neural network model is usually a non-increasing function
of the iteration index of the optimization algorithm. This means that the internal
validity of the model increases with every iteration step. However, this strict relation
only holds for the training data itself. As outlined above, the internal and external
validity of a model do not have to progress equally during training but can differ
significantly. In practice, they usually improve simultaneously at the beginning of
training but the external validity starts to deteriorate again in later stages of train-
ing while the internal validity still improves. This deviation between internal and
external validity is a clear indication of nascent overfitting. One of the simplest reg-
ularization techniques utilizes the deviation of the external validity as a criterion for
aborting the training process to prevent overfitting. It is called early stopping as
it causes the optimization algorithm to not perform the predefined number of iter-
ations but to terminate the training procedure early. The method can be provided
with a patience parameter to let the algorithm run for a certain number of iterations
without an improvement in external validity before early stopping is triggered. A
prerequisite for early stopping is that a hold out validation set is available to compute
the external validity after each iteration. In the context of training neural networks,
these iterations of optimization algorithms like gradient descent are called epochs.
An alternative and more straightforward way to retrieve the training status with the
best performance is to store the model for every epoch. Then, the model with the
best performance on the validation set can be selected after the training process is
finished. This approach will be used in the optimization codes of the present thesis.

Amendment of Loss Function

A more involved technique to control the complexity of a model is to add a regular-
ization term to the loss function which influences the resulting gradients and thereby
the training outcome. This term is a function of the adjustable model parameters and
can be used to specifically penalize larger or smaller weights. Two common variants
of this method are L1 and L2 regularization. In L1 regularization, the penalty term
is the sum of the norms of the network weights and hence targets smaller weights.
L2 regularization, on the other hand, penalizes larger weights more by adding the
sum of the squared norms of the network weights. It incentivizes weights to remain
small and is therefore also known as weight decay. The penalty term δ for both L1
and L2 regularization is given by

δ = λ |w|α . (3.8)

In this formula, α determines the type of regularization, L1 or L2, and λ is called
the regularization parameter. It determines how strongly the regularization affects
the update of the weights w. Such a regularization term can also help to remove
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undesirable degeneracies in weight space, which can for example occur when the
softmax activation function (3.4) is employed (cf. Bishop [55], p. 236). It is also
possible to apply a combination of both L1 and L2 regularization terms. A detailed
introduction to the theoretical background of regularization, including more general
formulas and some additional variants, is given in sections 5.4, 9.2, and 10.1 of
Bishop’s book on neural networks [49].

Dropout

Dropout is one of the most frequently used regularization techniques. It was first
published by Hinton et al. in 2012 [82] and later improved upon by Srivastava et al.
in 2014 [83]. The idea is to prevent neurons from co-adapting with their neighbours
and solely relying on a few neurons in the previous layer. Instead, they are supposed
to be trained partially independent from their neighbours. This forces the neurons
to build more diverse connections and thereby become less sensitive to slight changes
in their inputs. The implementation of dropout is straightforward: In whatever
layer of the network it is applied, it causes some randomly chosen neurons to be
excluded from training during the next iteration. This means that these units will
have an activation level of zero for this particular iteration. The percentage of neurons
that are inactivated is called the dropout rate p. It is a hyperparameter that has
to be set prior to training. Dropout has been found to significantly improve the
network’s generalizability [82]. Therefore, it has been be applied in all models that
were developed for the present thesis.

3.9 Convolutional Neural Networks

The branch of machine learning that deals with computer vision tasks has made
enormous progress in recent years and receives ever more funding due to its anti-
cipated applications in robotics, autonomous driving, and manufacturing processes.
Today’s software solutions for such tasks usually employ CNNs [42]. They are a spe-
cial kind of ANN with a unique setup and versatile application [84]. The first neural
network with a CNN-like architecture was the neocognitron proposed by Fukushima
[85]. Earliest applications were made by LeCun et al. to the recognition of hand-
written digits in ZIP codes [86] and later generalized to document recognition [87].
So far, they have proven to be very effective as well as efficient in solving problems
involving the automated evaluation of image data. This section will outline their
main components and algorithmic implementation as well as their general structure.
Subsequently, some major advantages and disadvantages of their application will be
discussed.
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3.9.1 Working Principle

There are three distinct design elements about CNNs that make them very effective in
image analysis. Two of them were initially inspired by the visual cortex of mammals,
which was described for the first time by Hubel and Wiesel in 1959 [88]. To what
degree the human perceptive processes are analogous to the one of CNNs has been
investigated by Lindsay [35]. One of the main characteristic of the mode of operation
of CNNs is its hierarchical structure of feature recognition [89]. Analogous to the
human perceptive process, early layers in a CNN are sensitive to small and simple
features like edges, while successive layers look for more and more complex patterns
and combinations of smaller features, until eventually they identify entire objects
(see for example Krizhevsky et al. [90]). Since this hierarchical structure of feature
recognition is prevalent in many applications and early features are typically very
similar, attempts are made to utilize pretrained layers for transfer learning [91].
Another design element of CNNs focuses on the spatial correlation of pixels in images.
Specifically in image data, the correlation between pixels that are close to each other
will be larger than between pixels that are further apart. This is utilized in the
structure of CNNs via the concept of local receptive fields, again analogous to the
human visual cortex. This means that neurons only have a very small region, i.e.
perceptive field, from which they receive their input. Analogously, hidden units will
only have connections to a fairly limited number of neurons in the previous layer
which lie in the same region. An additional feature of CNNs exploits the fact that
the appearance of objects or features is typically independent of their location in the
scene. This translational invariance can be represented in the structure of a CNN
by applying the same weights to all neurons in one layer, regardless of which region
of the image their receptive field lies in. More precisely, the weights are shared only
among neurons in the same feature map (cf. Section 3.9.2). This property is called
weight sharing and allows to significantly reduce the number of free parameters in
the network and therefore reduce its complexity and the computational resources
required for its training. All three of these distinct design elements of CNNs are
reflected in its setup by characteristic components. Local receptive fields and weight
sharing are implemented via convolutional layers and hierarchical feature detection
is enforced by the subsampling that happens in pooling layers. These components
will be treated in the following.

3.9.2 Important Layers in CNNs

There are two distinctive structural components that characterize CNNs. One of
them is the convolutional layer, in which the input or intermediate feature maps are
convolved with kernels. These kernels represent features, which the network tries to
recognize in the image. The other major feature of CNNs is the pooling layer, which
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subsamples the feature maps and enforces the learning of more abstract representa-
tions. Since these components are of major importance for the understanding of the
methods applied in the present thesis, both of them will be explained in detail in the
following sections.

Convolutional Layers

The convolutional layer is the core building block of a CNN and reason for its des-
ignation. Most of the computation and the actual feature recognition is happening in
this type of layer. Convolutional layers apply a process that is equivalent to the math-
ematical method of convolution to the respective input image of the layer. Instead of
the convolution of one function with another, however, the image is convolved with
a filter. A filter is a multidimensional arrangement of numbers that represents cer-
tain features and is also called a kernel. The filter numbers are the weights between
neurons of two successive layers. Typically, the filter is much smaller than the input
image. It is shifted across the image and its numbers are multiplied by the input
pixel values at the respective location in the image. This procedure is depicted in
Fig. 3.4. The result of the convolution operation is the sum of these products at
every location in the image. The better a region in the image matches the filter, the
higher the value will be. Since a filter represents certain image features, the output
of a convolutional layer is called a feature map because it highlights where in the
image the feature of the filter is present. All units in the resulting feature map share
the same weights with respect to the neurons in their individual local receptive field
in the previous layer. This sharing of weights significantly reduces the degrees of
freedom and has some favorable effects that will be discussed in Section 3.10. In
each convolutional layer, several filters can be applied in order to detect different
features resulting in multiple feature maps. In that case, the filters in the next layer
will have a 3-D shape and their receptive field will span across all previous feature
maps. Thereby, the successive layer can combine different features so as to compose
more complex features and build abstract representations
In practice, the shape of the filters is typically quadratic and their size is typically

between 3×3 and 7×7 pixels to keep the structure symmetric and the computational
costs low. The small size of the filters means that neurons are only connected to a
small number of units in the previous layer, which is characteristic for the afore-
mentioned local receptive fields. From Fig. 3.5 it is apparent that the convolution
with a filter reduces the size of the image across layers. If the size is supposed to be
conserved, the input for each layer needs to be padded according to the size of the
filter. A common padding type called "zero-padding" involves adding zeros around
the image. Additionally, the step size for the shift of the filter during the convolution,
which is called stride in the context of CNNs, can be adapted as well. The concrete
choice of padding type and stride length are additional hyperparameters and will be
discussed in Chapter 6.
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Figure 3.4: Illustration of the convolution operation. The filter is moved across the
input image and applied at each position. For every application, the sum of the
products of the kernel values and the input unit activations represents the result
of the operation. The entirety of all kernel applications makes up the resulting
feature map. In this specific case, a horizontal Sobel filter is applied, which detects
horizontal edges.

Pooling Layers

In CNNs, pooling layers are often inserted to apply nonlinear sub-sampling to the
feature maps of the previous convolutional layer. The purpose of this downsampling
is to reduce the complexity of the model as well as the computational effort needed
for its training and to lower the memory footprint. Pooling layers partition each
feature map into subregions, which usually have a 2x2 shape and do not overlap.
Then, a nonlinear pooling function is applied to each subregion separately. There
is a large number of potential pooling functions, however just a few are regularly
employed in practice. Historically, average pooling was the first widely used pooling
function. It yields the average of the values in the respective subregion of the feature
map. Nowadays, a different function called max pooling is applied, which tends to
perform better [92]. In the case of max pooling, the result of the pooling operation
is the maximum of the values in each subregion. Both average and max pooling are
illustrated in Fig. 3.5.

Another major effect of pooling layers is that they increase the perceptive field of
individual neurons from layer to layer and at the same time decreases the resolution
of the image. Thereby, the learning of meaningful abstractions and combinations of
features is explicitly enforced at every stage of the network. This facilitates the job
of the network to proceed from the detection of simple features in the first layer to
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Figure 3.5: Illustration of the two major variants of the pooling operation. The
image or the feature map gets divided into subregions onto which the pooling
is applied. Max pooling selects the maximum value of each subregion, whereas
average pooling computes the average of all the values in every subregion.

the identification of complex objects in the last layer. This progression is implicitly
required through the structure of the CNN (cf. Hadji and Wildes [93], p. 10 f.).

3.9.3 Structure of a CNN

Just like standard ANNs, CNNs have a layered structure. A typical setup of a CNN
is depicted in Fig. 3.6. It displays an exemplary network for the classification of
handwritten digits. In general, the input layer of a CNN represents the digitized
input image, potentially comprising several channels, e.g. for RGB colors. The input
layer is typically followed by a set of alternating convolutional and pooling layers.
As explained in the previous section, this arrangement leads to an increasing level of
abstraction throughout the network. At the end of the network pipeline, a couple of
fully connected layers are applied to the flattened 1-D representation of the feature
maps. They perform high-level reasoning and the final assessment of the network.
As outlined in Section 3.6, there should be at least two fully connected layers in the
network for it to be a universal approximator. In the output layer, the final transfer
to the output in the specified format takes place. This could be single or multiple
regression outcomes as well as classification results. In the example in Fig. 3.6, the
output comprises classification probabilities for all possible digits from one to nine.

32



3.10 Applicability of CNNs for this Investigation

Figure 3.6: Depiction of a typical CNN setup. Characteristic are the alternating
convolutional and pooling layers in the first part of the network structure and the
arrangement of several dense layers at the end right before the output layer. Image
taken from [94].

3.10 Applicability of CNNs for this Investigation

CNNs have become the state-of-the-art method for computer vision tasks [42] on the
account of several features that make them favorable to other methods. Firstly, they
exploit both the local spatial correlation of pixels and the translational invariance
of the features by local perceptive fields and weight sharing, respectively (cf. Sec-
tion 3.9.1) [89]. This is especially advantageous in object detection tasks because
images can contain multiple instances of an object anywhere in the image. Due to
these principles, the number of weights is much smaller than it would be in a fully
connected network. The pooling layers reduce the amount of free parameters even
further. However, despite the significantly smaller number of parameters, CNNs still
perform very well on most tasks while being much more efficient. Additionally, the
reduction of complexity helps to avoid overfitting (cf. Section 3.8.2). Another benefit
of CNNs is their explicit enforcement of higher levels of abstraction at each layer
by means of their structure and the application of pooling layers. This hierarch-
ical feature detection is useful because features typically correlate and contribute to
higher order feature detection mostly when they are about the same size or on the
same abstraction level. The advantage is that the network does not need to infer
these levels of abstraction implicitly in the course of training. Its structure facilitates
this aspect independently from training. Finally, neural networks not only allow to
actively train features that are relevant for the desired identification of objects but
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also allow for blacklisting. Thereby, unwanted features and disturbances of any kind
can be explicitly ’untrained’ by the network as long as appropriate training data is
available.

On the other hand, CNNs also bring along some challenges. One of the major
problems is that the interpretability of the acquired models is usually very limited, as
is true for all neural network applications. It is very hard to find out what the network
is actually doing at the intermediate layers. Often times, the understanding of the
information processing remains low and the network rather operates like a black box.
Hence, prior knowledge on how to design the network is usually scarce. Therefore,
the process of training a neural network and tuning the hyperparameters involves
a significant amount of trial and error iterations. However, some attempts were
made to better understand neural networks [95]. Specifically for CNNs, a variety of
techniques has been developed to interpret the computations and learned parameters
at intermediate layers [96, 97]. For example, deconvolution approaches are used to
visualize features that the network responds to [98], while other studies investigate
the differences of recognition processes between humans and deep neural networks
[33, 34].

Overall, CNNs represent a powerful tool that is capable of solving a great variety
of problems. Specifically, they are well suited for addressing the regression and
classification tasks that are part of the blister investigations in the present thesis. The
setup of the specific CNNs employed in the present investigations will be discussed
in detail in Chapter 6.
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Chapter 4

Experimental Data and
Preprocessing

The main goal of this thesis is to achieve the large-scale and time-resolved study of
blistering on plasma-exposed metal surfaces. For this specific investigation, the blis-
tering on a molybdenum sample was considered since in this case the blister features
become quite large. This allows to conduct the development of the methodology and
analysis framework without being restricted by limits that are imposed by the experi-
mental setup. However, the framework developed here can in principle be transferred
to other materials as well, for example tungsten. For the present investigation, the
specimen was exposed to a deuterium plasma for some 25 hours. The details of
the experimental setup will be discussed in Section 4.1.1. The experiment yields
in-situ images of the sample during the plasma exposure. After the acquisition, the
images have to be subjected to some preprocessing steps to prepare them for the
automated analysis with convolutional neural networks later on. These steps include
the alignment of consecutive images, the application of a background subtraction,
and denoising. They will be discussed in Section 4.2. The sample was observed dur-
ing the entire experiment and the image quality resolutes all major blister features.
By means of the preprocessing techniques, important features in the images can be
highlighted and undesirable effects can be reduced. Individual blisters can clearly be
identified as well as characterized. Overall, the employed experiment and the applied
methods yield appropriate image data that can be further evaluated with automated
routines.

4.1 Experimental Setup and Image Acquisition

For the investigation of blistering on metal surfaces, an in-situ experimental setup was
used. It allows to study the temporal evolution of blisters statistically, as well as the
development of individual blisters. For the loading of the samples with deuterium,
the plasma experiment PlaQ was used. The details of this experiment and the specific
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settings for the present investigation will be discussed in Section 4.1.1. During the
loading of the sample with deuterium, the surface was observed with a camera. Its
high resolution enables the identification of individual blisters. The specification
of the camera and the mode of operation for the image acquisition are outlined in
Section 4.1.2.

4.1.1 PlaQ: In-situ Observation of Blistering on Metal
Surfaces

For the purpose of the present investigation, an experimental setup is required that
allows the live observation of blistering on metal surfaces. Such a configuration is
provided by the PlaQ experiment. It is a plasma experiment that was developed at
the Max-Planck Institute for Plasma Physics in Garching [6]. The sample considered
for this thesis was exposed to a deuterium plasma from this source. At this point,
I will only give a brief review of the general setup as well as some key features that
will be relevant during this investigation. For a more detailed description of the
device and important parameters it is referred to the original paper. A schematic
representation of the experimental setup is depicted in Fig. 4.1.

In the PlaQ experiment, the plasma is ignited and maintained by electron cyclotron
resonance (ECR) heating, which is implemented by a 2.45 GHz magnetron with Pmax
= 1200 W. The plasma is operated at low temperatures as well as low pressures (0.1
- 1.0 Pa) and uses D2 as the operating gas. The main discharge is confined to a
cylindrical steel mesh cage and therefore spatially separated from the sample holder.
Through an aperture in the bottom steel plate of the cage, the plasma beam can reach
the specimen. The beam can be blocked with a shutter underneath the aperture. By
this means, the exposure of the specimens to the ion beam can be precisely controlled.
The sample holder itself is electrically isolated from the vacuum chamber and can
be biased up to -600 V. This allows to adjust the impact energy of the ions on
the specimen without strongly influencing the main plasma. The irradiation of the
sample holder by the ion beam is approximately homogeneous. The deuterium ion
flux density has only a weak dependence on the bias voltage and has an absolute
value of about 1020 Dm−2s−1. The ion flux is constant even over long periods (up to
12 days). Thus, large deuteron fluences can be achieved. The deuteron flux is mostly
carried by D+

3 ions, while D+ and D+
2 contribute only small fractions. Hence, the

typical energy per deuteron is one third of the total ion energy. An important feature
of the setup are its multiple windows on opposing sides of the chamber. They allow
the illumination of the sample with a spotlight and the simultaneous observation of
the specimen with a camera from the outside.

For the investigations at hand, a molybdenum (Mo) sample was exposed to a
deuterium plasma for about 25 h and 35 min. The sample was held at a temperature
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Figure 4.1: Scheme of the experiment ’PlaQ’. The main deuterium plasma is con-
fined to a stainless steel cage while a plasma beam can pass through an aperture
and reach the specimen. The sample holder is observed through a window by a
camera with a telecentric lens and illuminated by a light source which is placed in
line of sight of the camera on the opposing side of the setup. The figure is based
on the illustration in the original paper [6].

of 370 K and the sample holder was biased to 100 V. This resulted in an energy per
deuteron of 38 eV (cf. the original PlaQ paper [6]). The flux was 1020 Dm−2s−1. The
specimen was mechanically polished and had dimensions of 12× 15 mm. A marker
was carved into its surface to facilitate the alignment of the images. This marker had
an approximate size of 3× 3 mm and can be seen in Fig. 4.2.

4.1.2 Image Acquisition

For the in-situ observation of blistering on the specimens, two windows on opposing
sides of the sample holder are available in PlaQ. In front of one of them, an adjustable
LED light source with up to 75 W and a color temperature of 6500 K is placed. The
spotlight is directed at the sample holder and is used to illuminate the specimen.
Before the other window, a camera is placed at a distance of 365 mm and at an angle
of about 20 degrees, which is the same as for the light source. Consider Fig. 4.1 for
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Figure 4.2: Sample images of a molybdenum specimen that were acquired in-situ
with the PlaQ experiment. At the top, the sample has not yet been exposed to any
plasma yet. At the bottom, the sample has been exposed to the deuterium plasma
for approximately 500 minutes. Note that the employed lens is telecentric, which
means that there is no perspective in the images.

an illustration of the general setup. The camera has a magnification factor of 1,870, a
depth of focus of 2 mm, and a working distance of 365 mm.1 It employs a telecentric
lens which means that there is no perspective distortion in the acquired images and
the magnification is independent of distance. Hence, objects appear the same size
regardless of their position on the specimen. Thereby the automated evaluation of
the images at a later stage is facilitated.

The optical resolution of σ of the acquisition system can be computed according
to

σ =
λ

2NA
, (4.1)

where λ = 500 nm is the wave length of the light and NA = 0.055 is the numerical
aperture. The optical resolution is hence 5 µm, which is equivalent to 3 pixels. Under
the present circumstances, blisters on Mo have diameters of 50 to 500 µm and heights
of 5 to 15 µm. The gradient angles of the blisters, i.e. the slope of the side walls,
reach up to 15 degrees. This means that the blisters get illuminated well by the light
source and that they can be observed entirely and with high resolution by the camera.

1A detailed data sheet of the employed camera system is provided in Appendix A.
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Figure 4.3: Overview of the terminology regarding different image segments used
in the present thesis. Panel a) denotes the complete frame, panel b) is an image
slice, panel c) is an image section, and panel d) is called snippet and will be used
as input to the CNNs. The shift of b) for the acquisition of the image slices during
a full image cycle and of d) for the sliding window scheme are indicated by boxes
and arrows with white dotted lines. The aggregate of all 29 image slices constitutes
a single image cycle and covers the entire frame.

Due to the limited depth of focus, the camera is shifted back and forth to cover the
entire field of view. To this end, it is mounted on a motorized optical rail. A scan
across the entire specimen, called a cycle, involves 29 individual image acquisitions,
which are called slices. An overview of the terminology of different image segments
is given in Fig. 4.3. The acquisition of all 29 slices in a single cycle was set to take
about 5 minutes and subsequent slices have significant overlap of the region where
the image is well-focused. In total, 308 cycles of image acquisition were conducted
during the experiment, out of which the first 100 will be used for the analysis in
Section 8. Each image has a size of 4096 × 1440 pixels and a gray value resolution
that is equivalent to 12 bits.

In the present thesis, it will frequently be referred to all sorts of different image
segments from the original image data. Therefore, the respective terminology will be
briefly defined here. An illustration of all the different segments is given in Fig. 4.3.
In the figure, a) denotes the entire original frame, which is identical to the image in
Fig. 4.2. Further, b) represents one out of the 29 image slices that collectively cover
the entire frame and make up a single image cycle. The shift and the acquisition of
the other image slices is indicated by the large box and the arrow with the white
dotted line. During the discussion of the images and the analysis results throughout
the present work it will often be referred to various smaller image sections to highlight
specific features. These image sections are exemplarily represented in Fig. 4.3 by c).
Finally, the 64 × 64 pixel snippet that will be extracted from the image during the
application of the sliding window approach (cf. Section 6.1) to feed it to the CNNs
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as input is illustrated somewhat magnified by the small red box and labeled with
d). The shift of the snippet during the sliding window procedure is again insinuated
by a box and an arrow with white dotted lines. The reader is made aware of the
fact that both the successive image slices and the successive snippets actually feature
significant overlap and were only indicated separately in the figure to make it more
clear.

