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Die Dipolantwort einer Ionisationsschwelle innerhalb von ultrakurzen und 

starken Feldern – In dieser Arbeit wird die starkfeld-modifizierte Dipolantwort an 

der Ionisationsschwelle von Helium untersucht. Die Dipolantwort wird durch einen 

Attosekundenpuls im extrem ultravioletten Spektralbereich induziert und durch einen 

ultrakurzen und starken Femtosekundenpuls im nahen Infrarot manipuliert. Um diese 

Dipolantwort zu untersuchen, wird das transiente Absorptionsspektrum von Helium 

für unterschiedliche Zeitverzögerungen zwischen beiden Pulsen und 

unterschiedlichen Intensitäten des Femtosekundenpulses aufgenommen. Aus den 

Spektren wird die Dipolantwort an der Ionisationsschwelle rekonstruiert, die auf die 

Dynamik angeregter Elektronen mit Energien im Übergangsbereich von gebundenen 

zu freien Zuständen zurückzuführen ist. Um die zugrundeliegenden Prozesse der 

Wechselwirkung zwischen Licht und Materie zu identifizieren, die zu den 

beobachteten Strukturen im Zeit- und Spektralbereich führen, werden verschiedene 

quantenmechanische Modellsimulationen durchgeführt. Als Ergebnis offenbart die 

gemessene Dipolantwort lichtinduzierte Energieverschiebungen der kinetischen 

Energie eines Photoelektrons in der Nähe des Ions, Signaturen für feldgetriebene 

Rekollisionen des Photoelektrons in das Ion sowie einen zeitlichen Amplituden- und 

Phasensteuermechanismus. Mit letzterem wird die Aufbaudynamik von komplexen 

Spektralstrukturen aufgelöst. Diese sind die zeitabhängige Trennung und 

Linienformmodifikation der doppelt angeregten Rydberg-Serie und der zeitliche 

Aufbau der Ionisationsschwelle. 

 

The Dipole Response of an Ionization Threshold within Ultrashort and 

Strong Fields – In this work, the strong-field-modified dipole response at the 

ionization threshold of helium is studied. The dipole response is induced by an 

attosecond pulse in the extreme ultraviolet spectral range and is manipulated by an 

ultrashort and strong femtosecond pulse in the near-infrared. To probe the response, 

the transient absorption spectrum of helium is recorded for different time delays 

between both pulses and different intensities of the femtosecond pulse. From the 

spectra, the dipole response of the ionization threshold is reconstructed, which is 

linked to the dynamics of excited electrons with energies in the transition region from 

bound to free. To identify the underlying processes of light-matter interaction leading 

to the observed structures in the time and spectral domain, different quantum-

mechanical model simulations are conducted. As a result, the measured dipole 

response reveals light-induced energy shifts of the photoelectron’s kinetic energy 

close to the parent ion, signatures for field-driven recollisions of a photoelectron into 

the parent ion, and a temporal amplitude and phase gating mechanism. With the latter, 

the build-up dynamics of complex spectral structures are temporally resolved, which 

are the time-dependent separation and line-shape modification of the doubly excited 

Rydberg series as well as the temporal build-up of the ionization threshold.
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1. Introduction 

What happens with the constituents of an atom or a molecule during a chemical 

reaction? How do electrons or nuclei within a molecule rearrange in time when a 

molecular bond breaks, forms, or a molecular configuration changes? These 

questions motivate many physicists to study the dynamics of atoms and molecules in 

a time-resolved manner [3,4]. Here, one ultimate objective of this field is to track in 

time and space the trajectories of electrons and nuclei during molecular dynamics 

and, in addition to that, to even control the dynamics in order to, for instance, favor 

certain chemical reactions. To resolve in time dynamics happening in nature, one 

needs tools that occur on the same timescale or even shorter. An example to illustrate 

this is given by looking at the wing beat of a hummingbird. This movement cannot 

be time-resolved by the naked human eye since the hummingbird moves its wings 

with a frequency of up to 50 beats per second [5]. In contrast, the visual perception 

of a human only starts to detect visual gaps in movements at this frequency [6]. The 

wing beat thus appears as a blurred movement. Only with cameras that have an 

exposure time shorter than the period of the wing beat it is possible to revolve in time 

the trajectory of the wings. 

The hummingbird wing beat is a macroscopic example, while the physics of atoms 

and molecules takes place at the microscopic scale. Their dynamics obey the laws of 

quantum mechanics, where the properties of atoms or molecules can be described by 

their quantized states. By putting energy in or taking energy from an atomic or 

molecular quantum system, its state can change, or the system ends up in a 

superposition of quantum states, which is a common phenomenon in quantum 

mechanics. This superposition principle results in the formation of so-called wave 

packets, which exhibit an evolution in time. The timescale of these dynamics is 

governed by the inverse of the energy differences of the wave packet’s energy states. 

In the case of molecules, typical energy differences are on the order of several meV 

(1 electronvolt ≈ 1.6 × 10-19 Joule), leading to timescales of picoseconds (10-12 s) 

down to femtoseconds (10-15 s). Typical energy differences in atoms are on the order 

of several eV, which corresponds to evolution times reaching the attosecond (10-18 s) 

timescale. Compared to everyday life, this is an incredibly short scale. To classify it, 

one should note that the age of the universe is ~13.8 Gyr, which is ~4.35 × 1017 s [7]. 

Thus, the relation between a second and the age of the universe is similar to the 

relation between the evolution time of an electron wave packet within an atom and a 

second.  

Aside from the short timescale of its dynamics, the atom is also small. The typical 

length scale involved here is the Bohr radius. This is the mean distance between the 
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electron and the nucleus in the hydrogen atom in its ground state, and it amounts to 

~0.53 Å (1 Å = 10-10 m). Thus, the experiments with which one wants to probe the 

dynamics of atoms or molecules have to make use of processes that are short in time 

and additionally are sensitive to small length changes. With the advent of ultrashort 

laser pulses, it became possible to perform experiments that fulfill these 

requirements. Typically such pulses are illuminated onto and interact with the target 

material under study. By measuring, e.g., the properties of the material after laser 

illumination, the fragments after its laser-induced destruction, or the properties of the 

laser pulses like their spectra before and after hitting the target, one can reconstruct 

the dynamics in the material that is induced by the light-matter interaction. 

Furthermore, using an interferometric geometry, one can probe the dynamics in a  

time-resolved manner via a pump-probe scheme. Here, one laser pulse pumps, for 

instance, an atom into a desired state, inducing electron dynamics, and a time-delayed 

laser pulse subsequently probes the state. The time resolution is then achieved by 

precisely controlling the delay between the two pulses. An additional advantage of 

an interferometric experiment is its high sensitivity to length differences. As an 

impressive recent example, such experiments can be sensitive enough to observe 

space-time changes generated by gravitational waves, which result from the merger 

of black holes that are about a billion light-years (1 ly ≈ 9.46 × 1015 m) away [8]. 

