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in Toroidal l = 2 Stellaratora with Small Shear 
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It has been shown1 that results on tbe normalized eigenvalues (-yRT/VA)'l of unstable 
fixed boundary m = 2 modes in straight l = 2 stellarator configurations with vanish­
ing longitudinal net current computed with the asymptotic STEP code2 (based on the 
stellarator expansion and averaging) are in good agreement with results obtained with the 
SERA belically symmetric eigenvaluecode3 and the BETA 3D code·, In the pre~ent paper 
the asymptotic STEP code has been applied to investigate free-boundary m = 2, n = 1 
modes in l = 2 stellarator configurations with vanishing longitudinal net current. The 
l = 2 configurations were seleded so that the rotational transform t (twist) is in the range 
0.36 < tCO>l' < 0.58, where the m = 2, n = 1 mode is resonant: kre • s::l mlltp, t" = t/ M, M is 
the number of equilibrium field periods of length L". ha = bILl" a is t he minor ra.dius of 
tbe free plasma boundary, b is tbe minor radius of the conduding wall, ka tbe wave num­
ber of tbe unstable mode, m its poloidal node number, n tbe longitudinal mode number, 

. 1IA = (BU Po) i tbe AUven velocity, and Bo the main magnetic field; tbe shear ("/t - "az)/"b 
is typically 0.2. 

2. Model. 
The l = 2 configuration consists of M = 5 field periods of length Lp/a which is continuously 
bent into a torus with torus curvature f = a/RT. If the toroidal curvature is f: = 0.13, 
the configuration is a closed toroidalsystem with ha = Mt.. The vacuum magnetic field is 
giveu in a pse~do-cylindrical coordinate system (r, B, z) by B = Bo [iz + ~ V l~(hr) ~io(29 -
hz)I, where the Bessel function I'l(hr) is a solut ion of the Laplace equation in a straight 
system (Bessel model); 6 describes 'he helical l = 2 field amplitude giving a twist tu 00 

magnetic aXis of t .. >I' = M6'l / 16 (asymptotic value). Tbe pressure profile P == Po(I - -q,) is 
approximately parabolic in the minor. radius ,. of the !lux 8uriaCel! (1Ji is the poloidal flux 
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inside a magnetic surface). In all cages one wave length of the instability fits onto M = 5 
fi eld periodR: k = hiM. A rather small average (8) ~ /30/2 ~ 0.8% is cho!en so that the 
change of the r-pl?file in the toroidal configurations with zero net cu rrent is small (e.g. for 
6 = 1.2 the twist varies in the range 0.45 :; t{r) 5. 0.55 for f = 0 and 0.46 5. t{r ) 5. 0.53 
for f = 0.13) . The t{,}profile is approximately a parabolic function of r. No additiona l 
vertical field is applied (8. = 0). 
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1!"ig.l. Normalized speCific volume as function of r~ fo r f = 0,0.13. 
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The llormalized specific volume (Vb - V:"J/V~2. as function of r 2 is plotled in Fig.1 for 
(: = 0, 0. 13. A ratber deep magnetic well (V" < O) is created at e = 0.13 Cor (/3) = 0.8% 
which affects the stabili ty of the configuration. The corresponding vacuum fie ld has a 
magnetic hill (V ': > 0) . Applying an additional vertical field (Bv > 0 causes a radially 
inward shift of tbe plasma column) tbe magnetic well can be diminished and tberefore tbe 
stability properties are changed. 

3 . Results. 

Using t·be STEP code it is shown tbat in toroidal l :: 2 stellarato rs the resonan t free 
bound ary m = 2 mode can be stabilized by a conducting wall being close enough even for 
\bosc l = 2 configurations where tbe twist at the plasma bouodary i~ t = 0.5 being resonant 
to that mode. In straight l = 2 configurat ions there is no wall stabiliz:ltion effect on that 
resonant m = 2 mode. Introduc ing toroidal curvatu re creates a magnetic well at finite f3 
and the m = 2 fixed-boundary mode is compldely stabilized. The absolute. eigenvalue of 
the free· boundary m = 2 mode is diminished as well. These results a re shown,in Fig,s.2· 5 
whe re th e eigenvaluesof m = 2, n = 1 free· boundary and fixed -boundary modes are ploHed 
as function of the twis t t,, :r on axis for various positions b/a of the conduct ing wall. Figure 
2 shows the resulls for tbe straight l::::: 2 configuratioos (f :.: 0) . At 0.44 < t"r < 0.52 
one observes a. stabiijzing effed due to tbe wall scaling approximately like (a/b)" with th e 
inverse wall distaoce. At t u ~ 0.408 the correspond ing twist va.lue at the free-boundary i.i 
'b == 0.50 which is resonant to the m ::::: 2, n = I mode, no sta.bilizing effec t due to tbe wall 
r an be ohservf>d Increasing the curvature to ( = 0.065 (F ig.3) the resonance phenomenon 



- 411 -

is less distinct and obviously a sbbiUzing effect due to the wa.ll is observed even at a waU 
position of b/ a = 1.2. 
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Fig.2. Normalized eigenvalues versus '" .. ", for the free-boundary (bJa = 1.05,1.20, 00) and 
\he fixed-boundary mode (straight, f = 0). 
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Fig.3. Normalized eigenvalues versus '" .. :z: for the free-bounda.ry (bJa = 1.05, 1.20, 00) and 
\he fixed· boundary mode (toroidal , f == 0.065). 

The wall stabilizatton effed on the free-boundary mode depending on tbe wall distance 
bJa is even more obvious at f = 0.13 (Fig.4) . In this case the fixed·boundary mode could 
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not be found. The left edge of the eigenvalue curves is shifted to higher t"z-values as ( is 
increased. Figure 5 sbows tbe maxima {,I tbe eigenvalue curves as function of tbe torus 
curvature (for the free-boundary mode at various wall distances [bJa = 20 (infinity ) and 
1.2 I and tbe fixed-boundary modes. The eigenvalues scale approximately like (2. 
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Fig.4. Normalized eigenvalues versus tu for tbe free-boundary (bJa = l.20, 1.50, 00) and 
tbe fixed-boundary mode (toroidal, £ = 0.13. ). 
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Fig.5. Scaling of tbe maxima of tbe eigenvalue curves as function of toroidal curvature 
(emu = 0.13) . 

According La this model weakly uustable m = 2, n = 1 free-boundary modes C:loll be 
stabilized. by a conducting wall in a toroidall = 2 configuration (e.g. for {P} ~ 0.8% the 
wall position is about bJn ~ 1.1 to stabilize this mode). 
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