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Benchmarking numerical methods in quantum chemistry is one of the key opportunities that quantum
simulators can offer. Here, we propose an analog simulator for discrete two-dimensional quantum chemistry
models based on cold atoms in optical lattices. We first analyze how to simulate simple models, such as the
discrete versions of H and H2

+, using a single fermionic atom. We then show that a single bosonic atom can
mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular hydrogen
in two dimensions. We extend this approach to larger systems by introducing as many mediating atoms as
fermions, and derive the effective repulsion law. In all cases, we analyze how the continuous limit is approached
for increasing optical lattice sizes.
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The field of theoretical quantum chemistry has experienced
extraordinary progress due, in part, to many advances in com-
putational methods [1]. For instance, density functional theory
(DFT) [2,3] has enabled a better description and understand-
ing of both static [4–7] and dynamic [8] properties of a large
variety of molecules. The capability of such computational
methods, whose main challenge is to address electronic corre-
lations, is however sometimes hard to assess experimentally.
One approach is to use another (classical) computational tech-
nique that is exact in some restricted conditions, but can deal
with large systems where exact calculations were not possible.
The most prominent example is density matrix renormaliza-
tion group (DMRG) [9] which, despite the fact that it operates
in one-dimensional (1D) lattice systems, offers an ideal plat-
form to benchmark DFT methods [10–13]. In more general
scenarios, the field of quantum computing [14–20] can play a
key role to overcome numerical limitations in the long term,
offering an excellent setup to benchmark quantum chemistry
computational methods. Recently, we have proposed the alter-
native approach of analog quantum simulation [21], based on
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the experimentally mature field of ultracold atoms [22–24],
where fermionic atoms play the role of the electrons. While
quantum computers and analog simulators would certainly
help to push quantum chemistry, the exploration of their full
potentiality requires the development of techniques that go
beyond the state of the art.

In this Rapid Communication we propose and analyze a
scheme for analog quantum chemistry simulation that can
be implemented with present technology. Our approach uses
ultracold atoms to address lattice models in two spatial di-
mensions (2D), where the electron-electron interaction takes
different forms. While not exactly reproducing all aspects
of the real quantum chemistry scenario, this simulator still
retains the most relevant ingredients, enabling the observation
of the most representative phenomena in quantum chemistry.
Furthermore, it offers a suitable platform to benchmark com-
putational methods in that field. In particular, it allows us to
extend the benchmarking offered by DMRG beyond 1D [25].

For the sake of clarity, we will discuss several scenarios,
with increasing experimental difficulty, for the simulation
of quantum chemistry problems in 2D discrete lattices that
could later be compared to contemporary theoretical methods,
such as DFT or tensor network methods [26,27]. We start
with simple one-electron systems, analogous to the hydrogen
atom, and the H2

+ molecule. Then, we show how to simulate
two-electron problems, here exemplified by the H2 molecule.
Finally, we show how the system can be scaled up to more
electrons, although with a different dependence of the repul-
sion with the distance.

Model. In the following, we will consider a discrete ver-
sion of quantum chemistry models in 2D. First, we start by
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FIG. 1. Fermionic atoms (white) play the role of the molecular
electrons. They hop in a 2D lattice (red), where the nuclear potential
is imprinted (blue). For a single simulated electron, this pattern can
lead to, e.g., atomic hydrogen [(a), one nucleus] or H2

+ [(b), two
nuclei]. For more than one fermionic atom, two different schemes
are proposed to mediate an effective repulsion between them. (c) A
single atom (green) is used. It tunnels with constant ta through a
lattice with the same spacing as the fermionic one. There is an
on-site repulsion with strength U when the mediating atom occupies
the same site as the fermion. (d) We use as many mediating atoms
as electrons need to be simulated (two in the case of the figure).
The on-site repulsion with the fermions now appears in a different
internal level b, whose tunneling is slower as compared to level a,
using a state-dependent lattice. Both levels are coherently coupled
with coupling constant g.

considering a 2D square optical lattice of size N × N . Nf

fermionic atoms, playing the role of electrons (see Fig. 1),
can localize within the local minima of this optical lattice, and
hop with nearest-neighbor tunneling rate tF . The Hamiltonian
describing their dynamics is then given by

