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Real-time dynamics in 2+1D compact QED using complex periodic Gaussian states
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We introduce a class of variational states to study ground-state properties and real-time dynamics in
(2 + 1)-dimensional compact QED. These are based on complex Gaussian states which are made periodic to
account for the compact nature of the U (1) gauge field. Since the evaluation of expectation values involves
infinite sums, we present an approximation scheme for the whole variational manifold. We calculate the
ground-state energy density for lattice sizes up to 20 × 20 and extrapolate to the thermodynamic limit for the
whole coupling region. Additionally, we study the string tension both by fitting the potential between two static
charges and by fitting the exponential decay of spatial Wilson loops. As the ansatz does not require a truncation
in the local Hilbert spaces, we analyze truncation effects which are present in other approaches. The variational
states are benchmarked against exact solutions known for the one plaquette case and exact diagonalization results
for a Z3 lattice gauge theory. Using the time-dependent variational principle, we study real-time dynamics after
various global quenches, e.g., the time evolution of a strongly confined electric field between two charges after
a quench to the weak-coupling regime. Up to the points where finite-size effects start to play a role, we observe
equilibrating behavior.
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I. INTRODUCTION

Gauge theories are of paramount importance in fundamen-
tal physics. Its most prominent example, the standard model of
particle physics, describes electromagnetic, weak, and strong
interactions. In some regimes, interactions can be treated in
terms of perturbative expansions. However, since the cou-
pling in quantum field theories is typically scale dependent,
there are regimes [e.g., low-energy quantum chromodynamics
(QCD)] where nonperturbative methods are required [1,2].

Lattice gauge theory is a gauge-invariant lattice regular-
ization of gauge theories, in which either space-time [3] or
space [4] is discretized. This has allowed to uncover many
interesting features of nonperturbative quantum field theories,
in particular, using Monte Carlo simulations [5]. Nevertheless,
certain aspects are difficult to study within this framework,
e.g., fermionic theories with finite chemical potentials may
suffer from the sign problem [6] and time dynamics are
difficult to access as Monte Carlo simulations require a for-
mulation in Euclidean space-time.

One class of approaches to these problems is based on
a Hamiltonian formulation of lattice gauge theories, first
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proposed by Kogut and Susskind [4]. Other formula-
tions in the Hamiltonian picture include the quantum link
model [7–10] or the prepotential approach [11]. It has been
shown that these Hamiltonians or truncations [12] thereof
can be mapped to Hamiltonians of quantum devices (e.g.,
ultracold atoms, trapped ions, or superconducting qubits) to
study such theories by quantum simulation [13–16]. Another
option is to study the Hamiltonian by designing appropriate
variational ansatz states which are both efficiently tractable
and capture the most relevant features of the theory.

Both ideas have been successfully applied to one-
dimensional theories. The implementation of quantum sim-
ulators has been demonstrated using trapped ions [17] and
ultracold atoms [18–21]. On the numerical side, there has
been a lot of success in applying matrix product state meth-
ods to (1 + 1)-dimensional Abelian and non-Abelian lattice
gauge theories [22–36], enabling the study of finite chemical
potential scenarios and out-of-equilibrium dynamics which
would not have been accessible in Monte Carlo simulations
of Euclidean lattice gauge theory. Also, some generaliza-
tions of Gaussian states have proven to be suitable for these
theories [37].

The situation becomes more challenging in higher spatial
dimensions, in particular, due to the appearance of magnetic
interactions, leading to four-body plaquette terms on the lat-
tice. There have been ideas on how to overcome this problem
in quantum simulators (either by employing a digital [38–41]
or an analog simulation scheme [42]) but so far they are out
of experimental reach. On the numerical side, tensor network
methods in 2+1D have been applied to pure gauge theo-
ries [43] and for studying U(1) ground states in quantum
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link models [44,45]. It has also been shown that fermionic
Gaussian projected entangled pair states can be gauged [46]
and serve as numerical ansatz states for lattice gauge theo-
ries, admitting a sign-problem free Monte Carlo contraction
scheme [47].

In this paper, we study (2 + 1)-dimensional compact quan-
tum electrodynamics (compact QED). It is a good starting
point for the study of higher dimensional lattice gauge theories
since it shares some features with (3 + 1)-dimensional QCD,
e.g., that it is in a confined phase for all values of the coupling
constant [48]. To access physics difficult to simulate with
Monte Carlo simulation of Euclidean lattice gauge theories,
we not only study ground-state properties but also nonequi-
librium physics, namely, real-time dynamics after a quantum
quench.

Since exact diagonalization (ED) methods become infea-
sible in higher dimensions for reasonable system sizes, in
particular, due to the infinite local Hilbert space of the gauge
field, it seems unavoidable to use variational techniques (in
1+1D, the infinite dimension can be avoided either by inte-
grating out the gauge field nonlocally [29,49,50] or by using
the natural restriction of gauge symmetry, which makes the
dimensions finite [51]).

We choose to work with complex periodic Gaussian states,
a generalization of periodic Gaussian states proposed in
Ref. [52], to prove confinement in the weak-coupling limit
of 2+1D compact QED, thus establishing the existence of
one confining phase for all couplings also in the Hamiltonian
picture (after it had been proven in the action formalism [48]).
As expectation values with respect to periodic Gaussian states
cannot be evaluated analytically, the authors of Ref. [52] used
Feynman diagram techniques to evaluate all relevant quanti-
ties in the weak-coupling regime. In contrast to that approach,
we develop a numerical approximation scheme to evaluate
these states for the whole coupling region. By extending the
variational manifold to complex periodic Gaussian states, we
are also able to account for real-time dynamics. One appealing
feature of these states is that they do not require any truncation
in Hilbert space, which allows us to study truncation effects
which are required in other approaches and give estimates in
which coupling regimes they are justified.

The paper is structured as follows: In Sec. II, we introduce
the model and the variational ansatz including a scheme for
its numerical evaluation. In the first part of Sec. III, we study
ground-state energy density and string tension over the whole
coupling region. In the second part, we investigate truncation
effects by comparing the variational ground-state energy with
exact diagonalization results where the local Hilbert space is
truncated in the electric basis. In Sec. IV, we study real-time
dynamics after a quantum quench using the time-dependent
variational principle. In Sec. V, we conclude.

II. MODEL AND VARIATIONAL ANSATZ

A. (2+1)-dimensional compact QED

We define the theory of (2 + 1)-dimensional compact QED
on a square lattice of extent L × L with periodic boundary
conditions. The gauge fields reside on the links; Ux,i denotes
the gauge-field operator on the link emanating from site x in
direction ei. The Hamiltonian in lattice units takes the follow-

ing form, originally proposed by Kogut and Susskind [4]:

HKS = g2

2

∑
x,i

E2
x,i + 1

2g2

∑
p

2 − (Up + U †
p ), (1)

with g2 being the coupling constant and Up ≡
Ux,1Ux+e1,2U

†
x+e2,1

U †
x,2, where x is the bottom-left corner of

plaquette p. Ux,i is in the fundamental representation of U (1),
it can also be written in terms of an angle θx,i, Ux,i = eiθx,i

with −π < θx,i � π . The restriction of the gauge field to
this compact interval is the reason why the model is called
compact QED and why it exhibits interesting features such as
confinement in contrast to the noncompact theory [53]. Ex,i is
the electric field operator fulfilling the following commutation
relations:

[Ex,i,Uy, j] = δx,yδi, jUx,i,

[θx,i, Ey, j] = iδx,yδi, j .
(2)

Since we work in the temporal gauge, there is a residual
spatial gauge symmetry defined by the Gauss law operators
Gx. All physical states need to be eigenstates of them,

Gx|phys〉 =
2∑

i=1

(Ex,i − Ex−ei,i )|phys〉 = Qx|phys〉 ∀x, (3)

where the eigenvalue Qx gives the static charge
configuration at x.

These local constraints put quite severe restrictions on
the choice of variational states. Following Ref. [52], we
thus change to variables where gauge invariance is already
incorporated (at least up to a global constraint). This can be
achieved by splitting the electric field Ex,i into its transversal
part ET

x,i, which is dynamical, and a longitudinal part EL
x,i

which is fixed by the static charge configuration. Since
the transversal part of the electric field can be expressed
by a plaquette field Lp (the lattice analog of a solenoidal
vector field), the remaining dynamical degrees of freedom
{Lp,Up = eiθp} reside on plaquettes, having the same Hilbert
space structure and fulfilling the same commutation relations
as the link variables:

[Lp,Up′ ] = δp,p′Up′ ,

[θp, Lp′ ] = iδp,p′ .
(4)

The operator Up creates an electric flux excitation around
plaquette p. However, to construct all possible gauge-invariant
flux configurations, two global noncontractible flux loops
around the torus (one for each spatial direction) are required;
their operators are denoted as {θ1, L1} and {θ2, L2}, specifying
the topological sector of the flux configuration. L1 and
L2 commute with the Hamiltonian and we will restrict
ourselves to the topological sector with L1 = L2 = 0, which
corresponds to no electric flux loops winding around the
torus. For more details, see Ref. [54] or Appendix A. Writing
the Hamiltonian in terms of these new variables, reads

HKS = EC + 1

g2

∑
p

(1 − cos θp)

+ g2

2

∑
p

2∑
i=1

(Lp − Lp−ei + εp − εp−ei )
2, (5)
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where EC is an energy offset given by the lattice Coulomb
energy and εp accounts for the transversal part of the electric
field caused by the static charges only, i.e., εp = 0 in case
of no static charges. Even in this formulation, there is
one remaining global constraint left which is intuitively clear
since raising the electric flux around all plaquettes should
return the same state due to the periodic boundary conditions.
Thus, ∏

p

Up|phys〉 = |phys〉. (6)

For details on this formulation, we refer the reader to
Refs. [52,54]. A rigorous derivation of Eq. (5) from Eq. (1)
and an explicit formula for the calculation of εp and EC can
be found in Appendix A.