Using femtosecond pulses in pump-probe types of experiments, one can resolve 

in time and space chemical reactions with sub-angstrom resolution [9]. The 

production of femtosecond pulses became possible with the invention of mode-

locking, together with the Kerr-lensing technique [10,11]. Over the last decades, 

many advances to further shorten the laser pulse duration and increase the peak 

intensity were made. Nowadays, such pulses are routinely available with durations 

that support only a few cycles of the carrier electromagnetic wave and intensities 

excessing ~1014 W/cm2 [12–15]. The duration of laser pulses was further reduced 

with the generation of high harmonics of these ultrashort laser pulses [16,17]. Using 

this technique, it became possible to generate pulse trains or isolated pulses on the 

attosecond time scale [18,19]. These pulses are, to date, the shortest controllable tools 

(the current record of pulse duration is 43 as [20]) that are used to perform time-

resolved measurements on the natural timescale of electronic excitations in atomic 

[21–24], molecular [25–27] and solid-state systems [28]. 

One of the fundamental light-matter interactions is the transfer of energy from the 

light field into the atom or molecule via the absorption of photons. This happens at 

laser frequencies (or photon energies) that are characteristic for the target and results 

in absorption lines, i.e., spectral gaps that are observable in the frequency spectrum 

of the light field. The absorption spectra for different target materials have been 

extensively studied throughout the last two centuries from its first systematic 

observation in the pioneering work by Fraunhofer [29], the identification of new 

elements by the development of the spectroscopy technique by Kirchhoff and Bunsen 
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[30], to a recent measurement of the time-resolved build-up of an absorption line 

shape [31]. In the latter, the absorption spectrum of an attosecond pulse through a 

helium target was measured in the presence of another ultrashort, strong, and time-

delayed laser pulse, which transiently changes the absorption. In order to interpret 

the experimental results, one has to realize that the appearance of absorption lines is, 

in first order, the result of the destructive (or constructive) interference of the 

incoming light field with the light-induced time-dependent dipole response of the 

material [32–34]. In the experiment, the additional strong laser pulse temporally gates 

the evolution of the dipole response in the time domain and thereby changes the 

emergence of the interference resulting in the build-up of the absorption line. With 

this understanding of the origin and the modification mechanism of absorption, it 

becomes possible to control the line shape of absorption resonances such that 

naturally symmetric line shapes become asymmetric and vice versa [35], or even to 

turn absorption into gain using nuclear resonances in the x-ray spectral region [36].  

All these mentioned experiments were focused on the observation or modification 

of the absorption of resonant atomic, molecular, or nuclear transitions. However, a 

non-resonant absorption spectrum resulting from a transition to a continuous energy 

state also has a certain spectral shape, which can be observed and modified. In the 

atomic or molecular case, non-resonant absorption is given by the photoionization of 

electrons from the atom or the molecule. For solid-state systems, it can be the 

transition from an occupied to an unoccupied energy band. Both cases have in 

common that the absorption increases at a certain photon energy threshold. Due to 

this threshold, the spectral absorption shape of a non-resonant transition is 

asymmetric. It is low below the threshold, increases typically step-like across the 

threshold, and is flat above the threshold. Similar to the interpretation for the origin 

of the resonant spectral line shapes, an absorption threshold results from the 

interference of an induced time-dependent dipole response of the material and the 

incident light. This thesis aims to study the dipole response of an ionization threshold 

and modify it in a controlled time-resolved manner using an ultrashort and strong 

laser pulse. 

For this purpose, attosecond transient absorption spectroscopy (ATAS) is 

performed on the first and second ionization threshold of the prototype spectroscopy 

target helium. In ATAS, an attosecond pulse in the extreme ultraviolet (XUV) 

spectral range is produced by means of high harmonic generation of a near-infrared 

(NIR) femtosecond laser pulse. Both pulses are focused onto a gas cloud (here 

helium) with a controlled time-delay between the pulses, and the laser-modified XUV 

transmission spectrum of the attosecond pulse is recorded by a high-resolution XUV 

spectrometer. In the second chapter of this thesis, the theoretical framework will be 

given, allowing one to understand the underlying physics in this type of experiment. 

In the following chapters, the experimental setup to perform ATAS and the data 

processing and calibration steps are described. The transient absorption spectrum of 
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the first ionization threshold in helium will be presented in the fifth chapter. Here the 

laser-induced effects visible in the absorption will be interpreted by comparing them 

with results from a quantum mechanical model simulation. As will be further pointed 

out over the course of this thesis, the absorption spectrum at the ionization threshold 

is generated by the dipole response of slow photoelectrons in the vicinity of the 

residual ion. Therefore, with the interferometric method of ATAS, one can locally 

probe these slow electrons within the non-negligible Coulomb potential of the ion. In 

the sixth chapter, the above-mentioned response-gating mechanism by a strong laser 

pulse is investigated and applied onto the first ionization threshold and the doubly 

excited Rydberg resonance, converging to the second ionization threshold of helium. 

Finally, the results of this thesis are summarized and concluded, and an outlook for 

future studies will be provided.



 

 

2. Fundamentals 

In order to understand and interpret the physical processes during the interaction 

of ultrashort and strong laser pulses with matter, one first needs to know the 

underlying fundamental concepts and their mathematical descriptions. Since the 

research field of attosecond science is multifaceted and even intersects many other 

disciplines, a comprehensive overview cannot be given in the scope of this thesis. 

Therefore, this chapter focuses on the definitions, the physical laws, and derivations 

used to describe the physics of light-matter interaction studied in this thesis. For the 

sake of clarity, many also interesting phenomena in attosecond science are omitted, 

but the interested reader can find further details aside from this chapter, for instance, 

in references [37–41]. 

In this thesis, the light-matter interaction between pulsed laser fields and the 

helium atom is studied. For its mathematical treatment, the semi-classical approach 

is well-established. Here, the laser fields are described classically by using the well-

known Maxwell equations, and the atoms are treated fully quantum mechanically by 

atomic states and the transitions between these states. Since the spatial dimension of 

the helium atom is much smaller (~10-10 m) than all here treated wavelengths of the 

field (down to ~10-8 m), the spatial dependency of the fields can be neglected; or, 

considering a macroscopic target, all studied interactions are confined within the 

Rayleigh range, and thus it is sufficient to consider only the propagation direction of 

the fields. With this spatial independence in the light-matter interaction, the electric 

dipole approximation can be applied, which is a central approximation of the 

presented work. With this, the interaction Hamiltonian between the laser and the 

atoms will be purely given by the electric dipole operator times the electric field. 

Furthermore, the used laser field strength is such that the non-relativistic equations 

of motion are applicable. 

The chapter starts with the definitions and the properties of ultrashort and strong 

laser pulses. Then the quantum dynamics of an atomic system are described together 

with its perturbative and non-perturbative interaction with laser pulses. Here, in 

particular, the electric dipole response of the atom is the key observable to probe the 

dynamics in the spectral and in the time domain. At the end of this chapter, the 

properties of the helium atom are introduced as a benchmark system with two 

correlated electrons, and the production of attosecond pulses via high harmonic 

generation is outlined, which are used to investigate this two-electron system.  
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Ultrashort Laser Pulses 

Laser pulses are coherent electromagnetic fields that are concentrated in space and 

nonzero only for a short time. Their dynamics are mathematically well described by 

Maxwell’s equations using time- and space-dependent electric field and magnetic 

field vectors. From Maxwell’s equations, one can arrive at the wave equation 

describing the propagation of the field vectors as electromagnetic waves in time and 

space. In general, the solution of this equation can become very complex, but one can 

often make some valid approximations to simplify the treatment. Here, the electric 

dipole approximation is made, which allows one only to consider the electric fields. 