HK = −tF
∑

〈i,j〉
f †
i fj, (1)

where f †
i and fi are the creation and annihilation operators for

a fermionic atom in the ith lattice site [28], each of them sep-
arated by a lattice spacing a, and where the sum is taken over
all nearest-neighbor pairs of lattice sites. Fermionic atoms
are subject to an external potential that induces the attrac-
tion to Nnuc nuclei that we consider placed in fixed positions
{rn}n=1...Nnuc

[29] (Born-Oppenheimer approximation [30]),

Hn({rn}) = −
Nnuc∑

n=1

∑

j

ZnV (|j − rn|) f †
j fj, (2)

where Zn is the atomic number of nucleus n, and V (r) is the
attractive nuclear potential [31]. In 2D lattices, this potential
can be obtained by combining the light shift induced by an ex-
ternal laser orthogonal to the lattice and a fully programmable
intensity mask using, for example, a digital mirror device

(a) (b)
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n=2
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FIG. 2. (a) Lower part of the spectrum for the discretized 2D
atomic hydrogen Hamiltonian in Eq. (3) for different values of the
effective Bohr radius tF /V0. For clarity, only the lowest-energy state
is shown for the energy levels n = 1, 2, 3. As more lattice sites are
involved in the simulation (tF /V0 increases), the spectrum approaches
the value in the continuum (horizontal lines for n = 1, 2, 3). This is
valid up to a critical Bohr radius in which finite-size effects become
relevant and the solution deviates from this behavior. This critical
value appears earlier for smaller sizes (N = 40 for crossed markers)
than for bigger systems (N = 80, colored marker, and N = 200,
edged marker). (b) The energy difference �E between the ground
state of the discretized Hamiltonian in Eq. (3), and the one in the
continuum decreases polynomially before finite-size effects become
relevant [36]. Larger system sizes can follow this scaling up to more
precise solutions. The dashed line follows the scaling (tF /V0 )−1.

[32]. Depending on the model to be simulated, we will also
consider the Hamiltonian Hmed describing a set of bosonic
atoms that mediates fermion-fermion interactions according
to some effective potential Veff .

We consider now the simplest situation of simulating
atomic hydrogen. By choosing a potential with a unique nu-
cleus Z1 = 1 centered in the lattice site r1 = (�N/2�, �N/2� +
1/2), the total Hamiltonian reads as

H1 = HK + Hn(r1). (3)

To begin with, we consider the attractive Coulomb potential
on its standard form, V (r) = V0/r, for moderate finite lattice
sizes, e.g., N = 40. In order to gain intuition, one can compare
this discretized Hamiltonian to the continuum limit, where an
analytical solution is also known in 2D [33]. As a consequence
of the reduced dimensionality, electrons get closer to the nu-
clei than in the 3D case [34]. Each energy level corresponds
to E∗

n = −Ry
(n−1/2)2 , for n = 1, 2, . . .. In that limit, one can also

identify

a0/a = tF /V0 and Ry = V 2
0 /tF , (4)

that are the equivalent Bohr radius (a0) and Rydberg energy
(Ry) for the 2D discrete model [35]. The first ultimately deter-
mines the size of the orbitals and thus how the continuum limit
is recovered. In particular, it is needed that the orbitals fit in the
lattice (to avoid finite-size effects), and that this Bohr radius
occupies several lattice sites (to avoid discretization errors),
leading to the inequalities

N � tF /V0 � 1. (5)

In Fig. 2(a) we show the lower part of the spectrum of the
discretized Hamiltonian (3) for different values of tF /V0 and
N . First, we observe that we have quantized levels, and thus
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FIG. 3. (a) Ground-state energy of the 2D hydrogen cation (H2
+)

for different lattice sizes N and internuclear distance d/a0 (see text
for the optimal choice of the lattice separation). The inset zooms
into separation close to equilibrium. The dashed line (black crosses
in the inset) follows an accurate solution for this 2D cation [37].
(b) Ground-state energy of H2

+ calculated for fixed d/a0 = 1 and
increasing effective Bohr radius tF /V0. The energy of the calculated
ground state decreases up to a critical size at which finite-size effects
appear. This critical size is larger for bigger lattice sizes. In the inset,
the difference in energies to the tabulated value −1.41 Ry (black
dashed line) reveals the scaling (tF /V0 )−1 (red dashed line). Markers
represent the same sizes as in (a).

the discrete model qualitatively reproduces the continuous
one. In fact, this can be observed with small lattices (N = 40).
Quantitatively, we see that by increasing the ratio tF /V0 and
making the lattice larger, one approaches the continuum limit,
as intuitively expected. The error for this approximation as a
function of tF /V0 is shown in Fig. 2(b), where it is observed to
scale approximately as (tF /V0)−1 [see Supplemental Material
(SM) [36]].