B. The variational ansatz

We formulate our variational ansatz states in terms of the
θp variables defined above such that it only needs to fulfill
the global constraint Eq. (6). Starting from periodic Gaussian
states introduced in Ref. [52], we extend the variational wave
function to have an imaginary part to account for real-time
dynamics. The ansatz is based on a complex Gaussian state,

�CG({xp}) ≡ e− 1
2

∑
p,p′ xpApp′ xp′−i

∑
p εpxp , (7)

with xp ∈ R and p = (p1, p2), p1, p2 ∈ [0, .., L − 1]. The
linear part in the exponent, i.e., εp, is fixed by the static charge
configuration (see Sec. II A and Appendix A) and

App′ ≡ 1

πL2

L−1∑
k1,k2=0

e2π i
(p1−p′1 )k1+(p2−p′2 )k2

L
(
γ R

k + iγ I
k

)
(8)

is defined by the variational parameters {γ R
k } and {γ I

k}. In
the following, we will use the shorthand notation pk ≡
2π

p1k1+p2k2

L . Since the disorder introduced by static charges
is incorporated in εp, the quadratic part A is assumed to be
translationally invariant. The factor of 1/π is chosen for later
convenience.

Written in terms of Fourier components xk =
1
L

∑
p eipkxp, the quadratic part in the exponential becomes∑

p,p′ xpApp′xp′ = 1
π

∑
k |xk|2(γ R

k + iγ I
k ). Thus, to guarantee

convergence of �CG, we need to require γ R
k > 0 ∀k. Since

|xk|2 = |x−k|2, the variational parameters γ
R/I
k and γ

R/I
−k are

redundant. We define the equivalence relation

k ∼k k′ if k1 = −k′
1 (mod L)

and k2 = −k′
2 (mod L).

(9)

With the quotient set K ≡ {[0, .., L − 1]2 \ (0, 0)}/∼k , we
can define a set of independent variational parameters,
{γ R/I

k }k∈K. Choosing a set of independent parameters will be
important later on for applying the time-dependent variational
principle (see Sec. IV A).

To construct a suitable ansatz state for compact U (1) gauge
fields (θp ∈ [−π, π ]), we sum over complex Gaussian states,

thus ensuring periodicity:

�CPG({θp}) ≡
∏

p

⎛
⎝ +∞∑

Np=−∞

⎞
⎠�CG({θp − 2πNp})

× δ

(∑
p

θp − 2πNp

)
. (10)

The delta function needs to be included to satisfy condition
Eq. (6) for physical states. To shorten notation, we will denote
the product over infinite sums

∏
p

∑+∞
Np=−∞ by

∑
{Np} and the

product over integrals
∏

p

∫ π

−π
dθp by

∫ π

−π
Dθ . The Gaussian

nature of the wave function is exploited when evaluating ex-
pectation values of observables O by combining the integral
over 2π with one of the two infinite sums to an integration
over the real axis:

〈�CPG|O|�CPG〉 =
∑
{Np}

δ

(∑
p

Np

)
fO({Np}) (11)

with

fO({Np}) ≡
∫ +∞

−∞
Dθ �CG(θp − 2πNp)O(θp)�CG(θp)

× δ

(∑
p

θp

)
. (12)

The integral fO({Np}) can be carried out analytically and the
remaining infinite sum needs to be evaluated numerically.

Exemplary, we show this procedure for the norm of the
variational state, 〈�CPG|�CPG〉. The computation of observ-
ables follows analagously; details on their exact form can be
found in Appendix C. After carrying out the integrals, the
remaining function f1({Np}) is

f1({Np}) =
∏
k 
=0

√
π

γ R
k

e2π i
∑

p εpNp e−π
∑

k |Nk|2γk,
(13)

with Nk ≡ 1
L

∑
p eipkNp the discrete Fourier transform of Np

and γk ≡ γ R
k + (γ I

k )2(γ R
k )−1. The γk parameters determine

how fast contributions to the sum in Eq. (11) decrease expo-
nentially with increasing |Nk|2.

We group the configurations Np of this sum in different or-
ders such that within one order the configurations only change
up to permutations. Since all relevant configurations will con-
tain mostly zeros, we will denote orders by nonzero elements,
e.g., {N}1 is the set of all permutations of the configuration
N ′ defined by N ′

p=0 = 1 and N ′
p 
=0 = 0, i.e., {N}1 ≡ SN ′ . If the

parameters γk are large enough, the sum can be approximated
by orders having small Euclidean norm, ||Np||22 = ∑

p |Np|2 =
||Nk||22. The higher number of permutations in orders with
larger norm cannot compensate for the exponential suppres-
sion (this would not be the case if the γk were arbitrarily
small). Using this scheme, the constraint δ(

∑
p Np) is useful

since it excludes many orders, e.g., {N}1 or {N}−1. The order
with the lowest nonzero norm is therefore {N}1,−1. In fact, the
sum in Eq. (11) can be expanded in orders containing only
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pairs of 1,−1:

〈�CPG|�CPG〉

=
∏
k 
=0

√
π

γ R
k

∑
{Nk=0=0}

e2π i
∑

p εpNp e−π
∑

k |Nk|2γk

=
∏
k 
=0

√
π

γ R
k

(
1 +

∑
{N}1,−1

e2π i
∑

p εpNp e−π
∑

k |Nk|2γk

+
∑

{N}1,1,−1,−1

e2π i
∑

p εpNp e−π
∑

k |Nk|2γk + ..

)
. (14)

∑
{Nk=0=0} denotes the sum over the set of all Np configu-

rations with Nk=0 = 0, i.e., fulfilling the global constraint.
For sufficiently large γk higher orders of the type {N}2,−2 or
{N}−2,1,1 are exponentially suppressed as well as orders with
a large number of 1,−1 pairs. Thus, the above expansion can
be truncated after the first few terms. Each of the remaining
orders is evaluated numerically. The fact that configurations
only change up to permutations within one order can be used
to highly parallelize the computation. On an 8 × 8 lattice,
we are able to compute the first three orders exactly. This
procedure is sufficient for most configurations of variational
parameters with γk � 1. However, in the intermediate regime
γk ≈ 1 more orders are required to obtain good convergence.
In these cases, higher orders are computed using uniform sam-
pling. Since for all our purposes the different γk parameters
were of the same order of magnitude and the Np configurations
only change up to a permutation within an order, a uniform
probability distribution is a suitable ansatz for the exponential
in Eq. (13). This is only the case for sampling within one
order; it would fail if one tried to sample the whole sum. This
combined approach of exact evaluation and uniform sampling
has the advantage that it introduces almost no errors for most
of the variational manifold (up to truncated orders which are
exponentially suppressed) and even for regions where uniform
sampling is required, the error is still suppressed since it only
occurs in higher orders. For a detailed error analysis due to
truncating orders and uniform sampling, see Appendix B.

When the γk become small, the above approximation fails.
In that case, one can exploit the fact that 〈�CPG|�CPG〉 can
be written as a multidimensional Riemann theta function [55]
which is defined as

θ (z|�) =
∑

N∈Zg

e2π i(z·N+ 1
2 N ·�·N ), (15)

where z ∈ Cg, � ∈ Cg×g, such that � = �T and Im(�) is
strictly positive definite. To bring 〈�CPG|�CPG〉 into this form,
one can rewrite the delta function as the limit of a Gaussian
and exchange the limit with the infinite sum due to uniform

convergence. One can now exploit invariance of the Riemann
theta function under modular transformations, in particular,
the following relation holds (for details, see Ref. [55]):

θ (z|�) = 1√
det(−i�)

e−iπz·�·zθ
(
�−1z

∣∣ − �−1
)
. (16)

If we insert this relation and take the limit, we obtain

〈�CPG|�CPG〉 =
∏
k 
=0

√
π

γ R
k γk

∑
{Np}

e−π
∑

k |Nk−εk|2γ −1
k

≡
∑
{Np}

finv,1({Nk 
=0}), (17)

with γ −1
0 = 0. The exponential weight depends now on γ −1

k ,
which allows us in principle to approximate the sum with
only a very limited number of orders for sufficiently small
γk. However, the sum is not well defined since all constant
configurations Np = c(1, 1, ..., 1) have weight one for c ∈ Z.
Fortunately, since all finv,O({Nk 
=0}) are independent of Nk=0
(as a result of the global constraint on physical states), all
these configurations can be factored out such that they cancel
when calculating expectation values. This can be formulated
rigorously by defining an equivalence relation for Np configu-
rations:

Np ∼1 N ′
p if ∃ c ∈ Z s.t. Np − N ′

p = c(1, 1, ..., 1).
(18)

When calculating expectation values of observables, only
a sum over representatives of this equivalence relation is
required:

〈�CPG|O|�CPG〉
〈�CPG|�CPG〉 =

∑
{Np}/∼1

finv,O({Nk 
=0})∑
{Np}/∼1

finv,1({Nk 
=0})
. (19)

If we choose the representative to be the one closest in norm
to the Np = 0 configuration, we can expand the sum again in
orders having mostly zeros. In this case, we have no constraint
so all orders must be taken into account. For more details, see
Appendix B.