The magnetic field vanishes since the vector potential 𝐴 which generates the 

magnetic field 𝐵⃗⃗ via 𝐵⃗⃗ =  ∇⃗⃗⃗  × 𝐴 is independent of space in this approximation. 

It is mathematically convenient to use a complex-valued representation, whereby 

the real part gives the physical fields. With this, the laser pulse’s time-dependent 

electric field vector at a certain point in space can be written as 

𝐹⃗(𝑡) = 𝜖(𝑡)𝑓(𝑡) 𝑒−𝑖𝜙(𝑡). ( 2.1 ) 

Here, 𝑓(𝑡) is the time-dependent slowly varying envelope, 𝜖(𝑡) is the unit vector 

representing the time-dependent polarization and 𝜙(𝑡) is the time-dependent phase, 

which represents the fast oscillation of the carrier wave. Most electric fields 

considered here are linearly polarized, and thus in the polarization-unit-vector, one 

element is unity, and the others are zero. Therefore the vector notation is omitted, and 

scalars are used in the following unless stated otherwise.  

The envelope can, in general, have an arbitrary shape in time, but a good 

estimation is often a Gaussian function given by  

𝑓Gauss(𝑡) = 𝑓0𝑒
−2 ln(2) (

𝑡

𝜏FWHM
)
2

, ( 2.2 ) 

where 𝑓0 is the peak field amplitude and 𝜏FWHM is the characteristic pulse duration 

known as the full width at half maximum (FWHM) of the peak intensity of the pulse. 

Further commonly used pulse envelopes are the squared hyperbolic secant (sech) 

function 

𝑓sech(𝑡) = 𝑓0 sech
2 (

𝑡

𝜏sech
) = 𝑓0 cosh

−2 (
𝑡

𝜏sech
), ( 2.3 ) 

where 𝜏FWHM  ≈ 1.76 ∙ 𝜏sech, or the squared cosine function 

𝑓cos(𝑡) = {
𝑓0 cos

2 (
𝑡

𝜏cos
)         for  −

𝜋

2
𝜏cos ≤ 𝑡 ≤

𝜋

2
𝜏cos

0                                otherwise

 ( 2.4 ) 

with  

𝜏cos =
 𝜏FWHM

2 arccos(2−1/4)
. ( 2.5 ) 
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With a detector, the intensity of the fields is commonly measured rather than their 

amplitudes. It is given by the absolute square of the field 

𝐼(𝑡) =
1

2
 𝜀0𝑐 |𝐹(𝑡)|

2, ( 2.6 ) 

where 𝜀0 is the electric vacuum permittivity and 𝑐 the speed of light. Thus, the field 

intensity depends on time, and in the case of the Gaussian field envelope, it reads: 

𝐼(𝑡) = 𝐼peak𝑒
−4 ln(2) (

𝑡

𝜏FWHM
)
2

 ( 2.7 ) 

with the peak intensity  

𝐼peak = 
1

2
 𝜀0𝑐𝑓0

2. ( 2.8 ) 

In order to measure the peak intensity of a laser pulse, one has to consider that the 

laser pulse always has a spatial beam profile, which is the intensity across the 

transverse section of the laser beam. It can often be approximated by a Gaussian beam 

profile with beam waist 𝑤. With this, the peak intensity can be related to the pulse 

energy 𝜀 via 

𝐼peak = 
1.88

𝜋

𝜀

𝜏FWHM𝑤
2
. ( 2.9 ) 

The pulse energy is the experimentally measurable averaged power of the laser 𝑃 

divided by the repetition rate of the laser pulses 𝑓rep 

𝜀 = 𝑃 𝑓rep.⁄  ( 2.10 ) 

The time-dependent phase 𝜙(𝑡) in equation 2.1 is expandable in terms of a power 

series 

𝜙(𝑡) =  𝜙CEP +𝜔𝑐𝑡 + 𝑎𝑡
2 + 𝑏𝑡3 +⋯ ( 2.11 ) 

The first term is the so-called carrier-envelope phase (CEP). That is the offset 

between the maximum of the carrier wave and the pulse envelope. The parameter 𝜔c 

in the linear term is the central frequency of the carrier, and 𝑎 and 𝑏 represent the 

linear and quadratic chirp. Figure 2.1 depicts the electric field of the pulse for 

different parameter values. As shown here, for pulses with only a few field cycles, 

the CEP determines the waveform and, in particular, the maximum field amplitude. 

The influence of the chirp term can be readily revealed by defining the instantaneous 

frequency 

𝜔(𝑡) =
𝑑𝜙(𝑡)

𝑑𝑡
= 𝜔𝑐 + 2𝑎𝑡 + 3𝑏𝑡

2 +⋯ ( 2.12 ) 

This equation states that if the chirp parameters, i.e., 𝑎 or 𝑏 or higher orders, are 

positive, the frequency will increase over time, and if they are negative, the frequency 

will decrease, as shown in figure 2.1. The pulse is accordingly called up- or down-

chirped, respectively. 
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The description of the pulses so far is given in the time domain, but it can be 

transformed into an equivalent description in the frequency domain, also called the 

spectral domain, using the Fourier transformation 

𝐹̃(𝜔) = ℱ[𝐹(𝑡)] =
1

√2𝜋
∫ 𝐹(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡.

+∞

−∞

 ( 2.13 ) 

The backward transformation is accordingly 

𝐹(𝑡) = ℱ−1[𝐹̃(𝜔)] =
1

√2𝜋
∫ 𝐹̃(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔

+∞

−∞

. ( 2.14 ) 

Here and in the following, the variables are indicated by a tilde if they are defined in 

the frequency domain unless the domain is clear. This relation between the time and 

the spectral domain states that the shorter the pulse in time, the broader it has to be in 

the spectral domain and vice versa. Thus, in order to generate an ultrashort pulse, it 

must consist of many different spectral components. This can also be understood in 

terms of the uncertainty principle given by  

𝛥𝜔𝛥𝑡 ≥
1

2
, ( 2.15 ) 

where Δ𝜔 and Δ𝑡 are the spectral bandwidth and pulse duration, respectively. Here 

the factor 1 2⁄  is only a lower bound, and this value depends on the exact temporal 

shape of the intensity.  

