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The dynamical structure factor is one of the experimental quantities crucial in scrutinizing the validity of
the microscopic description of strongly correlated systems. However, despite its long-standing importance, it
is exceedingly difficult in generic cases to numerically calculate it, ensuring that the necessary approximations
involved yield a correct result. Acknowledging this practical difficulty, we discuss in what way results on the
hardness of classically tracking time evolution under local Hamiltonians are precisely inherited by dynamical
structure factors; and hence offer in the same way the potential computational capabilities that dynamical quan-
tum simulators do: We argue that practically accessible variants of the dynamical structure factors are BQP-hard
for general local Hamiltonians. Complementing these conceptual insights, we improve upon a novel, readily
available, measurement setup allowing for the determination of the dynamical structure factor in different archi-
tectures, including arrays of ultra-cold atoms, trapped ions, Rydberg atoms, and superconducting qubits. Our
results suggest that quantum simulations employing near-term noisy intermediate scale quantum devices should
allow for the observation of features of dynamical structure factors of correlated quantum matter in the presence
of experimental imperfections, for larger system sizes than what is achievable by classical simulation.

I. INTRODUCTION

The field of condensed matter physics has seen a lot of
successes aided by powerful computational tools. Clas-
sical algorithms such as Monte Carlo techniques1, exact
diagonalization2, tensor networks3 and more, have offered
some of the greatest insights into the most surprising be-
haviour of many different systems. While current numerical
techniques are still extremely useful, in many cases the system
sizes need to be constrained to a couple dozen atomic sites to
obtain an efficient simulation, or the algorithms are just effi-
cient for a narrow class of models. This arises from the fact
that each one of these physical problems can be connected to
a computational problem which belong to a (in many cases)
well determined complexity class4.

Despite the field slowly pushing the boundaries of what is
possible, the complexity boundary cannot be surpassed with
classical algorithms. As long as the resource is a classical sim-
ulation, and considering certain assumptions believed to be
true in the field of complexity theory5,6, we know how far we
can go. For example, in higher dimensional frustrated quan-
tum magnets or high-Tc superconductors, we have no generic
efficient way of calculating some of the most important quan-
tum expectation values needed to understand the properties of
a particular phase of interest. For example, quantum Monte
Carlo is a powerful method, but is affected by strong sign
problems for frustrated and fermionic systems7–9. Exact di-
agonalization can yield a plethora of useful results for many
different physical systems, but the computational resources re-
quired scale exponentially in the system size. Other more so-
phisticated methods such as MPS, PEPS, MERA, etc. are effi-
cient for one dimensional short-range systems, but these meth-
ods are constrained by the amount of entanglement present in
the system.

In this work, we propose dynamical analogue quantum
simulators10,11 as an alternative method to simulate low en-

ergy excitations of strongly correlated matter. In particular
we suggest that dynamical structure factors, which provide
key physical insights into quantum matter, can be accessed
with quantum simulators, while at the same time is a quantity
which is significantly less accessible with classical computers.

Large scale analogue quantum simulation platforms are
unique systems in that they show exceptionally strong quan-
tum effects and allow for measuring expectation values of mi-
croscopic observables12–19. Among other platforms the prop-
agation of excitations in XXZ models12,13, Lieb-Robinson
bounds14, relaxation dynamics20, and phase diagrams of
Fermi-Hubbard models15 have been probed with ultra-cold
atoms beyond capabilities of current classical algorithms. At
the same time, quantum simulations with trapped ions and
Rydberg arrays have also seen several breakthroughs. As for
example, the quantum dynamics of the long range transverse
field Ising model, which have recently been studied in systems
of over fifty atoms via time dependent expectation values of
single spin observables16–19. Though a great body of obser-
vations has been assembled, a particular question arises: Can
quantum simulators provide qualitative dynamical quantities
of systems relevant in the condensed matter context, for which
there is evidence that in the regime discussed they are inac-
cessible to classical algorithms?

We propose an answer to this question in form of the dy-
namical structure factor (DSF), a widely attainable experi-
mental observable which gives information regarding dynam-
ical properties of a given system. In materials it is experimen-
tally measured by inelastic neutron scattering21 and resonant
inelastic X-ray scattering22. Given the relative ease of measur-
ing the DSF experimentally, an efficient way to simulate this
quantity becomes imperative. We argue that the DSF can be
accurately accessed with quantum simulators within the ex-
perimental level of accuracy currently available in the differ-
ent architectures, and for system sizes beyond what current
classical algorithms can achieve, as we show in Fig. 1.
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The DSF is a quantity which can be considered stable to
small perturbations of the microscopic model whose excita-
tions it probes, given that the qualitative features of the DSF
already provide a lot of information regarding those excita-
tions. In this sense, we expect to see an inherent robustness
in the DSF, finding that observing the signatures of low en-
ergy excitations is possible with state of the art setups in the
presence of moderate experimental imperfections. As a proof
of principle we investigate the short and long range trans-
verse field Ising model (TFIM). The short range model is
integrable23, and allows us to study relatively big system sizes
comparable to those achievable in trapped ions and Rydberg
atoms simulators. We first study in detail the effects of ex-
perimental imperfections in the short range model, and the
associated Fourier transform involved in the calculation of the
DSF to give us an intuition of those effects. Once the short
range model is well understood, we move to our application
proposal. The classical numerical calculation of unequal time
correlation functions in long range systems is constrained to
system sizes much smaller than what current quantum sim-
ulators can achieve16,17. Thus, we propose the measurement
of the DSF for the long range transverse field Ising model as
a practical application of quantum simulators in a quantity
relevant for both condensed matter and material science.

We study the long range transverse field Ising model under
the same imperfections as for the short range model. We show
that the experimental imperfections currently present in quan-
tum simulators, do not affect the DSF in a significant way, and
that the scaling of these errors in the DSF is well controlled in
the full range of system sizes studied here.

We also study the computational hardness of evaluating the
DSF for general systems. We find that the DSF can be likened
to a BQP-hard problem, meaning that any classical algorithm
calculating it for general Hamiltonians efficiently would also
efficiently solve all the tasks that a quantum computer can
tackle efficiently. The latter is regarded in the quantum com-
puting community as a highly unlikely scenario. As such,
realizing our proposal in practice would tackle a task hard
for classical computers in a field of practical importance in
condensed matter physics. While the specific proposal of this
work is centred on a specific model, it is worth pointing out
that the proof of hardness is valid for a wide range of Hamil-
tonians. It is our aim in this work to highlight a specific case
in which the DSF can be experimentally achieved in the near
term, but the protocol employed here, together with the error
analysis and the study of the different architectures can be eas-
ily applied to other models, as for example the XY model in
superconducting chips24 or Rydberg atoms25. As such, future
advances in the field, where analogue quantum simulators im-
plement further models in higher dimensions can make use of
the study performed in this work to show a practical applica-
tion of quantum simulators through the DSF in those models.

L

⟨σa
i (t)σb

j (t′ )⟩

⟨σa
i (t)⟩

| | [σz
i (t), σz

j ] | |

19

Sa,b(q, ω)

ED

ED - Krylov

ED

Trapped ions 
Rydberg atoms

Neutron Scattering

Neutron Scattering

Magnetization

27 53

This proposal

Two body observables Simulation leap for two body observables

Simulation of time dependent two body observables in long range models

25

Figure 1. State of the art exact numerical algorithms to time evolve
two body observables for the long range TFIM. Larger system sizes
which can access unequal time correlators (and by extension DSFs).
In orange we show the methods that have been employed to calcu-
late the different quantities. In purple, the experimental techniques
that are used to measure those same quantities in material experi-
ments. At 19 sites, the Pauli operators at different sites have been
time evolved via exact diagonalization (ED)26. Using Krylov space
methods, the system size has been extended to 2527. System sizes
up to 27 (ED) and 128 (Lanczos and t-DRMG) sites have been ob-
tained, but only single site observables have been accessed28. Here
we show that our proposal offers a leap forward in terms of the sys-
tem sizes that can be employed to study DSFs of long range models
via quantum simulation. Please note that using variational methods,
entanglement entropies up to 125 sites can be obtained29.

