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Dominant fifth-order correlations in doped quantum anti-ferromagnets
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Traditionally one and two-point correlation functions are used to characterize many-body systems.
In strongly correlated quantum materials, such as the doped 2D Fermi-Hubbard system, these may
no longer be sufficient because higher-order correlations are crucial to understanding the character
of the many-body system and can be numerically dominant. Experimentally, such higher-order
correlations have recently become accessible in ultracold atom systems. Here we reveal strong non-
Gaussian correlations in doped quantum anti-ferromagnets and show that higher order correlations
dominate over lower-order terms. We study a single mobile hole in the ¢ — J model using DMRG,
and reveal genuine fifth-order correlations which are directly related to the mobility of the dopant.
We contrast our results to predictions using models based on doped quantum spin liquids which
feature significantly reduced higher-order correlations. Our predictions can be tested at the lowest
currently accessible temperatures in quantum simulators of the 2D Fermi-Hubbard model. Finally,
we propose to experimentally study the same fifth-order spin-charge correlations as a function of
doping. This will help to reveal the microscopic nature of charge carriers in the most debated regime
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of the Hubbard model, relevant for understanding high-T. superconductivity.

Introduction.— High-temperature superconductors are
prime examples of strongly correlated quantum mat-
ter. In these quasi-2D systems superconductivity arises
when mobile dopants are introduced into a parent anti-
ferromagnetic (AFM) compound [1, 2], but the detailed
mechanism remains elusive. It is widely believed that
the interplay of spin and charge degrees of freedom plays
a central role for understanding the underlying physics
at low doping and can be described theoretically by the
Fermi-Hubbard or ¢ — J model [3]. The central goal of
this letter is to demonstrate that key features of magnetic
dressing of doped holes in the Fermi Hubbard model can
be revealed by analyzing five point spin-charge correla-
tion functions. Furthermore, such high order correlation
functions are found to be larger than the lower order ones
in the regime of low doping and low temperatures.

Understanding the nature of charge carriers in strongly
correlated electron systems, such as the doped Fermi
Hubbard model, is a central problem of quantum many-
body physics. While a single mobile hole inside the 2D
quantum-Heisenberg AFM forms a magnetic (or spin-)
polaron [4-16], with spin and charge quantum numbers,
it remains unknown whether spin and charge excitations
(spinons and chargons) may become deconfined in the
strange metal and pseudogap regimes, usually a charac-
teristic of doped 1D spin chains [17-20]. Direct experi-
mental or numerical evidence remains lacking so far.

A common perspective on the puzzling properties of
cuprates is the idea of several competing orders. Thus
numerical studies of the Fermi Hubbard and ¢t — J models
have often focused on the analysis of two point correlation
functions with the goal of characterizing different types of
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FIG. 1. Fifth-order spin-charge correlations in a quan-
tum AFM with a mobile dopant are studied in the 2D ¢t — J
model and compared to the corresponding 4th-order corre-
lators in the undoped Heisenberg AFM (a); We use DMRG
on a 6 x 12 cylinder and evaluate correlators at the center,
in spin-balanced ensembles with ($*) = 0. For one mobile
dopant, genuine 5-th order correlations Cg°" (Eq. (2), blue)
are significantly larger (by a factor x7) than the lower-order
disconnected terms C§*° = C, — C§™ (yellow). In the un-
doped Heisenberg AFM the opposite is true: lower order cor-
relators are dominant, while genuine higher-order correlations
are smaller (x0.4). (b) Spin-charge correlators as a function of
t/J. Our numerical results (data points, bare correlations Cy
in red) are explained by a frozen-spin approximation (FSA)
ansatz (ribbons; width indicates statistical errors).



broken symmetries. Furthermore, two point correlation
functions can be naturally accessed in solid state systems
using scattering experiments [21-23] and they play a cen-
tral role in the development of effective mean-field the-
ories. Recently, with the advent of quantum simulators
based on ultracold atoms and ions, and especially quan-
tum gas microscopes [24-31], analysis of higher-order cor-
relation functions, pioneered in Ref. [32], has become a
new experimental tool in the study of quantum many-
body states [14, 33-38]. They have rarely been studied
so far, even though they contain a wealth of information
about the underlying quantum states and are expected
to become relevant when mean-field theories character-
ized by Gaussian correlations are no longer sufficient for
capturing the physics.