Let us now explore a system with a single fermion and two
equal nuclei, Z1,2 = 1, separated by d/a lattice sites, r1,2 =
(�N/2 ± d/(2a)�, �N/2� + 1/2), i.e., the analog of H2

+. This
internuclear separation measured in number of lattice sites
can be directly expressed in terms of the Bohr radius as
d/a0 = (d/a)(V0/tF ), and therefore compared to tabulated
values [37]. In Fig. 3(a) we plot the energy of the ground
state as a function of the distance. We obtain a molecular
potential, as it is expected for H2

+, already for the moderate
size N = 40. Increasing tF /V0 favors accuracy, up to the point
where finite-size effects appear. At this point the difference in
energies to the continuum (dashed line) deviates from the uni-
versal scaling �E ∝ (t f /V0)−1, which identifies the optimal
configuration for our finite system and a given choice of d/a0.
In Fig. 3(b) we illustrate this effect by showing that a given
internuclear separation d/a0 can be calculated with different
values of integer lattice-site separations d/a by tuning the
effective Bohr radius a0/a accordingly (see Ref. [36]).

Two-fermion model. Let us now explore the situation with
two fermionic atoms emulating two electrons, where the inter-
electronic repulsion between them needs to be mediated. For
this, we use an additional bosonic atom trapped in an optical
lattice potential with the same geometry as the fermions. First,
we start with a simple scheme that only considers one of the
bosonic internal states, which allows them to tunnel at a rate
ta to nearest-neighboring sites. As they coexist in the same
lattice sites, elastic scattering processes between the bosonic
and fermionic atoms occupying the same position induce an

(a) (b)

(c) (d)

FIG. 4. (a) Energy of the single-boson bound state described by
the first scheme Eq. (6) as the number of sites d/a separating two
fermions is modified. The dashed lines follow the scaling VI,0/(d/a).
(b) Ground-state energy of the simulated Hamiltonian for H2 for
different lattice sizes and the effective potential VI (d ). (c) Calculation
of the repulsion mediated by the second scheme (8) between two
fixed fermions separated d/a sites (markers). The dashed line fol-
lows the analytical approximation (9). Edged markers corresponds to
N = 80 and colored ones to N = 40. Here, U = 4.1ta. (d) Molecular
potential for a “pseudomolecule” of hydrogen, where both nuclear
attraction and electronic repulsion follow the exponential scaling (9).
Here, edged markers represent N = 60, colored ones N = 30, and
LII/a = (2

√
δII/ta )

−1
. See Ref. [36] for details.

on-site repulsion U ,

Hmed,I = −ta
∑

〈i,j〉
a†

i aj + U
∑

i

a†
i ai f †

i fi, (6)

which translates into an effective repulsion between the
fermions when the effect of the mediating atom is traced out,

Hee =
∑

i,j

V (|i − j|) f †
i fi f †

j fj. (7)

To obtain this expression, we assume we are in the regime
in which the bosonic atom dynamics is faster than the move-
ment of the fermions. In this first scheme, and for separations
d/a 
 0.06e2πta/U 
 N , this effective repulsion corresponds
to, VI(d ) ≈ VI,0/(d/a), where VI,0 ≈ 6.4e−2πta/U ta (see SM
[36]). This simple scheme then mediates an effective repulsion
between the two fermionic atoms that scales as 1/r, matching
the dependence of the distance of 3D molecular interactions,
but now restricted to 2D [38]. We illustrate the dependence of
this potential and its effect in the 2D H2 molecule in Figs. 4(a)
and 4(b), respectively. There, one can observe molecular po-
tentials also for relatively small lattices and assess the error.
The continuum limit is obtained in a similar regime as the
H2

+ molecule case.
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Many-fermion models. By increasing the number of
fermionic atoms in the lattice while maintaining a single me-
diating boson, one would see that not all interactions among
pairs of fermions are equally weighted, precluding scalability.
Intuitively, it is more favorable for the mediating atom to lo-
calize among the pair of fermions that are closer to each other,
rather than in an equal superposition, so that not all interac-
tions are equally considered. In Ref. [21], this challenge was
overcome by including a cavity that symmetrizes these inter-
actions. This cavity interaction is not available in the present,
much simplified experimental setup, where interactions are
mediated by a hopping atom instead of a spin excitation.
Another option to induce a pairwise effective repulsion be-
tween these fermionic atoms would be Rydberg excitations
that enable for long-range strong atomic interactions. In par-
ticular, one can induce dipole-dipole repulsive interactions
that depend on their separation as 1/d3 for distances smaller
than the Rydberg blockade radius [39–42].