II. DSF IN QUANTUM SIMULATORS

In order to employ quantum simulators to study the DSF of
solid state systems, we want to probe the fluctuations of their
ground states or thermal states via unequal time correlation
functions. For a spin system with lattice sites i, j ∈ Λ (where
Λ is the collection of lattice sites), these are defined by

Ca,bi,j (t) = 〈σai (0)σbj(t)〉 , (1)

we denote Pauli matrices by σa with a = x, y, z. The Fourier
transform of these quantities from real-space sites xi to mo-
mentum q ∈ R3 and time- to frequency-domain ω ∈ R yields
the DSF

Sa,b(q, ω) =
1

N

∑
i,j∈Λ

∫ ∞
−∞

dt e−iq·(xi−xj)eiωtCa,bi,j (t) , (2)

where N is the number of lattice sites. There has been a
recent proposal30 on how to measure retarded Green’s func-
tions (which are related to the DSF in equilibrium via the
fluctuation-dissipation theorem) in cold atoms and trapped ion
devices using Ramsey spectroscopy, however a clear under-
standing of the feasibility of observing important physical ef-
fects and the DSF itself, when the proposal of Ref.30 is applied
to a quantum many-body system is still lacking.

In Fig. 2 we show a typical DSF for the transverse field
Ising model, one of the models we will study in detail in this
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Figure 2. Dynamical structure factor for the transverse field Ising
model. We show the DSF away from the criticality, J = 1 and
B = 1.4. We observe the gap around the q = 0, ω = π/4 point,
and the ω-dependent two particle continuum extending over the en-
tire reciprocal space, in accordance with the exact solution of the
transverse field Ising model23.

work, away from criticality. In the figure we observe a co-
sine shaped continuum, with a gap at q = 0. The goal of
this work is to show that a DSF like the one in Fig. 2 can
be obtained from state of the art quantum simulations. To ob-
tain such a DSFs in quantum simulators, the crucial ingredient
that needs to be supplemented beyond the existing techniques
is a measurement protocol which gives access to unequal time
correlation functions as in Eq. (1). In the following, we pro-
pose a generalization of the protocol proposed by30, which
can be employed in any setup where a single site spin rotation
can be implemented. We extend this spectroscopy protocol
via tomographic methods to systems which do not exhibit as
many symmetries as Ref.30 assumes. In this context, we offer
a measurement protocol which can be implemented in many
different architectures, as trapped ions, Rydberg atoms, and
super-conducting qubit chips, and for a wide class of systems
beyond Ising and XXZ as has previously been proposed30.

A. DSF measurement protocol

The DSF effectively probes low energy excitations of a
given system, described by a particular HamiltonianH . Given
the definition of the DSF in (2), the excitations to which it is
sensitive are those related to observables of the form given in
(1). The first step to obtain such a quantity then resides in the
initialization of the quantum simulator in a low energy state,
ideally the ground state of H . In this section we will assume,
for the sake of simplicity, that the quantum simulator will be
initialized in the unique ground state vector of H , which we
refer to as |ψ0〉, though in principle, the protocol we employ
can be used with any initial state be it in equilibrium or not,
as exemplified in Ref.31 with the Ramsey spectroscopy tech-
nique.

Preparing such state can be achieved by adiabatic evolution.
At the same time, the recently proposed quantum approximate
optimization algorithms (QAOAs) can also been employed.
These algorithms have recently been reported in trapped ions
experiments32, achieving a very good approximation of the
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Figure 3. General scheme for measuring the DSF in quantum sim-
ulators: 1) Prepare the initial state vector, which in this work is the
ground state. 2) Excite it locally via a unitary single spin rotation at
site j, U (j). 3) Evolve this state with the Hamiltonian H, U(t). 4)
Measure a local spin observable at a site different than j, which in
our case is the local magnetization 〈σx〉. Processing such data via
Fourier transforms allows us to obtain the DSF.

ground state of non-trivial Hamiltonians. It is worth point-
ing out that QAOAs have been shown to considerably reduce
the experimental time required for ground state preparation in
comparison to adiabatic evolutions in trapped ions, effectively
extending the evolution times which can be achieved with this
particular architecture.

Once the ground state is obtained, we then induce low en-
ergy excitations by applying a single spin rotation. After ex-
citing the system locally, the state is evolved with the Hamil-
tonian H . Finally, after the evolution, we measure local spin
operators with single-site resolution. Once the unequal time
correlators are measured, the DSF can be obtained via a spa-
tial and temporal Fourier transform. We show this protocol in
Fig. 3.

B. Measuring unequal time correlations

Let us now discuss the crucial question at hand: How can
we measure two point unequal time correlation functions if we
can only perform unitary transformations and measure local
spin operators? The main insight of Ref.30 (see also Ref.31 for
a detailed study of the idea) has been that the operator at initial
time σai (0) can be obtained as part of a unitary operation, the
pulse of Ramsey interferometry.

We begin by the basic, and at the same time most important,
example of this idea: Consider the unitary representing a π

4 -
rotation of a spin at site j ∈ Λ along of the x-axis

U (j) =
1√
2

(1− iσxj ) . (3)

We would like to use it as an excitation of a low-energy state
vector |ψ0〉 which then is probed by subsequent evolution
U(t) to time t governed by the many-body Hamiltonian of
the interacting system being investigated. To keep the discus-
sion simple let us assume that the expectation value of an odd
number of spin operators vanishes for |ψ0〉 (as is the case for
the TFIM and arises from the symmetries of the Hamiltonian
and initial state30).

Having these two ingredients at hand, we can consider the
state vector

|ψ〉 = U(t)U (j) |ψ0〉 (4)
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which can be obtained by an appropriate unitary single-qubit
rotation U (j) that locally excites the system (as the one in (3))
and a subsequent time evolution of the system U(t). Observe
that both operations are unitary and thus |ψ〉 is a state vector.
If we measure the expectation value of σxi on this state we
obtain

〈ψ|σxi |ψ〉 =
1

2
〈ψ0|σxi (t) |ψ0〉+Gret

x,x(i, j, t) +R(i, j, t) .

(5)

with R(i, j, t) = 1
2 〈ψ0|σxj σxi (t)σxj |ψ0〉, and Gret

x,x(i, j, t) the
retarded Green function

Gret
x,x(i, j, t) = − i

2
〈σxi (t)σxj (0)− σxj (0)σxi (t)〉0 . (6)

The first term in the last line of Eq. (5) can be measured di-
rectly by simply omitting the excitation step and hence can be
subtracted from the data if it is non-zero. The last term, on
the other hand, has a non-trivial unequal time dependence and
hence must either vanish due to, e.g., symmetry arguments or
has to be reconstructed.

The case considered in Ref.30 is the one in which the Hamil-
tonian Ĥ has a unitary symmetry P , such that the product of
an odd number of Pauli operators vanish. From this it follows
that R(i, j, t) must vanish. As such, whenever a symmetry of
this kind is present (as in the TFIM) we obtain the identity
〈ψ|σxi |ψ〉 = Gret

x,x(i, j, t). Calculating this for all spin pairs
(i, j) we obtain the retarded Green function Gret

x,x(i, j, t) and
we can perform a Fourier transform in real space and time to
obtain Gret

x,x(q, ω). Finally, we can relate the retarded Green
function, when linear response theory holds, to the dynamical
structure factor via the fluctuation-dissipation theorem

Sxx(q, ω) = − 1

π
[1 + nB(ω)]Im[Gret

x,x(q, ω)] , (7)

where nB(ω) = 1/(eω/T +1). This way, we get direct access
to the dynamical structure factor by measuring the retarded
Green’s function via the above measurement protocol.

There are two points which need to be made before we
move on: First, while we study the zero temperature DSF,
finite but small temperatures will broaden the features of the
DSF but not change the overall behaviour, provided that T is
smaller than the smallest coupling of the model. Second, note
that the fluctuation-dissipation theorem holds when linear re-
sponse theory is a good approximation, and its validity or lack
of thereof away from equilibrium is a highly researched topic
to the date11,33,34. As such, this measurement protocol for the
DSF will be accurate when the system is close to thermal equi-
librium in a practical sense.

C. Tomographic recovery methods for unequal time
correlation functions

If the symmetry argument can be relaxed, we can show how
the term R(i, j, t) can be extracted. Let us define a modified
Ramsey state vector which reads

|ψφ〉 = U(t)U (j)(φ) |ψ0〉 (8)

where now we excite the ground state |ψ0〉 with a φ-rotation
around the x-axis

U (j)(φ) = e−iφσx
j = cos(φ)1− i sin(φ)σxj

=: cφ1− isφσ
x
j .

(9)

For an analogous measurement to the case in the previous sec-
tion we obtain

〈ψφ|σxi |ψφ〉 = c2φ 〈ψ0|σxi (t) |ψ0〉+ 2cφsφG
ret
x,x(t)

+ s2
φR(i, j, t) .