4.2 Image Preprocessing

Before the images can be evaluated with CNNs, they have to undergo several pre-
processing steps in order to deal with a couple of issues. For example, consecutive
frames are randomly shifted due to vibrations of the setup. This is addressed with
image alignment, which ensures the persistence of object parameters like its position
across time. It also lays the basis for the subsequent background subtraction. The
texture and the irregularities on the surface of the specimen constitute another is-
sue. They require a background subtraction which allows to highlight the changes
in images over time and therefore increase the visibility of blisters. Also, some noise
is present in the images which is rectified by advanced denoising techniques. All
of these preprocessing steps will be explained in more detail below. Overall, the
employed techniques significantly reduce the abundance of unwanted features in the
images while increasing the visibility of important blister features and the persist-
ence of parameters across time. Thereby, they contribute greatly to the success of
the present investigations.

4.2.1 Image Registration with Hugin

During the acquisition of the images as described in the previous section, the whole
experimental setup experiences some movement due to unavoidable vibrations of
experimental setup components and external factors. These disturbances become
visible as minor and major shifts in the images. These shifts are not desirable and
need to be corrected for in order to make the locations of objects on the specimen sur-
face consistent across time. Additionally, a good alignment allows for a background
subtraction (see Section 4.2.2) which in turn simplifies and enhances the quality of
the automated detection of blisters. It therefore constitutes a major success factor
for the research goals of this thesis.

For the alignment of the images, the open source panorama photo stitching program
Hugin was used.2 It allows to automate most of the necessary processing steps and is

2The Hugin software was used in the 2019.2.0 version for 64 bit Windows operating systems. It
can be downloaded from the Hugin webpage [99].
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a powerful tool that yields very precise results. For detailed information on specific
features, one may consult the instructive tutorials available online [100] or the online
source code documentation [101]. The concrete choice of settings and processing
steps widely follows the instructions from a publicly accessible application example
[102]. It may serve the reader as a detailed guideline. For the study at hand, a single
image slice over the course of 100 image cycles was considered. Hugin considers every
pair of images from the complete time series separately. This results in a total of
4950 pairings. Hugin then automatically searches for control points in every image
pair individually. These control points are meant to be idiosyncratic and ideally
unique to the image. Thereby they can be recognized in the other image and hence
allow for an alignment of both images. The number of identified control points varies
but is typically in the range of 2200. If required, individual control points can be
edited by the user. For example, the control points with the smallest coincidence may
be excluded from further consideration since they might be misidentifications. In a
second step, Hugin tries to align all images at the same time so as to minimize the
deviation of all control points. Multiple iterations of this control point optimization
may be applied in order to improve its accuracy. Prior to the alignment, the user can
choose which alterations in the images are to be considered, for example translations
of the camera, change in viewing angle, or relative image positions. For the present
study, only the position was regarded as an adaptable parameter. Subsequent to
the alignment, the images are cropped to a region common to all images to allow
for background subtraction and consistent tracking of features over the entire time
period. This procedure is feasible because only minor shifts of less than 70 pixels
occurred between images compared to an image size of about 500 × 4000 pixels.
Additionally, the images in an acquisition cycle have significant overlap. Therefore,
the information loss due to cropping is negligible.

4.2.2 Background Subtraction and Denoising

In order to reduce the intensity of texture and surface features as well as reflection
and shadowing effects, a background subtraction is conducted. Hence, an appropriate
background needs to be determined. To this end, the acquisition of the images as
presented in Section 4.1.2 was started about 90 minutes prior to the plasma exposure.
Hence, some 18 image cycles were completed before the plasma exposure began.
During this time, only the original surface without any alterations has been observed.
Therefore, these early images can be used to define an appropriate background.
However, not all of them are aligned equally well and so the five images with the best
alignment were selected, i.e. images from cycles 14 - 18.3 For the implementation of
the background subtraction, the selected images are averaged in order to make the

3Best alignment meaning with respect to the succeeding images that were used for further analysis,
i.e. cycles 19-100.
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Figure 4.4: Depiction of the background subtraction. At the top, an example
of an image from the sample after the alignment and cropping is shown. Many
blisters have already appeared. At the bottom, the same image is shown with
the background subtraction applied. One can see that the background subtraction
works very well. The marker on the sample is barely visible while blisters are
highlighted nicely and exhibit clear contours.

background more robust to noise, disturbances like dust particles, and artefacts in
the images. The averaging also helps to reduce the effects of bad alignment between
pairs of images from the background set and the rest of the image sequence. Finally,
the background is subtracted from all other images. Afterwards, the images are
rescaled to 8 bit grayscale ’png’ format according to

X[i] =
X[i]−Xmin

Xmax −Xmin

× 255 . (4.2)

In this equation, X represents the entire image stack, X[i] is one single image, and
Xmin and Xmax are the minimum and maximum values of all pixels in X.
After the application of the background subtraction, an additional processing step

needs to be performed to deal with the noise in the images. Naturally, there is some
noise that originates from the acquisition process during the experiment. Also, some
additional noise was introduced by the preprocessing steps described above. In order
to diminish the noise, a special denoising technique was employed. It uses similar
subregions in an image to compute their average and hence is called non-local means
denoising. For details on this technique it is referred to the orignial paper by Buades
et al. [103]. For the implementation in Python, a routine from the OpenCV library
was used.4

The result of both the background subtraction and the denoising is depicted in
Fig. 4.4. It is apparent that the two preprocessing techniques work very well. Virtu-
ally all of the texture is gone and even the very pronounced marker is barely visible.
At the same time, blisters have become nicely highlighted and exhibit sharp con-
tours, whereby they are easy to identify. In addition, the noise has been largely

4OpenCV is an open source library for computer vision applications. It was used in its 4.2.0.34
version for Python, which is available online [104].
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removed from the image. It should be noted that blisters are typically darker than
the surface and therefore become visible as dark spots in the background-subtracted
images. This is also true for disturbances like dust particles, which may also occur.
However, this happens rarely and does not cause too many misidentifications by the
CNNs. Overall, the preprocessing steps described here and in the preceding section
work very well and greatly facilitate the automated detection of blisters.
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Chapter 5

Generation of Artificial Training
Data

For the automated analysis of the image data, convolutional neural networks are
used (cf. Section 3.9). In order to perform their task, these networks must first be
trained with appropriate training data. The investigations at hand require a super-
vised learning setting which means that the true parameters (labels) of the training
data are known and can be used to optimize the network parameters. One way to
acquire the necessary labeled training data is to take real images and label them by
hand. This is both laborious and deficient. An alternative way is to artificially create
image data that resembles the real images. The advantage of the latter approach is
that once such an automated procedure has been developed, the ground truth of the
data is fully known and an arbitrary number of training instances can be generated
as and when required. Ideally, the generation of artificial training data is completely
automated with scripts and software applications. An additional advantage of such
an automatized implementation is that new training data can be easily expanded or
adapted and then produced at low cost. This is helpful when the required specifica-
tions have changed, a different sample is considered which looks different, or in cases
where the preprocessing did not work as well.

For the training of CNNs with artificially created data, it is important that the
images represent the relevant features of the real images and the objects that are to
be identified as closely as possible. They have to reproduce all significant charac-
teristics and should not exhibit any peculiarity that distinguishes it from real data.
Otherwise, training will fail, as CNNs are very sensitive to slight changes and subtle
characteristics in the training data. As outlined in Chapter 3, they adapt exclusively
to the feature space that is covered by the training data and usually fail to transfer
well to data that lies outside of this parametric environment.

For the applications at hand, the artificial training data was created with the
ray-tracing software POV-Ray, which will be discussed in Section 5.1. The actual
configuration of realistic blister scenes and their implementation in Python as well
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as POV-Ray are outlined in Section 5.2. For the verification of the artificially gener-
ated images, a number of different means are employed, which will be presented in
Section 5.3.

5.1 Ray-Tracing Software POV-Ray

As outlined above, the artificial training data of CNNs must be as realistic as possible.
With the open source ray-tracing software POV-Ray it is possible to create photo-
realistic images from scratch for a large variety of settings. The software is used in
its 3.7.0.0 version for Windows that was published under the AGPL3 License and is
available online [105]. It was initially released in 1991 and has since been improved
a lot and found a wide range of applications. Its documentation can be found online
as well [106]. In general, POV-Ray allows to render fixed scenes with basic features
like different cameras, light sources, objects, and ambient settings. In addition, it
provides packages for rendering objects of various types. Among others, boxes and
ellipsoids can be created and many of their properties can be adapted to specific
needs. The adaptable parameters include color, shape parameters like height, width,
and radius, as well as surface modifiers like texture, bumpiness, reflection, and more.
In particular, metal surfaces can be imitated easily with pre-defined routines. Specific
settings and the setup of concrete scenes will be discussed in the following section.

5.2 Configuration of Realistic Blister Scenes

The purpose of this section is to illustrate how photo-realistic blister scenes can be
generated with POV-Ray. As a reference for both general scenic settings as well
as specific blister parameter ranges, the Mo sample described in Chapter 4 after
a plasma exposure of about 9.6 × 1023 Dm−2 was used. For reasons outlined in
Section 6.1, only small snippets of the entire image slice of the real images are fed
to the CNNs one by one. They comprise 64 x 64 pixels and cover an area of 217 x
638 µm2 on the sample. In an area of this size, typically not more than four blisters
will occur for the considered amount of fluence. Accordingly, the artificial images are
rendered with a resolution of 64 x 64 pixels and only display small snippets with up
to four blisters (see Fig. 5.1). The distance relations of all entities in the synthetic
scene are proportional to their relative positions in the actual experimental setup
(cf. Section 4.1). A camera with a telecentric lens and a point like light source are
placed in the POV-Ray scene at the appropriate distances and angles. The basic
setup consists of an object of type box that is placed it in the middle of the scene. It
fills the entire image so that its surface resembles a plane. The viewing angle of the
camera is chosen so as to exactly comprise a fraction of the surface that corresponds
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to the respective area on the real specimen. These settings ensure that the scene
features the same mapping as the real experimental setup where 1.84 micrometer
are enlarged and mapped onto a single pixel, which has a width of 3.45 micrometer.
In POV-Ray, the quantities were chosen such that one spatial unit represents one
micrometer. Blisters are emulated by distorted spheres that are partly absorbed into
the plane. Their dimensions and depth under the surface are chosen such that the
part that is visible above the surface looks like a blister.

As discussed in Section 3.7.6, the artificial images must reproduce as much variation
as possible from the real images. To this end, several settings were randomized within
certain parameter ranges. These specifications were implemented in Python and then
formatted so as to serve POV-Ray as an executable input. Both the Python and
POV-Ray scripts are provided in Appendix B along with the POV-Ray configuration
file. They can be consulted for any details on the implementation of the generation
of the artificial images. Therefore, only a brief outline of the parameters will be given
here. Notably, only parameters that were adapted to create variation in the data will
be discussed in detail. This is because they are of greater importance for ensuring
the correspondence of the variation between the artificial and the real data. Their
choice involved the detailed investigation of relevant variations in the real image data
and according derivation of appropriate parameter ranges. The rest of the POV-Ray
parameters, which were not varied, were mostly tweaked via trial and error and kept
fixed afterwards. They were iteratively optimized by visually comparing the results
with real images and adapting them accordingly. They are also very important for
the realistic look of the images, especially with regards to the surface looks of the
plane and the spheres, but do not contribute to the variation in the data. However,
they were specifically optimized for the Mo sample and hence, if the specimen or the
preprocessing steps are altered, these parameters must be adapted. Their specific
settings can be gathered from the code, which is provided in Appendix B. The two
most important static features that are employed to imitate the real surface looks of
the Mo sample are a metallic reflection property of the surface plane and a marble
texture, which can be adapted such that it resembles the texture on the Mo sample
quite well.

Apart from the static features, a number of parameters were varied randomly in
order to create adequate variation in the training data. For each parameter, a min-
imum value and a maximum value were defined. These values set the range out of
which a random number is selected. In some cases, the randomized selection was
additionally biased to better represent the parametric variation in the real data. An
overview of these parameters is given in Tab. 5.1. It indicates the respective para-
meter range and gives some additional notes if applicable. One part of these dynamic
parameters concerns the scenic surroundings. Here, for example the position of the
light source was shifted randomly in both the vertical and horizontal direction so as
to imitate different illuminations on the sample in the real experiment. These are
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Randomized Parameter Min. Value Max. Value Note

Scenic Environment:
Light source lateral range 0 100,000 At 270000 distance
Light source vertical range 82,800 93,230 At 270000 distance
Plane texture randomizer 0 100,000 Random shift

Blisters:
Initial Radius (R) 15 40 Bias to smaller values
x position 0 217
y position 0 638
Scaling of x-dimension 1 2.5 Bias to smaller values
Scaling of y-dimension 1 2.5 Bias to smaller values
Depth below surface 0.5 * R 0.93 * R Bias to larger values
Rotation angle (degrees) 0 90
Number of blisters 1 4

Table 5.1: Overview over the parameters that were varied in POV-Ray to make
the variation in the training data more realistic. The first subgroup describes the
parameters that determine the scenic environment. The second subgroup outlines
all the parameters that affect the blisters. For each parameter, the respective range
and some applicable notes are given.

caused by the surface profile and curvature of the sample, which slightly change the
illumination angle. In addition, the surface of the box was adapted by applying a
randomized shift to the texture parameter.
However, the most important variation of the images happened with regards to

the blisters. In the setup at hand, the parameters of every blister were randomized
individually and are largely independent of the other blisters in the image. First
of all, a sphere with a random initial radius between 15 and 40 µm was created.
Subsequently, this sphere was deformed in both x and y directions independently,
resulting in a randomized ellipsoidal shape. Afterwards, this object was randomly
placed on the surface with the majority of its volume below the surface plane. The
x and y location parameters range from one end of the visible section to the other.
This means that the mid point of all blisters lies within the visible section of the
scene. It is noteworthy that both the distortion and the overlay of the surface over
the ellipsoid alter the apparent size of the blister, which hence does not correspond
to the initial radius. The true size of the blister is eventually defined as the area of
the blister as if viewed from the top and measured in pixels as given by

a = πxminxmaj × 2.94 . (5.1)

Here, a is the area of the blister, xmin and xmaj are the minor and major axis of the
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ellipse that is constituted by the intersection of the surface plane with the previously
created ellipsoid, and 2.94 is the correction factor for the angle of view at which the
scene is observed. For details on this, it is referred to the respective code listing in
Appendix B. As a final step, a random rotation is applied to the blister-like object.
Overall, the described settings result in the placement of an ellipsoidal section on the
surface that features random dimensions, shoulder angle, height, and rotation. The
above process is repeated between 0 and 4 times for each image, according to the
requirements of the respective CNN scenario (cf. Section 6.1). The reader is pointed
to the fact that it is possible for blisters in the POV-Ray setup to be placed inside one
another, since the locations are chosen by randomized routines. This is avoided by
keeping track of all blister positions and prohibiting the choice of a nearby location
for the placement of a new blister. Furthermore, for some scenarios it was necessary
to make additional adaptations to the settings, which will be discussed in Section 6.1.

After the setup of the scene parameters in Python, POV-Ray is executed with
these specific settings and produces a 64 x 64 pixel 8 bit grayscale image in png
format. For each required CNN scenario, a total of 17,000 images are produced with
the exact same randomization parameters. The concrete values of the parameters
for each image instance are saved to a file. However, only target parameters that are
aimed to be determined by the CNNs later on are included in the output file. These
include the number of blisters in the image as well as the location and the size of all
blisters. Other parameters are not of further interest and are hence disregarded. At
the end of the procedure, this file contains the true parametric labels for each image.
These will be necessary for the supervised training of the CNNs. After the creation
of the artificial images, a final postprocessing step is necessary. The resolution of the
camera in the actual experimental setup does not correspond to one single pixel but
is equivalent to 2.76 pixels. Therefore, an intentional blur needs to be applied to the
artificial images to make them look as realistic as possible. This is implemented with
a Gaussian blur that has a standard deviation of 2.76.

The overall results of the above described pipeline for the generation of artificial
training images are very good. Some examples of such images can be seen in Fig. 5.1,
where some artificial images (bottom) are compared to some real images (top). As
one can see, the artificial images are almost indistinguishable from the real images
even for the human eye. This makes it likely that the training of the CNNs with the
generated images will be successful. However, to confirm this initial assessment, a
more detailed analysis of the validity of the artificial data is necessary. This will be
discussed in the next section.
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Figure 5.1: Visual comparison between real images (top rows) and artificially gen-
erated images (bottom rows), the latter of which are indicated by black dashed
lines around them. This comparison shows that the images created with POV-Ray
correspond very well to the real measured images and in particular all major blister
features are resembled to a great degree. There are only minor systematic differ-
ences discernible between the images, for example blisters in the real images seem
to be somewhat darker.

5.3 Validation of Artificial Images

The purpose of this section is to verify the accordance of the artificially generated
images with the real images. To this end, a number of means were employed that
allow for a detailed comparison between artificial and real images. First of all, an
initial visual analysis was conducted where artificial and real images were compared
by eye. This is a valid and important indicator of the validity of the synthetic data
since the human eye is very good at perceiving differences in images. If a human
does not notice significant differences, a CNN is likely to deem them similar as well.
Such a visual comparison can be seen in Fig. 5.1. In the top two rows, real images
are depicted, whereas in the bottom two rows, synthetic images are depicted. The
latter can be identified by dashed boxes. From now on, artificial images and related
plots will be consistently indicated by dashed boxes around them in order to help
distinguish them from real measured images. All the images in Fig. 5.1 were selected
randomly. As one can see from the figure, synthetic and real images look very much
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Figure 5.2: Histogram comparison of a real (top) and an artificial (bottom) blister
image. For each case, an image containing one blister is depicted along with its
intensity histogram. An intensity value of zero corresponds to a completely black
pixel, whereas a value of one corresponds to a totally white pixel. It is apparent that
the images not only look similar visually but also correspond nicely with respect to
both the intensity range covered as well as the shape of the intensity distributions.

alike and exhibit only minor differences. In general, they seem to be a bit darker
with a less smooth transition in the intensity of the gray value.

However, CNNs may look at the data differently and thus additional checks are
required that compare the images in different ways than just visually. One way to
do this is to compare their histograms. An example for such a histogram comparison
is given in Fig. 5.2. Again, the images look quite alike and, more importantly, also
the histograms are fairly similar. Both the intensity range and the shape of the
distribution coincide very well. The reader is made aware of the fact that both
images in the figure were selected by hand to demonstrate the potential accordance
of artificial and real images. However, they are not representative of all the data. It
is apparent that the artificial images in Fig. 5.1 exhibit significant variation especially
with respect to their brightness. This would become visible in the histograms as a
general shift of the distribution to higher or lower values. However, if the variation
in the artificial data is larger than in the actual measured data, this is not an issue
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because the CNN will then just become more robust to this variation in the training
data. This may actually increase the performance even on the real data because the
network has to learn a more general abstraction in this case. As long as the real data
is represented by the artificial data in all major regards, it is reasonable to use it as
training data.

In summary, both validation techniques have shown that the artificially generated
images resemble the real images very well. Therefore, it is appropriate to use them
as training data for the CNNs. However, a final assessment of the quality of the
training data can only be made when considering the performance of the networks
on the real data (cf. Chapter 9).
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Chapter 6

Implementation of the CNNs

This chapter gives an outline of how the CNNs that are used in the present thesis were
implemented. This in particular involves the general setup, parameter optimization,
and training of the CNNs. In the following, an overview of the general approach to
the problem of automated blister detection will be given. Then, the software that was
used for the implementation of the networks will be briefly discussed. Afterwards,
the setting of the network hyperparameters will be treated along with appropriate
optimization schemes. Finally, the results of the optimization procedure for all CNNs
will be outlined.

6.1 Approach

The approach that was used for the automated analysis of the image data consists
of several distinct steps. At first, small snippets1 from the large image are selected
because the CNNs are better suited for small image sizes. This is due to a number
of reasons. On the one hand, the amount of data and the number of parameters
can become too large to be processed during training. On the other hand, analyses
like the localization of multiple objects of the same type in a single image can cause
conceptual problems. When there are multiple objects in the image, the mapping of
specific output neurons, i.e. the labels, to the objects is ambiguous. This problem is
called label switching and can cause a rapid decline in the prediction quality when
the number of objects increases. Hence, the snippets that are passed to the CNNs
should contain as few blisters as possible. On the other hand, the snippets need to
be large enough to incorporate large blisters well. This is why a size of 64×64 pixels
was chosen for the snippets. This is equivalent to an area of 217 × 638 µm2 on the
sample surface and is twice as large as the largest reference blisters (cf. Section 5.2).
Also, choosing a square shape and a power of two for the snippet dimensions makes
the CNN faster because it can be parallelized more efficiently on the GPU.

1The terminology with regards to different image segments was illustrated in Fig. 4.3 and discussed
in the last paragraph of Section 4.1.2.
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Figure 6.1: Flow diagram of the
automated blister analysis. The in-
put image snippet gets fed to a
neural network that classifies the
number of blisters in the image. Af-
terwards, a CNN that is respons-
ible for the respective number of
blisters localizes all blisters in the
image. Finally, specialised net-
works identify important paramet-
ers of each blister. In the present in-
vestigation, the size of each blister as
defined in 5.1 is estimated. Hence,
the analysis procedure overall yields
information on the position and the
size of each blister. The identific-
ation of further parameters can be
added at the final stage and would
have to be implemented with addi-
tional specialized networks.