Here, we identify lightly doped quantum AFMs as a
system where genuine higher-order spin-charge correla-
tions are present. Different from the situation in the un-
doped parent spin models, these higher-order correlations
even dominate over lower-order terms when t/.J is suffi-
ciently large, see Fig. 1 (a). Hence they provide a promis-
ing new diagnostic to unravel the nature of charge carri-
ers and distinguish different theoretical models [39]. In-
deed, we show that even non-perturbative effective theo-
ries, such as doped resonating valence bond (RVB) states,
cannot explain the higher-order correlations we find nu-
merically at low doping. Instead, our results can be in-
terpreted as signatures of geometric strings [15, 40] con-
necting spinons and chargons [41-44], reminiscent of an
underlying Zo Gauss law. Physically, strong five-point
correlations indicate that a moving hole leaves behind a
string of flipped spins, as shown in Fig. 2.

In this paper, after introducing the higher-order spin-
charge correlators, we perform DMRG ground state sim-
ulations of one mobile dopant on an extended cylinder.
We then compare the latter to effective theories based
on doped RVB states and the string picture. Finally, we
use exact diagonalization to determine the temperature
required for an experimental verification. In a follow-up
paper we include the effect of a pinning potential [45].

Higher-order correlators.— We consider the following
fifth-order ring spin-charge correlator,
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where 7l is the hole (dopant) density at site r and SZ
denotes the spin operator in z-direction at site j. To
witness the presence of genuine higher-order correlations,
we calculate the connected correlator in the co-moving
frame with the hole (defined in the supplements). In a
spin-balanced ensemble with (§%) = 0 (see discussion in
Ref. [45]), expectation values with an odd number of §*
operators vanish and we obtain
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FIG. 2. The three-pomt spin-charge correlator diago-
nally next to the hole, (7 hgz i ten Sg+e ) (green bubble next to
gray dot), vanishes for a moblle hole moving through a classi-
cal Néel state at the end of an 1nﬁn1tely long S*- strlng The
fifth-order correlations Cly o< (n SHEZ Tte, JZ exS5—e,) TE-
main sizable and negative.

In weakly correlated quantum systems, the values of
higher-order correlation functions are dominated by more
fundamental lower-order correlators. I.e. connected n-th
order correlation functions C5°" decrease with decreasing
n, |C{°"| > |CS°"| > ...; For classical (product) states all
connected correlations vanish C5°" = 0, while in Gaus-
sian systems only C{°", CS°™ £ 0 are non-zero [46].

Magnetic polarons — Intriguingly, for a magnetic po-
laron, formed when a single mobile hole is doped into an
AFM, we find that the disconnected contributions from
the lower-order correlators, Cgisc = Co — CZ", are signif-
icantly smaller in magnitude than the hlgher—order cor-
relators: |Cg#¢| > |Co(r)],|CE"(r)|. In Fig. 1 we show
DMRG results [47]. for the ground state of a single hole
in the ¢t — J [50] model, as a function of ¢/.J. The mobil-
ity of the dopant plays an important role for observing
sizable higher-order spin-charge correlations. As t/J is
increased from ¢t/J = 1 to t/J = 5, the absolute value
of C&°" approximately doubles. Throughout, the prod-
uct of the lower-order two-point correlation functions is
almost an order of magnitude smaller.