According to the Fourier transformation, the phase in the spectral domain becomes  

𝜙̃(𝜔) =  𝜙̃CEP + 𝜏GD(𝜔 − 𝜔𝑐) +
GDD

2
(𝜔 − 𝜔𝑐)

2 +
TOD

6
(𝜔 −𝜔𝑐)

3 +⋯ ( 2.16 ) 

Here the factor 𝜏GD in the term linear in 𝜔 describes the mean delay, which is the 

global temporal shift of all frequency components of the pulse. Similar to the 

instantaneous frequency, one can further define the group delay by taking the 

derivative of the spectral phase with respect to the frequency  

𝜏̃(𝜔) =  
𝑑𝜙̃(𝜔)

𝑑𝜔
= 𝜏GD + GDD(𝜔 −𝜔𝑐) +

TOD

2
(𝜔 − 𝜔𝑐)

2 +⋯ ( 2.17 ) 

Here the factor for the linear term (quadratic in equation 2.16) is called the group 

delay dispersion (GDD) and for the quadratic term (cubic in equation 2.16)  third-

order dispersion (TOD). Equation 2.17 intuitively shows the impacts of the dispersion 

terms similar to equation 2.12. For non-vanishing dispersion, the group delay of the 

pulse becomes frequency-dependent. Figure 2.1 depicts the electric field for different 

values of dispersion. In the case of all chirp parameters being zero, subfigure b), e), 

and h), the pulse is called transform-limited. That means it has the shortest time 

duration supported by the spectral bandwidth and envelope shape. By changing the 

GDD, in subfigure d) and f), the pulse duration becomes longer, and the carrier 
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frequency sweeps under the pulse envelope. Introducing a nonzero TOD, subfigure 

a) and i) pre- or post-pulses next to the main pulse appear. In combination with a 

nonzero GDD, the pulse exhibits a long tail at one side of the pulse; see subfigure c) 

and g).  

Dispersions are accumulated in the pulse during its propagation through an optical 

material with length 𝑧. This can be described by the Helmholtz equation 

[
𝜕2

𝜕𝑧2
+ 𝑘(𝜔)2] 𝐹̃(𝜔, 𝑧) = 0, ( 2.18 ) 

where 𝑘(𝜔) is the frequency-dependent wavenumber. The general solution to this 

equation is the 𝑧-dependent field 

𝐹̃(𝜔, 𝑧) = 𝐹̃(𝜔, 0)𝑒𝑖𝑘(𝜔)𝑧. ( 2.19 ) 

The wavenumber is related to the frequency-dependent refractive index 𝑛(𝜔) of the 

material via 

𝑘(𝜔) =
𝜔

𝑐
𝑛(𝜔). ( 2.20 ) 

Figure 2.1: The pulse’s electric field for different carrier-envelope phase (CEP), group delay 

dispersion (GDD) and third-order dispersion (TOD). The respective pulse envelope is depicted 

by a dashed orange line. The unchirped pulse in e) has a Gaussian shaped envelope with a pulse 

duration of 4.5 fs, and a central photon energy of 1.5 eV. These specifications are similar for the 

pulses used in the experiment. While the CEP changes the phase slippage between the carrier 

wave and the envelope, the GDD and TOD change the pulse duration and determine the 

existence of pre- or post-pulses. The definition of CEP, GDD, and TOD is given by equation 2.16. 
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For most materials, the refractive index is not constant with respect to the field 

frequencies. Thus, they introduce a frequency-dependent phase shift onto the pulse. 

The connection to the dispersion mentioned above can be revealed by a Taylor 

expansion of the wavenumber around the pulse’s central frequency 𝜔𝑐 

𝑘(𝜔) = 𝑘𝑐 +
𝑑𝑘(𝜔)

𝑑𝜔
|
𝜔𝑐

(𝜔 − 𝜔𝑐) +
1

2

𝑑2𝑘(𝜔)

𝑑𝜔2
|
𝜔𝑐

(𝜔 − 𝜔𝑐)
2 +⋯  

=
𝜔𝑐
𝑐
𝑛(𝜔𝑐) + [

𝑛(𝜔𝑐)

𝑐
+
𝜔𝑐
𝑐

𝜕𝑛(𝜔)

𝜕𝜔
|
𝜔𝑐

] (𝜔 − 𝜔𝑐)

+
1

2
[
2

𝑐

𝜕𝑛(𝜔)

𝜕𝜔
|
𝜔𝑐

+
𝜔𝑐
𝑐

𝜕2𝑛(𝜔)

𝜕𝜔2
|
𝜔𝑐

] (𝜔 − 𝜔𝑐)
2 +⋯ 

( 2.21 ) 

The first-order coefficient in equation 2.21 is identified by the inverse of the group 

velocity evaluated at the central frequency. It is given by 

𝑣g(𝜔) = (
𝑑𝑘(𝜔)

𝑑𝜔
)

−1

= (
𝑛(𝜔)

𝑐
+
𝜔𝑐
𝑐

𝜕𝑛(𝜔)

𝜕𝜔
)

−1

. ( 2.22 ) 

The second-order coefficient is linked to the group velocity dispersion (GVD) 

GVD(𝜔) = −
1

𝑣g
2

𝜕𝑣g

𝜕𝜔
=
𝑑2𝑘

𝑑𝜔2
= [

2

𝑐

𝜕𝑛(𝜔)

𝜕𝜔
+
𝜔𝑐
𝑐

𝜕2𝑛(𝜔)

𝜕𝜔2
]. ( 2.23 ) 

Considering equation 2.16, one can finally relate the mean delay and the group delay 

dispersion with the material’s refractive index using 𝜙̃(𝜔) =  𝑘(𝜔)𝑧 

   𝜏GD =
1

𝑣g(𝜔𝑐)
 𝑧, ( 2.24 ) 

    GDD = GVD(𝜔𝑐) 𝑧. ( 2.25 ) 

Thus, any optical material with a non-vanishing GVD, i.e., with a frequency-

dependent refractive index, will add GDD to the spectral phase and thereby introduce 

a chirp onto the pulse, which leads to a modification of the pulse duration.  

Furthermore, a non-constant refractive index results in a phase shift between the 

carrier of the field and the pulse envelope, i.e., a change in the CEP. Since the delay 

of the carrier is given by 

𝜏𝑐 =
𝑧

𝑣𝑐
=
𝑛(𝜔)

𝑐
𝑧 ( 2.26 ) 

the phase slippage 𝜑 after propagation through the material will become 

𝜑 = 𝜔𝑐𝛥𝜏 = 𝜔𝑐(𝜏𝑐 − 𝜏GD) = −
𝜔𝑐
2

𝑐

𝜕𝑛(𝜔)

𝜕𝜔
𝑧. ( 2.27 ) 
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Strong Laser Pulses 

In the previous section, the duration and the dispersion of ultrashort laser pulses 

were introduced. The present section addresses the question: What is a strong laser 

pulse? The term “strong” is relative, and therefore it is good practice to compare the 

strength of the laser electric field with other field scales observed in nature. An 

example is the electric field strength 𝐹(𝑟) that an electron experiences in the vicinity 

of an atomic core at distance 𝑟. It can be derived from Coulomb's law and reads 

𝐹(𝑟) =
1

4𝜋𝜀0

𝑞

𝑟2
, ( 2.28 ) 

where 𝑞 is the charge of the atomic core. In the case of a hydrogen atom, the most 

probable distance of a bound electron in the atomic ground state to the singly charged 

core is given by one Bohr radius 𝑎0 ≈ 5.3·10-11 m. With this, the field strength 

becomes 

𝐹H(𝑟 = 𝑎0) =
1

4𝜋𝜀0

𝑒

𝑎0
2 ≈ 5.14 ∙ 10

9
V

cm
. ( 2.29 ) 

Therewith, one can define a pulse to be strong if it has a field strength comparable to 

this Coulomb field. Using equation 2.8, this corresponds to a peak intensity of 

𝐼peak ≈ 3.5 ·1016 W/cm2, which, from an experimental point of view, is a very high 

intensity, but it is needed to enter the strong-field regime for a hydrogen atom. 