To process the entire slice, the snippets are successively extracted from the image
row by row and column by column and the CNNs are applied to each one of them sep-
arately. This method is also known as sliding window approach since its application
is equivalent to sliding a window of size 64× 64 pixels across the image and applying
the CNNs at every step. This procedure was already illustrated in Fig. 4.3, when the
image segment terminology was defined. The step size between successive snippets is
chosen as a fraction of the snippet size to achieve significant overlap of the snippets.
This ensures that no blisters are missed that might occur on the border of a snippet.
Also, the overlap results in every blister being analyzed several times by the CNNs,
which yields a statistic for the blister position and thereby improves its precision. In
addition, it enables consistency checks between individual identifications.

The process of automated analysis with CNNs comprises three stages with a total
of six individually trained networks. The overall analysis pipeline is illustrated in
Fig. 6.1. At the first stage, a CNN estimates the number of blisters that are visible
in the image. A maximum number of potential blisters has to be chosen prior to
training as it determines the number of neurons in the output layer. It should be
realistic so as to not affect the outcome of the training too much. It was adjusted
to the highest average blister density in the real data for which detection is likely to
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succeed without making the detection process too complex. A reasonable value to
account for this trade-off is four blisters. The network gives probabilities [p0, ..., p4]
for all potential numbers as an output, where p0 is the probability for zero blisters
in the image, and p1, ..., p4 are the probabilities for the cases of one to four blisters,
respectively. Depending on the assessment of this first network, the image gets
passed on to one out of four CNNs in the second stage which are responsible for the
localization of all blisters in the image. There is a separate network for each possible
number of blisters from one to four. For the case that there is no blister in the image,
no further analysis is needed. The outcome of this second assessment is a list of all
blister locations in the image [(x0, y0), ..., (xn, yn)]. At the final stage, each individual
blister gets analyzed by a third network which estimates the size of the blister, which
is defined as the area it covers on the surface as in Eq. (5.1). For this purpose, a
section from the original total image that is centered around the blister’s location
gets extracted. This simplifies the size estimation, since the blister of interest is
always located in the center of the image instead of an arbitrary position. Further
networks can be added to this last stage of analysis in order to estimate additional
parameters.

This modular approach features some significant advantages. First of all, there
are practical reasons to split up the different analysis tasks. Defining an overall
loss function for all tasks at the same time is not practical since they represent a
mixture of classification and regression tasks. It would be very hard to balance the
penalties for all features so as to get equally good results on all outcome quantities.
Also, the required network structure might be different for the individual tasks.
In addition, if the identification fails, it is hard to identify the reason why that
happened. With different stages, it is easier to attribute issues to a certain stage and
find appropriate solutions. Adapting the network structure and creating suitable and
exhaustive training data are both easier with specialized networks. Moreover, prior
knowledge from earlier assessments may be used in the further analysis. For example,
the location of the blisters is used to facilitate the estimation of their parameters by
choosing an appropriate image section. Finally, also performance reasons make a
modular approach more favorable. First of all, the precision of the networks will be
better when they can specialize and only have to solve a single task. Moreover, with
a modular setup the adaptation to new data or different requirements will be more
flexible and easier to implement. Parts of the already existing networks might be
applicable to other scenarios as well and do not have to be redeveloped or retrained.

For the entire pipeline, a total of six separate networks were trained. One for
the number classification, four for the localization of the blisters and one for the
estimation of their size. The training data was adapted to each scenario individually.
In particular for the size estimation, images were created in which the blister of
interest was placed in the center. The respective position was subjected to Gaussian
noise with a standard deviation equivalent to the average precision of the localization,

55



Chapter 6 Implementation of the CNNs

i.e. two pixels. The labels of the training instances for the number classification were
one hot encoded which means that the number of blisters is indicated by the position
of a single digit ’1’ in a vector with as many elements as there are potential classes.
For performance reasons, the gray values of both the training images as well as the
real images were normalized to the [0, 1] interval before they were analyzed by any
of the networks.

6.2 Tensorflow: A Machine Learning Framework

For the implementation of the CNNs, TensorFlow 2.0 was used [107]. It is a popular
open source machine learning library developed by Google. It is widely used for
the development of neural network applications in both research and industry [108].
Since its update to Tensorflow 2.0, it provides a similar functionality as PyTorch,
but due to its larger user base and better community support it is preferable to
the latter. Version 2.0 features a high-level API called Keras [109]. In combination
with the proprietary CUDA framework, Tensorflow can utilize NVIDIA GPUs to
parallelize and speed up its computations. For this investigation, an NVIDIA GE-
FORCE GTX 1660 Ti GPU was employed. TensorFlow allows developers to create
dataflow graphs which represent specific information relations as well as processing
sequences and comprise two main components. One are the nodes which describe
the individual computational processing steps and the other one are the tensors, i.e.
multi-dimensional arrays, which represent the data or information that flows through
the graph. Thanks to the Keras API, the user does not have to define these graphs by
hand but can straightforwardly set up neural networks at a high conceptual level and
implement them in Python. A detailed overview of the concepts and functionalities
of both Tensorflow and the Keras API can be found in a book by Géron [37].

6.3 General Considerations on CNN Optimization

When training and optimizing CNNs, there are basically three conceptual levels at
which either configurations have to be set or parameters have to be adapted. At the
lowest level, there are the network parameters which comprise the weights and the
biases of all neurons. The optimization of these network parameters poses a continu-
ous optimization problem because the gradients of the overall network function can
be computed with regards to each parameter. Therefore, it can be fully automated
with gradient descent algorithms (cf. Section 3.7.4) in Tensorflow and will not be
treated this section. In addition to the network parameters, there are also so-called
hyperparameters, which have already been referred to in Section 3.7 and who pertain
the network architecture. Typical hyperparameters include the number, type, and
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sequential arrangement of layers as well as the kernel dimensions and step sizes. They
ultimately determine the structure of the overall network function and thereby heav-
ily influence the training outcome and the performance of the network. It is hence an
important part of the development process to optimize these hyperparameters [110].
Since they pertain the network structure itself, their optimization poses a discontinu-
ous optimization problem. To solve this kind of problem, elaborated search schemes
such as Bayesian optimization can be employed. Implementations of these schemes
are also available in the Tensorflow framework (cf. Section 6.4). They are used to
scan certain hyperparameter ranges and find the best networks therein. However,
these automated routines again require the developer to set the values of some op-
timization parameters (cf. Section 6.6) prior to execution, for example the maximum
number of trials the algorithm is permitted to run. These settings then constitute
the highest level of configuration in the overall optimization procedure of the CNNs.
The hyperparameters of all CNNs in this thesis were optimized with a Bayesian op-
timization scheme. To employ such an optimization technique, a reasonable initial
setup needs to be created. This setup will be discussed in detail in Section 6.5.

The outcomes of the overall optimization procedure of the networks consisted of
two distinct types. Some parameters were set to a specific value at the end of the
optimization, whereas other parameters were only restricted to a certain range. This
was done since the goal of this investigation is to evolve a good hyperparameter
range in which successful networks can be found with a high probability instead of
just providing a single network that works well on the specific training data. This
approach is more suitable for two reasons, one of them being the reproducibility. The
outcome of the training procedure is by no means deterministic since the training data
was created with randomized settings and the network parameters were initialized
randomly. Trying to reproduce a specific network might not yield equally good
results. Instead, by providing an appropriate range for the hyperparameters, it is
ensured that other researchers can reproduce a well functioning network easily. In
addition, working with a parameter range simplifies the development process when
the data changes or adaptions are to be made to the network structure for some
other reason. It will be easier to find a good network or at least get an indication in
which direction to change the hyperparameters in order to improve the network. For
both reasons, it is more appropriate to provide a hyperparameter range that can be
searched by automated routines that yield concrete and well functioning networks.

As described before, CNNs operate somewhat like a "black box" and it is difficult
to predict which setup will yield good results. Hence, it is necessary to try different
structural setups to find useful networks. Therefore, the optimization of hyperpara-
meters involves a lot of trial and error. It is an iterative process which starts with
an initial set up (cf. Section 6.5). Each iteration involves training many CNN in-
stances with hyperparameters in pre-set ranges and evaluating their performance.
The quality is evaluated based on the performance of the networks on a validation
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data set. Then, other hyperparameters can be added or the accessible value ranges
can be adapted accordingly before another iteration is conducted. Thereby, the pro-
cess iteratively closes in on the best parameter ranges. At the end of the iterative
process, the search space for the hyperparameters is already very refined to the range
in which the training is successful and yields good results. Basically all parameter
ranges where training never led to any useful network are already excluded. In some
cases, in which a single value of a hyperparameter turned out to be strictly superior,
the range was refined to a fixed value during the optimization process. In the other
cases, the range was kept as large as possible to allow for more diverse networks to
be found. In yet different cases, structural components or concepts did not yield any
useful results and hence were deprecated completely. These included for example
residual structures but they will not be regarded further in the present work. As a
result, there is not a single correct or best network structure. Instead, within the ob-
tained parameter ranges there is a great variety of networks with very diverse setups
which can achieve similar performances and are equally applicable.

So overall, searching for the optimal CNN settings remains a procedure that has
to be conducted manually by the developer to some degree albeit it is aided by
automated optimization schemes like Bayesian optimization, which help to evaluate
different parameter ranges and find specific successful networks efficiently. In sum-
mary, the optimization and training of CNNs comprises three distinct conceptual
levels. At the highest level of the configuration of the optimization algorithms, the
tweaking is done by hand and results in fixed parameter values. At the level of the
hyperparameters, the optimization can be largely automated with Bayesian optim-
ization and the results comprise both fixed values as well as parameter ranges. At
the lowest level of the network weights and biases, the results are obtained with fully
automated routines and consist of concrete parameter values.

6.4 Bayesian Optimization of Hyperparameters

The above described procedure of finding appropriate ranges for the hyperparamet-
ers, which poses a discontinuous optimization problem, can be aided by automated
optimization schemes like Bayesian optimization. In theory, they can automatically
find the best hyperparameter values within a certain pre-defined scope. Primitive
approaches like grid search and random search just execute the training of the net-
work for some hyperparameter combinations and rank them by their performance.
More advanced optimization techniques like Bayesian optimization consider the eval-
uation of a number of hyperparameter combinations and adapt the hyperparameters
according to an elaborated optimization scheme. The reason why these more ad-
vanced optimization techniques are necessary is that there are too many potential
combinations and settings of hyperparameters so that not all of them can be tried.
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One needs a thoughtful search scheme that takes into account the results of past
executions in order to efficiently scan the available parameter space and find suitable
settings.

Bayesian optimization is a sequential scheme for the global optimization of black-
box functions [111]. It creates a probabilistic model of the relation between the
hyperparameters and the objective, which in this case is the performance on the
validation data set. Based on this model, it proposes a certain hyperparameter
configuration and evaluates it, whereby it tries to gain more information on the
aforementioned relation. The results are then used to update the model and start
a new iteration. It has been shown that Bayesian optimization yields better results
than approaches like grid search and random search and even outperforms human
experts at selecting hyperparameters [112]. It comes along as a standard optimization
scheme with the Keras Tuner library in Tensorflow [113]. The optimization scheme
has to be configured prior to execution. The respective settings will be discussed in
Section 6.6.

6.5 Initial Setup

The general setup idea was the same for all of the CNNs in this thesis. It was
mainly inspired by examples from text books and successful state-of-the-art CNNs
for image recognition, such as LeNet-5 [87] and VGG-16 [114], while also taking into
account theoretical considerations. For details, see Section 3.9 on CNNs and the
generic review of deep learning from LeCun et al. [89]. The initial setup for this
investigation widely follows the setup that was already depicted in Fig. 3.6. Apart
from the input and output layer, it employs two main structural components which
are standard in CNNs. The first one is an alternating series of convolutional and
pooling layers at the beginning and the other one is a number of dense layers at the
end of the network right before the output layer. More specifically, the first block
comprises a combination of convolutional layers with a ReLU activation function and
max pooling layers in between, which is a very common architecture. Additionally, in
the last block with the dense layers, dropout layers were introduced so as to regularize
the network (cf. Section 3.8.3). Another important part of the initial setup is the
restriction of the search space of the hyperparameters to reasonable ranges according
to conceptual considerations. For example, the number of pooling layers in the CNN
is restricted by the image size. The image cannot be downsampled more often than
the number of pixels permits.

Apart from these general considerations, a few settings were also chosen according
to the specific problem statement at hand. As outlined in Section 6.1, the develop-
ment of different types of CNNs is advantageous for solving the three distinct tasks
in the blister detection pipeline. The pre-chosen settings encompass the number of
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units in the output layer, the output unit activation functions, and the loss function
for each CNN. These parameters are determined by the inherent structures of the
tasks and will not be altered during the optimization process. For details, the reader
is pointed to the appropriate sections in Chapter 3.9. For the first network, which is
the number classification, five output units were used. Each unit represents one of
the five possible cases of zero to four blisters in the image. A softmax activation func-
tion was applied which is typically used for pure classification tasks [115]. Thereby,
the outputs can be interpreted as classification probabilities for the different cases.
The appropriate loss function is the categorical cross entropy. For the localization
stage, in total four separate networks were trained, one for each case of one to four
blisters. For each blister in the image, two output neurons are used in the output
layer to represent its x and y positions. The activation function is sigmoidal since
the dimensions for both the x and y directions were scaled and restricted to a (0, 1)
interval, which is equivalent to the width and the height of the image, respectively.
However, the loss function for this problem had to be customized for a couple of
reasons. The general notion of these issues will be outlined here but they will not be
discussed in detail. One of the problems is that the network does not know which
blister in the image is supposed to correspond with which output neurons. This
problem is called label switching. The solution is to consider all permutations of
the blister instances and compute the loss for all of them. Afterwards, the smallest
loss can be regarded as the loss of the prediction of the network. Another problem
to consider is that the choice of penalization for the deviations from the predicted
values is not unambiguous. Depending on the overall identification performance, one
might for example be interested in minimizing the largest deviation of a single blister
or one could focus more on the average deviation for all blisters. Hence, the choice
heavily depends on what predictions and accuracies the task requires and how the
developer wants to penalize certain outcomes. To be able to dynamically adapt this
emphasis made by the loss function, it must be explicitly coded by the developer.
The implementation of the loss function in Tensorflow is rather involved and will not
be considered further at this point, however the details can be gathered from the code
listings in Appendix C. Finally, for the estimation of the size of the blister, a single
output neuron suffices. No activation function was applied to the output neuron so
as to not restrict the potential sizes of the blisters since the purpose of the network
is just the regression of a single value. For such standard regression problems, the
choice of mean squared error as the loss function is appropriate.

6.6 Optimization Results

After the initial setup was created as outlined above, the iterative optimization pro-
cedure described in Section 6.3 was applied. The respective implementation in Py-
thon can be found in Appendix C. The results of the optimization will be presented

60



6.6 Optimization Results

top down meaning that more general parameters will be presented first and more spe-
cific parameters regarding the network structure will be presented later. As explained
before, the results will in general consist of parameter ranges, except for cases where
single values were performing strictly better. When optimizing the hyperparameters,
just testing random parameter combinations and settings will not be efficient. One
has to make reasonable propositions as to what specifications might yield good res-
ults. A lot of different concepts and hyperparameter settings were explored. Ideas
were for example taken from successful state-of-the-art CNNs just as was done for
the initial setup in Section 6.5. Additionally, the parameters were incrementally and
intuitively improved after considering the performances of the networks from the last
iteration on the validation data set. It should be noted that several hyperparameters
and concepts, such as residual structures, were tried but will not be employed in any
of the final networks. Those trials will not be considered further in this section.

Parameter Value

Maximum number of trials 64
Number of initial points 16
Executions per trial 1
# training instances 16384
Validation split 0.125
Number of epochs 128
Batch size 64

Table 6.1: General optimization parameters concerning the optimization of the hy-
perparameters as well as the network training. The first three parameters are
settings that influence the behaviour of the Bayesian optimization scheme. The
others are global parameters that influence the general training process.

The same approach and optimization procedure were used for all three stages of
the blister identification pipeline, which was described in Section 6.1. The optimal
values for both the fixed parameters as well as the parameter ranges turned out to
be fairly similar for all six CNNs. For the sake of simplicity, the final values and
ranges were set to be identical for all of them. Advantages of leaving a range of
the parameters instead of fixing their values where possible were already outlined
in Section 6.3. The results of the hyperparameter optimization are summarized in
separate tables. For example, Tab. 6.1 displays, among others, the results of the
tweaking of the Bayesian optimization search parameters. The maximum number
of trials defines the total number of trials which are conducted by the optimization
scheme. The number of initial points describes how many points in parameter space
the Bayesian optimization algorithm considers before it starts to adapt its model and
infer which parameter configurations to try next. For each trial, just one execution of
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the training was conducted. The other parameters in the table concern the general
Keras Tuner optimization parameters. A total of 16,384 training instances were
generated with POV-Ray for each scenario (cf. Section 5). The validation split of
0.125 means that 1/8 of the original data set was held out as a validation set for
evaluating the networks performance. Hence, 14,336 instances were actually used
for training. A total of 128 epochs were conducted meaning that the entire training
data set was used 128 times for training. During each epoch, a batch of 64 training
instances was considered at a time before updating the weights.

Hyperparameter Pertaining Value

Padding all conv same
Stride all conv (1, 1)
Kernel size conv1 7x7
Kernel size conv2 - conv_max 3x3
Activation all except output ReLU
Max Pooing kernel all max_pooling 2x2
Max Pooing stride all max_pooling (2, 2)
Regularization all 0

Table 6.2: List of hyperparameters for which a range of values was explored but
only a single value remained after refinement. The network components to which
the hyperparameter pertains as well as the respective value are given.

Tab. 6.2 gives an overview of the hyperparameters for which different values and
ranges were investigated but only a single best value was chosen after the optimiza-
tion. First of all, the padding of all convolutional layers was selected to be ’same’.
With this setting, the input images are padded with zeros around them in order to
retain the original shape of the image or feature map. Also, the best stride for the
convolutional layers turned out to be 1 × 1. Thereby, the kernel is shifted just one
pixel at a time across the image in both x and y directions and is applied at every
location. This means that the resulting feature maps have the same dimensions as
the input. As is often the case in state-of-the-art CNNs, the kernel size of the first
convolutional layer is larger then for the rest of the convolutional layers. For the
first layer it is 7 × 7, whereas in all successive convolutional layers it is 3 × 3. The
best activation function for all layers including the convolutional and dense layers
but excluding the output layer was the rectifying linear unit, which was discussed
in Section 3.5. The kernel of all maxpooling layers had a size of 2 × 2 pixels with
a non-overlapping stride of 2 in both x and y directions. With this choice, both
dimensions of the feature maps get halved during each maxpooling layer. Finally,
the employment of a regularization term as discussed in Section 3.8.3 in all layers
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Hyperparameter Pertaining Minimum Maximum Step

Stride conv1 1 2 1
# Filters conv1 32 96 32
# Add. conv layers - 8 16 1
# Add. MaxPool layers - 0 4 1
# Filters conv2 - conv6 32 192 32
# Filters conv7 - convMax 32 192 32
# Dense Layers - 1 3 1
# Units dense1 - dense3 64 384 64
Dropout Rate - 0.1 0.5 0.1
Learning Rate - 0.00002 0.0005 varying

Table 6.3: List of hyperparameters for which the optimization resulted in a range
of values. The network components to which the hyperparameter pertains are
given. Also, the minimum and maximum values of the hyperparameter are stated
along with a step size which determines the resolution of the search space that the
optimization scheme can access.

did not improve the performance of the CNNs on the validation data set although a
large variety of magnitudes was tried.
Tab. 6.3 gives a collocation of the hyperparameters for which the optimization

resulted in a parameter range rather than a single superior value. Just as for the
kernel size, the values for the stride and the number of filters for the first convolutional
layer deviates from the rest of the convolutional layers. The stride can be either one
or two for both the x and y direction, while the number of filters can range between
32 and 96. The number of additional convolution layers apart from the first one
may range between 8 and 16. The optimal number of additional maxpooling layers
can range between zero and four. The additional convolutional layers were split into
two sections with separate parameters for the respective number of filters to allow
for more flexibility in the networks. However, the range of optimal values turned
out to be the same for both of them, namely 32 - 192. The number of dense layers
at the end of the network structure was varied between one and three with similar
performance results. The number of units in each of these layers can be set between
64 and 384 without significantly influencing the prediction outcomes. As another
means of regularization, a dropout layer was added after the last dense layer. Its
dropout rate can be chosen from the interval of 0.1 to 0.5. For the learning rate of
the training algorithm, the optimal values were refined to a range of 2 ·10−5 to 5 ·10−4

with varying steps in between.
In order to acquire specific networks as required, a Bayesian optimization search is

executed for each of the six necessary CNNs. The optimization parameters listed in
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Tab. 6.1 and the hyperparameter values and ranges discussed above are employed.
The search scheme results in a variety of networks sorted by their performance on the
validation data set. The entire optimization procedure for one type of network takes
about 20-30 h on a CUDA-enabled NVIDIA Geforce GTX 1660 Ti GPU. However,
the training of a single specific network can be done in less than half an hour. The
procedure usually yields a number of good networks with similar performance but
very different setups and parameters. For the automated blister analysis later on,
the respective best networks are used. However, this does not imply that their
structure is necessarily superior to the setups of the other networks. The differences
in performance can also be due to different random initializations for example. The
parameter ranges determined before define a reasonable search space and any network
within these ranges has a viable structure and is likely to lead to a good performance.
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Chapter 7

Analysis of CNN Precision on
Artificial Data

After setting up and training the neural networks, a first investigation of the per-
formance was conducted on artificial data. To this end, a separate test set of artificial
data consisting of 616 instances was created for each of the networks. These were
then used to quantify the precision of each CNN. In the following sections, the preci-
sion will be separately investigated by different means for each of the three stages of
the blister identification process. The results are promising, in particular for smaller
blister densities, and make it seem likely that all of the networks will be applicable
to real data as well.