We can define related 4th-order correlators in the ab-
sence of doping as Do (r) = 24(S7, . Srie,Sr—e, Sz ey}
a corresponding expression as in Eq. (4) is obtained for
the connected part DZ"(r). In the classical Ising AFM,
Dy =1 and DP" = 0. For the 2D Heisenberg model
we performed DMRG simulations on a 6 x 12 cylinder
and obtain D¢y = 0.12 and DE™" = —0.083 in the ground
state, as indicated in Fig. 1 (a). The connected 4th-
order correlator only becomes negative because we sub-
tract the significantly larger and positive two-point cor-
relators, D¢ = D — DP" = 0.20. As expected for
a weakly correlated quantum system, and different from
the ground state with a mobile hole in the t — J model,
the lower-order correlators dominate in the 2D Heisen-
berg model: They are more than twice as large as the
genuine fourth order correlations.

Orders of magnitude and the signs of Dg:(m) can be un-
derstood from a simple model of spontaneous symmetry
breaking. Consider an ensemble of classical Néel states
with AFM order parameters pointing in random direc-
tions. Because Dy is always measured in the z-basis, we

average over the entire ensemble and obtain
D()‘cl = 0.2, D%OH|C1 = —0.133; (3)

These correlations are purely classical. Quantum fluctu-
ations are expected to further reduce these values in the



SU(2) invariant Heisenberg model, as confirmed by our
DMRG calculations.

Geometric and S?- strings.— Negative 5th-order corre-
lations C§°"(r) < 0 provide a signature of AFM correla-
tions hidden by the motion of dopants. To understand
the origin of such higher-order correlations, we first con-
sider a toy model of a single hole in an Ising AFM point-
ing along the S*- direction. Neglecting string configura-
tions affecting more than one spin in the direct vicinity
of the mobile dopant, we notice that C switches sign if
the hole is attached to a string ¥ of over-turned spins
(S*-string) of length ¢ > 0. Hence C, can be expressed
by the probability pyso for the string to have non-zero
length, namely Co = pr—o — peso or Co ~ 1 — 2p~g.

Assuming that the system is in an equal superposition
of all string configurations, we can estimate various cor-
relation functions. Because the hole is equally likely to
occupy either sublattice, <ﬁ}rlsfiem,y> = 0. Three-point

correlations (ﬁ},}S’iiex’yS’iieIJ = 0 vanish, as can be
seen by averaging over the four possible orientations of
the first string segment, counting from the hole, and ne-
glecting string configurations which affect more than one
spin in the immediate vicinity of the hole, see Fig. 2.
Hence, Eq. (4) implies C*"(r) = Cy(r) =~ —1 for suffi-
ciently many non-zero strings py~o =~ 1.

In this setting, relevant to the 2D ¢t — J, model [40, 51],
C, takes the role of a Zy Gauss law: the mobile dopants
represent Zs charges and the Zs electric field lines cor-
respond to S?-strings of overturned spins. Similarly, in
the SU(2) invariant ¢ — J or Fermi-Hubbard models the
higher-order correlator C¢ serves as an indicator for ge-
ometric strings [15, 40] of displaced spins.

The t/J dependence observed in Fig. 1 can be ex-
plained within the geometric string theory by a frozen-
spin approximation (FSA) ansatz [40]. As in Refs. [52,
53] we start from snapshots of the Heisenberg ground
state in the Fock basis along S* and create a hole by
randomly removing one spin. This dopant is subse-
quently moved through the system in random directions,
re-arranging the positions of the surrounding spins while
keeping their quantum state frozen; the string length dis-
tribution is calculated from a linear string model with
string tension dF/dl = 2J(Cy — Cy) [40], where C () are
nearest (next-nearest) neighbor spin correlations in the
undoped AFM. This way, new sets of snapshots are gen-
erated for every value of t/J, from which the higher-order
correlators can then be obtained [52].

Doped spin liquids.— A class of microscopic variational
wavefunctions that has been used to model doped quan-
tum spin liquids is based on Anderson’s RVB paradigm
[54, 55]. Being able to resolve properties of the many-
body wavefunction on microscopic scales, ultracold atom
experiments provide an opportunity to put the RVB the-
ory to a rigorous experimental test in a clean system.