However, in different atomic species, the outermost electron of the neutral atom feels 

lower Coulomb fields since first, it has a greater mean distance to the core, and 

second, the core’s charge is screened by the other electrons within the atom. 

Therefore, peak intensities of the pulses on the order of 1014, 1013, or even down to 

1012 W/cm2 can often be regarded as strong. 

Another well-established method to define a strong field is the comparison of 

characteristic energies of the atom and the field. For the atom, one characteristic 

energy is the ionization energy or also called the ionization potential 𝐼p. For the field, 

it is the so-called ponderomotive potential, which is derived as follows. If an electron 

is exposed to an electric field, it gets accelerated by the field, which can be described 

by the equation of motion 

𝑑2

𝑑𝑡2
𝑥(𝑡) =  −

𝑒𝐹(𝑡)

𝑚e
, ( 2.30 ) 

where 𝑒 is the elementary charge and 𝑚e is the electron mass. In an ultrashort pulse, 

the field carrier oscillates around zero, and thus the solution of the trajectory of the 

electron will be a quivering motion. Due to this motion, the electron exhibits certain 

kinetic energy, which is transferred to the electron by the oscillating field. On 

average, this kinetic energy is not zero. This can be seen by calculating the electron’s 

time-dependent velocity 𝑣𝑥(𝑡). Using a plane wave to approximate the carrier of the 
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pulse with the field equation 𝐹(𝑡) = 𝐹0 cos(𝜔𝑐𝑡 + 𝜙) equation 2.30 can be 

integrated analytically in time 

𝑣𝑥(𝑡) = ∫
𝑑2

𝑑𝑡′2
𝑥(𝑡) 𝑑𝑡′

𝑡

0

= −
𝑒𝐹0
𝑚e𝜔𝑐

[sin(𝜔𝑐𝑡 + 𝜙) − sin(𝜙)]. ( 2.31 ) 

The first term of the velocity is oscillating in time, and the second term yields a 

constant drift of the electron. Its magnitude and direction depend on the initial phase 

𝜙 of the field at 𝑡 = 0. This is the time when the electron starts to experience the 

electric force due to, e.g., being ionized from an atom. Thus, the initial electric field 

phase determines the long-term trajectory of the electron. 

With the time-dependent velocity at hand, one can readily show that the mean 

kinetic energy during one electric field cycle has a non-zero value 

〈𝐸kin〉 =
𝑚e

2
〈𝑣𝑥(𝑡)

2〉 =
𝑚e

2
〈[−

𝑒𝐹0
𝑚e𝜔𝑐

[sin(𝜔𝑐𝑡 + 𝜙) − sin(𝜙)]]

2

〉      

=
𝑒2𝐹0

2

4𝑚e𝜔𝑐
2 ≠ 0. 

( 2.32 ) 

Thus, on time-average, the electron gains energy added to the energy it would have 

without the oscillating field. Therewith the field acts for the electron as a potential, 

which is called the ponderomotive potential 𝑈p. Using equation 2.8, one can further 

relate this potential to the peak intensity of the field 

𝑈p = 〈𝐸kin〉 =  
𝑒2

2𝑚e𝜀0𝑐𝜔𝑐
2 𝐼peak =

𝑒2

8𝜋2𝑚e𝜀0𝑐
3
𝜆𝑐
2𝐼peak, ( 2.33 ) 

where 𝜆𝑐 is the central wavelength of the carrier field. Since 𝑈p is proportional to the 

intensity and to the square of the wavelength, one can experimentally control this 

potential. Although only a free electron is considered in the derivation of the 

ponderomotive potential, it is also partly applicable to electrons bound to an atomic 

system. Here, the ponderomotive potential shifts the energy of the quantum state the 

electron occupies. This energy shift is small for deeply bound states, and it is almost 

equal to the ponderomotive energy if the electron is excited to a high-lying state, 

where it is only loosely bound.  

Finally, the relation of the ionization potential and the ponderomotive potential 

defines the Keldysh parameter 𝛾 (named after Leonid V. Keldysh [42]) 

𝛾 = √
𝐼p

2𝑈p
. ( 2.34 ) 

With this, an electric field can be defined as strong if the Keldysh parameter is small, 

i.e., if 𝛾 < 1 holds. On the other hand, if the parameter is large, i.e., 𝛾 > 1 or even 

𝛾 ≫ 1, the interaction of the field with a target under investigation can often be 

treated perturbatively. An example of a perturbative treatment is the laser-induced 
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single or multiphoton excitation or ionization of atoms, while an example of a non-

perturbative treatment is tunnel ionization, which, in turn, is a prerequisite for the 

high harmonic generation that will be introduced below. 

Quantum Dynamics 

In this dissertation, the subject under study is the helium atom and its laser-induced 

dynamics. One can mathematically formulate the dynamics of atoms well by using a 

quantum mechanical treatment. Here an atom can be described by quantum states, 

and by using a certain basis set, the state is a superposition of the so-called basis states 

|𝜓⟩  =∑𝑐𝑖 |𝜓𝑖⟩

𝑖

 ( 2.35 ) 

with 𝑐𝑖 being the complex-valued amplitude of the basis state |𝜓𝑖⟩. Here the Dirac 

notation, also called bra-ket notation, is used for the quantum states [43,44], and due 

to the superposition, the state is formally a vector, which is defined on a state space 

given by the basis set. The dynamics of the state, i.e., its evolution in time, is governed 

by the unitary time translation operator 𝑈̂(𝑡′, 𝑡) from time point 𝑡 to time point 𝑡′, 

which is generated by the Hamilton operator 𝐻̂, also called Hamiltonian. This 

evolution results from the equation of motion for the state, which can be given in the 

non-relativistic case by the Schrödinger equation 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓⟩  = 𝐻̂|𝜓⟩,  ( 2.36 ) 

where ℏ is the Planck constant. The equation intrinsically assumes that the time 

dependence of the quantum mechanical system is carried by the state, i.e.,                

|𝜓⟩ = |𝜓(𝑡)⟩, which is called the Schrödinger picture. Equivalent pictures are the 

Heisenberg or the interaction picture, where the time dependence is completely or 

partly put in the operators. The interested reader may consult the reference [43,45] 

for more information about the derivation of the quantum-mechanical equation of 

motion in the different pictures. If the Hamilton operator is independent of time, 

meaning 
𝜕

𝜕𝑡
𝐻̂ = 0 (Schrödinger picture), the time translation operator becomes 

𝑈̂(𝑡′, 𝑡) = 𝑒−
𝑖

ℏ
𝐻̂(𝑡′−𝑡). ( 2.37 ) 

In general, the Hamiltonian describes the energy of the system, which are its 

eigenvalues. With this, the state that is given by equation 2.35 can be rewritten to 

|𝜓(𝑡)⟩  =∑𝑐𝑖 𝑒
−
𝑖

ℏ
𝜀𝑖𝑡 |𝜓𝑖⟩

𝑖

 ( 2.38 ) 

where 𝜀𝑖 are the energies of the time-independent basis states |𝜓𝑖⟩ that are eigenstates 

of the time-independent Hamilton operator.  