(10)

We now notice that we can directly measure the left hand side
and the first term on last line of the expression above. For a
fixed angle φ we can write

bφ = 〈ψφ|σxi |ψφ〉 − c2φ 〈ψ0|σxi (t) |ψ0〉 . (11)

Now, we can rewrite Eq. (10) as

aTφ v = bφ (12)

where v is the vector we want to reconstruct, given by

v = [Gret
x,x(t), R(i, j, t)]T (13)

and aφ = [2sφcφ, s
2
φ]. If an experiment measures bφ using

various angles φ then we can build a matrix A using the dif-
ferent aφ’s as rows and in a corresponding fashion we can
collect the measured bφ’s into a vector b.

The retarded Green’s function can be reconstructed by
noticing that

v? = (ATA)−1AT b (14)

gives the value of v that minimizes the least-square residue

min
v
‖Av − b‖2 . (15)

Here we assume that one can choose the excitation angles φ in
such a way that the matrixATA is well conditioned as is done
in typical tomographic schemes. In order to measure the DSF
this procedure must be performed for all pairs of excitation
and measurement positions i, j ∈ Λ and the Fourier transform
of the collection of reconstructed values v?1 = Gret

x,x(i, j, t)
will yield the DSF.

III. ON THE COMPUTATIONAL COMPLEXITY OF THE
DSF

Once we have formalized how dynamical quantum simu-
lators can access the DSF, we will concentrate on answering
the question in what specific way is the calculation of the DSF
a computationally hard problem? In the following, we for-
malize the statements about classical hardness and show that
a practically accessible variant of the dynamical structure fac-
tor is hard for the complexity class BQP. To this end, we show
that the building blocks of the DSF, the unequal time correla-
tors Ca,bi,j (t) are BQP-hard to compute.
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To start with, and without loss of generality, we show that〈
σzi (t)σzj

〉
ψ

:= 〈ψ|σzi (t)σzj |ψ〉 is BQP-hard to compute for
product state vectors |ψ〉 and for ground states. Then we use
these observations to consider the DSF over a finite (but arbi-
trarily large) interval of time

Sz,zt0,t1(q, ω) =
1

N

∑
i,j

∫ t1

t0

e−iq(xi−xj)eiωt
〈
σzi (t)σzj

〉
ψ

dt .

(16)
where N is the system size. In particular, we prove the fol-
lowing.

Theorem 1 (Hardness of computing the approximate dynam-
ical structure factor). For t1 − t0 = poly(N), product states
|ψ〉, and 2-local Hamiltonians it is BQP-hard to approximate
Sz,zt0,t1(q, ω) within an error ε = poly′

−1
(N).

We consider the quantity Sz,zt0,t1 instead of the full Fourier
transform as it is the practically accessible one: Any time ob-
servation will necessarily be finite in practice. What is more,
from a conceptual perspective, the latter is not even com-
putable on a Turing machine due to arbitrarily large errors
that are introduced by the Fourier transform: The continuous
Fourier transform is not Turing computable35.

Hardness for estimating correlators on ground states.
For hardness of ground states, we observe that computing
Cz,zi,j (t) = 〈σzi (t)σzj 〉ψ for any t is at least as hard as com-
puting Cz,zi,j (0) = 〈σzi σzj 〉ψ . First, computing correlators
up to constant additive errors on ground states of quasi-local
Hamiltonians is BQP-hard by the Feynman-Kitaev construc-
tion36. Furthermore this remains true for several classes of
local observables and local Hamiltonians, including one-local
observables measured on ground states of nearest-neighbour
two-local Hamiltonians on qubits37,38, and two-local ob-
servables measured on ground states of translation invariant
nearest-neighbour two-local Hamiltonians with local dimen-
sion three39.

Hardness for out-of-time correlators. For the product
states, we start with a general observation: Consider an ar-
bitrary circuit Cn = Un . . . U1 consisting of k-local gates Ui.
Evaluating the quantity

〈
σzi (t)σzj

〉
ψ

for product state vectors
|ψ〉 within constant error is BQP-hard. Here, 0 ≤ t ≤ n is an
integer. For Pr(1), the probability of measuring 1, we obtain

Pr(1) = 〈ψ|C†t
(

1 + σzi
2

)
Ct|ψ〉 =

1

2
± 1

2

〈
σzi (t)σzj

〉
ψ
.

Here, |ψ〉 is assumed to be in the σz-eigenbasis. The sign in
the above calculation can be immediately obtained from |ψ〉.
Computing the above probability within a constant additive
error suffices to yield a valid reduction to the output probabil-
ities of quantum circuits.We are interested in the case where
the circuit Ct is given by the time evolution eitH for some
Hamiltonian H .

The definition of the DSF is given for continuous time
(Eq. (2)), but quantum simulators (and also classical simu-
lations) need to discretize time, as the measurement protocols
proposed cannot continuously measure Cz,zi,j (t), but require

a fresh preparation for each point in time. In the following,
we show that while this discretization leads to errors, they are
bounded.

The discretization error. Notice that there will always be
an error from the discretization of time. However, this can
be bounded: For any differentiable function f we can use the
mean-value theorem to obtain

|f(t+ δt)− f(t)| ≤
∣∣∣∣ max
t′∈[t,t+δt]

∂f(t′)

∣∣∣∣ δt. (17)

For Cz,zi,j (t) =
〈
σzi (t)σzj

〉
ψ

, we have

|∂tCi,j(t)| =
∣∣〈ψ ∣∣∂t (σzi (t)σzj

)∣∣ψ〉∣∣
=
∣∣〈ψ ∣∣∂t (eitHσzi e

−itHσzj
)∣∣ψ〉∣∣

=|i
〈
ψ
∣∣eitH [H,σzi ]e−itHσzj

∣∣ψ〉 | ≤ L′ = const ,

(18)

where we use the fact that we assume H to be a (geometri-
cally) local Hamiltonian and L′ is the Lipshitz constant. Thus,
H =

∑r
i=1 hi with r = poly(N) and ||hi||∞ ∈ O(1) and

furthermore, σzi commutes with all but constantly many sum-
mands hj . The inequality thus follows from the triangle in-
equality and the submultiplicativity of the operator norm. It
hence suffices to choose a constantly small discretization step
to bound this error. In particular, this proves that Cz,zi,j (t) is
Lipshitz continuous with size-independent Lipshitz constant.

Hardness for a variant of the dynamical structure factor.
The discrete dynamical structure factor is defined as

S̃z,z(q, ω) =
1

N

∑
i,j

M∑
k=1

e−iq(xi−xj)eiω(t0+k∆t)
〈
σzi (t0 + k∆t)σzj

〉
(19)

with ∆t = (t1 − t0)/M . Notice that this is the quantity
that is usually approximated in numerical simulations. Com-
puting the discrete Fourier-transform can be done via the
fast Fourier transform, which runs in time O(ln(M)M) for
M = poly(N). Hence if the correlators are BQP-hard, the
discrete dynamical structure factor is as well.

We can bound the error on the continuous dynamical struc-
ture factor as well if only a finite interval of time is involved.
We know that Cz,zi,j (t) =

〈
σzi (t)σzj

〉
ψ

is a function with poly-
nomially bounded Lipshitz constant. For a bounded interval
of time [t0, t1], we consider the error that occurs by approxi-
mating the integral in Eq.16 with step functions

Sz,zt0,t1(q, ω) ≈ 1

N

∑
i,j

M∑
k=1

e−iq(xi−xj)eiωt0+k∆tCz,zi,j (t0+k∆t)∆t,

(20)
where ∆t = t1 − t0/M . Integrating over the error made
by the step function approximation gives us the cumulated
error(t1 − t0)L′∆t = (t1 − t0)2L′/M, where L′ is the Lip-
shitz constant of the function e−iq(xi−xj)eiωtCz,zi,j (t). Hence,
choosing M to be constant and small suffices for an approxi-
mation within arbitrarily small constant error. In essence, we
have proven that Ca,bi,j (t) and Sa,b(q, ω) are BQP-hard in a
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specific sense. Furthermore, since simulations both classical
and quantum require a discretization of the time axis, we have
shown that the possible errors from this are well behaved and
controlled.

BQP-hardness provides evidence against the existence of
classical algorithms that compute dynamical structure factors
in polynomial time. However, it is important to point out that
this is a so-called worst-case result, i. e. it only rules out an
algorithm that solves all cases in polynomial time. In general,
subclasses of this problem are not necessarily hard in the com-
plexity theoretic sense. For example, the time evolution of the
nearest neighbour, short range, transverse Ising model is not
expected to be universal for time evolution.