A nice way to check the validity of both numerical approx-
imation schemes presented above is to see whether they agree
in the parameter region γk ≈ 1. This check has been carried
out throughout this paper since it also indicates that the whole
variational manifold can be accessed, which is required to
study the whole coupling region.

To illustrate that both approximation schemes complement
each other, we give the variational energy of �CPG with re-
spect to the Kogut-Susskind Hamiltonian given in Eq. (5),
written both in the infinite sum representation for high and
for low γk:

〈�CPG|HKS|�CPG〉
〈�CPG|�CPG〉 = EC + g2

4π

∑
k

γk

(
4 − 2 cos

(
2πk1

L

)
− 2 cos

(
2πk2

L

))

− g2

2

∑
k

γ 2
k

(
4 − 2 cos

(
2πk1

L

)
− 2 cos

(
2πk2

L

))
〈|Nk|2〉

+ 1

g2

∑
p

(
1 − e− π

4L2

∑
k 
=0 (γ R

k )−1

〈
(−1)Np cosh

(
π

∑
k

Re(Nkbp
k )

)〉)
, (20)
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with bp
k = 1

L γ I
k (γ R

k )−1e−ipk. The brackets denote the infinite sums:

〈|Nk|2〉 ≡
∑

{Nk=0=0} e2π i
∑

p εpNp e−π
∑

k′ |Nk′ |2γk′ |Nk|2∑
{Nk=0=0} e2π i

∑
p εpNp e−π

∑
k′ |Nk′ |2γk′

= 1

2π
γ −1

k

(
4 − 2 cos

(
2πk1

L

)
− 2 cos

(
2πk2

L

))

− γ −2
k

∑
{Np}/∼1

e−π
∑

k′ |Nk′−εk′ |2γ −1
k′ |Nk − εk|2∑

{Np}/∼1
e−π

∑
k′ |Nk′−εk′ |2γ −1

k′
(21)

〈
(−1)Np cosh

(
π

∑
k

Re
(
Nkbp

k

))〉
=

∑
{Nk=0=0}(−1)Np cosh

(
π

∑
k Re

(
Nkbp

k

))
e2π i

∑
p εpNp e−π

∑
k |Nk|2γk∑

{Nk=0=0} e2π i
∑

p εpNp e−π
∑

k |Nk|2γk

=
∑

{Np}/∼1
e−π

∑
k

(
|Nk−εk− 1

2
p
k|2− 1

4 |bp
k|2

)
γ −1

k cos
(
π

∑
k γ −1

k Re
[(

Nk − εk − 1
2

p
k

)
bp

k

])
∑

{Np}/∼1
e−π

∑
k |Nk−εk|2γ −1

k

(22)

with 1
2

p
k = 1

2L e−ipk. If we set γ I
k = 0 ∀k the expressions for

high γ R
k , i.e., with the sums

∑
{Nk=0=0}, agree with the results

given in Ref. [52] up to redefinitions. It is important to em-
phasize that the convergence of infinite sums is determined
by γk = γ R

k + (γ I
k )2(γ R

k )−1 or γ −1
k , respectively. For real-time

evolutions, e.g., a quantum quench, (γ I
k )2 will typically be-

come large and so will γk, irrespective of the real part γ R
k . This

allows us to already truncate the expansion in Eq. (14) after
the first term such that everything can be evaluated without
resorting to sampling. This property makes the ansatz well
suited for real-time evolution compared with other methods
where sampling at all times often makes it difficult to reach
long times.

III. STATIC PROPERTIES

In this section, we study the variational ground state of
2+1D compact QED over the whole coupling region. To
minimize the energy, we applied a gradient descent algorithm
(the formula for the gradient can be found in Appendix C).
We used different initial seeds to prevent the possibility of
getting stuck in local minima. To make sure that our vari-
ational state can approximate the ground state, we compare
it first to known exact results. One should note that exact
diagonalization methods cannot be applied to the full theory
since the local Hilbert space is infinite. However, for the case
of a single plaquette, exact analytical solutions are known,
namely, the Mathieu functions.

A. Benchmark for one plaquette

For benchmarking our variational ansatz, we will restrict
ourselves to the sector without static charges. The Hamilto-
nian given in the formulation of the previous chapter, written
in the basis of θ , reads

H1plaq = −2g2 ∂2

∂θ2
+ 1

g2
(1 − cos θ ). (23)

The corresponding Schroedinger equation for ξ (θ ) can be
written as a Mathieu equation,

(
∂2

∂z2
+ a − 2q cos(2z)

)
ξ̃ (z) = 0, (24)

with q ≡ − 1
g4 , a ≡ 2

g2 (E − 1
g2 ) and ξ̃ (z) ≡ ξ (θ/2). ξ̃ is there-

fore not 2π periodic but π periodic. The π -periodic solutions
are usually separated into even ce2r (z, q) (r � 0) and odd
se2r (z, q) (r � 1) solutions. The lowest energy, i.e., the lowest
characteristic value a, corresponds to the solution ce0(z, q).
In Fig. 1, this exact ground-state energy is plotted against
the minimized variational energy. They agree very well over
the whole coupling region—even in the regime where the
difference is maximal (g2 ∼ 0.7), the relative error is still
around 0.5%.

FIG. 1. Benchmark of the variational ground state energy for
one plaquette against the value of the exact ground state, given by
the Mathieu function with the lowest characteristic value. The inset
shows the relative error of the variational ground state energy with
respect to the exact ground-state energy.
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FIG. 2. Ground-state energy density extrapolated to the thermo-
dynamic limit. The available lattice sizes are 8 × 8 for couplings
g2 � 1.0, 14 × 14 for g2 = 0.8, 0.9 and 20 × 20 for g2 � 0.7.

B. Ground-state properties

In this section, we study the properties of the variational
ground state for an extended lattice and investigate its finite-
size effects. We start by studying the ground-state energy
density e0(L) for lattice sizes up to 8 × 8 plaquettes with-
out static charges. We see that for couplings g2 � 1.0, this
size is already enough to get a linear scaling with 1

L2 . The
thermodynamic limit e0(L = ∞) is then extracted with the
following fit:

e0(L) = e0(L = ∞) + a

L2
. (25)

For large couplings, the thermodynamic limit can be reached
with even smaller lattice sizes. The region which limits the
evaluation of our variational state to 8 × 8 is around g2 ∼
1.1 since the variational parameters are of order one (γ R

k ∼
1, γ I

k = 0) and thus both approximation schemes agree (see
Appendix B). Hence, for couplings below this transition re-
gion, we can simulate larger lattices, namely, 14 × 14 for
g2 = 0.8, 0.9 and 20 × 20 for 0.1 � g2 � 0.7. For such lattice
sizes, the finite-size effects again become small enough to
extrapolate to the thermodynamic limit. The result for the
ground-state energy density in the thermodynamic limit over
the whole coupling region is shown in Fig. 2. To illustrate,
we show the extrapolation to the thermodynamic limit for
g2 = 0.5 and g2 = 2.0 in Fig. 3.

In the next step, we study the string tension over the whole
coupling region. We can measure it in two ways: First, we
place static charges and analyze the scaling of the ground-state
energy depending on the distance between static charges. We
will fit the potential with the following function:

V (d ) = σd + bVCoul(d ), (26)

where σ is the string tension and VCoul is the lattice Coulomb
potential in two dimensions, which becomes a logarithmic
potential in the continuum limit. The values for V (d ) are com-
puted as the difference between the ground-state energy with
static charges separated by a distance d and the ground-state
energy without static charges. Exemplary, we show the fit of
the potential for g2 = 2.0 in Fig. 4.

FIG. 3. Finite-size scaling for the ground-state energy density at
g2 = 0.5 (a) and g2 = 2.0 (b). For g2 = 2.0, the ground-state energy
density for L = 8, 7, 6 is fitted according to Eq. (25). The remaining
data points correspond to L = 5, 4, 3. For g2 = 0.5, lattice sizes of
L = 20, 18, 16 are used for the fit, the remaining data points corre-
spond to L = 14, 12, 10.