 

26 

The treatment of the atom by its quantum states is quite abstract. For an adequate 

description of the studied physics, the so-called Hilbert space, or state space, has to 

be defined.  In this work, the interaction between electromagnetic fields and atoms is 

studied with the semi-classical treatment. Thus, the here considered states space is 

given by the energy eigenstates of the electron in the Coulomb potential of the atom. 

In order to find these eigenstates, one can extent the Hamiltonian and therewith the 

state space. First, one can assume the Coulomb potential is generated from a point-

like and infinite massive atomic nucleus. Then one considers its finite mass, the fein 

structure, the hyperfine structure, etc. The discussion of these extensions can be found 

in the references [46,47]. In this work, the considered state space will always be 

given.  

Furthermore, in quantum mechanics, the electron can be described by a complex-

valued wave function, which is defined in, for instance, the spatial or the momentum 

space. The equations describing the wave function’s evolution are then similar to the 

equations above, where the operators are transformed to adhere to the respective 

space. As an example, the Schrödinger equation of the spatial wave function 

𝜓(𝑟1, 𝑟2, 𝑡) of two electrons in the Coulomb field of the helium nucleus with the 

nuclear charge number 𝑍 = 2 and approximately infinite mass is given by 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑟1, 𝑟2, 𝑡) =  [

𝑝̂1
2 + 𝑝̂2

2

2𝑚e
−
𝑍𝑒2

4𝜋𝜀0
[
1

|𝑟̂1|
+

1

|𝑟̂2|
] +

𝑒2

4𝜋𝜀0

1

|𝑟̂1 − 𝑟̂2|
]𝜓(𝑟1, 𝑟2, 𝑡), ( 2.39 ) 

where 𝑟̂1, 𝑟̂2, 𝑝̂1and 𝑝̂2 are the relative coordinate operators of the electrons with 

respect to the nucleus and the momentum operator of the two electrons, respectively. 

Introducing now an electric field pulse in the system, it is convenient to let the 

Hamiltonian become explicitly time-dependent. Strictly speaking, due to this time-

dependency, the system cannot be described within the Schrödinger picture. 

Therefore, in the following, the interaction picture is used, which nevertheless leads 

to similar equations. With the time-dependent Hamiltonian, the solution for the 

state’s time evolution can become very complex, where one has to find the eigenstates 

of the Hamiltonian at every moment in time. Since this is very demanding, one often 

uses computer programs to solve the time-dependent Schrödinger equation on a 

discretized time grid. For this purpose, assumptions for the description of the system 

are made in order to simplify the calculations or relax the computational costs.  

One prominent example is time-dependent perturbation theory, which can be used 

if the field strength is weak, meaning the characteristic energies due to the field are 

small compared to the energies given by the field-free Hamiltonian [45]. Here a small 

time-dependent perturbation 𝑉̂(𝑡), e.g., a weak oscillating field is added to the free 

time-independent Hamiltonian 𝐻̂0 

𝐻̂(𝑡)  = 𝐻̂0 + 𝜆𝑉̂(𝑡) ( 2.40 ) 
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with 𝜆 being a small scalar parameter. Assuming the eigenstates |𝜓𝑖⟩ and eigenvalues 

𝜀𝑖 of the free Hamiltonian are known, the time-dependent perturbation theory aims to 

approximately solve the Schrödinger equation for the Hamiltonian given by equation 

2.40. As mentioned above, the solution can be written as a time-dependent state 

|𝜓(𝑡)⟩ in terms of the basis set of the free Hamiltonian 

|𝜓(𝑡)⟩  =∑𝑐𝑖(𝑡) 𝑒
−𝑖

𝜀𝑖
ℏ
𝑡  |𝜓𝑖⟩

𝑖

 ( 2.41 ) 

Here the state amplitudes 𝑐𝑖(𝑡) explicitly depend on time due to the addition of the 

time-dependent perturbation in the Hamiltonian. Using this description, the problem 

is reduced to find an expression for the amplitudes. This can be done by putting the 

Ansatz given by equation 2.41 in the Schrödinger equation and projecting the whole 

equation to a bra state ⟨𝜓𝑗|, which yields 

𝑖ℏ
𝑑𝑐𝑗(𝑡)

𝑑𝑡
 = 𝜆∑𝑐𝑖(𝑡) 𝑒

𝑖𝜔𝑖𝑗𝑡  ⟨𝜓𝑗|𝑉̂(𝑡)|𝜓𝑖⟩

𝑖

 ( 2.42 ) 

with 𝜔𝑖𝑗 = (𝜀𝑗 − 𝜀𝑖) ℏ⁄  being the transition angular frequency from state |𝜓𝑖⟩ to |𝜓𝑗⟩. 

One can see from equation 2.42 that the trajectory of the amplitude 𝑐𝑗(𝑡) will 

depend on all amplitudes of the other states and vice versa. In order to solve this 

equation, despite its complexity, one can make some assumptions about the system. 

First, in most treated cases, the atom is in its ground state |𝜓𝑔⟩ at the beginning of 

the perturbation, i.e., 

𝑐𝑔(𝑡 = 0) = 1   and   𝑐𝑖 = 0  ∀ 𝑖 ≠ 𝑔 ( 2.43 ) 

holds. Second, since the perturbation is small, determined by the small parameter 𝜆, 

one can make the Ansatz that the solution for the time-dependent state amplitudes 

can be expressed in a power series of 𝜆 

𝑐𝑖(𝑡) = 𝑐𝑖
(0)(𝑡) + 𝜆 𝑐𝑖

(1)(𝑡) + 𝜆2 𝑐𝑖
(2)(𝑡) + ⋯ ( 2.44 ) 

Putting this Ansatz in equation 2.42 leads to the differential equations 

𝑖ℏ
𝑑𝑐𝑗

(0)
(𝑡)

𝑑𝑡
+ 𝜆 𝑖ℏ

𝑑𝑐𝑗
(1)
(𝑡)

𝑑𝑡
+ 𝒪(𝜆2)                                    

= 𝜆∑𝑐𝑖
(0)(𝑡) 𝑒𝑖𝜔𝑖𝑗𝑡  ⟨𝜓𝑗|𝑉̂(𝑡)|𝜓𝑖⟩

∞

𝑖=0

+ 𝒪(𝜆2). 