IV. PRACTICAL REALIZATION OF DSFS IN QUANTUM
SIMULATORS

As mentioned in the previous section, several near term
quantum architectures can be employed to simulate DSFs. So
far we concentrated on how the previously mentioned mea-
surement protocol can be employed to obtain DSFs, and on
the complexity of this task. To assess the degree of robustness
of DSFs against experimental imperfections, we will study the
short and long range transverse fields Ising models (TFIM), in
the presence of those imperfections.

The translational invariant 1D-TFIM is defined as

H(J,B) =
∑
i∈Λ

Biσ
z
i −

∑
i,j∈Λ

Ji,jσ
x
i σ

x
j . (21)

The coupling parameters of the Ising term are Ji,j , and in prin-
ciple can be site dependent. The strength of the magnetic field
is given by Bi and in this work we will consider it uniform
throughout the chain, Bi = B. The spin-spin interaction can
take the long range form Ji,j = J/|i−j|α for analog quantum
simulations in Rydberg arrays or trapped ions, where typically
α ∈ [1, 6] (see section I in the supplementary information).
In the case of digital simulation and optical lattices, one can
study the short-range model15 with Ji,j = Jδi,j±1, which is
exactly solvable by a mapping to non-interacting fermions23.

While our proposal is focused on the long range model, the
access to the DSF via quantum simulation for the short range
case is of great importance for two main reasons. First, the
short range model is much better understood than the long
range counterpart, and as such, a study of its DSF can pro-
vide helpful insights on the effects of the different imperfec-
tion models, as well as on the accuracy of the measurement
protocol which can be expected. Since the short range model
is an easy instance of the time evolution problem, we perform
a detailed study of the effects of the evolution imperfections
in this case. This way we can provide sufficient understanding
of the expected effects of these imperfections on the quantum
simulation of the DSF. After this task is completed, we can
move on to study the long range model and evaluate our prac-
tical proposal. Second, several architectures as optical lattices
or Rydberg arrays can access the short range model, or the
long range model at high values of α, where the system effec-
tively behaves short range. Our study of the short range model

thus provides data which can be directly used to compare with
experiments on those platforms.

A. Universal properties of the short range TFIM

The physics of the short range, nearest neighbour, TFIM
has been studied in detail previously23. Here we will briefly
describe the low energy excitations of the TFIM and their sig-
nature in the DSF in terms of a two kink model.

For the short range TFIM in the ferromagnetic phase, the
ground state is given by a product state of spins fully polar-
ized. When the magnetic field and Ising coupling are at a finite
value, fluctuations are induced in the system, in the form of
fermionic pseudo-particles γ. These excitations, can be seen
in the spin picture as spin flips, or kinks over the fully polar-
ized state. Once a spin is flipped, it is free to move along the
chain and create a domain. The walls of this domain can be
regarded as the kinks (or equivalently, the γ-fermions) that in-
terpolate between the two possible ground states connected by
the Z2 symmetry of the model. When a domain is formed, the
domain walls or kinks behave as free fermionic particles, that
propagate through the chain. Since to create a domain we need
at least two kinks (particles), the first contribution to the exci-
tation spectrum will come from the two particle states, which
will be described by their energy and momenta, E = εq1 +εq2
and q = q1 + q2. For a fixed q, the values of q1 and q2 can
be chosen arbitrarily, which generates a continuum of excita-
tions.

The spectrum of excitations will manifest in the dynamical
structure factor: studying the longitudinal xx-structure factor,
Sxx(q, ω), we observe the gap, and the continuum of excita-
tions (the so called two particle continuum) that corresponds
to the two particle states we mentioned previously. This obser-
vations have been previously shown, both numerically41 and
experimentally via neutron scattering21. In Fig. 2 we show the
xx-DSF for the short range TFIM, as obtained from our free
fermionic calculation for J = 1 and B = 1.4, for 50 sites.
We clearly observe the two particle continuum which charac-
terizes the low energy fluctuations, as well as the excitation
gap at the point q = 0, ω ∼ π/4 (in units of J).

B. Long range TFIM

We can now concentrate on the case which is our test of
a practical application:, the long range transverse field Ising
model. Models with these kind of long range interactions
present considerable challenges to numerical studies. The
long range interactions severely constrain the system sizes
which can be studied with exact diagonalization techniques
based on sparse matrices. Furthermore, studies of these sys-
tems employing finite size MPS based techniques are affected
by severe finite size effects arising from the entanglement cut-
offs required by these approaches. Recently, however, there
has been success in studying the statics of long range models
employing MPS algorithms, which directly act in the thermo-
dynamic limit, such as iDMRG42,43.
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Figure 4. Dynamical structure factor for the long range transverse field Ising model, for the cases α = 1 (a), 2 (b), and 3(c). For the case α = 1
we see that the DSF does not vary in frequency, which is a possible signature of excitation confinement, in accordance with Refs.26,40. For
α > 2 the two particle continuum is noticeable, and the gap is lowered. As the value of α is increased, the interactions become shorter range,
and the gap approaches the value for the short range model. Accordingly, the continuum changes shape, from the absence of ω dependence
for α = 1 towards the cosine form at α = 3. This cosine shape corresponds to the short range TFIM, obtained in the limit α → ∞. For
comparison with the short range TFIM please refer to Fig. 2.

At the same time, several algorithms which can time evolve
an MPS with long range interactions have been proposed44,45

to study the long range TFIM46. With the advent of these
new techniques, and the state of the art of quantum simulators
capable of implementing long range TFIM, the question of
whether the DSF of this class of models can be accessed with
these experimental architectures naturally arises.

Unlike the short range model which has been thoroughly
studied in the past, much less is known about the long range
TFIM. Recent studies27,29,47 concentrate on the entanglement
growth and the spread of correlations in this model as a func-
tion of the interaction length, α, or in the thermalization of
different initial states under this Hamiltonian28. Analyzing
the light cones and possible Lieb-Robinson like bounds in
the long range TFIM at zero temperature, these studies sep-
arate the dynamical behaviour of this model in three regions.
For α > 3the system obeys the generalized Lieb-Robinson
bound48, and the behaviour of the system mimics that of a
short range model. Via semi-classical arguments, the dis-
persion relation of excitations in the ground state (what we
study here via the DSF) is found to approximately be a co-
sine, which coincides with the short range behaviour. From
this we can say that for quantum simulators, the behaviour of
the DSF in the regime α > 3 is expected to be very close
that of the short range model. On the other hand in the range
1 < α < 3 a broad light cone is observed and an excitation
dispersion which is bounded. This case is of special interest in
this work, since trapped ion experiments can implement long
range TFIMs in this range, but also given that it has recently
been shown26,40,49 that in this regime the long-range interac-
tions introduce an effective attractive force between a pair of
domain walls. This attractive force confines the excitations in
bound states analogous to the confinement of mesons in high
energy physics26,40,49. Since this exotic physics can be probed
studying the confinement signatures in both the unequal time
correlators and DSFs, our work opens the door to the study of
these effects in quantum simulators. Finally we mention that
for α < 1 the light cone completely disappears and a virtually
instantaneous spread of correlations is observed. In Fig. 4 we
show the DSF of the long range TFIM, as obtained numeri-
cally from a full exact diagonalization of a system of 14 spins

at zero temperature, for the interaction lengths α = 1(a), 2(b),
and 3(c). In these figures we see that for α = 1 the DSF
shows no ω dependence, which hints at the possibility of ex-
citation confinement26,40,49 being evidenced through the DSF.
For α > 2 the ω dependence is recovered, slowly approaching
the short range behaviour as α is increased.

C. Imperfection models

Three basic ingredients are needed to simulate DSFs on
near term devices: First, we need to be able to prepare the
ground state of the target Hamiltonian in a controlled way,
and ideally with as high state fidelity as possible. Second,
we need to be able to control the time evolution of the sys-
tem, in such a way that the physics we desire to investigate
is not severely mitigated by experimental imperfections. And
finally, we want to employ the proposed measurement proto-
col to determine the unequal time Green functions. Every one
of these steps carries their own imperfections which we will
consider separately.

For the preparation imperfections we will study the effect
of measuring DSFs when the prepared state has a fidelity with
respect to the ground state smaller than one, F = 〈ψσ|ψ0〉 <
1. The measurement protocol is not modified by this imper-
fection model, such that even if the prepared state is not the
ground state, we can still recover the retarded Green’s func-
tion via Eq. (7).