7.1 Number Classification

For the precision analysis of the number classification, the true number of blisters was
compared to the prediction made by the CNN for each test image. In order to give
a comprehensive overview of the results, a classification error matrix was computed.
In this matrix, which is given in Tab. 7.1, the aggregate number of cases for each
combination of the true and predicted number of blisters is given. Originally, the
output of the network comprises probabilities for all five cases. Of these probabilities,
the maximum was selected as the prediction of the network. In fact, this reduction
of information was unambiguous since the maximum value was above 50% in all
cases. As is discernible from the table, the number classification works very well
for up to two blisters and only occasional misclassifications occur. For three or more
blisters, the number of falsely classified images increases to some degree. However, by
applying the CNNs to the real data via a sliding window scheme, which has already
been introduced in Section 6.1, the accuracy of both the number classification and the
localization of the blisters can be improved significantly. This will become apparent
in the analysis of the real data in the next chapter.
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Predicted Number
0 1 2 3 4

Tr
ue

N
um

be
r 0 121 0 0 0 0

1 0 125 0 0 0
2 0 1 112 3 0
3 0 0 3 123 14
4 0 0 1 7 106

Table 7.1: Classification error matrix of the blister number estimation. The rows
indicate the true number of blisters in the image, while the columns represent
the prediction made by the CNN. Entries on the diagonal hence represent correct
classifications. The table shows that the accuracy of the number classification is
extraordinarily high for up to two blisters per image snippet but begins to decrease
for three or more blisters. However, the accuracy for high blister densities is later
improved by the application of the CNNs via a sliding window scheme.

Overall, the predictions made by the number classification CNN can be considered
very reliable, in particular for low blister densities. However, if thorough investig-
ations and precise analysis are to be conducted for high blister densities, the CNN
may have to be improved.

7.2 Localization

With regards to the precision of the localization, two quantities are of interest. On
the one hand, the average deviation of the blister locations from their true location
should be as small as possible. On the other hand, the localization of some blisters
should not be improved at the cost of deteriorating the precision of other blisters.
In particular, the largest deviation in an image should not get too large even if
the other blisters are localized very well in return. Hence, the optimization must be
balanced for both of these goals. To this end, the average mean error and the average
maximum error in pixels were computed across all of the test instances to analyse the
precision of the estimations made by the CNN. Tab. 7.2 lists the respective values
itemized by the number of blisters. As is apparent from the table, the localization for
the one-blister case reaches sub-pixel precision. Also for the two- and three-blister
cases, the average error is around one single pixel but it increases to two pixels in
the four-blisters case. The average maximum error increases faster and reaches up
to four pixels. However, compared to the optical resolution of the setup of 2.76
pixels, these values are still relatively small. The decrease in precision for increasing
blister densities is largely due to cases in which blisters lie very close to each other or
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# Blisters in Image: 1 2 3 4

Average Mean Error 0.44 0.82 1.25 2.03
Average Maximum Error 0.44 1.09 2.20 4.08

Table 7.2: Precision analysis of the localization networks. The averages are com-
puted across all considered test instances. The mean error is the error averaged
over all blisters in the image snippet, while the maximum error is the error of the
blister in the snippet that has the highest deviation from its true position. The
errors are given in units of pixel. Compared to the optical resolution of 2.76 pixels,
all values are relatively small, in particular those for up to three blisters. The ac-
curacy of the localization is improved even further by the application of the CNNs
via a sliding window scheme, as described in Section 6.1.

overlap. This can be examined in Fig. 7.1 and Fig. 7.2 in which sample images with
three and four blisters are depicted along with the true and estimated positions of
all blisters. With three blisters in the image, the localization works very well even in
the aforementioned difficult cases. With four blisters, however, the mean deviation
increases and difficult cases do not get identified very well. However, similar to
the number classification, the accuracy of the localization for high blister densities
can be improved significantly by the sliding window approach that is taken for the
application to the real data. Nonetheless, for higher blister densities with more than
four blisters per image snippet, the performance would decrease significantly and a
different approach would probably be required.

7.3 Size Estimation

Finally, the precision of the blister size estimation will be examined. For the training
of the respective network, special training data was created. The blister of interest
was placed in the middle of the image and some noise was applied to the position.
The noise was implemented with a Gaussian distribution, the standard deviation
of which was equivalent to the highest average mean error of the localization. As
described in the previous section, this value was two pixels in the case of four blisters
(cf. Tab. 7.2). Afterwards, a random number of blisters was placed in the scene
so as to cover all possible cases. The size of the blister, which was defined as the
covered area on the surface in Eq. (5.1), is estimated as if viewed from the top to
make it independent of the angle of view of the camera, which in the present case
was about 20 degrees. Compared to the original image, as for example in Fig. 4.2,
this introduces a constant factor of 2.94 in the size. This is done because by applying
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Figure 7.1: Set of some artificial images with three blisters. The white rectangles
give the true position of the blisters and the black circles indicate the prediction
of the CNN. The localization works very well even in difficult cases where blisters
overlap or blisters lie very close to the edge of the image.

Figure 7.2: Set of some artificial images with four blisters. The white rectangles
give the true position of the blisters and the black circles indicate the prediction of
the CNN. The localization works quite well in cases where the blisters are clearly
distinguishable but struggles when blisters lie close to one another or overlap. The
overall precision is significantly lower than in the three-blister case.
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Figure 7.3: Precision analysis of the size estimation of individual blisters. The true
size, which was defined as the area the blister covers on the surface in Eq. (5.1),
and the estimated size of the blisters coincide very well across the entire scale.
Some outliers occur due to overlapping blisters which cannot be distinguished by
the network. A total of 616 test instances were considered for this assessment.

this implicit adaptation of blister size in the training data the CNNs can learn to
directly deduce the true size of the blisters from the side view.

In order to visualize the precision of the size estimation CNN, the estimated size of
each blister was plotted against its true size. The result of this analysis is depicted
in Fig. 7.3. Due to the telecentricity of the camera lens, a pixel always corresponds
the same area in this top-view configuration regardless of the distance. A single pixel
is equivalent to an area of 10.69 µm2 in both dimensions. In the figure, the diagonal
where true and estimated sizes coincide is indicated by a gray dashed line. It is
apparent that most of the test instances lie on or close to this diagonal. Moreover,
the estimation of the size works equally well across the entire scale, at least in the
relevant range covered by the test instances. There are some exceptional cases where
the prediction deviates significantly, which is mostly due to overlapping blisters. A
quantification of the absolute relative deviation of the estimated size from the true
size yielded an average value of 8% across all test instances, including the outliers.
The number of blisters in the image does not seem to impair the identification process
significantly unless a blister interferes with the central blister. Overall, it can be said
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that the CNN responsible for the estimation of the blister size seems to work very
reliably.

Conclusion

Overall, the precision of the number classification and localization CNNs on the test
images is very high, in particular for low blister densities up to two blisters per 64×64
pixel image snippet, and decreases somewhat for higher densities. The size estimation
yields good results regardless of both the size of the blisters and the blister density in
the image. The identification pipeline is hence performing well on artificial data and
is expected to do so on real data as well, since the training images are fairly similar
to the real images (cf. Section 5.3). However, a final assessment of the performance
can only be made when considering real data. This will be provided in Section 8.1.2.
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Analysis of Real Data

In this chapter, results of the automated blister detection in real image data will
be discussed. Section 8.1 will outline how the CNN estimations are used to identify
blisters in individual image slices, estimate their size, and keep track of them across
time and will also include an assessment of the identification accuracy. Section 8.2
will present results that were acquired during the analysis of isolated image slices
which did not require the tracking of individual blisters across time (static ana-
lysis). Section 8.3 will then discuss results of the analysis that involved the tracking
of individual blisters over time and therefore allows to investigate the dynamics of
their formation (time-dependent analysis). The results presented in this chapter are
meant to illustrate the capabilities of the method and what kind of investigations
it enables. Nonetheless, the results acquired so far already yield new insights and
indicate that the developed method has the potential to significantly contribute to a
better understanding of blister formation.

8.1 Identification Procedure and Accuracy

This section will first describe the procedure along which the CNNs are applied to the
real image data and how their detections and estimations are used to identify and
characterize individual blisters. Subsequently, the results of a manual assessment
of the identification accuracy will be discussed. All source codes related to the
identification of blisters are provided in Appendix E and the images used for the
accuracy assessment are given in Appendix F.

8.1.1 Approach

The approach that is taken to apply the CNNs to the real image data has been
described in detail in Section 6.1. The main procedure involves the analysis of indi-
vidual image slices according to a sliding window scheme. The detections made by
the CNNs during this procedure are evaluated collectively to achieve accurate blister
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Figure 8.1: Panel a) depicts the original image slice and in panel b) the background
subtracted image is given that is used for the automated analysis. The specimen
was exposed to a fluence of 6.6 × 1023 Dm−2 at the time of acquisition of the
image. The dashed box in b) indicates the region in which blisters are identified.
Outside of this region, the identification procedure disregards all detections made
by the CNNs. The image section indicated by c) is used in Fig. 8.2 to illustrate
the identification process in more detail.

identifications. The step size of this sliding window procedure was selected to be
eight pixels in both x- and y-direction which means that each pixel is analyzed 64
times. Thereby, multiple redundancy in the detection of blisters is achieved and the
precision of the identification is increased. The process is illustrated in Fig. 8.1 and
Fig. 8.2.

Each of the 64× 64 image snippets1 considered in the sliding window procedure is
subjected to the same analysis procedure. First of all, the number classification and
localization networks are applied. The estimated positions of all blister detections are
aggregated to a heat map, which is depicted in Fig. 8.2b. For each new detection, the
corresponding pixel value of the heat map is incremented by one. This map represents
the basis for the actual identification of individual blisters. In the heat map, all local
maxima are identified and then analyzed individually. For that purpose, a circular
area with a radius of seven pixels is selected around the local maximum. The mean
position and standard deviation of all blister localizations in this area is computed
along with their total number. Afterwards, the size of the blister, defined as the area
it covers on the surface (cf. Section 5.2), is estimated using an additional snippet
from the original background-subtracted image (Fig. 8.2a) that is centered around
the estimated position. This snippet is passed to the size estimation CNN that is
trained to only regard the blister that is located in the center of the snippet. Due
to the use of this additional snippet, positions close to the borders of the image slice
have to be disregarded. Hence, the region where blisters can effectively be identified

1The terminology of image segments used in the present thesis was defined in Fig. 4.3.
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Figure 8.2: Illustration of the blister identification process based on the image
section indicated in Fig. 8.1c. Panel a) is the background subtracted image (90×400
pixels) that is used as input for the CNNs. Panel b) is the heat map of blister
detections in which the gray value indicates the cumulative number of detections
at this location that are made by the CNNs during the sliding window application.
A darker value represents more detections. Panel c) is the same as panel a) but
superimposed with the blister identifications, which are indicated by white circles.
The center of the circle is located at the estimated position and the area of the circle
is chosen such that it is identical to the estimated area that the blister covers on
the surface, as given by Eq. (5.1). The arrow in panel c) indicates a case where the
procedure was not able to separate two overlapping blisters. Panel d) displays the
same image section as panel c) but in the original image without the background
subtracted. It illustrates how sensitive the overall identification framework is. The
annotated numbers for each blister are the record identifiers.
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is somewhat smaller than the original image slice. This region is equivalent to an
area of 15.6 mm2 and is indicated by the dashed box in Fig. 8.1b. The omission of
blisters outside of this region does not constitute an issue since there is significant
overlap between consecutive image slices. Hence, blisters that lie in the border region
of one slice will be in the central region in the next slice and hence will be considered
at least once. In order to increase the precision of the identification, the processing
of the snippets described so far is repeated in a second iteration that builds on the
results of the first iteration. The aggregation region in the heat map is now centered
around the previously estimated position and its size is equivalent to the estimated
size of the blister. The second iteration involves an update of the size estimation as
well. Finally, the sum total of the detections η, which are aggregated in the second
iteration, is used as a decision criterion with an empirical threshold value of ηth = 25
to make a final assessment on the identification of the blister according to

if (η > ηth) then : add Blister . (8.1)

At the end of this procedure, both the estimated location and the size of the blister
are known. Those localizations in the heat map that were considered in the second
iteration are disregarded in the analysis of further blisters thereafter in order to not
let them contribute to multiple blisters. The procedure is applied successively to all
the local maxima in the heat map. The final result of this entire process is illustrated
for a small image section in Fig. 8.2c. Overall, the location and the size of the blisters
seem to be identified very well. An additional, quantitative analysis of the overall
identification accuracy is discussed in the next section.

In order to investigate the dynamic properties of individual blisters, they also have
to be tracked consistently over time. This means that blister identifications in one
cycle need to be matched with the appropriate identifications of the same blisters
in the previous cycle. To achieve this, the identification results of all image cycles
are analyzed in order. For all blisters in a cycle, it is checked whether an old blister
in the previous cycle existed at a position that lies inside the area of the currently
considered blister. If so, the identification results of the blister in the current cycle
will be assigned to the old blister and added to its record. Otherwise, a new blister
instance containing the respective data is created in the data base. The overall result
is a complete time-line of the position and the size of each blister. This tracking
of individual blisters allows to conduct a dynamic analysis of their formation and
evolution across their entire lifetime. The results of this time-dependent analysis will
be discussed in Section 8.3. It is to be noted that the entire identification procedure
takes up to 30 h on a standard CPU for the analysis of all image cycles in one slice.
The majority of this time is consumed during the computations of the CNNs and is
mainly caused by the small step size of the sliding window procedure. However, the
algorithms were not yet optimized for speed and the detection can be fully parallelized
so that significant performance gains can be achieved by these means.
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Analysis of Identification Accuracy

Case Absolute Count Relative Count

Total Number of Considered Instances 221 100%
Correct Classifications 177 80%
False Positives 5 2%
False Negatives 10 5%
Two Classifications on One Blister 27 12%
One Classification on Two Blisters 2 1%

Table 8.1: Results of the accuracy assessment of the identification framework. It
was conducted for a fluence of 9.6 × 1023 Dm−2, for which the training data was
optimized. The image sections that were used for this assessment are provided
in Appendix F. The results show that the precision is quite good at this fluence,
apart from a significant number of cases where one large blister was identified
as two separate blisters. The accuracy of the identifications is better at smaller
fluences when the blister density is smaller, but increases for larger fluences where
the framework was not adapted to the specific blistering parameters.

8.1.2 Assessment of Identification Accuracy

After implementing the analysis procedure described above, the accuracy of the iden-
tifications made by the automated framework needs to be assessed. A first analysis
of the precision of the CNNs on artificial data was conducted in Chapter 7. This
verification is now complemented by a validation of the results on real image data.
For this purpose, an image slice was evaluated manually to compare the identifica-
tions by the automated framework with the real blister features. Specifically, several
image sections at a fluence of 9.6× 1023 Dm−2 were analyzed, which already served
as reference for the parameterization of the CNN training data. These image sections
are provided in Appendix F. A total of 221 blister instances were considered and the
results are given in Tab. 8.1. All instances were assigned to one out of five categories
to evaluate the accuracy. The large majority of 80% of the instances are identified
correctly. The fraction of false positives is very low, however, it can be up to 10 times
larger in some isolated image cycles when the alignment of the images did not work as
well as for the others. Then, some false positives are identified on the position of the
marker that becomes visible. This does not pose a serious problem, since the marker
position is known and respective cases could in principle be excluded from further
analysis. However, with the particular specimen at hand, this was not feasible since
the marker runs through the center of the image slice and a significant portion of it
would have to be disregarded. However, this limitation can be alleviated in future ex-
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periments by placing the marker closer to the borders of the frame. Out of the small
number of false negatives, most of the instances were small blisters that lay close to
a larger blister and were therefore not recognized by the identification framework.
The largest error rate of 12% occurs when two identifications are placed on a single
blister. The large majority of these cases are due to large blisters with an irregular
and longish shape. A significant amount of these misclassifications could be avoided
by adding according shapes to the training data for the CNNs. Finally, the number
of cases in which two distinguishable blisters were identified as a single blister is van-
ishingly small. However, some of these instances coincide with false negatives since
they are not always clearly separable from one another. This quantitative analysis of
the identification accuracy was complemented by a more qualitative assessment by
the author based on the images provided in Appendix F and Appendix D. Together,
these analyses have shown that the identification and localization works perfectly for
small and isolated blisters and performs well for large blisters as well unless they
exhibit a very irregular shape or overlap. The size estimation of the blisters works
well for blisters with an elliptical shape, including all small blisters which typically
have circular shapes and are predominant for low fluences. However, the precision
decreases when blisters overlap or are ill-shaped.

For all three networks, the main causes for misclassifications or lower precision of
the estimates are the same. First of all, there are inherent boundaries to the blister
parameters that are constituted by the parameterization of the training data, which
was adapted to a fluence of 9.6×1023 Dm−2, as described in Section 5.2. For blisters
not adhering to these boundaries, a reduced performance is to be expected from
the CNNs. Major restrictions are the maximum density of blisters, the maximum
and minimum blister sizes, and the blister shapes that were included in the training
data. Unfortunately, there is no straightforward way to determine these quantities.
This is because the identification accuracy heavily depends on the specific interplay
of the density, overlap, shapes, and sizes of blisters. In addition, the resolution of
the images sets a principle lower boundary for the detection and characterization
as well. With an optical resolution of r ≈ 5 µm and a corresponding blister radius
of Rmin = 2.5 µm, the minimum size of a blister Amin, that can theoretically be
detected, can be estimated as

Amin = πR2
min ≈ 20 µm2 . (8.2)

The second main constraint on the accuracy is posed by the inherently difficult
cases of overlapping blisters, blisters that have merged over time, or blister that have
very irregular shapes. The probability for all of these cases to occur increases with
fluence since blister features tend to become larger and is amplified by the increasing
blister density. Finally, the visibility of the marker on the specimen in image cycles
that were not aligned equally well frequently causes some misclassifications as well.
However, as discussed above, this problem can be solved by relatively simple means.
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Similarly, the inadequacy of the parameterization of the training data for the analysis
of high fluence images can be resolved by expanding the respective parameter ranges.
Nonetheless, the problem of idiosyncratic blister features remains and may require
some substantial adaptation of the identification framework.
Overall, the accuracy assessment conducted here indicates that the estimations

of the automated blister identification framework developed in the present thesis
are very reliable and can be used for the intended large-scale statistical analysis of
blisters in Section 8.2 and Section 8.3. However, this assessment is only valid for
fluence values up to 9.6 × 1023 Dm−2. Thereafter, the accuracy is likely to decrease
to some degree since the parameters of blisters start to exceed the ranges that the
CNNs were adapted to. In order to get an intuition for how well the identification
works at different fluences and corresponding blister densities and what kind of blister
features cause specific kinds of misclassifications, it is instructive to consider some
illustrations of the identification results. To this end, a number of sample images is
provided in Appendix D.

8.2 Results of Static Analyses

This section presents the results of the static analysis, which did not require the
tracking of individual blisters across time. The blister density and total surface
coverage will be investigated as well as the distribution of blister sizes. In addition,
an analysis of the nearest neighbor distances of blisters is conducted to assess whether
blisters have an observable impact on blisters in their vicinity.

8.2.1 Blister Density and Total Surface Coverage

A fundamental quantity that can be used to describe the blistering process on metal
surfaces is the total number of blisters per area. With the time resolved information
on this quantity, the dynamics of blister formation can be investigated. To this end,
the evolution of the number of blisters per area depending on the fluence was calcu-
lated (cf. Fig. 8.3). The number of blisters per area grows with an increasing rate at
the beginning and transitions into linear growth for medium fluence values. For large
fluences above 10× 1023 Dm−2, the total number of blisters per area begins to satur-
ate. Notably, an analogous trend was already found for blisters on tungsten samples
by Manhard [22]. Even the fluence value at which the saturation begins matches
astonishingly well. However, the analysis on tungsten were conducted manually for
only six different fluence values and separate specimens. The comparability of the
two studies is therefore limited.
The black vertical line in Fig. 8.3 indicates the fluence that was considered as ref-

erence for the optimization of the identification framework and the creation of the
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Figure 8.3: Number of blisters per area as function of fluence. The black vertical
line indicates the fluence that was used as reference for the adaptation of the identi-
fication framework. For larger fluences, the estimates are becoming less precise due
to an increasing number of idiosyncratic blister features, but are still representative
of the overall trend. The total area was 15.6 mm2.

training data, as described in Section 5. In particular, the CNNs were optimized
for the blister parameter ranges at this fluence. As discussed in Section 8.1.2, the
quality of the identification deteriorates for higher fluences because more and more
blisters evolve beyond the range of the training data set. Consequently, the accur-
acy of both the number of identified blisters and the estimated size of the blisters
decreases. However, despite the lack of appropriate training data, the CNNs and
the entire detection pipeline still perform unexpectedly well in the range beyond the
black line where both the blister density and the blister size exceed the respective
ranges that were considered during training. In Appendix D, some sample images
of the identification results for high blister densities are given to provide illustrat-
ive support for this claim. Quality measures that will be discussed in detail at the
beginning of Section 8.3 support this assessment. The acceptable reliability of the
blister identifications at high fluences is partly achieved by the application of the
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Figure 8.4: Fraction of the total area that is covered with blisters as function of
fluence. As in Fig. 8.3, the black vertical line indicates the fluence that was used
as reference for the adaptation of the identification framework. Beyond this value,
estimates are becoming less precise.

sliding window method with a small step size that leads to multiple redundancy. On
account of this, the quality of individual detections and the large statistics suffice to
give an indication of the general trend at high fluences as well.

A quantity that is more accurately describing the blister formation as a whole is
the fraction of the surface that is covered by blister features, since it is to be expected
that it is directly related to the amount of hydrogen retained in the specimen, unlike
the number of blisters. This quantity is also more robust at high fluences because
excess identifications on large features will in aggregate tend more towards the true
size of the blister. Hence, this quantity is more likely to adequately represent the
overall trend. The progression of the area fraction covered by blisters as function of
fluence is depicted in Fig. 8.4. It resembles a similar trend as the number of blisters
per area, which was discussed above. At first, there is an accelerating increase before
the curve transitions into a phase of steady growth for some time and then begins to
saturate. An analogous trend has already been described for similar fluence ranges
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for blistering on tungsten samples [22]. Compared to the curve for the total number
of blisters per area (Fig. 8.3), the increase at low fluences is slower but in turn,
the phase of linear growth is longer and the saturation at high fluences progresses
slower. A potential explanation is that at the beginning, many small, new blisters
occur, while at a later stage already existing blisters continue to expand or smaller
blisters merge into larger ones. This interpretation is supported by the analysis of
blister size distributions (see further below and in Fig. 8.5). However, in the fluence
region where the saturation effect becomes visible, the reliability of the identification
process is already reduced to some degree. The saturation effect may therefore be
partly attributed to the decreasing identification quality at high fluences. However,
this effect is not strong enough to solely account for the saturation at high fluences.
Hence, a physical origin of this effect is strongly indicated.