In the second approach, we use the scaling of spatial Wil-
son loops to extract the string tension. This works at zero
temperature since on the Euclidean lattice, spatial and tem-
poral Wilson loops are related by O(4) symmetry. At finite
temperature, this symmetry is broken due to a compactified
temporal dimension [56]. The formula to calculate Wilson
loops of arbitrary size with complex periodic Gaussian states
in both the low and high γk approximation can be found
in Appendix C. On 8 × 8 lattices, we consider all rectan-
gular loops R1 × R2 with R1, R2 � 4 (four is the maximal
physical length due to the periodic boundary conditions).
Furthermore, we require |R1 − R2| � 1 to avoid additional
finite-size effects coming from an asymmetry in the edges.
For weak couplings, where larger lattices are accessible,
we extend the allowed maximal edge length to 7 and 10
(for 14 × 14, respectively, 20 × 20). We fit the Wilson loop

FIG. 4. The static potential V (d ) of two charges separated by a
distance d at g2 = 2.0. The data points are computed on an 8 × 8
lattice as the difference between the ground-state energy with the
respective static charge configuration and the ground-state energy
without static charges. The red line is a fit to the potential according
to Eq. (26) with σ = 1.001 and b = 0.146.
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FIG. 5. The data points show different spatial Wilson loops
〈W (R1, R2)〉 in the ground state at g2 = 0.5, computed on a 20 × 20
lattice, as a function of the area R1 × R2. The maximally used edge
length of a Wilson loops is 10 (R1, R2 � 10), with a maximum
difference between the edges of one (|R2 − R1| � 1). The red line is
a fit to the exponential decay of Wilson loops according to Eq. (27)
with σ = 0.013, a = 0.132, and c = 0.349.

scaling according to the following formula:

W (R1, R2) = e−σR1R2−2a(R1+R2 )+c. (27)

The first term corresponds to area law scaling with string
tension σ and the second term to perimeter law scaling. To
illustrate the procedure, we show the fit for the ground state at
g2 = 0.5 in Fig. 5. We also tried to extract the string tension
via Creutz ratios [57] but the results were less reliable than the
Wilson loop fits.

The result for both approaches is shown in Fig. 6. For large
values of the coupling constant, the fit for the static potential
works well and agrees with the strong-coupling prediction
g2

2 . Since a large coupling implies a significant distance from
the continuum limit, moderate lattice sizes are sufficient to

FIG. 6. String tension fitted via the static potential (blue) and
via the decay of spatial Wilson loops (orange). For larger couplings
(g2 � 1.5), the static potential fit performs better than the fit of
Wilson loops and agrees with the strong-coupling prediction g2/2.
For small couplings (g2 � 1.4), Wilson loop fits are more suitable.
The more reliable method is shown with full data points while data
points of the other method are made transparent.

FIG. 7. String tension in the weak-coupling regime. While the
Wilson loop fits show exponential decay of the string tension close
to the theoretical value (ν0 = 0.318 compared to ν0,theo = 0.321), the
static potential fits become unreliable for couplings g2 � 0.6.

observe the onset of the linear part of the potential. The scaling
of Wilson loops is prone to errors in that regime as expectation
values of large Wilson loops become close to machine preci-
sion. However, for small couplings the Wilson loop scaling is
the better method since expectation values of Wilson loops do
not decay as fast due to the small string tension. Since both
methods complement each other we chose to make the string
tension data for the static potential transparent for couplings
g2 � 1.5 and the ones extracted by Wilson loops scaling for
g2 > 1.5. The remaining full data points in Fig. 6 are the most
reliable estimates for the string tension.

For small couplings, an exponential decay of the string
tension is expected according to the formula [58]

σ = c

√
g2

π2
e
− π2

g2 ν0
. (28)

If we fit this formula to the string tension data of the Wil-
son loop fits between 0.5 � g2 � 0.9 (see Fig. 7), we obtain
c = 23.53 and ν0 = 0.318, which is close to the theoretical
prediction (ν0,theo = 0.321) [59].

C. Truncation effects

Since our wave function does not require a truncation, we
can study truncation effects of other methods. Here, we will
focus on a truncation in the electric basis. To see these effects,
we will study the variance of the electric field operator. For
simplicity, we will look at this effect without static charges,
since they only introduce ε shifts (−1/2 < ε < 1/2) in the
electric field. Since the expectation value of the electric field
vanishes in the absence of static charges, we can write the
variance in terms of the electric energy:

Var(Ex,i ) = 〈
E2

x,i

〉 − 〈Ex,i〉2 = 1

L2g2
〈HE 〉. (29)

The variance is plotted in the inset of Fig. 8 for the ground
state which was computed in the last section. To quantita-
tively show the difference, we compare our variational state
to an exact diagonalization calculation of a Z3 lattice gauge
theory. To reduce the required Hilbert space dimension, we
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FIG. 8. Comparison of the ground-state energy density on a
3 × 3 lattice without static charges, computed for a Z3 lattice gauge
theory by exact diagonalization (orange) and for the full U (1) theory
by minimizing the variational energy (blue). The inset shows the
variance of the electric field on a link in the variational ground states.

formulate it in terms of plaquette variables, in the same style
as we did for the U (1) theory. The Hilbert space is truncated
in the eigenbasis of Lp to three states (corresponding to the
eigenvalues m = 0, 1,−1). To make this a consistent theory,
we define the gauge field operators cyclically:

U †
p |m〉 = |m′〉 with m′ = m + 1 (mod 3). (30)

This is equivalent to a Z3 lattice gauge theory formulated in
link variables,

HZ3 = g2

6

∑
x,i

(2 − Px,i − P†
x,i ) + 1

2g2

∑
p

(2 − Qp − Q†
p),

(31)

with Qp ≡ Qx,1Qx+e1,2Q†
x+e2,1

Q†
x,2 where x is the vertex at

the bottom left corner of plaquette p and Qx,i the cyclic raising
operator of the electric field on link (x, i), such that (see
Ref. [60] for details)

PN
x,i = QN

x,i = 1, P†
x,iPx,i = Q†

x,iQx,i = 1,

P†
x,iQx,iPx,i = ei 2π

3 Qx,i . (32)

The maximal lattice size we can achieve in our ED calculation
for a reasonable amount of time is 3 × 3 plaquettes. We cal-
culate the ground-state energy density for this lattice size with
ED and our variational ansatz. The result is shown in Fig. 8.
The two approaches exhibit good agreement in the strong cou-
pling regime. For intermediate couplings differences becomes
more pronounced leading to qualitatively different results in
the weak-coupling limit g → 0.

Since the electric Hamiltonian becomes bounded in the
truncated theory, it does not contribute in the weak coupling
limit. In the U (1) theory, however, the electric Hamiltonian is
unbounded and the growth in electric energy leads to a finite
result for the ground-state energy in the continuum limit.

IV. REAL-TIME DYNAMICS

In this section, we study out-of-equilibrium dynamics by
applying the following quench protocol: We prepare the

ground state for the compact QED Hamiltonian at some cou-
pling g2, quench to a Hamiltonian with a different coupling
constant g2

quench, and observe the subsequent time evolution.
The observables we track during the evolution are Wilson
loops and the electric field (their expectation values in terms
of the variational parameters can be found in Appendix C). In
addition, we check whether the energy is conserved through-
out the whole time evolution.

A. Time-dependent variational principle

To study dynamical phenomena, we employ the time-
dependent variational principle. The equations of motion are
projected onto the tangent plane of our variational manifold.
For every variational parameter γ

R/I
k , we define a corre-

sponding tangent vector |�R/I
k 〉 ≡ P� ( ∂

∂γ
R/I
k

|�CPG〉), where

P� ensures orthogonality to |�CPG〉:
P� (|ψ〉) ≡ |ψ〉 − 〈�CPG|ψ〉|�CPG〉. (33)

If we restrict the momenta k of the variational parameters
to the set K defined in Eq. (9), all tangent vectors become
linearly independent. This allows us to invert the Gram ma-
trix Gk′k ≡ 〈�R

k′ |�R
k 〉 with k, k′ ∈ K. Since our variational

manifold is Kähler, we can express the time evolution of the
variational parameters γ

R/I
k (k ∈ K) in the following way [61]:

i
(
γ̇ R

k + iγ̇ I
k

) = 1

2

∑
k′∈K

(G−1)kk′

(
∂E

∂γ R
k′

+ i
∂E

∂γ I
k′

)
, (34)

with E ≡ 〈�CPG|HKS |�CPG〉
〈�CPG|�CPG〉 the variational energy in Eq. (20) and

γ̇ ≡ ∂γ

∂t . The formula for the calculation of the Gram matrix
and the gradient of the variational energy can be found in
Appendix C.

B. Benchmark of variational ansatz

Since we are dealing with a variational ansatz, one should
try to test it against exact results. For a comparison, we use
the exact diagonalization results of the Z3 theory. Since the
truncation in the electric basis already led to significant differ-
ences in the ground-state energy for intermediate coupling and
time dynamics increase the variance in the electric field, we
can only expect reasonable agreement for a quench within the
strong coupling region. We choose to quench the Hamiltonian
from g2 = 2.5 to g2 = 4.0. The result is shown in Fig. 9. Even
though truncation effects might still play a minor role in that
quench, the comparison shows that the variational state can
approximate amplitude and frequency of the oscillation.