Here we calculate the higher-order spin charge cor-
relations C’écon) for two paradigmatic doped RVB trial
states. The uniform RVB state starts from an unpo-
larized Fermi sea |FS) of free spin-up and spin-down
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FIG. 3. Comparison of RVB and geometric string trial
states in a 14 x 14 system with SZ,; = 1/2. For the ’plain
vanilla’ uniform and 7-flux RVB states doped with a single
hole (left), C’écon) (from Eq. (4)) is small. The string wave-
function (right), with a weak SU(2) breaking staggered mag-
netization along S?, exhibits larger values of the spin-charge
correlator and shows a strong dependence on the ratio of ¢
and the string tension dE/d¢ = 1.09J [15] which determines
the average length of geometric strings in the trial state. Note
that the doped RVB states have no ¢/J dependence.

spinons fkﬂ. To describe a free hole excitation moving
through the system, one spinon with momentum k and
spin o is removed. A meaningful trial state for the ¢t — J
model, without double occupancies and independent of
t/J, is obtained by applying the Gutzwiller projection:
|YurvB) = Nﬁgwfk7g|FS> normalized by N. We use
standard Metropolis Monte Carlo sampling [56] to evalu-

ate Cécon) in the trial state |¥,gryp), and show our result

in Fig. 3. We find O™ = —0.040(4) with significantly
smaller magnitude than found for large values of ¢/J by
DMRG, cf. Fig. 1.

We find a similar result for the doped m-flux RVB
state [57], for which decent agreement with experimen-
tal data has recently been reported in ultracold atoms
at finite doping [52, 53]. The m-flux state with a single
hole has the same form as the uRVB state above, ex-
cept that the Fermi sea |FS) is replaced by a Dirac semi-
metal of spinons obtained when introducing m magnetic
flux per plaquette in the effective spinon Hamiltonian
[58]. In this case O™ = —0.049(3) slightly increases and
Co = —0.008(3) decreases in magnitude. Both are sig-
nificantly weaker than numerically expected from DMRG
when t > J.

In a recently proposed extension of the RVB ansatz,
geometric strings are included in the trial wavefunction
[15, 59]. Now we demonstrate that the presence of such
geometric strings increases the expected higher-order cor-
relators. We start from the optimized RVB wavefunction
for half filling (no doping) [60, 61], which includes a weak
spontaneously formed staggered magnetization along S*#-
direction. A spinon is removed in the usual way and af-
ter the Gutzwiller projection a geometric string is added
to the hole, thus re-arranging the spins surrounding the
dopant; see Refs. [15, 59] for details.
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FIG. 4. Temperature dependence of the higher-order cor-
relations Cy (red) and the disconnected C§*¢ (yellow) parts
(using Eq. (2)). We compare the corresponding correlators
D, in the undoped Heisenberg model (top) to predictions for
a mobile dopant (with ¢/J = 2), using the FSA based on
Heisenberg quantum Monte Carlo (QMC) snapshots and ED
simulations in a periodic 4 X 4 system.

In Fig. 3 (right panel) we show how Cécon) evaluated
for this string wavefunction depends on the ratio of hole
tunneling ¢ and the linear string tension dE/d¢ underly-
ing the model. When ¢/J = 0 the length of geometric
strings is zero and the observed increase of the higher-
order correlator is due to the staggered magnetization
along S* included in the trial wavefunction. For increas-
ing tunneling ¢ the string length grows and another sig-

nificant increase of C is observed. This supports our
picture that the mobility of dopants leads to long geo-
metric strings, which in turn underly strong higher-order
spin-charge correlations.

FExperimental considerations.— We turn to a discussion
of the limitations and requirements to observe higher-
order correlations in the doped Hubbard model.