( 2.45 ) 

This equation is now separable into equations for the different orders of 𝜆, and since 

𝜆 is small, the first orders will dominate. The zeroth-order results in 

𝑖ℏ
𝑑𝑐𝑗

(0)
(𝑡)

𝑑𝑡
= 0, ( 2.46 ) 

which means that there is no change in time for the amplitude of the zeroth order, and 

due to the initial condition given by 2.43, the amplitudes vanish except for the ground 

state amplitude, which remains unity.  
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Using the result for the zeroth-order, the equation for the first order in 𝜆 becomes 

𝑖ℏ
𝑑𝑐𝑗

(1)
(𝑡)

𝑑𝑡
= 𝑒𝑖𝜔𝑖𝑗𝑡  ⟨𝜓𝑗|𝑉̂(𝑡)|𝜓𝑖⟩, 

( 2.47 ) 

which can be solved directly by integration and using the initial conditions 

𝑐𝑗
(1)(𝑡) = −

𝑖

ℏ
∫ 𝑒𝑖𝜔𝑖𝑗𝑡

′
⟨𝜓𝑗|𝑉̂(𝑡

′)|𝜓𝑖⟩
𝑡

0

𝑑𝑡′. ( 2.48 ) 

Within the perturbation theory, the first order amplitudes stay small. The population 

𝜌𝑗 of the state is given by the absolute square of the state amplitudes 

𝜌𝑗(𝑡) ≈ |𝑐𝑗
(0)
+ 𝑐𝑗

(1)(𝑡)|
2
, ( 2.49 ) 

which is approximately unity for the ground state or which is a small number for the 

other states. 

Considering the case for the light-matter interaction in the dipole approximation, 

the time-dependent perturbation becomes 

𝑉̂(𝑡) = 𝜇̂ 𝐹(𝑡), ( 2.50 ) 

where 𝜇̂ is the dipole operator that will be described in more detail in the next section. 

Using a plane wave for the electric field, i.e., 𝐹(𝑡) = 𝑓0 cos(𝜔𝑡) = 
𝑓0

2
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡), 

and putting this field into equation 2.48, one obtains imaginary exponents of the form 

𝑖(𝜔 + 𝜔𝑖𝑗)𝑡      and     𝑖(𝜔 − 𝜔𝑖𝑗)𝑡. ( 2.51 ) 

Thus, one gets oscillations of the state amplitude, i.e., transitions between the states, 

which lead to excitation or de-excitation of the states. If the natural lifetimes of the 

states are long compared to these oscillations, one can often neglect one term in 2.51, 

which is known as the rotation-wave approximation. 

The perturbation theory can be applied if the field strength is weak. However, if 

the strength increases, the field-induced couplings between the states can become 

strong. This results in a considerable transfer of population, an oscillation of 

population, which is known as Rabi oscillations [48], and shifts in the energy of the 

states. These energy shifts can easily be derived for a system with only two states 

|𝜓1⟩ and |𝜓2⟩, a so-called two-level system. Here, a general state can be represented 

by a vector with the entries given by the state amplitudes  

|𝜓⟩ = (
𝑐1
𝑐2
). ( 2.52 ) 

In this representation, the Hamiltonian becomes a matrix 

𝐻̂(𝑡) = (
𝜀1 𝜇12 𝐹(𝑡)

𝜇21 𝐹(𝑡) 𝜀2
), ( 2.53 ) 
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where 𝜇𝑖𝑗 = ⟨𝜓𝑖|𝜇̂|𝜓𝑗⟩. The off-diagonal elements of the Hamiltonian lead to a laser-

induced coupling of the states |𝜓1⟩ and |𝜓2⟩, and the static solution of the 

Schrödinger equation will become a mixture of these states. One can find this solution 

by diagonalizing the Hamiltonian. It is often obtained in a rotating frame, where the 

time dependence is removed from the Hamiltonian, and the rotating wave 

approximation is applied. Assuming that the first state has lower energy than the 

second, the energies of the static states, i.e., the eigenvalues of the Hamiltonian, 

become 

𝜀1
′(𝛥, 𝛺) = 𝜀1 +

ℏ

2
(sign(𝛥) √𝛥2 + 𝛺2 − 𝛥) 

𝜀2
′ (𝛥, 𝛺) = 𝜀2 −

ℏ

2
(sign(𝛥) √𝛥2 + 𝛺2 − 𝛥), 

( 2.54 ) 

where 𝛥 =  𝜔 − (𝜀2 − 𝜀1) is the detuning of the laser frequency from the transition 

resonance and 𝛺 =
𝜇12𝑓0

ℏ
 is the so-called Rabi frequency. One can see from equation 

2.54 that for a negative detuning, the energies of the states shift such that the energy 

difference increases. For a small detuning, the shift is approximately given by the 

Rabi frequency, which is linear to the field strength. The shifting of the energies is 

also known as the Autler–Townes effect [49] or AC Stark effect, and it is depicted in 

figure 2.2 for different Rabi frequencies. 

From the Dipole Response to Linear Absorption and Back 

If laser pulses are focused onto a material, they will induce a time-dependent 

response of the material. By studying this response, one can reconstruct the time-

dependent dynamics in the material during its stimulation. In general, the response 

can be a nonlinear function of the driving field and may depend on the evolution 

history of the pulse. However, most often and also here, the treatment of 

instantaneous responses is sufficient. An example of this is the change in the 

polarization 𝑃(𝑡) of a material induced by a time-dependent electric field 𝐹(𝑡) 

𝑃(𝑡) = 𝜀0𝜒(𝑡)𝐹(𝑡) = 𝜀0(𝜒
(1)(𝑡)𝐹(𝑡) + 𝜒(2)(𝑡)𝐹2(𝑡) + ⋯), ( 2.55 ) 

Figure 2.2: The AC Stark effect of a two-level 

system. For a negative laser detuning, the 

energies repel each other with increasing Rabi 

frequency, i.e., for higher field strength. For a 

positive detuning the state’s energy comes 

closer (not shown). 
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where 𝜒(1) and 𝜒(2) are the linear and quadratic electric susceptibilities. They are 

natural properties of the material, and more generally, they are described by 

polarization-dependent tensors, which would result in polarization-modified 

responses. For simplicity, in the following, this polarization dependence is omitted 

since most target materials discussed in this thesis have only scalar susceptibilities. 

The material’s polarization can be ascribed to the averaged dipole moment 〈𝜇〉 of 

the material’s constituents 

𝑃 = 〈𝜇〉𝜌𝑁 ( 2.56 ) 

with 𝜌𝑁 being the number density in a certain spatial volume. The dipole moment is 

defined as the distance between positive and negative electric charges times the value 

of the charge. Thus, equation 2.56 states that the macroscopic electric field response, 

the polarization of the material, is generated by a coherent sum of many individual 

dipole responses on the microscopic scale. Therefore one can connect the results in 

the measurements probing the macroscopic polarization to the induced dynamics of 

the dipole response of the material’s constituents on the microscopic scale. Using a 

gas target as the material under investigation, the microscopic constituents are the gas 

atoms, and the dipole response is generated by the time-dependent dipole moment in 

the atom.  

If the atom is in its ground state and subjected to an electric field pulse, which has 

a spectrum covering the energies of resonant transition in the atom, the pulse will 

induce a certain superposition of excited energy states. This superposition leads to a 

non-vanishing time-dependent dipole moment, which is defined by 

𝜇(𝑡) = −𝑒 ⟨𝜓(𝑡)|𝑟e|𝜓(𝑡)⟩. ( 2.57 ) 

Here 𝑟e is the sum vector position of all electrons with respect to the atomic nucleus. 