C. Quench dynamics

We start with quenches in the weak-coupling regime where
finite-size effects are most pronounced. We are interested in
the maximal time up to which we can extract physics in the
thermodynamic limit before boundary effects due to our finite
lattice start to play a role. To compute that point in time,
we perform the same quench on different lattice sizes and
check where they start to deviate from each other. To easily
compare observables for different lattice sizes, we restrict
ourselves to the sector without static charges. We will focus
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FIG. 9. Benchmark of the variational time evolution of the 1 × 1
Wilson loop after a quench from g2 = 2.5 to g2 = 4.0 on a 3 × 3
lattice. It is compared with the time evolution of Z3 lattice gauge
theory computed by exact diagonalization (the truncation from U (1)
to Z3 should only play a minor role in the strong-coupling regime).

on tracking the 1 × 1 Wilson loop during time evolution. We
probed two different quenches, one from g2 = 0.8 to g2 = 0.5
for an 8 × 8, 10 × 10, and 12 × 12 lattice (shown in Fig. 10)
and another one from g2 = 0.6 to g2 = 0.3 for lattice sizes of
16 × 16, 18 × 18, and 20 × 20 (shown in Fig. 11). The time
evolution on the 8 × 8 lattice agrees with the 12 × 12 lattice
up to tmax,8 ∼ 3.8, the 10 × 10 lattice up to tmax,10 ∼ 4.8. The
energy is conserved for all lattice sizes up to a relative error of
the order 10−3. During the time spans where we can reliably
extract the time evolution, the Wilson loops indicate equili-
brating behavior. This statement is supported by the second
quench, where the smaller coupling constants allow us to
reach larger lattices. The 16 × 16 and 18 × 18 lattice agree
with the 20 × 20 lattice up to tmax,16 ∼ 8.5 and tmax,18 ∼ 9.5.
The energy is conserved up to a relative error of 10−6. We
can only make a statement about the equilibration of Wilson
loops since we do not have access to thermal expectation
values. An interesting direction for future research would be
to check whether the Wilson loops thermalize. For the calcula-
tion of thermal expectation values, one could use Monte Carlo

FIG. 10. Variational time evolution after a quench from g2 = 0.8
to g2 = 0.5 for lattice sizes of 8 × 8, 10 × 10, and 12 × 12. The inset
shows the relative error in energy E with respect to the initial energy
E0 after the quench.

FIG. 11. Variational time evolution after a quench from g2 = 0.6
to g2 = 0.3 for lattice sizes of 16 × 16, 18 × 18, and 20 × 20. The
inset shows the relative error in energy E with respect to the initial
energy E0 after the quench.

simulations which have been proven successful in computing
thermal properties in lattice gauge theory [62,63].

In the next step, we look at a quench from weak to strong
coupling (g2 = 0.5 to g2 = 4.0) for an 8 × 8 lattice without
static charges. We track the time evolution of quadratic Wilson
loops with edge sizes ranging from one to four. The result is
shown in Fig. 12. Although all Wilson loops equilibrate at
zero on short timescales (between teq,4 ∼ 0.2 for the 4 × 4
Wilson loop and teq,1 ∼ 0.5 for the 1 × 1 Wilson loop), we
carried out the same evolution on a 7 × 7 lattice and found the
same behavior.

The coupling constant at g2 = 4.0 is large enough to ap-
proximate the spectrum by the strong-coupling limit g2 → ∞,
where the eigenstates |n〉 become diagonal in the electric basis
(this can be seen, e.g., in the spectrum of the Z3 theory which
is available due to exact diagonalization). In this limit, the
thermal expectation value of Wilson loops vanishes trivially:

〈W (C)〉th = 1

Z

∑
n

e−βEn〈n|
∏
p∈C

1

2
(Up + U †

p )|n〉 = 0. (35)

FIG. 12. Variational time evolution of the 1 × 1, 2 × 2, 3 × 3
and 4 × 4 Wilson loop after a quench from g2 = 0.5 to g2 = 4.0 on
an 8 × 8 lattice. The inset shows the relative error in energy E with
respect to the initial energy E0 after the quench.
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FIG. 13. Variational time evolution on an 8 × 8 lattice after a
quench from g2 = 4.0 to g2 = 0.5 with a positive charge placed
at (x1 = 2, x2 = 4) and a negative charge at (x1 = 6, x2 = 4). We
measure (a) the 1 × 1 Wilson loop at the origin W (1, 1) and (b) the
electric field on a link between the two charges E1(2, 4). The red
dashed line represents the Coulomb value of the electric field. The
inset shows the relative error in energy E with respect to the initial
energy E0 after the quench.

For this special quench, we can thus verify that the Wilson
loops equilibrate at their thermal expectation value.

The next quench we will study is from strong to weak
coupling. We quench on an 8 × 8 lattice from g2 = 4.0 to
g2 = 0.5 with static charges horizontally separated by four
links. Besides the 1 × 1 Wilson loop at the origin, we ob-
serve how the electric field of the ground state at g2 = 4.0,
a strongly confined fluxtube, evolves after the quench, in
particular the electric field E1(x1 = 2, x2 = 4) (one of the
links inside the fluxtube, see Fig. 13). It starts close to one,
the strong-coupling value of the electric field, and decreases
rapidly to EC

1 (2, 4) = 0.322, the value of the Coulomb electric
field on that link (shown in the red dashed line). The Wilson
loop seems to equilibrate on longer timescales.

The energy is conserved up to a relative error of 10−2. The
larger error compared to previous quenches can be explained
by the fact that around t ∼ 0.25 the approximation method of
the infinite sums appearing in the evaluation of expectation

values changes from the low γk to the high γk approximation
(see Sec. II B). In that transition region, higher orders need
to be calculated using uniform sampling (see Appendix B),
which introduces additional errors. However, the relative error
is still small and observables have no visible jump in this
region, indicating that the two approximation schemes work.
After the transition region, the energy is well conserved due to
the fact that the variational parameters γ I

k increase, making the
approximation of the infinite sums involved in the calculation
of expectation values very easy (see Sec. II B).

The spreading of the electric field from inside the flux tube
between the two charges toward the Coulomb configuration of
the electric field is illustrated in Fig. 14. An interesting ques-
tion is whether the state becomes deconfined at long times. We
cannot use the scaling of spatial Wilson; this only serves as an
indicator for confinement in the ground state [56]. Since in
our formulation the value of the longitudinal (Coulomb) part
of the electric field is fixed and only the transversal part is
dynamical (see Appendix A), we can measure precisely how
much an electric field configuration differs from the Coulomb
configuration. At t = 2.0, in the last of the three pictures in
Fig. 14, the difference to the Coulomb configuration is of or-
der 10−12 for the whole lattice, with no remnant of an electric
flux tube between the two charges. This is a strong indication
that the state becomes deconfined, corresponding possibly to
a thermal state with a temperature above the confinement-
deconfinement transition [64,65].

V. CONCLUSION

We introduce a class of variational states, complex periodic
Gaussian states, to study ground-state properties and real-time
dynamics in a (2 + 1)-dimensional U (1) lattice gauge theory.
The evaluation of expectation values can only partially be
done analytically; an infinite sum remains to be computed
numerically. We present a scheme to approximate them for
all variational parameters on an 8 × 8 lattice and for the
weak-coupling regime up to 20 × 20. This allows us to study
the variational ground state of these states over the whole
coupling region and extract the thermodynamic limit. We
benchmark our ansatz against the exact ground state for the

FIG. 14. Variational time evolution of the electric field on an 8 × 8 lattice after a quench from g2 = 4.0 to g2 = 0.5 with a positive charge
placed at (x1 = 2, x2 = 4) (blue dot) and a negative charge at (x1 = 6, x2 = 4) (red dot). The color of the charges is only for graphical illustration
(not related to the color bar). The expectation value of the electric field is shown at t = 0.0, t = 0.2 and t = 2.0. At t = 0.0, the state is in the
variational ground state for g2 = 4.0 where the electric flux is confined between the two charges. After the quench, the electric field starts to
spread over the lattice (t = 0.2) and equilibrates at the Coulomb value for this charge configuration (t = 2.0).
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one-plaquette case. We also compute the string tension using
two different methods: First, by fitting the static potential
between two charges with a 2D Coulomb potential and a linear
potential. Second, we fit the exponential decay of Wilson
loops with an area and a perimeter law. The two approaches
are complementary since, in the strong-coupling regime, Wil-
son loops become difficult to fit due to the tiny value of large
Wilson loops while the static potential approach works well
as energy differences become larger. In the weak-coupling
regime, however, the string tension becomes too small to
extract the linear part of the potential on the given lattice sizes
while Wilson loops decay only modestly, allowing reliable
fits. We are able to observe the expected exponential decay
of the string tension in the weak-coupling regime.