In the case of evolution imperfections we will study three
fundamental effects over the TFIM Hamiltonian. In the first
case, we will study how a time dependent modulation of the
Ising couplings affects the DSF. In this case the Hamiltonian
couplings are modified to be time dependent and of the form

Ji,j =
J(0)

|i− j|α (1+A sin(wt)) , Ji,i±1 = J(0)(1+A sin(wt)).

(22)
With J(0) = J , for the long and short range models re-
spectively. We will study several modulation amplitudes,
A = 0.01, 0.05, 0.1, and 0.5, and different frequencies ω
between 0.05 and 25.
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We will also study the case of random interactions and mag-
netic fields, related to lattice imperfections. In these cases the
Hamiltonian takes the form in Eq. (21), but for the case of
random interactions the Ising couplings take the form

Ji,i±1 = (J +Aξi,j) , Ji,j =
J +Aξi,j
(i− j)α (23)

for the short and long range models respectively. While in the
case of random transverse fields

Bi = B +Aξi. (24)

In all cases ξ is drawn independently at random at each site,
from a uniform distribution on the interval [0.0, 1.0) withA =
0.01, 0.04, 0.1, and 0.4. We employ between 50 and 100
disorder realizations per data point.

V. EFFECT OF EXPERIMENTAL IMPERFECTIONS ON
THE DSF OF THE SHORT RANGE TFIM

In the following, we will demonstrate that the qualitative
and quantitative features of the DSF for both the short (and
long range TFIM can be recovered from a quantum simu-
lation even in the presence of experimental imperfections.
Here, we discuss the role of imperfections and their impact
as such; the certification of the actual correctness of the quan-
tum simulation50 is a separate task.

To phenomenologically and briefly summarize the results:
We show that, at the experimental levels of control present in
state of the art architectures, the errors which would be pro-
duced in a measurement of the DSF for both short and long
range TFIM are small, and one can trust both the qualitative
and quantitative results of such experiment. Since the overall
behaviour of the DSF is what gives one information about low
energy excitations of a given system, and how they behave,
the errors studied show that, at the current level of experi-
mental control (when our imperfection parameter is set below
5%), the DSF is well behaved. Thus, the overall form of the
DSF does not change and one can safely extrapolate, from a
quantum simulation via the DSF, what some of the low energy
excitations of a given model are, and what their behaviour is.

A. Quantifying imperfections

To assess what the effect of experimental imperfections is
on the DSF we will analyze two particular quantities based on
the absolute error of the DSF. We define the absolute error as

∆S(q, ω) = |Sx,x(q, ω)− S̃x,x(q, ω)| , (25)

where Sx,x(q, ω) is the DSF obtained from the exact solution
of the TFIM in the absence of imperfections. S̃x,x(q, ω) is the
DSF obtained from the exact solution with various perturba-
tions in the Hamiltonian, arising from the different imperfec-
tion models. If we integrate over frequency (reciprocal space)

we obtain the average error in reciprocal space (frequency),

∆S(q) =
1

Nω

∑
ω

∆S(q, ω), ∆S(ω) =
1

L2

∑
q

∆S(q, ω) ,

(26)
where Nω is the number of frequencies, which depends on
the discretization of the time evolution, and L is the system
size. We show the average error for different imperfection
models in the supplementary information. The maximum of
the absolute error, for fixed ω or q, will be denoted by

max
q

[∆S(q, ω)], max
ω

[∆S(q, ω)] . (27)

These errors can be understood in the following way: (25)
is the absolute error of the DSF when imperfections are con-
sidered. If one makes a cut on the absolute error at a given
value of reciprocal space, q, and integrates it over frequency,
one obtains the frequency integrated error, ∆S(q). This is
equivalent for cuts at a given frequency ω, to obtain ∆S(ω).
If, on the other hand, one selects the maximal error at that
value, one obtains (27). The study of the imperfections in this
way allows us to account for the effects in frequency and re-
ciprocal space separately. If the imperfection models do not
change the DSF, then these errors should be small and flat
over the entire q and ω range. On the other hand, if these er-
rors are not small, we can assess what their effect is on the
DSF by studying the shape of the quantities given in (26) and
(27). For example, if one of these imperfection models were
to close the gap, we would see errors towards small frequen-
cies, but not on q-space.

Since the Fourier transform is performed as data-processing
over the correlators, we will compare the error of the DSF
to the error in the correlators, as to assess the robustness of
the Fourier transform. The error in the correlators, and the
average and maximum over space (where space is indicated
as r = i− j) are defined as

∆Cr(t) = |Cx,xr (t)− C̃x,xr (t)|, (28)

∆C(t) =
1

L2

∑
r

∆Cr(t), max
r

[∆Cr(t)] . (29)

Finally, to determine the scaling properties of the long range
model, we will study the integrated DSF error ∆S as a func-
tion of size and of the range of the interactions α where the
integrated error is given by

∆S =
1

Nω

1

L2

∑
ω

∑
q

∆S(q, ω) . (30)

B. Influence of state preparation imperfections on the DSF

We will concentrate on two architectures, trapped ions and
Rydberg atom arrays. Both of them can prepare the ini-
tial state via an adiabatic evolution. Furthermore, trapped
ions can prepare it through quantum approximate optimiza-
tion techniques32. We will study here how the DSF is affected
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Figure 5. Effect of finite preparation times τQ on the DSF of the short range TFIM. We show numerical results for the DSF and unequal
time correlation functions of the short range TFIM subject to different preparation time. (Left panel) DSF of the TFIM for a preparation time
τQ = 0.5. This can be directly compared to the imperfection free case shown in Fig. 2. (Middle panel) Cuts of the absolute error for the
unequal time correlation function, depicted for a quantitative comparison. At short preparation times τQ = 0.5 and τQ = 1 we find significant
deviations of local correlation functions. The inset shows the averaged error in the correlators, which indicates that the deviation seen in the
maximal error persists, and in fact increases, at all times on the level of uniform real-space average. (Right panel) Cuts in frequency and
reciprocal space (inset) of the DSF absolute error. We quantitatively verify the intuition given by the left most panel. The DSF indeed encodes
the correct physical information despite the deviations in real-space and the deformation of the low ω sector. The low error intensity away from
ω = π/4 and q = 0 indicate that the gap remains open for τQ = 100. Absence of errors for long preparation times at q > 0 and ω > π/4
indicate that the two particle continuum is not affected by these preparation times.

by different evolution times, when the final field value is far
away from the quantum critical point, J = 1 and B = 1.4.

Adiabatic time evolution. The question that motivates us is
how the features of the DSF change when the system is pre-
pared for a time τQ (the preparation time) from an initial po-
larized state, (which corresponds to the B → ∞ limit) to the
final state B = 1.4. In the thermodynamic limit this prepara-
tion time diverges when one approaches the quantum critical
point. For a finite system, it can be shown that the finite size
gap destroys the divergence, and a finite bound on the prepa-
ration time can be obtained51,52 within which the evolution
remains adiabatic.

Considering our previous discussion, it is imperative that
we study how the properties of the DSF change when the
preparation is not adiabatic. In this case, if the preparation
time is not large enough to be in the adiabatic regime, the
quantum simulation can still be able to obtain results which
are close to the physics that one desires to study. This can be
understood, and generalized to preparation protocols beyond
adiabatic evolutions, in the context of prepared state fidelity.
If the fidelity is high, then the properties of the DSF evalu-
ated over the prepared state will remain close to the properties
of the DSF evaluated over the exact ground state. Further-
more, if the preparation evolution is not adiabatic, but does not
surpasses the quantum critical point, then there exists a time
interval in which the transition probabilities towards excited
states is sufficiently small, such that the main contribution to
the state of the system is the ground state51–55. At the parame-
ter values studied here, the fidelity of the prepared state F can
be thought of as the probability that no extra domain walls (or
equivalently, kinks) have been created during the preparation.
Ref.52 calculates the fidelity of the final state with respect to
the vacuum of excitations for a linear ramp, effectively prob-
ing the probability that no excitations have been created dur-
ing the preparation. The authors find that the fidelity takes the
form

ln(1− F ) = −π∆2/(4B/τQ) . (31)

With this in mind, we can simply ask the question of how large
does τQ need to be such that F ∼ 1, and what are the effects
on the DSF when F < 1?.

We quantify the robustness of the DSF to preparation im-
perfections employing the error measures shown in before.
For this we numerically calculate the DSF of the short range
TFIM,when we prepare the state by a total time τQ, starting
with the field at Bini →∞ and finishing at Bfinal = 1.4.