There is a number of plausible mechanisms that may give rise to the observed
effect. Firstly, the blister geometry could change over time from flat features at the
beginning to more voluminous features later on. This could explain why the rate
of increase in the total surface coverage as function of fluence becomes smaller over
time. Secondly, as will be discussed further below, blisters may prevent the formation
of additional blisters in their close vicinity. This would mean that blisters exhibit an
"effective" size that is larger than their apparent size so that the fraction of the total
area that is effectively covered would be much larger than estimated. Furthermore,
on blisters which cap has already ruptured, no further blisters can emerge since the
old blister now constitutes an exhaust channel for the hydrogen. Finally, for larger
fluences and correspondingly larger time periods, the hydrogen diffuses deeper into
the material and hence accumulates in larger depths. Therefore, the deformations
caused by the expansion of cavities occur further below the surface. They may
not become recognizable on the surface with the optical system used in the present
investigation and thus may not contribute to the total estimated area. However,
a dense layer of small blisters close to the surface can suppress the formation of
larger blisters further below the surface in the future [116]. A combination of the
mechanisms described here is likely to give rise to the observed saturation effect. The
tools developed in the present thesis now provide the means by which this effect can
be further investigated.

8.2.2 Blister Size Distributions

The size of a blister, i.e. the area it covers on the surface, is one of its most im-
portant parameters and therefore an interesting subject of study. Fig. 8.5 depicts
the probability density distributions of blister sizes for different initial fluences. The
initial fluence is the amount of fluence that the specimen was exposed to before the
respective blister occurred. Along with each distribution, a Gaussian kernel density
estimate is plotted that has a width equivalent to one third of the standard deviation
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of the respective histogram. The plot shows that for low fluences, there are a lot
of small blisters and just a few medium-sized blisters. However, the larger the total
fluence becomes, the broader the respective distribution gets. For high fluences, the
number of medium-sized blisters markedly exceeds the number of small blisters. In
fact, very large blister features are likely to still be underrepresented because they
cannot be estimated correcly by the networks in some cases. Instead, they tend to
be split up into multiple smaller detections (cf. Appendix D), which leads to an over-
estimation of the number of smaller blisters. Thus, the shift of the distribution peak
to larger values for high initial fluences is actually underestimated. This indicates
that, for high fluences, already existing blisters grow or merge rather than that new
blisters are formed. This interpretation was already discussed above with respect to
the saturation effect of the total blister coverage of the surface.

It is noteworthy that the size distributions of blisters depending on the fluence
exposure prior to formation have been investigated for tungsten samples by Manhard
[22]. He found that his data could be approximated by exponential fits and that the
exponential factors of these fits decrease with higher fluence values. Hence, the trend
of less small blisters and more large blisters for higher fluences is similar. However,
the functional dependencies seem to differ between the two investigation. This could
be caused by the difference in material or by differing experimental conditions.2

8.2.3 Nearest Neighbor Investigation

As pointed out in Chapter 2 on blister theory, it is not known whether blisters
exhibit clustering or structuring behaviour. Also, in Section 8.2.1 it was mentioned
that an effective exclusion zone around existing blisters could result in an effective
surface coverage that is much larger than the observed coverage. To investigate
this, it is appropriate to consider the probability density distribution of the nearest
neighbour distances of blisters and compare it to the expected distribution if the
positions of the blisters were distributed randomly on the surface. Thereby, it can be
determined whether small or large distances are under- or overrepresented. Each of
these deviations would indicate either clustering or structuring behavior [117]. For
point-like objects that are randomly placed on a two dimensional surface, the number
of points in a region of finite size is a random variable with a Poisson distribution.
The probability density distribution of nearest neighbour distances for such a Poisson
pattern can be found in literature (e.g. [117], Eq. 17) and is given by

f(x) = 2λπx exp
(
−λπx2

)
, (8.3)

2The reader should take note of the fact that Manhard used the diameter of a blister as a measure
for its size, whereas here the area covered on the surface was considered. Also, the analysis on
tungsten were conducted manually for six different fluence values and separate specimens.
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Figure 8.5: Probability density distributions of the blister sizes for various fluences
and with a bin width of 40 µm2. The size of a blister is defined as the area it covers
on the surface. Along with the histograms, a Gaussian kernel density estimate is
plotted for each distribution to better illustrate the main trend. For low fluences,
there are many small blisters while for higher fluences, the distributions become
wider and more flat. It is noteworthy that for very large fluences the number of
medium sized blisters exceeds that of small blisters. The width of the distributions
at high fluences is likely underestimated due to limitations of the size estimation at
the upper and lower end of the distributions that were discussed in Section 8.1.2.
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Figure 8.6: Probability density distribution of the nearest neighbor distances of the
blisters in Fig. 8.1b for a fluence of 9.6×1023 Dm−2. Only blisters from a subregion
in the original image contribute to the total statistic of N instances because blisters
close to the border must be disregarded since their nearest neighbors may lie outside
of the considered image section. The red dashed line represents the probability
density distribution of the nearest neighbor distances that would follow from an
independent and uniform random placement of blisters on the surface, which is
given by Eq. (8.3). The discrepancy of both distributions at low nearest neighbor
distances is likely caused by inherent limitations of the identification framework,
as discussed in the main text. Small distances are certainly not fully excluded,
as is discernible from Fig. 8.7. Disregarding this discrepancy, the otherwise good
match between the distributions indicates that blisters exhibit neither clustering
nor structuring behaviour, at least at medium or large distances.
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where λ is the density of the points on the surface and x is the nearest neighbor
distance. For the computation of the nearest neighbor distances in this chapter, only
a subregion of the total available area in Fig. 8.1b was selected. Thereby, it is ensured
that all nearest neighbors lie inside the region where blisters can actually be detected
and boundary effects are excluded. The size of the subregion was about half of the
total available area. The probability density distribution of the nearest neighbor
distances for the blisters in this subregion is depicted in Fig. 8.6. In addition, the
corresponding distribution of the random Poisson pattern for the respective areal
blister density is illustrated by the red dashed line. As pointed out, the distributions
should match if blisters occur randomly. The figure shows that for large nearest
neighbor distances, there is no discernible difference between the random pattern
and the actual distribution of the blisters on the surface. For low distances, however,
the actual probability density of nearest neighbor distances is significantly lower
than that of the Poisson pattern. Instead, there seem to be excess cases for medium
distances near the maximum of the distribution. This kind of modification to the
distribution corresponds to a Poisson pattern of objects that are not point-like but
exhibit an, at least effective, finite size which prevents the positioning of further
objects therein. There are two potential causes that could give rise to this effect:
Either, small neighboring distances exist but are systematically not recognized by
the automated identification framework, or they genuinely do not exist due to some
physical reason.

The first possibility comprises cases of misclassifications that occur when blisters
are located very close to each other or overlap and one of them does not get identified.
An example of such a case is indicated by the arrow in Fig. 8.2c. Here, the actual
small neighbor distance does not get registered and larger values are assumed. The
minimum neighbor distance that can be identified is limited by both the resolution
of the applied optical system (5 µm) and the ability of the identification procedure
to distinguish between two blisters that lie closely together, which again depends
on the sizes of the blisters. However, the difference between the expected and the
actual probability distribution is quite significant and the statistic is quite high (N =
329). Furthermore, the same analysis was conducted across the entire fluence range
and the general trend of an underrepresentation of small nearest neighbor distances
remained the same. However, from studying a confocal laser scanning image of the
sample after the plasma exposure (Fig. 8.7), it can be concluded that small blister
distances are at least not completely absent. However, they could still be statistically
underrepresented due to a physical effect. This issue could not be clarified with the
analysis conducted in the course of the present work and further research on this
topic is required.

In conclusion, it can be said that there is no observable long range interaction
between blisters that would influence their position on the surface. This is indicated
by the good match between the nearest neighbor distributions of the blisters and
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Figure 8.7: Image of the molybdenum sample investigated in the present thesis after
plasma exposure, acquired with a confocal laser scan microscope. The white arrow
indicates a region where multiple small blisters are located closely together. This
indicates that small nearest neighbor distances between blisters are not completely
suppressed.

the random Poisson pattern for large distances. The validity of the data in this
region of the distribution is particularly high since the identification works best for
large distances between blisters and hence this conclusion can be regarded as quite
certain. However, no assessment can be made with regards to a potential short
range interaction between blisters, due to structural limitations of the automated
identification procedure for small distances between blisters.

8.3 Results of Time-Dependent Analyses

In this section, the results of the time-dependent analysis will be presented. At
first, the quality of the blister tracking is assessed. Then, the gross formation and
vanishing rates of blisters are studied. Finally, the distribution of blister lifetimes
and the growth dynamics of blisters are investigated.

8.3.1 Quality Assessment of Tracking

In order to conduct a time-dependet analysis, a tracking of the blisters was performed
which has been discussed in Section 8.1. Two quantities were considered to assess
the quality of the tracking: the mean absolute shift of positions of blisters between
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successive image cycles and the fraction of blisters that only survived a single image
cycle.3 The respective curves as functions of fluence are depicted in Fig. 8.8. Disreg-
arding the larger statistical fluctuations at low fluences due to a smaller statistical
basis, the curves exhibit clear trends. The mean absolute position shift of blisters in-
creases almost linearly with fluence but does not increase above 2.75 pixels and thus
is smaller than the optical resolution at all the times. Thus, for those blisters that
are tracked correctly, the positional shift is marginal and indicates a good stability
of the identification and localization of blisters.
However, the fraction of blisters that were tracked for only one image cycle remains

between 0.4 and 0.6 throughout the entire fluence range, which is quite a high value.
A certain number of these cases are actual short lived blisters that occurred only for
one image cycle, but this fraction could not be determined at this point. However,
several undesirable effects may lead to misclassifications with short lifetimes. For
example, some of these cases are caused by a somewhat worse alignment of images
which causes the false identification of some blisters on the marker that persist only
for a single cycle. However, this does not pose a principal problem, as discussed
in Section 8.1.2. Furthermore, at high fluences and correspondingly high blister
densities, large blister features emerge that consist of either a single large blister or
multiple small blisters that overlap. This can cause incorrect or excess identifications
on the same feature and leads to frequent label switching and correspondingly short
lifetimes. Some examples of this are given in the images in Appendix D. In addition, a
significant amount of the one-cycle blisters actually were identified in multiple image
cycles but the tracking procedure failed at identifying them as the same blister. Thus,
not the identification procedure is failing in these cases but rather the rudimentary
matching technique. Therefore, the respective instances were not included in the
analysis of blister formation and vanishing rates, which will be discussed in the next
subsection. For the other investigations in this section, this is less relevant since only
blisters with a minimum lifetime of 20 image cycles are considered, which requires
them to be instances with a stable tracking anyway. Additionally, the majority of the
remaining blister instances are consistently matched and tracked for more than 30
image cycles, as will be discussed in Section 8.3.3 and can be concluded from Fig. 8.10.
This indicates a good matching and tracking of the remaining blister instances and
thereby justifies to conduct time-dependent analysis with the present data already.
Nonetheless, structural deviations can not be fully excluded since a quantitative
typing of blister instances, that are not matched well in successive image cycles, was
beyond the scope of the present work. However, a more worthwhile approach to
address the label switching issue would be to improve the tracking scheme, which
has not been optimized yet.
Overall, there are some difficulties pertaining the accurate tracking of blisters over

time, which is caused by a non-sufficing matching scheme and marker artefacts, but
3A single image cycle is equivalent to a time period of 5 min and a fluence of 0.3× 1023 Dm−2.
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Figure 8.8: Plot of two quantities that provide information about the quality of the
blister tracking. The green line represents the fraction of blisters that were iden-
tified in only a single image cycle. The blue line depicts the mean of the absolute
position shifts of all blisters between consecutive image cycles, which remains below
the optical resolution of 2.76 pixels at all times. The larger fluctuations at small
fluences are due to the small number of blisters that contribute to the statistic.
The green curve indicates that the matching of the same blister between success-
ive image cycles does not work reliably in all cases. However, the localization of
individual blisters is very stable throughout the entire time period.

87



Chapter 8 Analysis of Real Data

the majority of instances gets tracked consistently for a long time and the positional
accuracy of blisters that are matched correctly is very good.

8.3.2 Formation and Vanishing Rates of Blisters

Apart from the static analysis that relied on the identification of blisters in single
image cycles, some additional information can be gained from the analysis of the
dynamic evolution of individual blisters. For example, it yields the gross formation
and vanishing rates of blisters and thereby allows to investigate the development
of the total number of blisters in more detail. In this analysis, blisters that were
tracked only in a single image cycle are disregarded, since some of them may be
misclassifications on the marker or large blister features, as discussed above. The
plots of all three quantities are given in Fig. 8.9. The figure shows that the formation
rate of new blisters increases at the beginning. The vanishing rate of blisters starts
to increases somewhat later but catches up at a fluence of about 11 × 1023 Dm−2.
From then on, both the formation and vanishing rate increase concurrently so that
the total number of blisters begins to saturate. The steady increase in both rates for
high fluences is likely caused by a deteriorating quality of the overall identification
and tracking results.

8.3.3 Blister Lifetime Distributions

Another interesting question to investigate is whether the lifetimes of blisters depend
on the initial fluence, i.e. the fluence the specimen was exposed to before the blisters
emerged. For this purpose, the probability density distributions of blister lifetimes
for different blister generations, that are grouped by the amount of initial fluence, are
given in Fig. 8.10. The different distributions are very similar considering the fact that
most instances accumulate at either end of the distribution. At intermediate fluences,
only a few instances contribute to the distributions. The consequential uncertainty
prevents a detailed analysis in these fluence ranges. To enable this, more image slices
need to be analyzed to provide a sufficient statistic. Nevertheless, a general trend
can already be recognized in the plot: for higher initial fluences, blisters tend to
have shorter estimated lifetimes. The origin of this effect could not be clarified in the
course of this analysis. It is not necessarily a physical phenomenon and could instead
be caused by the increased difficulty of the identification and tracking of blisters at
large fluences as well.

As discussed in Section 8.3.1, a significant amount of the instances that were tracked
for only a single image cycle might be erroneous classifications. If the corresponding
contribution to the probability distribution is disregarded, the peak at the end of
the histogram, which represents the fraction of blisters that lasted for an additional
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Figure 8.9: This figure illustrates the development of the number of blisters per
area. The black line indicates the total number of blisters per area, which has
already been discussed in Section 8.2.1. The green and blue curves denote the
formation rate and the vanishing rate of blisters per area as function of fluence.
The difference between these curves gives the net change in the total number of
blisters per area, i.e. of the black line. Rates are given per image cycle, which is
equivalent to a fluence step of ∆F = 0.3× 1023 Dm−2.

fluence of more than 9 × 1023 Dm−2 and hence the entire considered time period,
typically surpasses the cumulative number of cases of all other fluences. This means
that the majority of blisters remains visible on the surface for more than two hours.
It also implies that the automated identification routines were able to stably track
all of these blisters across the entire time span. This underlines the value that is
provided by the investigative approach taken in the present thesis.

8.3.4 Blister Growth Dynamics

Apart from the analysis of blister lifetimes depending on the initial fluences, a similar
investigation with regards to the dynamics of blister growth is of interest. For the
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Figure 8.10: Probability density distribution of blister lifetimes measured by the
additional fluence after their emergence. The data is grouped by the initial fluence
at the time of emergence of each blister. For each distribution, a Gaussian kernel
density estimate is plotted as well. The last bin includes all blisters that lasted for
an additional fluence of more than 9 × 1023 Dm−2. For each initial fluence range,
the corresponding number of identified blisters N is given in the legend.

comparison of the growth dynamics, the blisters were divided into different genera-
tions, i.e. fluence ranges at which they were first detected. Then, from all of these
blisters only those were selected that survived for at least 100 minutes, which is
equivalent to an additional fluence of 6 × 1023 Dm−2, so that the timelines can be
compared to one another. Subsequently, the mean across all remaining blisters in
each generation was computed and plotted as function of the additional fluence that
the specimen was exposed to (Fig. 8.11). From the figure, it is apparent that blisters
that emerge later have a larger size when they are first detected. This could to some
degree be caused by label switching on already existing blisters. However, some ini-
tial observations of individual blisters have shown that some of the effect seems to
be genuine. A quantitative analysis of this effect is therefore required to clarify the
different contributions to this phenomenon. The figure further indicates that later
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Figure 8.11: Plot of the development of the mean size of blisters as function of the
additional fluence the specimen was exposed to after emergence of each blister. The
size of a blister is defined as the area it covers on the surface. The data is grouped
by the initial fluence at the time of emergence of each blister. For each group, the
number of corresponding instances N is given in the legend as well. Blisters that
emerge at higher fluences seem to exhibit larger initial sizes and higher growth
rates.

blister generations exhibit larger growth rates and reach larger sizes after being ex-
posed to the same amount of additional fluence. A potential explanation for this is
that later blisters are formed in larger depth, when the hydrogen has diffused further
into the bulk. In this case, sufficiently large deformations for detection can only be
caused by large structures. Small blisters will not lead to significant protrusions on
the surface and hence will not be recognizable. In contrast, small blisters in shallow
depth can become visible on the surface so that they can be detected.

A similar analysis was conducted regarding blisters with different lifetimes. For
this purpose, blisters from low fluence ranges, where the identification works well,
i.e. below a fluence of 9.6× 1023 Dm−2 (cf. Section 8.1.2), were selected and grouped
by their lifetime. Then, the average growth dynamic of these blister groups was
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investigated. The outcome of this analysis did not allow to discern any clear trend.
However, this may be attributable to the low statistics (N ∼ 40 per group). In order
to reach a sufficient number of instances for both of the analysis conducted here,
fluence ranges had to be considered where the identification does not work as reliable
anymore. Therefore, more image slices need to be analyzed or data from additional
samples needs to be accumulated to increase the statistics. This would allow to con-
sider smaller fluence ranges and lifetimes while preserving the statistical significance,
which would increase the validity of the interpretations and of the conclusions drawn
here.
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Conclusion and Outlook

The present thesis for the first time demonstrated a large-scale and time-resolved
in-situ investigation of blistering. This involved the development of a framework for
the fully automated identification and characterization of blister features on in-situ
acquired image data. To accomplish this, four key issues had to be resolved. First of
all, the pronounced texture on the specimen surface impaired the automatic identific-
ation of blisters. This was resolved by aligning the images, conducting a background
subtraction, and applying advanced denoising techniques, which greatly enhanced
the clarity of the blister features in the images. Secondly, obtaining adequate and
sufficient training data would have been very laborious if done by hand. Therefore,
algorithms were developed that allowed to automatically generate fully parameter-
ized and photo-realistic training data that reproduces the most relevant features of
the real data. Thus, a large number of training instances could be provided to the
CNNs and hence improve their performance. Furthermore, the correct localization
and characterization of multiple blisters in the same image snippet posed a com-
plex task that could not be solved with a single CNN. Therefore, the identification
procedure was divided into three distinct subtasks that were addressed with separ-
ately trained networks. The choice of appropriate network setups and optimization
settings enabled the full automation of the identification procedure while simultan-
eously achieving both high precision and high reliability of the predictions. Finally,
an appropriate strategy for the identification and tracking of blisters was needed. To
this end, the CNNs were redundantly applied to the real images via a sliding window
scheme and an iterative identification procedure was applied subsequently. Thereby,
the reliability of the blister identifications especially for high blister densities could be
improved significantly and the tracking of individual blisters over time was enabled.
Together, the resolution of these issues resulted in a reliable and fully automated

identification and tracking of individual blisters. This was verified based on the per-
formance on artificially generated images and also validated by applying the identi-
fication procedure to real data from a molybdenum sample. This successful model
application illustrated the type of investigations that can be performed and the in-
formation that can be acquired with this technique and also provided some first in-
sights into the phenomenology of blister formation. In particular, the static analysis
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of blisters indicated that there are no observable medium- to long-range interactions
between blisters that would influence their spatial distribution on the surface. In
addition, the time-dependent analysis of blistering indicated that the amount of ini-
tial fluence at which blisters emerge influences their growth dynamics while the total
lifetime of blisters does not seem to be correlated to these characteristics. Further-
more, no clear relationship between the initial fluence and the distribution of blister
lifetimes was discernible with the statistics acquired in the present investigation. A
first comparison of these results with a manual evaluation on tungsten conducted by
A. Manhard [22] yielded some distinct similarities regarding the abundance and the
total surface coverage of blisters and exhibited comparable trends for the evolution
of the blister size distributions as function of fluence.

Progressing from here, the technique developed in the present thesis opens up sev-
eral research opportunities. First of all, it enables the conduction of a comprehensive
parameter study that may include variations on experimental parameters such as
the energy of the implanted ions and the hydrogen isotopes used, as well as sample
parameters like the material and the preparation of the specimen. This would be
one of the most promising approaches to advance the knowledge on blister formation
and is likely to yield new information on the underlying physical processes. Previous
investigations of blisters that involved the manual identification of blister features
can also be re-evaluated and improved upon. In addition, the statistical validity of
the analysis conducted in the present thesis and the accuracy of the identifications by
the developed framework can be improved by utilizing all of the 29 available image
slices from the molybdenum sample instead of just one. Furthermore, the framework
even allows to incorporate 3D information like the height or the excess volume of
blisters in the parameter determination by letting the CNNs infer these quantities
implicitly from the side-view images. Confocal laser scan microscopy can be used to
acquire 3D-maps from the surface of the specimen for this purpose. The automatic
inference of 3D blister information from in-situ image data would constitute a new
capability in the investigation of blistering that does not exist so far. Beyond the
present application, the developed framework may also be adapted to address other
tasks as well, as long as appropriate training data can be created.