Since our variational states do not need a truncation in the
local Hilbert space, we compare our U (1) ground-state data
with exact diagonalization results for a Z3 theory to study
trunctation effects in the electric basis. The results agree for
strong couplings and start to differ significantly for intermedi-
ate couplings. While the ground-state energy of the truncated
theory goes to zero in the continuum limit g2 → 0 (since
the electric energy is bounded), the variational ground-state
energy tends toward a finite value due to the variance of the
electric field growing unboundedly.

In the last section, using the time-dependent variational
principle, we probe out-of-equilibrium dynamics after a
quench of the coupling constant. As a benchmark, we com-
pare the variational time evolution after a quench within the
strong-coupling regime with exact diagonalization results of
the Z3 theory. We then start by studying quenches within the
weak-coupling regime where we expect finite size effects to be
significant. We compare the time evolution of a Wilson loop
after the same quench for different lattice sizes to estimate
at which timescales smaller lattices deviate from the thermo-
dynamic limit. The times we can reach are large enough to
indicate equilibration of Wilson loops.

In the next step, we perform a quench from weak (g2 =
0.5) to strong coupling (g2 = 4.0) and track the time evolution
of differently sized Wilson loops. They all equilibrate at zero,
which is the thermal expectation value in the strong-coupling
limit (g2 → ∞). Since the spectrum at g2 = 4.0 is close to
the strong-coupling limit, this indicates that the Wilson loops
equilibrate at their thermal expectation values. We also study
a quench from strong to weak coupling in the sector of two
static charges. We observe that the electric flux, which is per-
fectly confined for the strong-coupling ground state, spreads
over the whole lattice and equilibrates at the Coulomb value
for the electric field to very high accuracy, leaving no trace of
confinement.

In all considered quenches, we see equilibrating behavior
of observables up to the times where boundary effects start to
play a role. It would be interesting to compare the equilibrated
expectation values to thermal expectation values which can
be computed by Monte Carlo simulations [62,63]. Another
interesting application for Monte Carlo methods would be
in the numerical evaluation of the variational ansatz by ap-
proximating the infinite sums. This could potentially enable
the simulation of larger system sizes. The accuracy of these
simulations would need to be high to carry out the evolution
over reasonable timescales while ensuring energy conserva-

tion. Another natural extension of this paper is the treatment
of (3 + 1)-dimensional compact QED. By generalizing an
idea in Ref. [52] to complex Gaussian states, a variational
ansatz can be designed for 3+1 dimensions. However, due
to additional local constraints appearing in 3+1 dimensions
(compared to one global constraint in 2+1 dimensions), a new
numerical approximation scheme would be required. Another
interesting idea is to include dynamical matter. To couple
the gauge degrees of freedom to matter, it is essential to
find a formulation of such a theory, which admits the same
gauge-invariant variables as used in this work for static matter.
Recently, such a formulation has been proposed [66]. This
could allow to combine a periodic Gaussian state for the
gauge field with a fermionic ansatz state, describing dynami-
cal matter. Extending the ansatz to non-Abelian gauge theories
is more difficult since they do not allow a translationally
invariant formulation in terms of gauge-invariant plaquette
variables. However, other gauge-invariant variables could be
used to construct similar ansatz states [67].
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APPENDIX A: FORMULATION IN TERMS OF
PLAQUETTE VARIABLES

In this Appendix, we want to give a short review on the sep-
aration of gauge fields into (almost) gauge-invariant plaquette
variables and a static part corresponding to the longitudinal
Coulomb field. For simplicity, and since this is the charge
configuration used throughout the paper, we will focus on a
situation with two static charges placed vertically at x2 = d2

separated horizontally by a distance d . Other charge configu-
rations follow analogously. We want to split the electric flux
line between the two charges into a transversal component,
generated by the lattice curl of a field ε on the plaquettes
and into a longitudinal component, generated by the lattice
gradient of a scalar field φ on the vertices. All other electric
flux configurations can be created on top of it by exciting
an electric flux loop around a plaquette or around the whole
lattice.

The longitudinal part is by definition of the form

EL
i (x) = −∇(+)φ(x) ≡ −(φ(x + ei ) − φ(x)), (A1)

where ∇(+) is the lattice forward derivative. Using Gauss law,∑
i

∇(−)
i EL

i (x) =
∑

i

EL
i (x) − EL

i (x − ei ) = Q(x), (A2)

with ∇(−) the lattice backward derivative, we arrive at a lattice
version of Poisson’s equation:

−∇(−)∇(+)φ(x) = Q(x). (A3)
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The solution for φ is

φ(x) = 1

L

∑
y

Q(y)
∑
k 
=0

e2π i k1 (x1−y1 )+k2 (x2−y2 )
L

4 − 2 cos
( 2πk1

L

) − 2 cos
( 2πk2

L

) ,

(A4)

with x = (x1, x2) and x1, x2 ranging from 0 to L − 1. The same
applies to y and k. There is no k = 0 contribution since the
total charge on a periodic lattice needs to be zero because of
gauge invariance. EL

i (x) then follows straightforwardly from
Eq. (A1).

We write the transversal part as the curl of an ε field on the
plaquettes,

ET
i (x) = ∇(−) × ε ≡ εi j∇(−)

j ε(x), (A5)

where the plaquette corresponding to x is the one having x as
its bottom-left corner. We take the curl of the above expression
and use a lattice analog of the vector identity ∇ × ∇ × A =
∇(∇ · A) − �A, here in two dimensions, to obtain a Poisson
equation for the ε field,

−∇(+)∇(−)ε(x) = εi j∇(+)
i E j (x), (A6)

where we sum over repeated indices. This equation is
solved by

ε(x) = 1

L

∑
y

εi j∇(+)
i E j (y)

×
∑
k 
=0

e2π i k1 (x1−y1 )+k2 (x2−y2 )
L

4 − 2 cos
( 2πk1

L

) − 2 cos
( 2πk2

L

) . (A7)

In our case, εi j∇(+)
i E j (x) is 1 on the plaquettes above the

electric string connecting the charges and −1 below the string.
However, since the sum over this expression will always be
zero, we cannot generate a constant electric field with the ε

field, which is required since Ẽ1(k = 0) = d
L . It is important to

also consider the Polyakov loop winding horizontally around
the lattice. We choose it to wind around the lattice at x2 = d2

and the electric field along it to be εpoly,1 = d
L . We define an

additional ε-field εconst on the plaquettes, on top of ε:

εconst (x) =
{ d

L2 (x2 − d2) x2 � d2

d
L − (d2 − x2) d

L2 x2 < d2.
(A8)

It is defined in such a way that

Econst,1(x) = ∇(−) × εconst + εpoly,1δx2,d2 = d

L2
, (A9)

giving us the k = 0 component of the electric field. We can
now rewrite the electric field operator as

Êi(x) =(∇(−) × (L̂(x) + ε(x) + εconst (x)))i

+ δi,1δx2,d2 (L̂poly,1 + εpoly,1) + δi,2δx1,d1 L̂poly,2

+ EL
i (x). (A10)

d1 is the x1 position where the Polyakov loop winds verti-
cally around the lattice. The operators L̂(x) and L̂poly measure
the electric flux around a plaquette, respectively, around the
lattice, on top of the contributions given by the charge config-
uration. Their eigenvalues are integer valued. If we insert the
restriction to the topological sector with Lpoly,1 = Lpoly,2 = 0
and define EC

i (x) = EL
i (x) + δi,1

d
L2 as the Coulomb electric

TABLE I. Variational parameters γ R
k for the variational ground

state at g2 = 1.1.

kx/ky 0 1 2 3 4 5 6 7

0 1.289 1.108 0.978 0.937 0.978 1.108 1.289
1 1.288 1.206 1.050 0.937 0.897 0.936 1.051 1.207
2 1.109 1.050 0.937 0.849 0.819 0.849 0.936 1.050
3 0.979 0.935 0.849 0.781 0.756 0.781 0.849 0.937
4 0.935 0.897 0.819 0.756 0.732 0.756 0.819 0.897
5 0.979 0.937 0.849 0.781 0.756 0.781 0.849 0.935
6 1.109 1.050 0.936 0.849 0.819 0.849 0.937 1.050
7 1.288 1.207 1.051 0.936 0.897 0.937 1.050 1.206

field, we obtain the electric Hamiltonian given in Eq. (5):

HE = g2

2

∑
x,i

(
EC

i (x) + εi j (L(x) − L(x − e j )

+ ε(x) − ε(x − e j ))
)2

= EC + g2

2

∑
x,i

(L(x) − L(x − ei ) + ε(x) − ε(x − ei ))
2,

(A11)

with the Coulomb energy EC = g2

2 ( d2

L2 + ∑
x,i EL

i (x)). Besides
orthogonality between the longitudinal and transversal com-
ponent of the electric field, we also used Plancherel’s theorem,
which ensures orthogonality between the constant part and the
other two since their k = 0 component is zero.

