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i. Introduction.

It has been shown' that results on the normalized eigenvalues (yRr/v4)? of unstable
fixed boundary m = 2 modes in straight £ = 2 stellarator configurations with vanish-
ing longitudinal net current computed with the asymptotic STEP code? (based on the
stellarator expansion and averaging) are in good agreement with results obtained with the
HERA helically symmetric eigenvalue code® and the BETA 3D code?. In the present paper
the asymptotic STEP code has been applied to investigate free-boundary m = 2,n =1
modes in £ = 2 stellarator configurations with vanishing longitudinal net current. The
£ = 2 configurations were selected so that the rotational transform & (twist) is in the range
0.36 < ¢t,, < 0.58, where the m = 2, n = 1 mode is resonant: k., ~ mht,, &, = t/M, M is
the number of equilibrium field periods of length Ly, ha = 27/L,, a is the minor radius of
the free plasma boundary, b is the minor radius of the conducting wall, ka the wave num-
ber of the unstable mode, m its poloidal node number, n the longitudinal mode number,
g = (BE/ po) T the Alfvén velocity, and By the main magnetic field; the shear (&, —¢,,)/¢,

is typically 0.2.

2. Model.

The £ = 2 configuration consists of M = 5 field periods of length L, /a which is continuously
bent into a torus with torus curvature ¢ = a/Rp. If the toroidal curvature is e = 0.13,
the configuration is a closed toroidal system with ha = Me. The vacuum magnetic field is
given in a pseudo-cylindrical coordinate system (r, 8, z) by B=B, le: + fl-VIg (hr)<in(26 —
hz)], where the Bessel function I;(hr) is 2 solution of the Laplace equation in a straight
system (Bessel model); 6§ describes the helical £ = 2 field amplitude giving a twist ¢, on
magnetic axis of ¢,, = M§?/16 (asymptotic value). The pressure profile p = po(1 — ¥} is
approximately parabolic in the minor radius r of the flux surfaces (¥ is the poloidal flux
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inside 2 magnetic surface). In all cases one wave length of the instability fits onto M = 5
field periods: k = h/M. A rather small average (f) ~ fo/2 = 0.8% is chosen so that the
change of the ~profile in the toroidal configurations with zero net current is small (e.g. for
§ = 1.2 the twist varies in the range 0.45 < ¢(r) < 0.55 for € = 0 and 0.46 < ¢(r) < 0.53
for € = 0.13). The ¢{r)-profile is approximately a parabolic function of r. No additional
vertical field is applied (B, = 0).
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Fig.1. Normalized specific volume as function of r? for ¢ = 0,0.13.

The normalized specific volume (V) — V;,)/V., as function of r? is plotted in Fig.1 for
€ =0, 0.13. A rather deep magnetic well (V" < 0) is created at ¢ = 0.13 for (f) = 0.8%
which affects the stability of the configuration. The corresponding vacuum field has a
magnetic hill (V¥ > 0). Applying an additional vertical field (By > 0 causes a radially
inward shift of the plasma column) the magnetic well can be diminished and therefore the
stability properties are changed.

3. Results.

Using the STEP code it is shown that in toroidal £ = 2 stellarators the resonant free
boundary m = 2 mode can be stabilized by a conducting wall being close enough even for
those £ = 2 configurations where the twist at the plasma boundary is ¢ = 0.5 being resonant
to that mode. In straight £ = 2 configurations there is no wall stabilization effect on that
resonant m = 2 mode. Introducing toroidal curvature creates a magnetic well at finite g
and the m = 2 fixed-boundary mode is completely stabilized. The absolute eigenvalue of
the free-boundary m = 2 mode is diminished as well. These results are shown in Figs.2 - 5
where the eigenvaluesof m = 2, n = 1 free-boundary and fixed-boundary modes are plotted
as function of the twist £, on axis for various positions b/a of the conducting wall. Figure
2 shows the results for the straight £ = 2 configurations (e = 0). At 0.44 < ¢,, < 0.52
one chserves a stabilizing effect due to the wall scaling approximately like (a/b)* with the
inverse wall distance. At ¢, = 0.408 the corresponding twist value at the free-boundary is
&, = 0.50 which is resonant to the m = 2,n = 1 mode, no stabilizing effect due to the wall
can be observed Increasing the curvature to ¢ = 0,065 (Fig.3) the resonance phenomenon
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is less distinct and obviously a stabilizing effect due to the wall is observed even at a wall
position of b/a = 1.2.
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Fig.2. Normalized eigenvalues versus ¢, for the free-boundary (b/a = 1.05, 1.20, c0) and
the fixed-boundary mode (straight, e = 0). .
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Fig.3. Normalized eigenvalues versus ¢, for the free-boundary (b/a = 1.05,1.20, 00) and
the fixed-boundary mode (toroidal, € = 0.065).

The wall stabilization effect on the free-boundary mode depending on the wall distance
b/a is even more obvious at € = 0.13 (Fig.4). In this case the fixed-boundary mode could




- 412 -

not be found. The left edge of the eigenvalue curves is shifted to higher ¢, -values as ¢ is
increased. Figure 5 shows the maxima of the eigenvalue curves as function of the torus
curvature € for the free-boundary mode at various wall distances [b/a = 20 (infinity) and
1.2 | and the fixed-boundary modes. The eigenvalues scale approximately like €2,
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Fig.4. Normalized eigenvalues versus r,_ for the free-boundary (b/a = 1.20,1.50, c0) and
the fixed-boundary mode (toroidal, ¢ = 0.13. ).
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Fig.5. Bcaling of the maxima of the eigenvalue curves as function of toroidal curvature
e(emaz = 0.13).

According to this model weakly unstable m = 2,n = 1 free-boundary modes can be
stabilized by a conducting wall in a toroidal £ = 2 configuration (e.g. for {8) = 0.8% the
wall position is about b/a = 1.1 to stabilize this mode).
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