Here, instead, we present a second scheme that induces
pairwise interactions by including as many mediating bosonic
atoms as electrons need to be simulated. This proposal is
scalable, at the price of modifying the scaling of the repulsive
interaction [see Fig. 1(d)]. For these Nf mediating atoms, we
are going to consider two of their long-lived energy levels,
that we call a and b, separated by an energy shift �. Level b
experiences an on-site repulsion U when occupying the same
site as a fermion, while the atoms in level a live on a shallow
lattice that allows them to move with tunneling rate ta. Both
levels are coupled through a Raman (or direct) transition of
strength g. Besides, bosonic atoms in the b level suffer an
additional hard-core boson interaction |W | � |U | which pre-
vents doubly occupied states. The bosonic Hamiltonian then
reads as

Hmed,II = − tb
∑

〈i,j〉
b†

i bj − ta
∑

〈i,j〉
a†

i aj + g
∑

j

(b†
j aj + H.c.)

+ �
∑

j

b†
j bj + U

∑

j

b†
j bj f †

j fj + W

2

∑

j

b†
j b†

j bjbj.

(8)

In particular, we are interested in the regime in which both
levels are weakly coupled g 
 �, and when the atomic states
trapped in the a lattice hop faster than in any of the other
levels: ta � tb � tF [see Fig. 1(b)] [43]. This allows one to
trace out the effect of the mediating atoms and write an effec-
tive Hamiltonian for the fermions. By using as many bosonic
atoms as fermions, the hard-core boson interactions lead to a
bound state in which all fermionic sites are equally occupied,
getting a configuration in which the repulsion among each pair
of atoms is equally weighted, as required by Eq. (6). For this
configuration, the pairwise mediated interaction scales as

VII(d ) ≈ VII,0 e−2d
√

δII/(a
√

ta ), (9)

for d
√

δII/(a
√

ta) � 1, where VII,0 ≈ g4

8πt2
a δII

, and δII = U −
4ta + O(g2/�) (see Ref. [36]).

While this system differs from the molecular Hamiltonian
observed in nature, it already captures the key features of
the interactions appearing in molecular chemistry: nuclear
attraction and electronic repulsion. It is then expected to reveal
some of the features of chemical systems, including their
electronic correlations. In Fig. 4(c), we show the effective
repulsive potential induced by the second scheme for different
values of detuning δII, which is tunable and controls the char-
acteristic length of the interaction. In Fig. 4(d), we illustrate
the effect that this modified effective repulsion controlled by
δII has two fermionic atoms hopping in the lattice, whose
dependence on the distance is also mimicked by the tunable
attractive nuclear interaction. This leads to a molecular poten-
tial of a “pseudomolecule” of hydrogen, where the bonding
length and dissociation limit are observed.

Conclusions and outlook. To sum up, we have shown how
ultracold atoms moving in 2D optical lattices can be used to
simulate simplified models for quantum chemistry in today’s
experimental setups. We have observed that early experiments
with a single simulating atom can pursue the timely goal of
simulating the simplest discretized atom and molecule in this
platform. In richer scenarios, bosonic atoms can mediate an
effective repulsion between the simulated electrons, making
repulsive interactions more experimentally accessible with
state-of-the-art setups. Such simulators open up a number
of possibilities for further research. First, they provide an
experimental platform for which numerical methods used in
quantum chemistry can be adapted and benchmarked. Lessons
learned from these simulators could then be transferred back
into improved algorithms for quantum chemistry. Second, one
of the main challenges of these discretized 2D simulators is
that their solutions approach the continuum result slower than
in the 3D case. Fully characterizing this scaling may well lead
to improved protocols that are less sensitive to the system
size. Third, while this Rapid Communication provides strate-
gies to engineer a pseudochemical Hamiltonian in ultracold
atoms using bosonic atoms as a mediator, other platforms and
strategies may also serve for this purpose. Identifying good
candidates to simulate specific interactions in chemistry is a
promising open field of research.
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