If required, the identification procedure of blisters can be improved in several ways.
For example, it would be useful to diversify the training data for the CNNs by adding
blisters with more complex shapes and increasing the range of some scenic parameters
to specifically address certain types of misclassifications. This is likely to improve the
precision especially on large blisters, since they tend to exhibit more irregular shapes.
Another possibility is to provide the CNNs with some additional training instances
consisting of real images that were labeled by hand. Thereby, the performance on
irregular blister features is likely improved. Furthermore, it would be an interesting
approach to use "committees" of CNNs [49] for the identification of blisters. In this
case, the same task is performed by several CNNs with different structures and the
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different evaluations are then used to make better decisions. For example, features
in the images that were not represented well by the training data are likely to give
rise to diverging results and can hence be excluded more reliably than with a single
network alone. In addition, this divergence of predictions could be used as a quality
measure for individual identifications.

Overall, the present thesis addresses several fundamental issues that hampered the
research on blistering phenomena so far, in particular

• the huge manual effort that was needed to analyze image data from blistered
surfaces and

• the difficulty to ensure the traceability of the identification process and the con-
sistency of blister identifications across different applications when evaluated
manually.

In the course of this, a comprehensive framework for the automatic identification and
characterization of blisters in image data was developed that features good reliability
and high precision in particular for low blister densities while being transparent and
reproducible at the same time. This framework now allows to conduct quantitative
and time-resolved studies of blister formation thoroughly and in a multitude of exper-
imental scenarios. It can thereby contribute to a better understanding of blistering
phenomena and the underlying physics.
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Appendix

A Data Sheets of the Employed Optical System

These are the data sheets of the optical system that was used to acquire the images
of the Mo sample.

Data sheet of the camera.
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Data sheet of the telecentric lens.
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B Code Listings for the Creation of Artificial
Training Data

1 import random
2 import os
3 import p i c k l e
4 import math
5 from conf igs_and_resources import ∗
6
7 # choose SCENARIOS to run
8 SCENARIOS = [111 , 211 , 212 , 213 , 214 , 314 ]
9

10 # se t DATA DIRECTORY
11 os . chd i r ( r ’C: \ Users \ a r o e s s e l \Desktop\ tra in ing_data ’ )
12
13 # se t NUMBER OF IMAGES to be created
14 N_IMAGES = 17000 # 128^2 = 16384
15
16 # se t OUTPUT PRECISION
17 N_PARAM = 7 # number o f OUTPUT PARAMETERS per b l i s t e r
18 p_out = 4 # p r e c i s i o n o f output
19
20 # se t IMAGE PARAMETERS
21 AREA_WIDTH = 217
22 AREA_HEIGHT = 638
23
24 # se t GLOBAL BLISTER PARAMETERS
25 R_MIN = 15
26 R_MAX = 40
27
28 # loop over a l l SCENARIOS
29 for s c ena r i o in SCENARIOS:
30 # cr ea t e output d i r e c t o r y
31 OUT_DIR = f ’ s cenar io −{s c ena r i o } ’
32 i f not os . path . e x i s t s (OUT_DIR) :
33 os . mkdir (OUT_DIR)
34
35 # i n i t i a l i z e OUTPUT ARRAY
36 l a b e l s = np . z e ro s ( (N_IMAGES, N_MAX_BLISTER, N_PARAM) )
37
38 # LOOP fo r de s i r ed NUMBER OF IMAGES
39 for image_instance in range (N_IMAGES) :
40
41 # se t OVERALL SETTINGS
42 ## choose NUMBER OF BLISTERS f o r t h i s s p e c i f i c image
43 i f s c ena r i o in [ 101 , 1 1 1 ] :
44 n_b l i s t e r s = random . randint (0 , N_MAX_BLISTER)
45 e l i f s c ena r i o in [ 201 , 2 1 1 ] :
46 n_b l i s t e r s = 1
47 e l i f s c ena r i o in [ 202 , 2 1 2 ] :
48 n_b l i s t e r s = 2
49 e l i f s c ena r i o in [ 203 , 2 1 3 ] :
50 n_b l i s t e r s = 3
51 e l i f s c ena r i o in [ 204 , 205 , 2 1 4 ] :
52 n_b l i s t e r s = 4
53 e l i f s c ena r i o in [ 303 , 304 , 3 1 4 ] :
54 n_b l i s t e r s = random . randint (1 , N_MAX_BLISTER)
55 print ( image_instance , " n_bl i s t e r : " , n_b l i s t e r s )
56
57 ## choose LIGHTING SETTINGS
58 light_pos_x = −100000 ∗ random . random ()
59 light_pos_z = 82800 + 10430 ∗ random . random ()
60
61 ## choose TEXTURE SETTINGS
62 texture_randomizer = 100000 ∗ random . random ()
63 t ex tu r e_ in t en s i ty = 0 .1
64
65 # prepare OUTPUT STRING fo r POVRAY
66 out_pr_environment = f """
67 l i ght_source {{
68 <{light_pos_x } , 270000 , { light_pos_z}>
69 co l o r rgb <2.2 , 2 . 2 , 2.2>
70 }}
71 #dec l a r e body_texture_plane =
72 texture {{
73 pigment {{ c o l o r rgb 1 }}
74 normal {{marble { t ex tu r e_ in t en s i ty } s c a l e <2000 ,300 ,100> turbulence <1, 0 .001 ,

1000> omega 0 .55 f requency 3 .2}}
75 f i n i s h {{
76 d i f f u s e 0 .3
77 ambient 0 .03
78 specu l a r 0 .2
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79 r e f l e c t i o n {{0 .2 me t a l l i c }}
80 }}
81 t r an s l a t e <0,{ texture_randomizer },0>
82 }}
83 """
84
85 # i n i t i a l i z e OUTPUT VARIABLES
86 out_pr_bl i ster = f ""
87
88 # LOOP fo r the NUMBER OF BLISTERS in t h i s s p e c i f i c image
89 b l i s t e r_po s i t i o n s = [ ]
90 for j in range ( n_b l i s t e r s ) :
91 # loop un t i l v a l i d b l i s t e r p o s i t i o n was found
92 while True :
93 # se t SPECIFIC BLISTER PARAMETERS ( s i z e ; he ight ; p o s i t i o n ; s c a l i n g ; r o t a t i on )
94 rad ius = R_MIN + (R_MAX − R_MIN) ∗ random . t r i a n gu l a r (0 , 1 , 0 . 25 )
95 rad ius = round( radius , p_out )
96
97 z = − 0 .5 ∗ rad iu s − 0 .43 ∗ rad iu s ∗ random . t r i a n gu l a r (0 , 1 , 0 . 75 )
98 z = round( z , p_out )
99

100 scale_x = round(1 + 1 .5 ∗ random . t r i a n gu l a r (0 , 1 , 0 . 25 ) , p_out )
101 scale_y = round(1 + 1 .5 ∗ random . t r i a n gu l a r (0 , 1 , 0 . 25 ) , p_out )
102 scale_z = 1
103
104 rot_angle = round(90 ∗ random . random () , p_out )
105
106 # se t abso lu te POSITION OF BLISTER in image ( ( 0 , 0 ) in top l e f t corner )
107 i f s c ena r i o in [ 304 , 314 ] and j == 0 :
108 x_out = np . random . normal (AREA_WIDTH/2 , AREA_WIDTH ∗ 2/64)
109 y_out = np . random . normal (AREA_HEIGHT/2 , AREA_HEIGHT ∗ 2/64)
110 else :
111 x_out = AREA_WIDTH ∗ random . random ()
112 y_out = AREA_HEIGHT ∗ random . random ()
113
114 # ca l c u l a t e po s i t i o n o f b l i s t e r in povray coo rd ina t e s ( ( 0 , 0 ) in middle )
115 x = x_out − AREA_WIDTH / 2
116 x = round(x , p_out )
117
118 y = y_out − AREA_HEIGHT / 2
119 y = − y # th i s i s nece s sa ry because in the image , the y−vector i s negat ive
120 y = round(y , p_out )
121
122 # ensure that b l i s t e r s are not too c l o s e to each other
123 i f j == 0 :
124 b l i s t e r_po s i t i o n s . append ( [ x , y ] )
125 break
126
127 d i s t an c e s = [ ]
128 for pos in b l i s t e r_po s i t i o n s :
129 d i s t = np . sq r t ( ( x − pos [ 0 ] ) ∗∗2 + (y − pos [ 1 ] ) ∗∗2)
130 d i s t an c e s . append ( d i s t )
131
132 min_dist = np . amin (np . array ( d i s t an c e s ) )
133
134 i f min_dist > rad ius :
135 b l i s t e r_po s i t i o n s . append ( [ x , y ] )
136 break
137
138 # wr i t e b l i s t e r parameters to povray output
139 out_pr_bl i ster += f ’ sphere {{ <0, 0 , 0>, { rad ius } \n sca l e <{scale_x } , {

scale_y } , { scale_z}> \n rotate <0, 0 , { rot_angle } > \n t ran s l a t e <{x} , {y} , {z}
> \n texture {{body_texture }} }} \n \n ’

140
141 # prepare l a b e l s f o r output
142 width = 2 . ∗ scale_x ∗ math . sq r t ( rad ius ∗∗ 2 − z ∗∗ 2)
143 length = 2 . ∗ scale_y ∗ math . sq r t ( rad ius ∗∗ 2 − z ∗∗ 2)
144 he ight = round( rad ius + z , p_out ) # note : he ight i s not normal ized and can be qu i t e a

l a r g e number
145
146 ## normal ize po s i t i o n and width in image to (0 , 1 )
147 x_out = round( x_out / AREA_WIDTH, p_out )
148 y_out = round( y_out / AREA_HEIGHT, p_out )
149 width = round( width / AREA_WIDTH, p_out )
150 length = round( l ength / AREA_HEIGHT, p_out )
151 area = round( (np . p i ∗ width / 2 ∗ l ength / 2) ∗ (WINDOW_SHAPE[ 0 ] ∗ WINDOW_SHAPE[ 1 ] ∗

2 . 94 ) , p_out ) # the second f a c t o r i s the t o t a l number o f p i x e l s o f the t o t a l v i s i b l e area
when viewed from the top , 2 .94 i s the f a c t o r introduced by the angle o f view

152
153 # as s i gn l a b e l s to output array
154 l a b e l s [ image_instance , j , : ] = [ 1 , x_out , y_out , area , rot_angle , width , l ength ]
155
156 # save povray input f i l e
157 povray_input = open( f ’ c u r r en t_b l i s t e r . inc ’ , ’w ’ )
158 povray_input . wr i t e ( out_pr_environment + out_pr_bl ister )
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159 povray_input . c l o s e ( )
160
161 # run povray render f o r cur rent image_instance
162 os . system ( f r ’ pvengine64 / render proce s s s e t t i n g s . i n i Output_File_Name=\\e2mgast2019a\

Users \ a r o e s s e l \Desktop\ tra in ing_data \ scenar io −{s c ena r i o }\{ s t r ( image_instance ) . z f i l l ( 6 ) } . png /
EXIT ’ )

163
164 # PRINT f i n a l array o f LABELS f o r t h i s s c ena r i o
165 print ( f "\n Result o f Scenar io { s c ena r i o } : " )
166 print ( l ab e l s , "\n" )
167
168 # SAVE LABELS to d i r e c t o r y
169 pickle_out = open(OUT_DIR + "\ l a b e l s . pkl " , ’wb ’ )
170 p i c k l e . dump( l abe l s , p ickle_out )
171 pickle_out . c l o s e ( )

Listing 1: This script generates the artificial training data that is used to train the
CNNs by randomly setting the required parameters and executing a corresponding
POV-Ray script, which is given below. The POV-Ray execution settings are
provided in the third code listing below.

1 #inc lude " c o l o r s . inc "
2 g l oba l_se t t i ng s {assumed_gamma 1.0}
3 #dec l a r e body_texture =
4 texture {
5 pigment { c o l o r rgb 1 }
6 //normal {marble 0 .3 s c a l e <2000 ,300 ,20> turbulence <1, 0 .001 , 1000> omega 0 .55 f requency 3 .2}
7 f i n i s h {
8 d i f f u s e 0 .3
9 ambient 0 .03

10 specu l a r 0 .2
11 r e f l e c t i o n {0 .2 me t a l l i c }
12 }
13 }
14 // 1 uni t = 1 micrometer
15 camera {
16 orthograph ic
17 sky z
18 up <0, 1 , 0>
19 r i gh t <−1, 0 , 0>
20 l o c a t i on <0, −365000 , 131700>
21 look_at <0.0 , 0 , 0>
22 angle 0 .032 // f o r 64p width
23 }
24 #inc lude " cu r r en t_b l i s t e r . inc "
25 box {
26 <−4000, −4000, −8>, <4000 , 4000 , 0>
27 texture {body_texture_plane}
28 }

Listing 2: This is the POV-Ray script that actually generates the artificial images
according to the settings given in the code listing above.

1 Width = 64
2 Height = 64
3 Bits_Per_Color = 8 ; s e t s b i t depth to x b i t s per c o l o r ( d e f au l t : 8)
4 Output_File_Type = N ; s e t s the Output F i l e Type to x (N=PNG) ( de f au l t : 24−b i t BMP)

Listing 3: These are the execution settings for the POV-Ray script above.
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C Code Listings for the Setup and Training of the
CNNs

1 ’ ’ ’
2 NN con f i g s : Use t h i s to adapt the search scope f o r the NNs . These code sn ippe t s are shared among

a l l three NNs . I f s epe ra t e t r i a l s are needed f o r the NNs , j u s t copy the appropr ia te code to
the r e s p e c t i v e NN f i l e and make the appropr ia te changes .

3 ’ ’ ’
4
5 # the f o l l ow ing imports are ( p a r t i a l l y ) nece s sa ry f o r the NN codes themse lves to func t i on and are

imported v ia t h i s module imp l i c i t l y
6 import t en so r f l ow as t f
7 from keras import r e g u l a r i z e r s
8 from t en so r f l ow . keras . l a y e r s import Dense , Dropout , Flatten , Conv2D , MaxPooling2D , Input ,

Concatenate
9 from keras tuner . tuners import BayesianOptimizat ion

10 import numpy as np
11 import os
12 import cv2
13 import p i c k l e
14 import time
15 from t en so r f l ow . keras import Model
16
17 # Number o f images used f o r t r a i n i n g
18 N_IMAGES = 16384
19
20 # def image import func t i on
21 def load_images (DATADIR) :
22 X = [ ]
23 for img in os . l i s t d i r (DATADIR) [ :N_IMAGES] :
24 img_array = cv2 . imread ( os . path . j o i n (DATADIR, img ) , cv2 .IMREAD_GRAYSCALE)
25 X. append ( img_array )
26 X = np . array (X)
27 X = X / 255 .
28 X = X. reshape (X. shape [ 0 ] , X. shape [ 1 ] , X. shape [ 2 ] , 1) # th i s reshape i s nece s sa ry to match the

Tensorf low format
29 return (X)
30
31
32 # se t hyperparameters f o r model stream and tuner search .
33 def add_model_stream (hp , X) :
34 # i n i t i a l i z e l a y e r s d i c t i ona ry and l a s t l ay e r
35 l a y e r s = {}
36 l a y e r s [ ’ l a s t_ laye r ’ ] = None
37
38 # cr ea t e input l ay e r
39 l a y e r s [ ’ input_img ’ ] = Input ( shape=X. shape [ 1 : ] , name=’ input_img ’ )
40
41 # choose hyperparameters
42 r e g u l a r i z a t i o n = r e g u l a r i z e r s . l 1 (0 )
43
44 # add f i r s t convo lut ion and MaxPooling l ay e r to model
45 conv1_kernel_size = 7
46 conv1_str ide = hp . Int ( f " conv1_str ides " , min_value=1, max_value=2, s tep=1)
47 l a y e r s [ ’ conv1 ’ ] = Conv2D( f i l t e r s=hp . Int ( ’ conv1_n− f i l t e r s ’ , min_value=32, max_value=96, s tep

=32) ,
48 ke rne l_s i z e=(conv1_kernel_size , conv1_kernel_size ) ,
49 s t r i d e s =(conv1_stride , conv1_str ide ) ,
50 input_shape=X. shape [ 1 : ] ,
51 a c t i v a t i on=" r e l u " ,
52 padding="same" ,
53 k e rn e l_r egu l a r i z e r=r e g u l a r i z a t i o n ) ( l a y e r s [ ’ input_img ’ ] )
54
55 l a y e r s [ ’maxPool1 ’ ] = MaxPooling2D ( poo l_s ize =(2 , 2) ) ( l a y e r s [ ’ conv1 ’ ] )
56 l a y e r s [ ’ l a s t_ laye r ’ ] = l a y e r s [ ’maxPool1 ’ ]
57
58 # add add i t i ona l convo lut ion and some MaxPooling l a y e r s to model
59 n_conv = hp . Int ( "n−add−conv" , 8 , 16 , 1)
60 maxPools = [ ]
61 for mp in range (hp . Int ( "n−add−MaxPool" , 0 , 4 , 1) ) :
62 maxPools . append (hp . Int ( f "MaxPool_{mp + 2}" , min_value=2, max_value=n_conv + 1 , step=1) )
63
64 n_ f i l t e r 1 = hp . Int ( f "conv_2−6_n− f i l t e r s " , min_value=32, max_value=192 , s tep=32)
65 n_ f i l t e r 2 = hp . Int ( f "conv_7−end_n− f i l t e r s " , min_value=32, max_value=192 , s tep=32)
66
67 for i in range (2 , n_conv + 2 , 1) :
68 i f i < 7 :
69 l a y e r s [ f ’ conv{ i } ’ ] = Conv2D( n_f i l t e r1 , ke rne l_s i z e =(3 , 3) , s t r i d e s =(1 , 1) , a c t i v a t i on

=" r e l u " ,
70 padding="same" , k e rn e l_r egu l a r i z e r=r e g u l a r i z a t i o n ) ( l a y e r s

[ ’ l a s t_ laye r ’ ] )
71 l a y e r s [ ’ l a s t_ laye r ’ ] = l a y e r s [ f ’ conv{ i } ’ ]
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72 else :
73 l a y e r s [ f ’ conv{ i } ’ ] = Conv2D( n_f i l t e r2 , ke rne l_s i z e =(3 , 3) , s t r i d e s =(1 , 1) , a c t i v a t i on

=" r e l u " ,
74 padding="same" , k e rn e l_r egu l a r i z e r=r e g u l a r i z a t i o n ) ( l a y e r s

[ ’ l a s t_ laye r ’ ] )
75 l a y e r s [ ’ l a s t_ laye r ’ ] = l a y e r s [ f ’ conv{ i } ’ ]
76
77 i f i in maxPools :
78 l a y e r s [ f ’maxPool{ i } ’ ] = MaxPooling2D ( poo l_s ize =(2 , 2) ) ( l a y e r s [ ’ l a s t_ laye r ’ ] )
79 l a y e r s [ ’ l a s t_ laye r ’ ] = l a y e r s [ f ’maxPool{ i } ’ ]
80
81 l a y e r s [ ’ f l a t t e n ’ ] = Flatten ( ) ( l a y e r s [ ’ l a s t_ laye r ’ ] )
82 l a y e r s [ ’ l a s t_ laye r ’ ] = l a y e r s [ ’ f l a t t e n ’ ]
83
84 # add dense l a y e r s to model
85 for i in range (1 , hp . Int ( "n−dense " , 1 , 3 , 1) + 1 , 1) :
86 l a y e r s [ f ’ dense { i } ’ ] = Dense (hp . Int ( f " dense { i }_n−un i t s " , min_value=64, max_value=384 , s tep

=64) ,
87 a c t i v a t i on=" r e l u " ,
88 k e rn e l_r egu l a r i z e r=r e g u l a r i z a t i o n ) ( l a y e r s [ ’ l a s t_ laye r ’ ] )
89 l a y e r s [ ’ l a s t_ laye r ’ ] = l a y e r s [ f ’ dense { i } ’ ]
90
91 l a y e r s [ ’ dropout ’ ] = Dropout (hp . Float ( ’ dropout ’ , min_value=0.1 , max_value=0.5 , s tep =0.1) ) (

l a y e r s [ ’ l a s t_ laye r ’ ] )
92 l a y e r s [ ’ l a s t_ laye r ’ ] = l a y e r s [ ’ dropout ’ ]
93
94 return ( l aye r s , r e g u l a r i z a t i o n )
95
96
97 def conduct_search ( build_model , LOGDIR, X, y ) :
98 # de f i n e tuner in s tance
99 tuner = BayesianOptimizat ion (

100 build_model , o b j e c t i v e=" va l_los s " , max_trials=64, num_init ia l_points=16,
execut ions_per_tr ia l =1, d i r e c t o r y=LOGDIR)

101
102 # conduct search
103 tuner . search (X, y , batch_size=64, epochs=128 , v a l i d a t i o n_sp l i t =0.125)
104 return ( tuner )

Listing 4: This file manages the setup of the CNNs. It includes all settings and
prerequisites that are common to the training and optimization of all employed
CNNs, regardless of their specific task. This file will be imported in the scripts
that actually train the different networks. The next code listing below will give a
sample of these specific scripts.