Fig. 4 demonstrates how thermal fluctuations suppress
higher-order correlations. We show the lower-order dis-
connected terms C§™ and compare them to the higher-
order correlators Cy, in two cases: For the undoped
Heisenberg model we use quantum Monte Carlo simula-
tions [62]. For a single mobile dopant our predictions are
based on the frozen-spin approximation (FSA / geomet-
ric strings) [40, 52, 53] described above; The correlators
are evaluated from 10? snapshots for each T'/.J. We also
compare to exact diagonalization (ED) calculations in a
4 x 4 system and find good agreement.

In the geometric string theory, Cgisc is approximately
zero up to temperatures T < 0.5J, while the higher-order
correlator Cy is of the order of —0.1. Without a hole, the
disconnected part Dgisc is significantly larger than D, for
these small temperatures. For T' 2> 0.6J the correlations
decay quickly. The relevant temperature range has al-
ready been accessed experimentally [63], and we expect
that more quantum gas microscopes operating in this
regime will follow in the near future [27, 29, 34, 64, 65].

Similar to quantum gas microscopy, the higher-order cor-
relations in Fig. 4 are extracted from snapshots. We
expect that the main experimental challenge will be to
collect sufficient amounts of data to obtain acceptable er-
rorbars. Current experiments offering simultaneous spin-
and charge resolution [36] are very close to the tempera-
ture regime required for observing the higher-order cor-
relations proposed here.

Summary and Outlook.— We propose to study fifth-
order spin-charge correlations to explore the microscopic
nature of charge carriers in the doped Hubbard model
from a new perspective. Such correlators have recently
become accessible in state-of-the-art quantum gas mi-
croscopes. The observables we consider are direct gen-
eralizations of the three-point spin-charge correlators
(S7_,nS%, ) underlying hidden AFM correlations in the
1D doped Hubbard model [66, 67]. We analyze similar
correlations in 2D, which can only be understood by the-
ories with non-Gaussian correlations.

Our numerical studies for a single doped hole reveal
the importance of the hole mobility for establishing such
higher-order correlations and making them become the
dominant spin-charge correlations in the system. In a
subsequent work, we demonstrate this explicitly by con-
sidering the effect of a localized pinning potential for the
hole [45]. Here we also established that doped quan-
tum spin liquids have reduced higher-order correlations,
whereas fluctuating geometric strings can explain the ob-
served enhancement when ¢/J is increased.

An interesting question concerns the behavior of the
higher-order correlations when doping is increased and
numerical studies of the Fermi-Hubbard model become
more challenging [68]. In this regime we propose to mea-
sure the higher-order correlators by state-of-the-art ul-
tracold atom experiments. Such studies can shed new
light on the nature of charge carriers in the pseudogap
and strange-metal [69] regimes or the pairing mechanism
between dopants. They also provide a new experimen-
tal route to distinguish theoretical trial states, e.g. in
the RVB class. While a recent machine-learning analysis
[53] suggests that up to ~ 15% doping a model based on
geometric strings may be favorable compared to doped
m-flux RVB states, further refined experiments as pro-
posed here will be required to establish where and how
the nature of charge carriers changes upon doping.

Our results can be applied to extend studies of the
formation dynamics of magnetic polarons [70-72], or to
investigate correlation effects in Bose polaron problems
in an optical lattice [73]. Other possible extensions in-
clude the study of SU(2) invariant generalizations of the
higher-order spin-charge correlators introduced here.
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We define the connected correlator in the co-moving frame with the hole as,
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where the sums are over disjoint sets of lower-order connected correlators (defined equivalently) involving sites
i,j,k,l = te,, measured relative to the hole. In a spin-balanced ensemble (see discussion in Ref. [45]), the ex-
pectation values (Al AT_H) = 0 vanish and we obtain Eq. (2).

In Fig. 5 we show the connected correlators C§™™ corresponding to the data from Fig. 4.
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FIG. 5. For the data shown in Fig. 4 of the main text, we
plot the connected correlators C5™" (left) and DE™ (right).
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