The adiabatic evolution has been performed for different
evolution times, ranging from τQ = 0.005 to τQ = 3000.
In Fig. 5 we show the error analysis for preparation times
τQ = 0.5, 1, 10, and 100. Following the calculations of Ref.52

we estimate that the fidelity of the prepared state (assuming
no other error sources) will correspond to F ∼ 0.043 for a
preparation time of τQ = 0.5, to F ∼ 0.59 for τQ = 10, and
F ∼ 0.99 for τQ = 100. Our numerical error analysis of the
DSF and correlators coincides with these fidelity estimates.
We tackle the DSF first: in the left most panel of Fig. 5 we
show a typical DSF for a preparation time τQ = 0.5, and in
the right most panel we show the maximum error of the DSF
over frequency (main figure) and reciprocal space (inset). For
τQ = 100 the maximum error is below 5% and mostly flat
over the entire (ω, q) space, indicating that this τQ is enough
to obtain an accurate DSF. This can be confirmed by compar-
ing the left most panel of Fig. 5 and Fig. 2. From these figures
we notice that the discrepancy in the DSF between the exact
case and the one studied in this section appears around the
point (q = 0, ω = π/4) which corresponds to the position
of the gap in the clean case. Even for τQ = 0.5, most of the
error is constrained around the gap, indicating that the main
contribution to the error in the DSF is a qualitative change in
the overall broadness of the low q low ω sector, even though
the overall shape of the DSF does not change ( as is seen in
the left most panel).

In the case of unequal time correlators, shown in the middle
panel of Fig. 5, we see that the maximal (average in the inset)
error in this case, for τQ = 100, is also below 5% (1%), but
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Figure 6. Effect of globally fluctuating Ising couplings on the DSF of the short range TFIM. We show numerical results for the DSF of the
short range TFIM subject to the imperfection model (23) with Ising couplings harmonically modulated for amplitudes. (Left panel) DSF of
the TFIM for an Ising coupling modulated by A = 10%. This can be directly compared to the imperfection free case shown in Fig. 2. (Middle
panel) Cuts of the absolute error for the unequal time correlation function, shown for quantitative comparison. We see that at short times there
are significant deviations of the local unequal time correlation functions. The inset shows that this deviation increases, at all times on the level
of uniform real-space average. (Right panel) Cuts in frequency and reciprocal space (inset) of the DSF absolute error. We quantitatively verify
the intuition given by the left most panel. The DSF indeed encodes the correct physical information despite the deviations in real-space and
the deformation of the low ω sector. The gap remains open for the lowest imperfection level. The broadness of the maxima in the frequency
cuts indicate that the gap is shifted with respect to the exact solution. The inset shows that the effect over momentum space does not decay to
zero, coming from the lower intensity in the DSF signal in comparison to the clean solution, and not from a deformation of the two particle
continuum.

we can see how the average error increases over time. While
looking at the correlators directly could also be a way to study
the ground state fluctuation of the system (given that the effect
of the imperfections is small), the interpretation of the data as
a function of time can be much more challenging, especially
for long times. This can be understood by considering the
propagation of errors as a function of time, which takes place
with a maximal velocity consistent with the Lieb-Robinson
bounds. We show in Fig.5 in the supplementary information
the propagation of errors in the correlators as a function of
time. With this in mind, we can note that the Fourier transform
leading to the DSF allows one to account for all the spacial
and temporal data of the correlators, as well as understand
and deal with errors arising from this imperfection model in a
much simpler way.

C. Influence of evolution imperfections on DSF

In trapped ions architectures, the spin-spin interactions are
created by coupling the spin states to the normal modes of mo-
tion of the ions by laser beams56,57 (see section I in the supple-
mentary information), obtaining a coupling strength directly
proportional to the Rabi frequency of the ions. The lasers em-
ployed present intensity and phase oscillations which can be
currently controlled up to a certain threshold58. This induces
a variation of the Rabi frequencies across the chain, result-
ing in interactions which are not uniform over time along the
chain. Globally fluctuating Ising coupling. We will study the
particular case in which the intensity fluctuations of the lasers
directly induce periodic fluctuations of the spin-spin interac-
tions. We will model these evolution imperfections by modu-
lating the Ising coupling as in (23), with different amplitudes
A and frequencies w.

In Fig. 6 we show the error analysis of the DSF and unequal
time correlation functions for the case of modulated Ising cou-

plings. We have studied a range of frequencies fromw = 0.05
to w = 25 and intensities in the range A ∈ [0.01, 1]. Here,
where J = 1, a coupling intensity A = 0.01 correspond to
a 1% fluctuation in the Ising coupling. Current experimen-
tal capabilities can constrain these parameters within the 1%
threshold59.

The effects are mainly noticed as a function of the coupling
A. Concentrating on the error of the DSF shown in the left
and right most panels of Fig. 6, we see that even the lowest
coupling studied A = 1% = 0.01 can induce a maximal error
of 15% in the DSF. The error is mostly concentrated around
gap. Already for A = 0.05 we see that small broad peaks
appear for ω > π/4, while for A = 0.5 the shape of the
DSF is changed, as indicated by the large errors all along the
frequency axis in the left most panel of Fig. 6. This can be
understood by looking at the left most panel of Fig. 6, com-
paring it with Fig. 2. Besides the overall decrease in inten-
sity, the low frequency shape of the two particle continuum
has changed, giving the maximum in the right most panel of
Fig. 6 at ω = π/4. There is also an increase of intensity at
small q for a range of frequencies up to ω = π/2.

In the case of the unequal time correlators, the middle panel
of Fig. 6, the error intensity is much higher, with a maximum
of 65% at small times which decays to close to zero, except
for A = 0.5. This is an artefact generated by the error prop-
agation in a Lieb-Robinson cone. Even if the maximal error
is small, there is an overall error which increases with time,
which indicates that long measurement times lead to the prop-
agation of errors and to an, in average, very large inaccuracy
in the correlators. As for the case of preparation imperfec-
tions, the error in the correlators can make for a hard determi-
nation of the propagation of excitations through the system.
The DSF allows us to study these effects even in the presence
of imperfections, given that the errors in this quantity are lo-
calized close to the maxima, and the overall shape of the two
particle continuum is minimally changed for small intensities
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Figure 7. Effect of experimental imperfections in the DSF for the long range TFIM. Average error, ∆S as a function of the interaction range,
α, for L = 14 sites. (a) Effects of Ising couplings harmonically modulated, Eq. (23). The error is minimal at α = 1, within the confined
phase, and saturating at α > 3, when the system approaches the short range TFIM. (b), (c) Effect of lattice imperfection for random fields (b),
and random interactions (c). For both these cases the effect is the same, the DSF is highly susceptible to randomness at low values of α, and it
monotonically becomes more robust as α is increased, recovering the short range behaviour for α→∞. A physical interpretation of the effect
on the excitations of these imperfection models on the DSF is beyond the scope of this work, as the presence of excitation confinement in the
long range model has been proposed recently26,40,49. At the experimental levels of control currently available, the integrated error is minimal,
and the overall shape of the DSF is unchanged, indicating that quantum simulators can probe the regime of interactions studied in this work,
1 < α < 6, and obtain accurate DSFs for system sizes bigger than what state of the art classical algorithms can achieve.

of the fluctuating coupling.
It has to be pointed out, that for slightly higher intensities of

the fluctuating coupling, even for A = 5%, small changes in
the DSF are seen both in the frequency and reciprocal space
axis. This indicates that this imperfection model has to be
dealt with carefully in an experimental setup, as small in-
creases in A can lead to appreciable effects in both the DSF
and the unequal time correlators.

Lattice imperfections. In a Rydberg atom setup spin-spin
interactions can be generated by applying a spin-dependent
optical dipole-force 16,17 (see section I in the supplementary
material ). Since the Rydberg atoms are not in the ground state
once in the local trap, and the experiment is carried at a finite
temperature, fluctuations in the atomic positions for each atom
in each cycle of the experiment are introduced16,17, which will
affect the Ising interaction (see Eq. (2) in the supplementary
information). In a typical experiment the fluctuation of the po-
sition lead to a change in the Ising coupling between 0.1% and
0.2%16,17 from shot to shot. This can be empirically modelled
as a random Ising interactions as in (23). On the other hand
the Rabi frequency is also not uniform along the chain. Since
this frequency gives rise to the transverse field, this type of
evolution imperfection can be studied as a random transverse
fields as in (24).