1 from NN_configs import ∗
2
3 # choose s c ena r i o
4 for SCENARIO in [ 2 1 4 ] :
5
6 # se t d i r e c t o r i e s
7 time_stamp = time . s t r f t ime ( ’%Y−%m−%d_%H.%M.%S ’ )
8 DATADIR = f r "\\ e2mgast2019a\Users \ a r o e s s e l \Desktop\ tra in ing_data \ scenar io −{SCENARIO}"
9 LOGDIR = f r "C:\ Users \ a r o e s s e l \Desktop\models \ tuner \2 .2 _ l o c a l i z a t i on \ scenar io −{SCENARIO}\{

time_stamp}"
10 MODELDIR = f r "\\ e2mgast2019a\Users \ a r o e s s e l \Desktop\models \ tuner \2 .2 _ l o c a l i z a t i on \ scenar io −{

SCENARIO}\best_models \{time_stamp}"
11
12 i f not os . path . e x i s t s (LOGDIR) :
13 os . mkdir (LOGDIR)
14
15 ## con f i gu r e th ings f o r d i f f e r e n t number c l a s s i f i c a t i o n s
16 # se t number o f b l i s t e r s to be i d e n t i f i e d
17 i f SCENARIO in [ 201 , 2 1 1 ] :
18 N_BLISTER = 1
19 e l i f SCENARIO in [ 202 , 2 1 2 ] :
20 N_BLISTER = 2
21 e l i f SCENARIO in [ 203 , 2 1 3 ] :
22 N_BLISTER = 3
23 e l i f SCENARIO in [ 204 , 214 , 205 , 2 0 6 ] :
24 N_BLISTER = 4
25
26 # prepare l i s t o f permutations
27 permutations = np . array ( [
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28 [ 3 , 2 , 1 , 0 ] , [ 3 , 2 , 0 , 1 ] , [ 3 , 1 , 2 , 0 ] , [ 3 , 1 , 0 , 2 ] , [ 3 , 0 , 2 , 1 ] , [ 3 , 0 , 1 , 2 ] , [ 2 , 3 , 1 ,
0 ] , [ 2 , 3 , 0 , 1 ] , [ 2 , 1 , 3 , 0 ] , [ 2 , 1 , 0 , 3 ] , [ 2 , 0 , 3 , 1 ] , [ 2 , 0 , 1 , 3 ] , [ 1 , 3 , 2 , 0 ] , [ 1 , 3 , 0 ,
2 ] , [ 1 , 2 , 3 , 0 ] , [ 1 , 2 , 0 , 3 ] , [ 1 , 0 , 3 , 2 ] , [ 1 , 0 , 2 , 3 ] , [ 0 , 3 , 2 , 1 ] , [ 0 , 3 , 1 , 2 ] , [ 0 , 2 , 3 ,
1 ] , [ 0 , 2 , 1 , 3 ] , [ 0 , 1 , 3 , 2 ] , [ 0 , 1 , 2 , 3 ]

29 ] )
30 i f SCENARIO in [ 201 , 2 1 1 ] :
31 permutations = np . expand_dims ( permutations [ 0 , −1: ] , 1)
32 e l i f SCENARIO in [ 202 , 2 1 2 ] :
33 permutations = permutations [ 0 : 2 , −2:]
34 e l i f SCENARIO in [ 203 , 2 1 3 ] :
35 permutations = permutations [ 0 : 6 , −3:]
36 e l i f SCENARIO in [ 204 , 214 , 205 , 2 0 6 ] :
37 pass
38 n_perm = len ( permutations )
39
40 # load images
41 X = load_images (DATADIR)
42
43 # load l a b e l s
44 y = p i c k l e . load (open( os . path . j o i n (DATADIR, " l a b e l s . pkl " ) , " rb" ) )
45 y = y [ :N_IMAGES, :N_BLISTER, (1 , 2) ]
46 y = y . reshape (y . shape [ 0 ] , −1)
47
48 # de f i n e custom l o s s f unc t i on s TODO: (must t h i s be normal ized ?)
49 def my_loss ( y_true , y_pred ) :
50 for index in range (n_perm) :
51 permutation = permutations [ index ]
52 d_tot = np . z e ro s (64)
53 for i in range (N_BLISTER) :
54 d_bl i s t e r = np . z e ro s (64)
55 for j in range (2 ) :
56 d i s t = ( y_pred [ : , 2 ∗ permutation [ i ] + j ] − y_true [ : , 2 ∗ i + j ] ) ∗∗ 2
57 d_bl i s t e r += d i s t
58 d_tot += t f . math . sq r t ( d_b l i s t e r )
59 d_tot = t f . expand_dims ( d_tot , 1)
60 i f index == 0 :
61 output = d_tot
62 else :
63 output = t f . concat ( [ output , d_tot ] , 1)
64 output = t f . math . reduce_min ( output , ax i s =1)
65 output = t f . math . reduce_mean ( output )
66 return output
67
68 def build_model (hp) :
69
70 laye r s , r e g u l a r i z a t i o n = add_model_stream (hp , X)
71
72 # cr ea t e output l ay e r
73 l a y e r s [ ’ output ’ ] = Dense (2 ∗ N_BLISTER, a c t i v a t i on=" sigmoid " , name="output" ,

k e rn e l_r egu l a r i z e r=r e g u l a r i z a t i o n ) ( l a y e r s [ ’ l a s t_ laye r ’ ] )
74
75 # compile model
76 model = Model ( inputs =[ l a y e r s [ ’ input_img ’ ] ] , outputs=[ l a y e r s [ ’ output ’ ] ] )
77 model . compile ( l o s s=my_loss , opt imize r="adam" , metr i c s =[" accuracy " ] )
78 model . opt imize r . l ea rn ing_rate = hp . Choice ( ’ l_rate ’ , [ 1 e−4, 2e−4, 5e−4, 7e−5, 4e−5, 2e −5])
79
80 return model
81
82 # conduct search
83 tuner = conduct_search ( build_model , LOGDIR, X, y )
84
85 # ac t i v a t e t h i s to save the best model f o r l a t e r r e l oad ing
86 best_model = tuner . get_best_models ( ) [ 0 ]
87 best_model . save (MODELDIR)
88
89 # save tuner l o g s
90 with open(LOGDIR + " . pkl " , "wb" ) as f :
91 p i c k l e . dump( tuner , f )
92
93 # output r e s u l t s o f best t r i a l s
94 print ( tuner . results_summary ( ) )

Listing 5: This script is an example of how the networks are trained and optimized.
In this case, it is responsible for localizing a specific number of blisters in a 64× 64
image snippet. The codes for the other network types are very similar and only
differ with respect to output layers and their activation functions as described in
the main part of this thesis, which is why they are not given here. All common
specifications are imported from a common configuration file, which is given above.
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D Sample Images of Detection Results on Real
Data

These are sample images that illustrate the identification of blisters on real images.
Each of the following nine figures I - IX consists of four consecutive images of the same
region on the surface of the specimen but for different fluence values. The fluence
is given in the top left corner of each image in units of 1023 Dm−2. The images are
superimposed with the blister identifications, which are indicated by white circles.
The center of the circle is located at the estimated position and the area of the circle
is chosen such that it is identical to the estimated area of the blister as if the surface
of the specimen was viewed from the top. The training data was adapted to blister
features at a fluence of 9.6× 1023 Dm−2, so beyond this, the detection quality is
expected to deteriorate significantly.

I
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E Code Listings for the Analysis of Real Data

1 ’ ’ ’
2 This f i l e conta ins gene ra l c on f i g u r a t i o n s f o r t r a i n i n g and ana l y s i s as we l l as backend r e s ou r c e s
3 ’ ’ ’
4
5 import numpy as np
6
7 # choose s l i c e to be analyzed
8 SLICE = 21 # done : 4 , 14 , 21
9 t r i a l_ i d = 3 # cho i ce between d i f f e r e n t ana l y s i s s c ena r i o s

10
11 # choose parameter to be determined
12 PARAMETER = 3 # 3 = area , other opt ions : r o t a t i on angle , x axis , y ax i s
13
14 # de f i n e constants
15 ## shape o f s l i d i n g window and inputs f o r NNs
16 WINDOW_SHAPE = (64 , 64)
17
18 ## maximum number o f b l i s t e r s in window
19 N_MAX_BLISTER = 4
20
21 # choose t r a i n i n g data s c ena r i o s to be used f o r t r a i n i n g
22 DATADIR_ART_N = f r "\\ e2mgast2019a\Users \ a r o e s s e l \Desktop\ tra in ing_data \ scenar io −{111}"
23 DATADIR_ART_LOC_1 = f r "\\ e2mgast2019a\Users \ a r o e s s e l \Desktop\ tra in ing_data \ scenar io −{211}"
24 DATADIR_ART_LOC_2 = f r "\\ e2mgast2019a\Users \ a r o e s s e l \Desktop\ tra in ing_data \ scenar io −{212}"
25 DATADIR_ART_LOC_3 = f r "\\ e2mgast2019a\Users \ a r o e s s e l \Desktop\ tra in ing_data \ scenar io −{213}"
26 DATADIR_ART_LOC_4 = f r "\\ e2mgast2019a\Users \ a r o e s s e l \Desktop\ tra in ing_data \ scenar io −{214}"
27 DATADIR_ART_PARAM = f r "\\ e2mgast2019a\Users \ a r o e s s e l \Desktop\ tra in ing_data \ scenar io −{314}"
28
29
30 # choose s p e c i f i c models to be used f o r ana l y s i s
31 ## fo r number c l a s s i f i c a t i o n
32 MODEL_DIR_N = f r "C:\ Users \ a r o e s s e l \Desktop\models \ tuner \2 .1_number−c l a s s i f i c a t i o n \ scenar io −111\

best_models\2020−09−29_09 . 0 7 . 0 4 "
33
34 ## fo r l o c a l i z a t i o n
35 MODEL_DIR_LOC_1 = f r "C:\ Users \ a r o e s s e l \Desktop\models\ tuner \2 .2 _ l o c a l i z a t i on \ scenar io −211\

best_models\2020−08−29_20 . 4 4 . 0 2 "
36 MODEL_DIR_LOC_2 = f r "C:\ Users \ a r o e s s e l \Desktop\models\ tuner \2 .2 _ l o c a l i z a t i on \ scenar io −212\

best_models\2020−08−30_15 . 3 1 . 3 9 "
37 MODEL_DIR_LOC_3 = f r "C:\ Users \ a r o e s s e l \Desktop\models\ tuner \2 .2 _ l o c a l i z a t i on \ scenar io −213\

best_models\2020−08−31_09 . 1 4 . 1 8 "
38 MODEL_DIR_LOC_4 = f r "C:\ Users \ a r o e s s e l \Desktop\models\ tuner \2 .2 _ l o c a l i z a t i on \ scenar io −214\

best_models\2020−09−30_11 . 2 7 . 5 6 "
39
40 ## fo r parameter determinat ion
41 MODEL_DIR_PARAM = f r "C:\ Users \ a r o e s s e l \Desktop\models \ tuner \2 .3 _parameter−determinat ion \ scenar io

−314\best_models\2020−09−01_18 . 4 7 . 1 8 "
42
43 ’ ’ ’
44 add i t i ona l backend r e s ou r c e s :
45 ’ ’ ’
46 class Scene :
47 """
48 Scene i s equ iva l en t to one s l i c e . I t conta ins the images o f a l l c y c l e s and the in format ion o f
49 a l l b l i s t e r s that were i d e n t i f i e d during ana l y s i s .
50 """
51 def __init__( s e l f , shape , n_cycles , images ) :
52 s e l f . shape = shape
53 s e l f . n_cycles = n_cycles
54 s e l f .max_ID = 0
55
56 # i n i t i a l i z e v a r i a b l e s and a s s i gn va lues
57 # s e l f . c y c l e s = [ ]
58 s e l f . images = images # array o f images o f a l l c y c l e s
59 s e l f . b l i s t e r s = {}
60 s e l f . d e l e t e d_b l i s t e r s = None
61
62 def add_Blister ( s e l f , cyc le , po s i t i on , n_c l a s s i f i c a t i o n s , area , sds ) :
63 """
64 """
65 next_ID = s e l f .max_ID + 1
66 s e l f . b l i s t e r s [ f ’ {next_ID} ’ ] = B l i s t e r ( s e l f . n_cycles , cyc le , po s i t i on , n_c l a s s i f i c a t i o n s ,

area , sds , next_ID )
67 s e l f .max_ID = next_ID
68 return ( f r "Added b l i s t e r with key {next_ID}" )
69
70 def get_max_ID( s e l f ) :
71 ’ ’ ’
72 : r e tu rns the cu r r en t l y h ighe s t b l i s t e r index
73 ’ ’ ’
74 return ( s e l f .max_ID)
75
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76 def r e s e t ( s e l f ) :
77 s e l f . b l i s t e r s = {}
78 s e l f .max_ID = 0
79
80 def get_Blisters_in_ROI ( s e l f , xy , sh ) :
81 """
82 : r e tu rns the keys o f a l l b l i s t e r s in a c e r t a i n r eg ion
83 xy = ro i_s ta r t
84 sh = roi_shape
85 """
86 output = [ ]
87 for key in s e l f . b l i s t e r s . keys ( ) :
88 cy c l e = s e l f . b l i s t e r s [ key ] . s t a r t_cyc l e
89 pos = s e l f . b l i s t e r s [ key ] . p o s i t i o n s [ cyc le , : ]
90 i f int ( pos [ 0 ] ) in range ( xy [ 1 ] , xy [ 1 ] + sh [ 1 ] ) and int ( pos [ 1 ] ) in range ( xy [ 0 ] , xy [ 0 ] +

sh [ 0 ] ) :
91 output . append ( key )
92 return ( output )
93
94
95 class Cycle :
96 ’ ’ ’
97 This c l a s s i s meant f o r s t a t i c ana l y s i s without t rack ing over time .
98 I t has s im i l a r f e a t u r e s as the Scene c l a s s .
99 ’ ’ ’

100 def __init__( s e l f , shape , image ) :
101 s e l f . shape = shape
102 s e l f . image = image
103 s e l f .max_ID = 0
104 s e l f . b l i s t e r s = {}
105
106 def add_Blister ( s e l f , po s i t i on , n_c l a s s i f i c a t i o n s , area , sds ) :
107 next_ID = s e l f .max_ID + 1
108 s e l f . b l i s t e r s [ f ’ {next_ID} ’ ] = B l i s t e r (1 , 0 , po s i t i on , n_c l a s s i f i c a t i o n s , area , sds ,

next_ID )
109 s e l f .max_ID = next_ID
110 return ( f r "Added b l i s t e r with key {next_ID}" )
111
112 def get_max_ID( s e l f ) :
113 return ( s e l f .max_ID)
114
115
116 class B l i s t e r :
117 """
118 This c l a s s conta in s a l l b l i s t e r parameters and f e a t u r e s that are r e l evan t during ana l y s i s .
119 """
120 def __init__( s e l f , n_cycles , cyc le , po s i t i on , n_c l a s s i f i c a t i o n s , area , sds , key ) :
121 ’ ’ ’
122 This method i n i t i a l i z e s a b l i s t e r with s p e c i f i c va lues at the appropr ia te time (=cyc l e ) .
123 ’ ’ ’
124 s e l f . s t a r t_cyc l e = cyc l e
125 s e l f . f i n a l_cy c l e = cyc l e
126 s e l f . key = str ( key )
127
128 # i n i t i a l i z e time s e r i e s and add va lues
129 s e l f . p o s i t i o n s = np . z e ro s ( ( n_cycles , 2) )
130 s e l f . s h i f t s = np . z e ro s ( ( n_cycles , 2) )
131 s e l f . n_ c l a s s i f i c a t i o n s = np . z e ro s ( n_cycles )
132 s e l f . a reas = np . z e ro s ( n_cycles )
133 s e l f . sds = np . z e ro s ( ( n_cycles , 2) )
134
135 s e l f . p o s i t i o n s [ cyc le , : ] = po s i t i o n
136 s e l f . n_ c l a s s i f i c a t i o n s [ c y c l e ] = n_c l a s s i f i c a t i o n s
137 s e l f . a reas [ c y c l e ] = area
138 s e l f . sds [ cyc le , : ] = sds
139
140 def add_cycle ( s e l f , cyc le , po s i t i on , n_c l a s s i f i c a t i o n s , area , sds ) :
141 ’ ’ ’
142 This method updates a b l i s t e r by adding a l l in format ion in a add i t i ona l cy c l e .
143 ’ ’ ’
144 s e l f . p o s i t i o n s [ cyc le , : ] = po s i t i o n
145 s e l f . n_ c l a s s i f i c a t i o n s [ c y c l e ] = n_c l a s s i f i c a t i o n s
146 s e l f . a reas [ c y c l e ] = area
147 s e l f . sds [ cyc le , : ] = sds
148 s e l f . s h i f t s [ cyc le , : ] = po s i t i o n − s e l f . p o s i t i o n s [ c y c l e − 1 , : ]
149
150 s e l f . f i n a l_cy c l e = cyc l e
151
152 def ge t_ l i f e t ime ( s e l f ) :
153 return ( s e l f . f i n a l_cy c l e − s e l f . s t a r t_cyc l e )
154
155 def i s_ac t i v e ( s e l f , c y c l e ) :
156 i f s e l f . n_ c l a s s i f i c a t i o n s [ c y c l e ] == 0 :
157 return ( Fa l se )
158 else :
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159 return (True )
160
161 class Pred i c t i on :
162 """
163 Used f o r s t a t i c ana l y s i s o f s i n g l e c y c l e s . I t conta ins the i n i t i a l p r e d i c t i o n s made by
164 the networks be f o r e b l i s t e r i d e n t i f i c a t i o n .
165 """
166 def __init__( s e l f , grid_numbers , g r id_locat ions , abs_locat ions , p i x e l_ l o ca t i on s ) :
167 s e l f . grid_numbers = grid_numbers
168 s e l f . g r i d_ loca t i on s = gr id_ loca t i on s
169 s e l f . abs_locat ions = abs_locat ions
170 s e l f . p i x e l_ l o ca t i on s = p ix e l_ l o ca t i on s
171
172
173 def ana lyse_ro i ( roi_list_tmp ) :
174 """
175 Returns the mean pos i t i on , standard dev i a t i on and number o f l o c a l i z a t i o n s in a
176 reg ion o f i n t e r e s t . Takes a l i s t o f b l i s t e r l o c a l i z a t i o n s in (x , y ) format !
177 Ca l cu l a t i on s are performed via f i r s t and second moments .
178 Output i s x and y coo rd ina t e s in p i x e l s in the s ide−view
179 """
180 r o i_ l i s t = np . array ( roi_list_tmp )
181 n = r o i_ l i s t . shape [ 0 ]
182
183 vec_x = r o i_ l i s t [ : , 0 ]
184 x_f i r s t = np .sum( vec_x ) / n
185 x_second = np .sum( vec_x ∗∗ 2) / n
186 x_sd = np . sq r t (np .maximum( x_second − x_f i r s t ∗∗ 2 , 0 . ) )
187
188 vec_y = r o i_ l i s t [ : , 1 ]
189 y_f i r s t = np .sum( vec_y ) / n
190 y_second = np .sum( vec_y ∗∗ 2) / n
191 y_sd = np . sq r t (np .maximum( y_second − y_f i r s t ∗∗ 2 , 0 . ) )
192
193 output = [ x_f i r s t , y_f i r s t , n , x_sd , y_sd ]
194 return ( output )

Listing 6: This is a configuration file that aids the identification and analysis of
blisters in the following scripts. Most importantly, it defines a class ’Blister’ that
contains all information that was acquired for a specific blister instance.

1 from conf igs_and_resources import ∗
2 import os
3 import cv2
4 import numpy as np
5 import p i c k l e as pkl
6
7 # se t parameters
8 n_cycles = 100
9

10 # se t d i r e c t o r i e s
11 IMAGE_DIR = f r "C:\ Users \ a r o e s s e l \Desktop\ real_data \04_denoised\ s l i c e −{s t r (SLICE) . z f i l l ( 3 ) }"
12 TARGET_DIR = f r "C:\ Users \ a r o e s s e l \Desktop\ real_data \05 _analyses \ s l i c e −{s t r (SLICE) . z f i l l ( 3 ) }\ t r i a l

−{s t r ( t r i a l_ i d ) . z f i l l ( 3 ) }"
13
14 i f not os . path . e x i s t s (TARGET_DIR) :
15 os . mkdir (TARGET_DIR)
16 os . mkdir (TARGET_DIR + "\ cyc l e_pred i c t i on s " )
17 os . mkdir (TARGET_DIR + "\ c y c l e_ i d e n t i f i c a t i o n s " )
18 os . mkdir (TARGET_DIR + "\ c a l c u l a t i o n s " )
19 os . mkdir (TARGET_DIR + "\dynamic_analysis " )
20 os . mkdir (TARGET_DIR + "\ p l o t s " )
21
22 # load images
23 images = [ ]
24 for img in os . l i s t d i r (IMAGE_DIR) [ : n_cycles ] :
25 img_array = cv2 . imread ( os . path . j o i n (IMAGE_DIR, img ) , cv2 .IMREAD_GRAYSCALE)
26 images . append ( img_array )
27 images = np . array ( images )
28 images = images /255 .
29 i f t r i a l_ i d in [ 1 , 2 ] :
30 images = images [ : , 88 :344 , 3 0 32 : ]
31 else :
32 pass
33
34 i f t r i a l_ i d in [ 1 , 2 ] :
35 shape = (256 , 1024)
36 else :
37 shape = images [ 0 ] . shape
38
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39 # i n i t i a l i z e s l i c e
40 s l i c e = Scene ( shape , n_cycles , images )
41
42 # wr i t e f i l e to d i r e c t o r y
43 with open(TARGET_DIR + f r "\ scene . pkl " , ’wb ’ ) as f : # _{time . s t r f t ime ( ’%Y−%m−%d_%H.%M.%S ’ ) }
44 pkl . dump( s l ice , f )

Listing 7: This script prepares a ’scene’ instance and loads the image data.