APPENDIX B: NUMERICAL EVALUATION OF COMPLEX
PERIODIC GAUSSIAN STATES

In this Appendix, we review the numerical evaluation of
complex periodic Gaussian states in more detail. We saw in
Sec. II B that the region with γk = γ R

k + (γ I
k )2(γ R

k )−1 ≈ 1 is
the most difficult to evaluate. Since the variational ground
state (for which γ I

k = 0) varies from high γ R
k for low cou-

plings to low γ R
k for large couplings, there is a transition

region at g2 ∼ 1.1, where γk approaches one. We therefore
want to study the approximations to all infinite sums involved
in the computation of the variational energy in Eq. (20) on
an 8 × 8 lattice without static charges for the ground state
at g2 = 1.1 which is the highest coupling where the high
γk approximation is used and g2 = 1.2 which is the lowest
coupling for which the low γk approximation is used. For all
other couplings, the contributions to infinite sums decay faster
with higher orders compared to one of the two examples dis-
cussed below. The variational parameters γ R

k for these states
(rounded to three digits) are shown in Tables I and II. The
values are displayed not only for the independent γ R

k (k ∈ K),
but are split between the dependent parameters γ R

k and γ R
−k to

illustrate that they lie in the transition region γk ≈ 1 between
the two approximation methods.

Using γ I
k = 0 and εp = 0, the expressions we need to

compute for the variational ground state at g2 = 1.1 simplify
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TABLE II. Variational parameters γ R
k for the variational ground

state at g2 = 1.2.

kx/ky 0 1 2 3 4 5 6 7

0 1.140 1.002 0.889 0.852 0.889 1.002 1.140
1 1.137 1.078 0.944 0.855 0.826 0.855 0.949 1.075
2 0.999 0.956 0.858 0.779 0.753 0.783 0.859 0.946
3 0.893 0.853 0.783 0.721 0.699 0.721 0.785 0.857
4 0.862 0.823 0.752 0.695 0.676 0.695 0.752 0.823
5 0.893 0.857 0.785 0.721 0.699 0.721 0.783 0.853
6 0.999 0.946 0.859 0.783 0.753 0.779 0.858 0.956
7 1.137 1.075 0.949 0.855 0.826 0.855 0.944 1.078

significantly:

Iel ≡
∑

{Nk=0=0}
e−π

∑
k |Nk|2γ R

k

∑
k

(
γ R

k

)2|Nk|2

×
(

4 − 2 cos

(
2πk1

L

)
− 2 cos

(
2πk2

L

))
(B1)

for the electric energy,

Imag ≡
∑

{Nk=0=0}
e−π

∑
k |Nk|2γ R

k

∑
p

(−1)Np (B2)

for the magnetic energy and the normalization:

I0 =
∑

{Nk=0=0}
e−π

∑
k |Nk|2γ R

k . (B3)

We include orders with Np configurations of up to eight
pairs of {1,−1} and the rest zeros. The first three are com-
puted exactly and the remaining five by uniform sampling.
Additionally, we compute exactly the orders {N}2,−1,−1 and
{N}−2,1,1 to show they have negligible contributions. Orders
like these, whose Np configurations differ only by a minus
sign, can be evaluated together by evaluating for every per-
mutation not only the contribution of Np but also of −Np.
Therefore, from now on, orders which are not closed under
reflection will also include all their permutations multiplied

by minus one. This will be heavily used in the low γk approx-
imation.

The exact evaluation of orders is based on an algo-
rithm which generates all permutations of a multiset in O(1)
time [68], i.e., the time to generate a new permutation is
independent of the permutation size. It is much smaller than
the time needed to do computations with a permutation which
allows us to highly parallelize the process and reach higher
orders. The evaluation of an observable with respect to a set
of permutations {N} with uniform sampling is based on the
approximation ∑

Np∈{N}
O(Np) ≈ p

s

∑
Np∈S

O(Np), (B4)

where S is a set of s randomly drawn Np configurations from
{N} and p the number of permutations within this order. For
all orders which are computed with uniform sampling, we use
s = 108 in the high γk approximation and s = 107 in the low
γk approximation. The contributions to Iel and Imag for the
high γk approximation are displayed in Fig. 15. We do not
show this analysis for the normalization since its contributions
decay faster than the ones for Iel and Imag. The errors due to
uniform sampling are too small to be shown in the plot, the
biggest error occurs in the order with four pairs of {1,−1}
which has a contribution of 347.54(15) to Iel and of 622.70(24)
to Imag.

For the variational ground state at g2 = 1.2, the infinite
sums in Eq. (20) reduce to

Jel =
∑

{Np}/∼1

e−π
∑

k |Nk|2(γ R
k )−1

∑
k

(
4 − 2 cos

(
2πk1

L

)

− 2 cos

(
2πk2

L

))
|Nk|2 (B5)

for the computation of the electric energy,

Jmag =
∑

{Np}/∼1

∑
p

e−π
∑

k |Nk− 1
2

p
k|2(γ R

k )−1
, (B6)
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FIG. 15. Contributions of different orders of Np configurations to the infinite sums Iel (a) and Imag (b) appearing in the high γk approximation
of the variational energy. Due to the constraint Nk=0 = 0, the sum over all elements of Np needs to be zero. Every bar represents the summed
contributions of all Np configurations containing a certain number of (1,−1) pairs and the remaining entries zero. Orders which are not of this
type have a negligible contribution, e.g., {N}−2,1,1 has a summed contribution to Iel of 0.076 and a summed contribution to Imag of 0.23.
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FIG. 16. Contributions of different orders of Np configurations to the infinite sums Jel (a) and Jmag (b) appearing in the low γk approximation
of the variational energy. Due to absence of a constraint, all Np configurations need to be considered. The orders are organized in groups. P
denotes orders which contain a growing number of 1’s. Since Np and −Np are evaluated together, P also represents orders with a growing
number of −1’s. M(1)P contains orders whose nonzero elements are a single −1 and a growing number of 1’s. The first order in M(1)P
contains a pair of (1,−1) as nonzero elements. M(2)P is structured in the same way as M(1)P but with two −1’s. Analogously for the other
groups. The Np = 0 configuration (denoted as 0) has vanishing contribution to Jel but a nonzero contribution to Jmag.

with 1
2

p
k = 1

2L e−ipk for the computation of the magnetic
energy and

J0 =
∑

{Np}/∼1

e−π
∑

k |Nk|2(γ R
k )−1

(B7)

for the normalization. Since we do not have a global constraint
in the low γk approximation, more orders contribute to the
infinite sums. The contributions to Jel and Jmag of different
orders are given in Fig. 16. The errors are again too small to
be displayed; the biggest one occurs in the order {N}−1,1,1,1,1,1

with contributions of 15.22(1) to Jel and of 44.07(4) to Jmag.
Both approximation schemes decay reasonably well with

higher orders and the truncation of even higher orders can
be justified. Moreover, the errors introduced due to uniform
sampling are small, in particular since the lowest orders were
still calculated exactly. The algorithm we applied during com-
putations to decide with which approximation method an
expectation value should be evaluated was to select higher

orders and compute them by uniform sampling with a low
sample size of s = 105. This allowed us to choose the scheme
which had a better decay with higher orders.

APPENDIX C: OBSERVABLES

In this Appendix, we provide formulas for important quan-
tities which are too lengthy to fit into the main body of
the paper. This includes formulas for expectation values of
observables, namely, Wilson loops and electric field, and a
formula for the gradient of the energy with respect to the
variational parameters which is essential to minimize the
variational energy and carry out the time-dependent vari-
ational principle. For the latter, we additionally present a
formula for the Gram matrix. For every infinite sum appearing
in the expressions, we provide both the high and low γk
approximation.

We start with the expectation value of a Wilson loop along
a contour C, where p ∈ C denotes all plaquettes within this
contour:

〈�CPG|W (C)|�CPG〉
〈�CPG|�CPG〉 = e− π

4L2

∑
k 
=0 (γ R

k )−1 ∑
p,p′ cos(k(p−p′ ))

〈∏
p∈C

(−1)Np cosh

(
π

∑
k

Re
(
NkbC

k

))〉
, (C1)

with bC
k = 1

L γ I
k (γ R

k )−1 ∑
p∈C e−ipk and

〈∏
p∈C

(−1)Np cosh

(
π

∑
k

Re
(
NkbC

k

))〉
=

∑
{Nk=0=0}

∏
p∈C (−1)Np cosh

(
π

∑
k Re

(
NkbC

k

))
e2π i

∑
p εpNp e−π

∑
k |Nk|2γk∑

{Nk=0=0} e2π i
∑

p εpNp e−π
∑

k |Nk|2γk

=
∑

{Np}/∼1
e−π

∑
k (|Nk−εk− 1

2
C

k |2− 1
4 |bC

k |2 )γ −1
k cos

(
π

∑
k γ −1

k Re
[(

Nk − εk − 1
2

C

k

)
bC

k

])
∑

{Np}/∼1
e−π

∑
k |Nk−εk|2γ −1

k

(C2)

with 1
2

C

k = 1
2L

∑
p∈C e−ipk and γk = γ R

k + (γ I
k )2(γ R

k )−1. Another observable which is used in the paper is the electric field. We
present for simplicity the expectation value of a horizontal link emanating from vertex x, 〈Ex,1〉. The plaquette above the link is
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denoted as p̃. The expectation value for a vertical link follows analogously:

〈�CPG|Ex,1|�CPG〉
〈�CPG|�CPG〉 =

∑
{Nk=0=0} sin

(
2π

∑
p εpNp

)
e−π

∑
k |Nk|2γk 1

L

∑
k γkRe(Nk(e−ikp̃ − e−ik(p̃−e2 ) ))∑

{Nk=0=0} e2π i
∑

p εpNp e−π
∑

k |Nk|2γk

= εp̃ − εp̃−e2 +
∑

{Np}/∼1
e−π

∑
k |Nk−εk|2γ −1

k (Np̃−e2 − Np̃)∑
{Np}/∼1

e−π
∑

k |Nk−εk|2γ −1
k

. (C3)

The next quantity we present is the gradient of the variational energy with respect to the independent parameters γ R
k and γ I

k
(k ∈ K). We split the energy into an electric and a magnetic part to make the expressions less cumbersome. We start with the
derivatives of the electric energy with respect to γ R

k and γ I
k (k ∈ K):

∂

∂γ R
k

〈�CPG|HE |�CPG〉
〈�CPG|�CPG〉 = g2

4π
mk

(
1 −

(
γ I

k

)2

(
γ R

k

)2

)(
4 − 2 cos

(
2πk1

L

)
− 2 cos

(
2πk2

L

))

− g2mk

(
γ R

k −
(
γ I

k

)4

(
γ R

k

)3

)(
4 − 2 cos

(
2πk1

L

)
− 2 cos

(
2πk2

L

))
〈|Nk|2〉

+ g2π

2
mk

(
1 −

(
γ I

k

)2

(
γ R

k

)2

) ∑
k′

γ 2
k′

(
4 − 2 cos

(
2πk′

1

L

)
− 2 cos

(
2πk′

2

L

))

× (〈|Nk′ |2|Nk|2〉 − 〈|Nk′ |2〉〈|Nk|2〉
)
, (C4)

∂

∂γ I
k

〈�CPG|HE |�CPG〉
〈�CPG|�CPG〉 = g2

2π
mk

γ I
k

γ R
k

(
4 − 2 cos

(
2πk1

L

)
− 2 cos

(
2πk2

L

))

− 2g2mk

(
γ I

k +
(
γ I

k

)3

(
γ R

k

)2

)(
4 − 2 cos

(
2πk1

L

)
− 2 cos

(
2πk2

L

))
〈|Nk|2〉

+ g2πmk
γ I

k

γ R
k

∑
k′

γ 2
k′

(
4 − 2 cos

(
2πk′

1

L

)
− 2 cos

(
2πk′

2

L

))(〈|Nk′ |2|Nk|2〉 − 〈|Nk′ |2〉〈|Nk|2〉
)
, (C5)

with

〈|Nk′ |2|Nk|2〉 =
∑

{Nk=0=0} e2π i
∑

p εpNp e−π
∑

k |Nk|2γk |Nk|2|Nk′ |2∑
{Nk=0=0} e2π i

∑
p εpNp e−π

∑
k |Nk|2γk

= 1

4π2
γ −1

k γ −1
k′ + γ −2

k γ −2
k′

∑
{Np}/∼1

e−π
∑

k |Nk−εk|2γ −1
k |Nk − εk|2|Nk′ − εk′ |2∑

{Np}/∼1
e−π

∑
k |Nk−εk|2γ −1

k

− 1

2π
γ −2

k′ γ −1
k

∑
{Np}/∼1

e−π
∑

k |Nk−εk|2γ −1
k |Nk′ − εk′ |2∑

{Np}/∼1
e−π

∑
k |Nk−εk|2γ −1

k

− 1

2π
γ −2

k γ −1
k′

∑
{Np}/∼1

e−π
∑

k |Nk−εk|2γ −1
k |Nk − εk|2∑

{Np}/∼1
e−π

∑
k |Nk−εk|2γ −1

k

+ δk,k′
1

mk

(
1

2π2
γ −2

k − 2

π
γ −3

k

∑
{Np}/∼1

e−π
∑

k |Nk−εk|2γ −1
k |Nk − εk|2∑

{Np}/∼1
e−π

∑
k |Nk−εk|2γ −1

k

)
. (C6)

We denote by mk the number of elements in the equivalence class k ∈ K , which is two if k 
= −k and one if k = −k. The
expression for 〈|Nk|2〉 for both high and low γk approximation can be found in Eq. (21). The gradient of the magnetic energy
with respect to γ R

k and γ I
k takes the form

∂

∂γ R
k

〈�CPG|HB|�CPG〉
〈�CPG|�CPG〉

= π

g2
mke− π

4L2

∑
k 
=0(γ R

k )−1 ∑
p

[
− 1

4L2

(
γ R

k

)−2

〈
(−1)Np cosh

(
π

∑
k′

Re
(
Nk′bp

k′
))〉
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+ 1

L

γ I
k(

γ R
k

)2

〈
(−1)Np Re(Nke−ikp) sinh

(
π

∑
k′

Re
(
Nk′bp

k′
))〉

+
(

1 −
(
γ I

k

)2

(
γ R

k

)2

)(〈
(−1)Np |Nk|2 cosh

(
π

∑
k′

Re
(
Nk′bp

k′
))〉

−
〈

(−1)Np cosh

(
π

∑
k′

Re(Nk′bk′ )

)〉
〈|Nk|2〉

)]
, (C7)

∂

∂γ I
k

〈�CPG|HB|�CPG〉
〈�CPG|�CPG〉

= π

g2
mke− π

4L2

∑
k 
=0(γ R

k )−1 ∑
p

[
− 1

L
(γ R

k )−1

〈
(−1)Np Re(Nke−ikp) sinh

(
π

∑
k′

Re
(
Nk′bp

k′
))〉

+ 2
γ I

k

γ R
k

(〈
(−1)Np |Nk|2 cosh

(
π

∑
k′

Re
(
Nk′bp

k′
))〉

−
〈

(−1)Np cosh

(
π

∑
k′

Re
(
Nk′bp

k′
))〉

〈|Nk|2〉
)]

, (C8)

with the usual definition of bp
k and 1

2
p
k from Eq. (20) and the infinite sums

〈
(−1)Np |Nk|2 cosh

(
π

∑
k′

Re
(
Nk′bp

k′
))〉

=
∑

{Nk=0=0}(−1)Np |Nk|2 cosh
(
π

∑
k′ Re

(
Nk′bp

k′
))

e2π i
∑

p εpNp e−π
∑

k |Nk|2γk∑
{Nk=0=0} e2π i

∑
p εpNp e−π

∑
k |Nk|2γk

= −γ −2
k

∑
{Np}/∼1

e−π
∑

k

(
|Nk−εk− 1

2
p
k|2− 1

4 |bp
k|2

)
γ −1

k sin
(
π

∑
k′ γ

−1
k′ Re

[(
Nk′ − εk′ − 1

2
p
k′
)
bp

k′
])

Re
[(

Nk − εk − 1
2

p
k

)
bp

k

]
∑

{Np}/∼1
e−π

∑
k |Nk−εk|2γ −1

k

− γ −2
k

∑
{Np}/∼1

e−π
∑

k

(
|Nk−εk− 1

2
p
k|2− 1

4 |bp
k|2

)
γ −1

k cos
(
π

∑
k′ γ

−1
k′ Re

[(
Nk′ − εk′ − 1

2
p
k′
)
bp

k′
])(|Nk − εk − 1

2
p
k|2 − 1

4 |bp
k|2

)
∑

{Np}/∼1
e−π

∑
k |Nk−εk|2γ −1

k

,

(C9)

〈
(−1)Np Re(Nke−ikp) sinh

(
π

∑
k′

Re
(
Nk′bp

k′
))〉

=
∑

{Nk=0=0}(−1)Np Re(Nke−ikp) sinh
(
π

∑
k′ Re

(
Nk′bp

k′
))

e2π i
∑

p εpNp e−π
∑

k |Nk|2γk∑
{Nk=0=0} e2π i

∑
p εpNp e−π

∑
k |Nk|2γk

= −γ −1
k

∑
{Np}/∼1

e−π
∑

k

(
|Nk−εk− 1

2
p
k|2− 1

4 |bp
k|2

)
γ −1

k sin
(
π

∑
k′ γ

−1
k′ Re

[(
Nk′ − εk′ − 1

2
p
k′
)
bp

k′
])

Re
[(

Nk − εk − 1
2

p
k

)
e−ikp

]
∑

{Np}/∼1
e−π

∑
k |Nk−εk|2γ −1

k

+ 1

2L

γ I
k(

γ R
k

)2 + (
γ I

k

)2

〈
(−1)Np cosh

(
π

∑
k′

Re
(
Nk′bp

k′
))〉

. (C10)

The expression for 〈(−1)Np cosh (π
∑

k′ Re(Nk′bp
k′ ))〉 can be found in Eq. (22). A crucial quantity for the time-dependent

variational principle is the Gram matrix. It is defined as the overlap between two tangent vectors on the variational manifold.
Therefore, it is not only the overlap between the derivatives of the ansatz with respect to the variational parameters but it also
needs to be projected onto the variational manifold [see Eq. (33)]:
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