In a setup where ions are trapped by a linear Paul trap, spin-
spin interactions can be obtained applying off-resonant laser
beams56,57. The Rabi frequency Ωi can also vary across the
chain from shot to shot (see Eq. (3) in the supplementary
material), inducing random Ising interactions.

For these cases, random transverse fields and Ising inter-
actions, we show the results in the section II of the supple-
mentary material, since they are very similar as those found
for the preparation imperfections. In both cases we see that
the majority of the imperfections are concentrated around the
maximum of the DSF, where the gap is located. Strong ran-
dom Ising interactions tend to close the gap, as can be seen in
Figs.1 and 3(c) in the section II of the supplementary mate-
rial. On the other hand, random transverse fields tend to open

it (see Figs.3 and 4(d) in the supplementary material). In both
these cases, for the experimentally tolerable imperfections of
around 1%, the errors in the DSF and correlators are both re-
duced, leading to no noticeable effects in the DSF. While the
errors in the correlators (Figs.1 and 2 in the supplementary
material) are also small, the average error increases with time.
In this sense, long measurement times can lead to very large
errors, rendering the results analyzed purely via correlation
functions highly unreliable.

We note that the regime in which randomness is large is
interesting in itself, as it offers the chance to directly probe the
effect of random disorder in spin chains via time dependent
observables, and the DSF in particular, in near term quantum
devices.

VI. INFLUENCE OF EXPERIMENTAL IMPERFECTIONS
ON THE DSF OF THE LONG RANGE TFIM

In the previous section we have assessed the accuracy of a
DSF measurement for the short range TFIM using quantum
simulators, and have shown that the DSF is well behaved in
the presence of experimental imperfections even at large sys-
tem sizes. Now, we will put forward the idea that quantum
simulators can recover the DSF of long range models accu-
rately for system sizes larger than state of the art classical
simulations can treat. To show this, we will numerically study
the long range TFIM in the presence of the same experimental
imperfections as for the short range TFIM.

In Fig. 4 we show the DSF in the absence of imperfections
for three different values of α. In section IV of the supple-
mentary material we show the results for α = 2, 3, and 6.
Furthermore, in section V of the supplementary information
we show the heat maps for the unequal time correlations with
respect to the middle of the chain, Cx,xi,5 (t). In the regime
1 < α < 2 our results exhibit a particular signature in the
DSF which has no ω−dependence. For higher values of α
remnants of this behaviour are noticed, but an ω−dependence
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Figure 8. Average DSF error as a function of system size for the long range TFIM. Average error in the DSF, ∆S, arising from the different
imperfection models. We show the numerical results for two interaction ranges. In the top panels, (a), (b), (c) we show the results for the
interaction exponent α = 1.5, while in panels (d), (e), and (f) we show the results for α = 6. (a), (d), We show the effects of harmonically
modulated Ising interactions. (b), (e) Average error in the DSF for the case of random interactions. (c), (f) Average error in the DSF arising
from random transverse fields. For all these cases, at the experimental level of control over the different imperfections, A < 5%, the error is
small and constant along the whole range of sizes. When the imperfection level is below 20%, it becomes negligible for all system sizes and
interaction ranges. At the current levels of experimental control, the error remain constant and small even at the smallest size studied here,
with the DSF remaining unchanged through the entire α range employed in this work.

is recovered. For α > 3 we recover the cosine shaped two
particle continuum. These results, especially the absence of
ω-dependence for α < 2, indicates that the signatures of exci-
tation confinement, which have been recently proposed26,40,49

can be observed in dynamical quantum simulators via the DSF
employing our proposed method.

In section IV in the supplementary material we show a typ-
ical case for the the maximal error as a function of frequency
(reciprocal space) Eq. (26) (Eq. (27)) in the case of random
transverse fields. There we can see that the overall behaviour
of the error is very similar to that for the short range TFIM.
There is a large error around the gap, with small fluctuations
at other values of ω for strong imperfections. For small imper-
fection levels (1%−5%) the error in the DSF is negligible, for
all imperfections models, as it was found for the short range
TFIM.

In Fig. 7 we show the integrated error (30) as a function of
the interaction range α for the models corresponding to evo-
lution imperfections. Fig. 7(a) show the error for the case of
laser intensity fluctuations, while Fig. 7(b) and (c) show the
random fields and random interactions respectively. In both
cases we see two regimes, where the error drastically changes
for 1 < α < 3, while it stabilizes for α > 3. For the laser
intensity fluctuations, the error monotonically increases in the
first regime, and saturates in the second. On the other hand,
the opposite behaviour is observed for the lattice imperfec-
tions, where the error decreases as a function of α.

While the errors change as the value of α is modified, at
the imperfection levels present in the current architectures the
integrated error is negligible, indicating that the DSF at all
values of α can be probed using these setups and the measure-
ment would yield accurate results.

A. System size scaling for long range models

Now we concentrate on the scaling properties of the DSF
of the long range TFIM. We study system sizes ranging from
L = 9 to L = 14 sites employing full exact diagonaliza-
tion, and analyze how the integrated error changes with size.
Since current architectures can simulate up to approximately
50 sites16,17, this is a playground in which the DSF can be em-
ployed to explore the potential of dynamical analogue quan-
tum simulators. We show the scaling properties of the error
for α = 1.5 and α = 6. In Fig. 8 we show the integrated error
originating from the evolution imperfections, as a function of
system size, for the two aforementioned values of α.

For imperfection levels below 10%, the integrated error is
relatively constant over the full range of system sizes stud-
ied here. When the imperfection level is reduced further, be-
low 5% ( within current experimental capabilities), it becomes
negligible for all system sizes and interaction ranges. Our data
suggests that the error remains constant and small at even the
smallest sizes studied here, indicates that the integrated DSF
error is intensive with respect to the system sizes, and as such
we expect that the scaling properties will be maintained for
larger chains. Furthermore, our data indicates that a dynami-
cal quantum simulator can measure the DSF of the long range
TFIM accurately, even in the presence of realistic experimen-
tal imperfections, for system sizes considerably bigger than
what is currently achievable with numerical simulations, thus
paving the way towards a practical quantum advantage.
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VII. CONCLUSIONS

In this work, we propose the observation of dynamical
structure factors as a practical application of dynamical quan-
tum simulators. We have shown that the BQP-hardness of
general local Hamiltonian time evolution is inherited by the
dynamical structure factor, suggesting that its efficient classi-
cal computation might be infeasible also for practically rele-
vant instances. In this endeavour, we build on the measure-
ment protocol of Ref.30 and tomographic ideas, allowing to
measure the DSF in several different quantum architectures.
These architectures include those of trapped ion, Rydberg
atoms, cold atoms in optical lattices, and superconducting
qubits.

To emphasize the feasibility of this approach, we study the
robustness of the DSF against several meaningful models of
experimental imperfections for the short and long range trans-
verse field Ising model (TFIM). Our results for the short range
TFIM indicate that the overall features of the DSF are pre-
served when one considers state of the art setups, their as-
sociated experimental imperfections, and the current level of
control over them. For the long range model, we observe that
the effects of imperfections at the current experimental levels
and for the system sizes studied in this work do not change
the DSF. We have brought our findings into contact with sig-
natures of the exotic physics in the long range TFIM, in par-
ticular the confinement of excitations which has been recently
reported. Unlike previous studies, we observe the signatures
of confinement in both the DSF and correlators in equilibrium,
i.e., without the need to quench the Hamiltonian, with equilib-
rium being a fundamental requirement of our proposed DSF

measurement protocol. Following the study of these imper-
fections we carry out a system size scaling, which indicates
that the errors of the DSF induced by these imperfections are
controlled over the whole range of sizes – remaining small and
constant. This indicates that for the imperfections considered
in this work, a quantum simulation experiment with system
sizes considerably bigger than what state of the art classical
algorithms can achieve is expected to yield accurate results.
We therefore argue that the measurement of DSFs in quan-
tum simulators provides a useful tool to assess time dependent
quantities of key importance in condensed matter physics, and
further place quantum simulators into the realm of quantum
technological devices60. We hope that the present work stim-
ulates further assessments of this quantity in other physical
contexts.
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Appendix A: Platforms considered

1. Rydberg atoms

For a Rydberg atoms setup, we consider the case of an array of trapped cold neutral 87Rb 70S atoms with strong, controllable
interactions. In this case, the atoms are trapped by optical tweezers, and the state of the art architecture can contain up to 51
atoms16. A two-photon process couples the ground state vector |g〉 = 5S1/2|F = 2,mF = 2〉 to a target Rydberg state vector
|r〉70S1/2|mj = 1 − /2〉 of the Rb atoms via an intermediate state. This transition is driven by two lasers detuned from the
Rydberg state. The dynamics of the system is given by16,17