1 from t en so r f l ow import keras
2 from conf igs_and_resources import ∗
3 from NN_configs import ∗
4
5 # se t parameters
6 ## s t e p s i z e s f o r s l i d i n g window s tep s
7 i f t r i a l_ i d in [ 1 ] :
8 SLIDING_STEPS = (16 , 16)
9 else :

10 SLIDING_STEPS = (8 , 8)
11
12 # load scene in s tance f o r t h i s s l i c e :
13 DATADIR = f r "C:\ Users \ a r o e s s e l \Desktop\ real_data \05 _analyses \ s l i c e −{s t r (SLICE) . z f i l l ( 3 ) }\ t r i a l −{

s t r ( t r i a l_ i d ) . z f i l l ( 3 ) }\ scene . pkl "
14 with open(DATADIR, ’ rb ’ ) as f :
15 scene = p i c k l e . load ( f )
16
17 # se t and c r ea t e output d i r e c t o r y
18 OUT_DIR = f r "C:\ Users \ a r o e s s e l \Desktop\ real_data \05 _analyses \ s l i c e −{s t r (SLICE) . z f i l l ( 3 ) }\ t r i a l −{

s t r ( t r i a l_ i d ) . z f i l l ( 3 ) }\ cyc l e_pred i c t i on s "
19 i f not os . path . e x i s t s (OUT_DIR) :
20 os . mkdir (OUT_DIR)
21
22 # choose c y c l e s to be analyzed
23 CYCLES = [ ]
24 for i in range (0 , 100) :
25 CYCLES. append ( i )
26
27 # load and compile models
28 model_n = keras . models . load_model (MODEL_DIR_N)
29
30 model_loc_1 = keras . models . load_model (MODEL_DIR_LOC_1, compile=False )
31 model_loc_2 = keras . models . load_model (MODEL_DIR_LOC_2, compile=False )
32 model_loc_3 = keras . models . load_model (MODEL_DIR_LOC_3, compile=False )
33 model_loc_4 = keras . models . load_model (MODEL_DIR_LOC_4, compile=False )
34
35 def my_loss ( ) :
36 pass
37
38 model_loc_1 . compile ( l o s s=my_loss , opt imize r="adam" , metr i c s =[" accuracy " ] )
39 model_loc_2 . compile ( l o s s=my_loss , opt imize r="adam" , metr i c s =[" accuracy " ] )
40 model_loc_3 . compile ( l o s s=my_loss , opt imize r="adam" , metr i c s =[" accuracy " ] )
41 model_loc_4 . compile ( l o s s=my_loss , opt imize r="adam" , metr i c s =[" accuracy " ] )
42
43 # ca l c u l a t e number o f f u l l s t ep s p o s s i b l e in y and x d i r e c t i o n
44 ## + 1 i s nece s sa ry to account f o r 0 th step in s l i d i n g window
45 N_STEPS = (( scene . shape [ 0 ] − WINDOW_SHAPE[ 0 ] ) // SLIDING_STEPS [ 0 ] + 1 , ( scene . shape [ 1 ] −

WINDOW_SHAPE[ 1 ] ) // SLIDING_STEPS [ 1 ] + 1)
46
47 for CYCLE in CYCLES:
48 print ( "\n" , f r " Started with Cycle : {CYCLE}" )
49
50 # load image
51 image = scene . images [CYCLE] . copy ( )
52
53 # prepare output data s t r u c t u r e s ( g r id means the g r id spanned by the s l i d i n g window step s i z e

)
54 grid_numbers = np . z e ro s ( (N_STEPS[ 0 ] , N_STEPS[ 1 ] , N_MAX_BLISTER + 1) )
55 g r id_loca t i on s = np . z e ro s ( (N_STEPS[ 0 ] , N_STEPS[ 1 ] , N_MAX_BLISTER, 4) )
56 abs_locat ions = [ ]
57 p i x e l_ l o ca t i on s = np . z e ro s ( scene . shape , dtype=np . in t16 )
58
59 # MAKE PREDICTIONS
60 for i in range (N_STEPS[ 0 ] ) :
61 for j in range (N_STEPS[ 1 ] ) :
62 # get image s e c t i on
63 y_start = 0 + i ∗ SLIDING_STEPS [ 0 ]
64 y_end = y_start + WINDOW_SHAPE[ 0 ]
65 x_start = 0 + j ∗ SLIDING_STEPS [ 1 ]
66 x_end = x_start + WINDOW_SHAPE[ 1 ]
67
68 image_section = image [ y_start : y_end , x_start : x_end ]
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69 image_section_tf = np . expand_dims ( image_section , (0 , 3) ) # th i s conver t s the image
to t en so r f l ow format

70
71 # PREDICT NUMBER (number o f b l i s t e r s in each analyzed frame )
72 grid_numbers [ i , j , : ] = model_n . p r ed i c t ( image_section_tf )
73
74 # PREDICT LOCATIONS
75 pred_loc = [ ]
76 i f np . argmax ( grid_numbers [ i , j , : ] ) == 1 :
77 pred_loc . append (model_loc_1 . p r ed i c t ( image_section_tf ) )
78 e l i f np . argmax ( grid_numbers [ i , j , : ] ) == 2 :
79 pred_loc . append (model_loc_2 . p r ed i c t ( image_section_tf ) )
80 e l i f np . argmax ( grid_numbers [ i , j , : ] ) == 3 :
81 pred_loc . append (model_loc_3 . p r ed i c t ( image_section_tf ) )
82 e l i f np . argmax ( grid_numbers [ i , j , : ] ) == 4 :
83 pred_loc . append (model_loc_4 . p r ed i c t ( image_section_tf ) )
84
85 pred_loc = np . array ( pred_loc )
86 pred_loc = np . reshape ( pred_loc , (−1 , 2) )
87
88 for b in range ( pred_loc . shape [ 0 ] ) :
89 # save r e l a t i v e p o s i t i o n s
90 g r id_ loca t i on s [ i , j , b ] = (1 , pred_loc [ b , 0 ] , pred_loc [ b , 1 ] , 0)
91
92 # save abso lu te p o s i t i o n s
93 abs_x = x_start + pred_loc [ b , 0 ] ∗ (WINDOW_SHAPE[ 1 ] − 1)
94 abs_y = y_start + pred_loc [ b , 1 ] ∗ (WINDOW_SHAPE[ 0 ] − 1)
95 abs_locat ions . append ( [ 1 , abs_x , abs_y ] )
96
97 # add pred i c t ed l o c a t i o n to p ixe l−wise p o s i t i o n s frame
98 pixel_x = int (round( abs_x , 0) )
99 pixel_y = int (round( abs_y , 0) )

100 p i x e l_ l o ca t i on s [ pixel_y , pixel_x ] += 1
101
102 print ( i )
103 print ( " f i n i s h e d Cycle : " , CYCLE)
104
105 abs_locat ions = np . array ( abs_locat ions )
106
107 # wr i t e OUTPUT to d i sk
108 output = Pred i c t i on ( grid_numbers , g r id_locat ions , abs_locat ions , p i x e l_ l o ca t i on s )
109
110 with open(OUT_DIR + f "\ cyc le −{s t r (CYCLE) . z f i l l ( 3 ) } . pkl " , ’wb ’ ) as f :
111 p i c k l e . dump( output , f )#, p ro toco l=p i c k l e .HIGHEST_PROTOCOL)

Listing 8: This script is responsible for the implementation of the sliding window
approach and the application of the CNNs onto the image data. It results in the
’heat map’ of detections as described in the main text.

1 from t en so r f l ow import keras
2 import p i c k l e
3 from conf igs_and_resources import ∗
4
5 # choose image to be analyzed
6 CYCLES = [ ]
7 for i in range (0 , 100) :
8 CYCLES. append ( i )
9

10 # se t gene ra l parameters f o r ana l y s i s
11 i f t r i a l_ i d in [ 1 ] :
12 n_class_threshold = 11
13 e l i f t r i a l_ i d in [ 2 , 3 ] :
14 n_class_threshold = 25
15 r_agg = 7 # i n i t i a l aggregat ion rad ius f o r r o i in p i x e l l o c a t i o n s
16 buffer = 45 # avoid that area determinat ion s e l e c t s a window that i s too c l o s e to the border
17
18 # load scene in s tance f o r t h i s s l i c e :
19 DATADIR = f r "C:\ Users \ a r o e s s e l \Desktop\ real_data \05 _analyses \ s l i c e −{s t r (SLICE) . z f i l l ( 3 ) }\ t r i a l −{

s t r ( t r i a l_ i d ) . z f i l l ( 3 ) }"
20 with open(DATADIR + "\ scene . pkl " , ’ rb ’ ) as f :
21 scene = p i c k l e . load ( f )
22
23 # load model
24 model_area = keras . models . load_model (MODEL_DIR_PARAM)
25
26 for CYCLE in CYCLES:
27 print ( "\n" , f r " Started with Cycle : {CYCLE}" )
28 # load data
29 image = scene . images [CYCLE] . copy ( )
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30 p r ed i c t i on = p i c k l e . load (open(DATADIR + f r "\ cyc l e_pred i c t i on s \ cyc le −{s t r (CYCLE) . z f i l l ( 3 ) } . pkl
" , ’ rb ’ ) )

31 p i x e l_ l o ca t i on s = np . array ( p r ed i c t i on . p i x e l_ l o ca t i on s . copy ( ) , dtype=np . f l o a t 6 4 )
32 pixel_aggregation_map = pr ed i c t i on . p i x e l_ l o ca t i on s . copy ( )
33 abs_locat ions = pr ed i c t i on . abs_locat ions . copy ( )
34
35 # prepare output data s t r u c t u r e s
36 pos_aggregated = p ix e l_ l o ca t i on s . copy ( ) # in t h i s array , p i x e l_ l o ca t i on s w i l l be aggregated

in−p lace
37 cycle_out = Cycle ( scene . shape , scene . images [CYCLE] . copy ( ) )
38
39 # i d e n t i f y a l l l o c a l maxima
40 local_maxima = [ ]
41 for i in range (1 , p i x e l_ l o ca t i on s . shape [ 0 ] − 1) :
42 for j in range (1 , p i x e l_ l o ca t i on s . shape [ 1 ] − 1) :
43 l o ca l_reg i on = p ix e l_ l o ca t i on s [ i −1: i +2, j −1: j +2]
44 max_indices = np . unravel_index (np . argmax ( loca l_reg ion , ax i s=None ) , l o ca l_reg ion . shape

)
45 i f max_indices == (1 , 1) :
46 local_maxima . append ( ( i , j , p i x e l_ l o ca t i on s [ i , j ] ) )
47 local_maxima = np . array ( local_maxima , dtype=np . in t16 )
48
49 # so r t l i s t o f l o c a l maxima from l a r g e to smal l
50 i f local_maxima . s i z e > 0 :
51 local_maxima = local_maxima [ np . a r g s o r t ( local_maxima [ : , 2 ] ) ]
52 local_maxima = local_maxima [ : : −1 ]
53 local_maxima = l i s t ( local_maxima )
54
55 # AGGREGATE BLISTERS and c a l c u l a t e po s i t i o n with standard dev i a t i on s
56 while len ( local_maxima ) > 0 :
57 # get l a r g e s t maximum
58 maxi = local_maxima [ 0 ]
59 i = maxi [ 0 ]
60 j = maxi [ 1 ]
61
62 # check whether l o c a l maximum i s too c l o s e to borders ( a 64∗64 frame around the po s i t i o n

i s needed f o r parameter determinat ion ) . Therefore , a border range o f 32 + extra t o l e r an c e due
to l o c a l i z a t i o n i n s i d e the r_agg i s excluded from ana l y s i s .

63 i f i not in range ( buffer , scene . shape [ 0 ] − buffer ) or j not in range ( buffer , scene . shape
[ 1 ] − buffer ) :

64 local_maxima . pop (0)
65 continue
66
67 # check whether t h i s maximum was consumed by a higher−order maximum
68 i f pixel_aggregation_map [ i , j ] == 0 :
69 local_maxima . pop (0)
70 continue
71
72 # get l o c a l i z a t i o n s i n s i d e r o i f o r f i r s t area ana l y s i s
73 r o i_ l i s t = [ ]
74 for k in range ( i − r_agg , i + r_agg + 1) :
75 for l in range ( j − r_agg , j + r_agg + 1) :
76 for n in range ( pixel_aggregation_map [ k , l ] ) :
77 l o c = np . array ( [ l , k ] , dtype=np . f l o a t 6 4 )
78 d i s t = round(np . sq r t ( ( l o c [ 1 ] − i ) ∗∗ 2 + ( l o c [ 0 ] − j ) ∗∗ 2) , 0)
79 i f d i s t <= r_agg :
80 r o i_ l i s t . append ( l o c )
81
82 # ca l c u l a t e mean pos i t i on , standard dev i a t i on and number o f l o c a l i z a t i o n s in r o i
83 abs_x , abs_y , n_sum, sd_x , sd_y = analyse_ro i ( r o i_ l i s t )
84
85 # get image s e c t i on
86 y_start = int (round( abs_y − WINDOW_SHAPE[ 0 ] / 2 , 0) )
87 y_end = y_start + WINDOW_SHAPE[ 0 ]
88 x_start = int (round( abs_x − WINDOW_SHAPE[ 1 ] / 2 , 0) )
89 x_end = x_start + WINDOW_SHAPE[ 1 ]
90
91 image_section = image [ y_start : y_end , x_start : x_end ] . copy ( )
92 image_section_tf = np . expand_dims ( image_section , (0 , 3) ) # th i s conver t s the image to

t en so r f l ow format
93
94 # pred i c t area
95 area = model_area . p r ed i c t ( image_section_tf )
96 area = max( [ area , 0 ] ) # neces sa ry because in some seldomcases , the area turns out to be

negat ive
97 r_agg_new = max( [ int (np . sq r t ( area / np . p i ) ) , 5 ] )
98
99 # get l o c a l i z a t i o n s i n s i d e r o i f o r f u r th e r ana l y s i s and deac t i va t e them

100 r o i_ l i s t = [ ]
101 # use new x , y that were updated in f i r s t i t e r a t i o n :
102 y_new = int (round( abs_y , 0) )
103 x_new = int (round( abs_x , 0) )
104 r_agg_new_x = int (round( r_agg_new ∗ 1 . 5 , 0) )# in x−d i r e c t i o n r_agg i s s ca l ed because

b l i s t e r s are t y p i c a l l y wider than high
105 for k in range (y_new − r_agg_new , y_new + r_agg_new + 1) :
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106 for l in range (x_new − r_agg_new_x , x_new + r_agg_new_x + 1) :
107 for n in range ( pixel_aggregation_map [ k , l ] ) :
108 l o c = np . array ( [ l , k ] , dtype=np . f l o a t 6 4 )
109 d i s t = round(np . sq r t ( ( l o c [ 1 ] − y_new) ∗∗ 2 + ( l o c [ 0 ] − x_new) ∗∗ 2) , 0)
110 i f d i s t <= r_agg_new :
111 r o i_ l i s t . append ( l o c )
112
113 # de l e t e i d e n t i f i c a t i o n s from map
114 pixel_aggregation_map [ k , l ] = 0
115
116 # ca l c u l a t e mean pos i t i on , standard dev i a t i on and number o f l o c a l i z a t i o n s in r o i
117 abs_x , abs_y , n_sum, sd_x , sd_y = analyse_ro i ( r o i_ l i s t )
118 print (n_sum)
119
120 # i d e n t i f y b l i s t e r and check thre sho ld f o r n_sum and c a l c u l a t e area o f b l i s t e r candidate
121 i f n_sum >= n_class_threshold :
122 # get image s e c t i on
123 y_start = int (round( abs_y − WINDOW_SHAPE[ 0 ] / 2 , 0) )
124 y_end = y_start + WINDOW_SHAPE[ 0 ]
125 x_start = int (round( abs_x − WINDOW_SHAPE[ 1 ] / 2 , 0) )
126 x_end = x_start + WINDOW_SHAPE[ 1 ]
127
128 image_section = image [ y_start : y_end , x_start : x_end ] . copy ( )
129 image_section_tf = np . expand_dims ( image_section , (0 , 3) ) # th i s conver t s the image

to t en so r f l ow format
130
131 # pred i c t area
132 area = model_area . p r ed i c t ( image_section_tf )
133
134 # add b l i s t e r to scene
135 cycle_out . add_Blister ( ( abs_x , abs_y ) , n_sum, area , ( sd_x , sd_y) )
136 print ( "Added a b l i s t e r ! ! ! \n" )
137
138 # de l e t e cur rent l o c a l maximum from l i s t
139 local_maxima . pop (0)
140
141 # wr i t e output to d i sk
142
143 with open(DATADIR + f r "\ c y c l e_ i d e n t i f i c a t i o n s \ cyc le −{s t r (CYCLE) . z f i l l ( 3 ) } . pkl " , ’wb ’ ) as f :
144 p i c k l e . dump( cycle_out , f )
145
146 print ( cycle_out . b l i s t e r s . keys ( ) )

Listing 9: This script interprets the predictions of the CNNs made with the script
given in the preceding code listing, defines the actual blister identifications and
creates a ’Blister’ instance accordingly.

1 import p i c k l e
2 from conf igs_and_resources import ∗
3
4 # choose c y c l e s to be analyzed
5 CYCLES = [ ]
6 for i in range (18 , 100) :
7 CYCLES. append ( i )
8
9 # load scene in s tance f o r t h i s s l i c e :

10 DATADIR = f r "C:\ Users \ a r o e s s e l \Desktop\ real_data \05 _analyses \ s l i c e −{s t r (SLICE) . z f i l l ( 3 ) }\ t r i a l −{
s t r ( t r i a l_ i d ) . z f i l l ( 3 ) }"

11 with open(DATADIR + "\ scene . pkl " , ’ rb ’ ) as f :
12 scene = p i c k l e . load ( f )
13
14 # r e s e t t rack ing ana l y s i s
15 scene . r e s e t ( )
16
17 for CYCLE in CYCLES:
18 print ( "\n" , f r " Started with Cycle : {CYCLE}" )
19
20 # grab cur rent cy c l e ’ s i d e n t i f i c a t i o n s
21 with open(DATADIR + f r "\ c y c l e_ i d e n t i f i c a t i o n s \ cyc le −{s t r (CYCLE) . z f i l l ( 3 ) } . pkl " , ’ rb ’ ) as f :
22 cy c l e = p i c k l e . load ( f )
23
24 # loop over new b l i s t e r s to be added
25 for key in cy c l e . b l i s t e r s . keys ( ) :
26 new_bl ister = cyc l e . b l i s t e r s [ f ’ {key} ’ ]
27
28 # load new b l i s t e r parameters
29 po s i t i o n = new_bl ister . p o s i t i o n s [ 0 ]
30 n_c l a s s i f i c a t i o n s = new_bl ister . n_ c l a s s i f i c a t i o n s [ 0 ]
31 area = new_bl ister . a reas [ 0 ]
32 sds = new_bl ister . sds [ 0 ]

116



33
34 was_old = False # switch between update old b l i s t e r and c r ea t e new b l i s t e r
35 rad ius = np . sq r t ( area ∗ 0 .5 / np . p i )
36
37 # UPDATE OLD: loop over o ld b l i s t e r s and update when appropr ia te
38 for key_scene in scene . b l i s t e r s . keys ( ) :
39 o l d_b l i s t e r = scene . b l i s t e r s [ key_scene ]
40 i f o l d_b l i s t e r . n_ c l a s s i f i c a t i o n s [CYCLE − 1 ] == 0 :
41 continue
42 x_di f f = o ld_b l i s t e r . p o s i t i o n s [CYCLE − 1 , 0 ] − po s i t i o n [ 0 ]
43 x_di f f = x_di f f ∗ 2/3 # reduce con t r i bu t i on in x d i r e c t i o n due to angle o f

s i gh t
44 y_di f f = o ld_b l i s t e r . p o s i t i o n s [CYCLE − 1 , 1 ] − po s i t i o n [ 1 ]
45 d i s t = np . sq r t ( x_di f f ∗∗ 2 + y_di f f ∗∗ 2)
46
47 i f d i s t < rad ius :
48 o l d_b l i s t e r . add_cycle (CYCLE, pos i t i on , n_c l a s s i f i c a t i o n s , area , sds )
49 output = f r "Updated b l i s t e r with key {key_scene}"
50 was_old = True
51 break
52
53 # CREATE NEW: i f no old b l i s t e r was updated , c r ea t e a new one
54 i f not was_old :
55 output = scene . add_Blister (CYCLE, pos i t i on , n_c l a s s i f i c a t i o n s , area , sds )
56
57 # wr i t e output to d i sk
58 with open(DATADIR + f r "\ scene_tracked . pkl " , ’wb ’ ) as f :
59 p i c k l e . dump( scene , f )
60 print ( "Saved f i n a l r e s u l t s . " )

Listing 10: This script implements the tracking of individual blisters across mutliple
image cylces.

1 import p i c k l e
2 from conf igs_and_resources import ∗
3
4 # load scene in s tance f o r t h i s s l i c e :
5 DATADIR = f r "C:\ Users \ a r o e s s e l \Desktop\ real_data \05 _analyses \ s l i c e −{s t r (SLICE) . z f i l l ( 3 ) }\ t r i a l −{

s t r ( t r i a l_ i d ) . z f i l l ( 3 ) }"
6 with open(DATADIR + "\ scene_tracked . pkl " , ’ rb ’ ) as f :
7 scene = p i c k l e . load ( f )
8
9 print ( len ( scene . b l i s t e r s . keys ( ) ) )

10
11 keys = l i s t ( scene . b l i s t e r s . keys ( ) )
12 l i f e t i m e s = [ ]
13 de l e t ed = {}
14
15 for key in keys :
16 b l i s t e r = scene . b l i s t e r s [ f r "{key}" ]
17 l i f e t im e = b l i s t e r . g e t_ l i f e t ime ( )
18 # l i f e t i m e s . append ( l i f e t im e )
19 i f l i f e t im e == 0 :
20 de l e t ed [ f ’ {key} ’ ] = b l i s t e r
21 del scene . b l i s t e r s [ f r "{key}" ]
22 # pr in t ( f r "poped key {key }")
23
24 print ( len ( scene . b l i s t e r s . keys ( ) ) )
25
26 scene . d e l e t e d_b l i s t e r s = de l e t ed
27
28 # wr i t e output to d i sk
29 with open(DATADIR + f r "\ scene_f ina l . pkl " , ’wb ’ ) as f :
30 p i c k l e . dump( scene , f )
31 print ( "Saved f i n a l r e s u l t s . " )

Listing 11: This script implements all applying postprocessing steps.

117



Chapter 9 Conclusion and Outlook

F Image Sections Considered for Assessment of
Accuracy

These image sections were used for the analysis of the accuracy of the identifications.
The respective image cycle corresponds to a fluence of 9.6 × 1023 Dm−2. A total of
221 blister instances were considered. The white dashed line indicates the area in
which blisters can get identified.
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