H =
∑
i

Ω

2
σxi −

∑
i

∆ini +
∑
i<j

Vi,jninj , (A1)

where ∆i is a detuning factor away from the Rydberg state, Ωi is the Rabi frequency of the atom at the ith position, σxi =
|gi〉〈ri| + |ri〉〈gi| is the coupling between the ground state and Rydberg state, and ni = |ri〉〈ri|. The interaction strength
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elements Vi,j can also be tuned by varying the distance between them or by coupling them to a different Rydberg state. To
transform this Hamiltonian into an transverse field Ising model61 we just need to identify at each site i, |gi〉 = | ↓i〉 and
|ri〉 = | ↑i〉 such that σxi = (| ↓i〉〈↑i | + | ↑i〉〈↓i |)/2 and σzi = (| ↑i〉〈↑i | − | ↓i〉〈↓i |)/2, with ni = 1/2 + σz . Replacing in
the Hamiltonian, we obtain a transverse field Ising model with a coupling of the form

H =
∑
i

Ω

2
σxi −

∑
i

(1−∆i)ni +
∑
i<j

Vi,jσ
z
i σ

z
j . (A2)

The longitudinal field in the above expression can be suppressed by the detuning factor ∆. The Ising interaction arises from van
der Waals interactions between the atoms when they are both in the Rydberg state, and takes the form Vi,j = −C/r6

i,j , with
ri,j = |i− j|. As such, since the Rydberg atoms are not in the ground state once in the local trap, and the experiment is carried at
a finite temperature, fluctuations in the atomic positions for each atom in each cycle of the experiment are introduced16,17. This
will affect the Ising interaction, Eq. (A2). We finally note that the mean lifetime of a chain scales inversely with the number of
ions, with an average of 5 minutes for a chain of 53 ions.

2. Trapped ions

We will consider here a particular trapped ion setup, where 171Yb are trapped by a linear Paul trap. A 1D spin-1/2 Ising
system in the presence of a transverse field can be engineered19 by the hyperfine ”clock” states 2S1/2|F = 0,mf = 0〉 and
|F = 1,mf = 0〉 which represent the | ↓z〉 and | ↑z〉 eigenstates of σz and are sparated by νf . These ions are trapped by a
linear Paul trap, and their modes of motion are cooled near the ground state. The transverse field and spin-spin interactions can
be obtained applying off-resonant laser beams56,57. A transverse field can be generated by uniformly illuminating the ion chain
with two Raman laser beams whose difference in frequency is tuned to the hyperfine splitting νf . This induces Rabi oscillations
in the ions which are seen as AC Stark shifts in the spin states. On the other hand, the spin-spin interactions are created by
coupling the spin states to the normal modes of motion of the ions by the Raman beams. The beams are made to carry beat note
at frequencies νf ± µ, which generates a spin-dependent force at frequency µ62. As such, controlling the beat note frequency µ,
one can generate Ising interactions with a coupling given by

Ji,j = NΩiΩj

N∑
m=1

ηimηjmνm
µ2 − ν2

m

≈ J0

|i− j|α , (A3)

where Ωi is the Rabi frequency of the ith ion, ηim is the Lamb-Dicke parameter of the mth mode of the ith ion at frequency νm,
and the assumption of |µ − νm| � ηΩ indicating that only virtual phonons are excited. These interactions are not necessarily
uniform, since the Rabi frequency Ωi can vary across the chain and other vibrational models can also contribute considerably.
Furthermore, by tuning µ one can tune α between 0 < α < 3.

Appendix B: Numerical results for position fluctuations and random fields of Rydberg atoms
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Figure 9. Error analysis of the influence of lattice imperfections on DSF for the case of random Ising interactions. (Left panel) Maximum
of the absolute error for the two point correlators integrated in real space. Inset: Average absolute error of the correlators integrated over
real space. (Middle panel) Maximum of the absolute error for the DSF integrated over reciprocal space. Inset: Average absolute error of
the correlators integrated over reciprocal space. (Right panel) Maximum of the absolute error for the DSF integrated over frequency. Inset:
Average absolute error of the correlators integrated over frequency. The DSF results show that the error is concentrated around the gap,
which closes as the value of A is increased. At the same time the correlators have errors which increase in average with time, indicating that
measurements at long times might be unreliable for this quantity.
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Figure 10. Error analysis of the influence of lattice imperfections on DSF for the case of random transverse fields. (Left panel) Maximum
of the absolute error for the two point correlators integrated in real space. Inset: Average absolute error of the correlators integrated over
real space. (Middle panel) Maximum of the absolute error for the DSF integrated over reciprocal space. Inset: Average absolute error of
the correlators integrated over reciprocal space. (Right panel) Maximum of the absolute error for the DSF integrated over frequency. Inset:
Average absolute error of the correlators integrated over frequency. The DSF results show that the error is concentrated around the gap, which
opens as the value of A is increased. As with the previous figures, the average error increases with time, which indicates that measurements at
long times might be unreliable for this quantity for this type of imperfection.

Appendix C: Dynamical structure factors for the short range transverse field Ising
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Figure 11. DSF for the different experimental imperfections for the short range TFIM. (a) Exact solution as obtained from our quasi-free
fermionic calculation for the TFIM without imperfections, the gap is located at q = 0 and ω = π/4, and we observe a clear two particle
continuum for q > 0. (b) Exact solution for the case of globally fluctuating Ising couplings. In this case we observe that the shape of the low ω
sector is slightly modified, but the gap and the two particle continuum can still be observed, though at a lower intensity than for (a). (c) Exact
solution for the case of random Ising interactions. We see how the gap has closed, with the maxima located at q = 0 and ω < π/4,
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Figure 12. DSF for the different experimental imperfections for the short range TFIM. (d) Exact solution for the case of random transverse
fields. We see how the gap has opened, with the maxima located at q = 0 and ω > π/4. (e) Solution for case in which the ground state has
been prepared by an adiabatic evolution for a time τQ = 0.5, well below the adiabatic regime. In this case the intensity of the DSF is greatly
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pattern within the cone. Indicating that errors propagate and delocalize at long times, making a direct study of many-body excitations through
correlation function challenging.

Appendix D: Dynamical structure factors for the long range transverse field Ising
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Figure 14. DSF for the long range TFIM for the values of α = 1.5 (left), 2.5 (middle) and 6 (right). We see that as the value of α increases,
the two particle continuum approaches the cosine form which is expected for the short range TFIM. For α < 2 the continuum has almost
no ω dependence. This can be connected to the presence of excitation confinement in this model, in which the fermionic excitations do not
propagate at short times. Please note two important points. First, as recently reported, it is expected that the excitations relax at long times49

but the time range studied in this work is not sufficiently long to see this effect. Second, unlike in previous studies26,40,49, we observe the
signatures of confinement in both the DSF and correlators in equilibrium, i.e., without the need of quenching the Hamiltonian.

Appendix E: Unequal time correlation function for the long range transverse field Ising
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Figure 15. Correlation function Cx,x
i,5 (t) for the values of α = 1 (top), 1.5 (middle), and 2 (bottom).
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Figure 16. Correlation function Cx,x
i,5 (t) for the values of α = 2.5 (top), 3 (middle), and 6 (bottom).

Appendix F: Numerical results for position fluctuations in the long range TFIM
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Figure 17. Numerical results for random fields in the long range TFIM. Top figures: Maximal error in the DSF for the long range TFIM
with random fields, as obtained from full ED, for the cases α = 1.5 (top left), and α = 2 (top right). For imperfection levels within current
experimental reach, A = 0.01 and 0.05 the error is small and well behaved on the entire q − ω domain. For imperfection levels above 0.05
the DSF is deformed, as evidenced by the maxima in the blue curves. We can compare this results to the bottom figures. Bottom figures: DSF
for the long range TFIM in the presence of random fields, for the case α = 1.5, A = 0.01 (bottom left) and A = 0.4 (bottom right). If we
compare these DSFs to the clean case (left DSF in Fig. 14) we observe no discrepancies between the caseA = 0.01 and the clean case. For the
DSF corresponding to an imperfection level of 40%, A = 0.4 we see that the overall intensity has decreased, and the maxima has broadened
considerably. The broadening of the maxima in the DSF is exhibited in the top left figure as strong and broad peaks in the maximal error as a
function of frequency.
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