If the expression of the state is given by an electron wave function in the spatial 

dimension, the dipole moment will read 

𝜇(𝑡) = −𝑒 ∫ 𝜓∗(𝑟, 𝑡) 𝑟e 𝜓(𝑟, 𝑡) 𝑑𝑟

∞

−∞

. ( 2.58 ) 

Note that the state 𝜓(𝑟, 𝑡) is a superposition of energy states, and thus, the dipole 

moment depends on the spatial overlap integral of these energy states. Since, in the 

measurement, the laser pulse will only perturbatively excite the helium atom, the state 

amplitude of the atomic ground state will remain close to unity. In this case, the dipole 

moment will be dominated by the overlap between the ground state and the excited 

states. It is worth pointing out that the spatial wave function of the ground state is 

mostly located close to the atomic nucleus. Therefore, the dipole moment will 

become a measure for the localization of the electron wave packet with respect to the 

nucleus. 
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The field-induced polarization that was introduced above enters in Maxwell‘s 

equations. Using these equations, one can derive the fundamental wave equation for 

the propagation of a linearly polarized electric field through media 

[
𝜕2

𝜕𝑧2
−
1

𝑐2
𝜕2

𝜕𝑡2
] 𝐹(𝑡, 𝑧) = 𝜇0

𝜕2

𝜕𝑡2
𝑃(𝑡, 𝑧), ( 2.59 ) 

where 𝜇0 is the vacuum permittivity and 𝑧 is the propagation direction. In this 

equation, the polarization acts as a source for the electric field. The incident field and 

the field generated by the polarization interfere, leading to a modified total field. If 

the interference is destructive, it will lead to an attenuation of the field, which is the 

origin of what is called absorption. For constructive interference, the field amplitude 

can be enhanced, leading to a net gain. In the experiments presented in this thesis, 

only dilute gas targets are treated, and thus no propagation effects are considered. 

This means the polarization is instantaneously induced, and the generated field from 

the polarization will, in first order, not be disturbed by the medium.   

The polarization given by equation 2.55 can also be formulated in the frequency 

domain using the Fourier transform. It is given in the linear order by 

𝑃̃(𝜔) = 𝜀0𝜒̃(𝜔)𝐹̃(𝜔). ( 2.60 ) 

The frequency-dependent susceptibility here is the characteristic response function 

of the material. It can be obtained by rearranging equation 2.60 

𝜒̃(𝜔) =
1

𝜀0

𝑃̃(𝜔)

𝐹̃(𝜔)
, ( 2.61 ) 

and it is conventionally written as a complex-valued function 

𝜒̃(𝜔) = 𝜒̃′(𝜔) + 𝑖𝜒̃′′(𝜔), ( 2.62 ) 

which is linked to the refractive index of the medium via 

𝑛(𝜔) = √1 + 𝜒̃(𝜔). ( 2.63 ) 

Its effect on the incident laser field can be seen by solving the wave equation 

written in the frequency domain. The well-known plane wave gives one of its 

solutions 

𝐹̃(𝜔, 𝑧) = 𝐹̃(𝜔, 0)𝑒𝑖𝑘(𝜔)𝑧. ( 2.64 ) 

The frequency-dependent wave number 𝑘(𝜔), which enters in the exponent of the 

plane wave, can be approximated using a Taylor series, similar to equation 2.21, but 

here in terms of the susceptibility 

𝑘(𝜔) =
𝜔

𝑐
𝑛(𝜔) =

𝜔

𝑐
√1 + 𝜒′(𝜔) + 𝑖𝜒′′(𝜔) ≈

𝜔

𝑐
(1 +

𝜒′(𝜔)

2
+ 𝑖

𝜒′′(𝜔)

2
), ( 2.65 ) 

where only the first terms of the series are important since dilute target gases are 

considered, and thereby the susceptibility is small. Entering this complex-valued 

wave number into equation 2.64 results in 
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𝐹̃(𝜔, 𝑧) = 𝐹̃(𝜔, 0) 𝑒
𝑖
𝜔

𝑐
(1+

𝜒′(𝜔)

2
)𝑧
 𝑒−

𝜔

𝑐
 
𝜒′′(𝜔)

2
𝑧. ( 2.66 ) 

In this solution, one can see that the real part of the susceptibility is responsible for 

the dispersion of the wave by adding a phase when it passes through the medium. 

The imaginary part of the susceptibility, however, induces an attenuation of the field 

amplitude, which can be observed in terms of absorption. In an experiment, instead 

of the laser electric field, its intensity can be measured, which is now 𝑧-dependent: 

𝐼(𝜔, 𝑧) =
1

2
𝜀0𝑐 |𝐹̃(𝜔, 𝑧)|

2
= 𝐼0(𝜔)𝑒

−
𝜔

𝑐
 𝜒̃′′(𝜔)𝑧. ( 2.67 ) 

This function is the well-known Lambert-Beer’s law, and it can be linked to the 

frequency-dependent cross-section 𝜎(𝜔) of the medium with length 𝑙 and number 

density 𝜌 

𝐼(𝜔, 𝑧) = 𝐼0(𝜔)𝑒
−𝜎(𝜔)𝜌 𝑙 . ( 2.68 ) 

By comparing the exponents of the decaying function in equation 2.67 and 2.68 and 

using equation 2.56 and 2.61, one obtains 

𝜎(𝜔) =
1

𝜌

𝜔

𝑐
 𝜒̃′′(𝜔) =

1

𝜌

𝜔

𝜀0𝑐
𝕀𝔪(

𝑃̃(𝜔)

𝐹̃(𝜔)
) =

𝜔

𝜀0𝑐
𝕀𝔪(

〈𝜇̃(𝜔)〉

𝐹̃(𝜔)
). ( 2.69 ) 

Thus, the macroscopic cross-section of a dilute atomic gas cloud is directly linked to 

the imaginary part of the mean frequency-dependent dipole moment of the atoms on 

the microscopic scale. 

In an experiment, instead of the cross-section, the transmitted intensity spectrum 

𝐼(𝜔) can be measured. However, by additionally measuring a reference intensity 

spectrum 𝐼0(𝜔) without a target medium and knowing the target’s density and length, 

one can directly calculate the cross-section using equation 2.68. In the presentation 

of the measurement results and also often in the literature, the absorbance of the 

medium is given in units of the optical density. It is defined as the attenuation of the 

intensity on a decadic logarithmic scale: 

𝐴(𝜔) = − log10 (
𝐼(𝜔)

𝐼0(𝜔)
) =

𝜎(𝜔)

ln 10
 𝜌 𝑙. ( 2.70 ) 

With this definition, one can directly link the absorption spectrum to the time-

dependent dipole moment 

𝐴(𝜔) ∝ 𝜔 𝕀𝔪(
𝜇̃(𝜔)

𝐹̃(𝜔)
) = 𝜔 𝕀𝔪(

ℱ[𝜇(𝑡)]

ℱ[𝐹(𝑡)]
). ( 2.71 ) 

It has been shown in the references [50,51] that from this proportionality, one can 

fully reconstruct the time-dependent dipole moment in amplitude and phase directly 

from the absorption spectrum. Using linear and ultrashort probing events, the 

principle of causality implies that in a generally complex response, the imaginary part 

(absorption) is linked to the real part (dispersion) of the response. This link is known 

as the Kramers–Kronig relations [52,53]. In this thesis, the dipole response will be 
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triggered by a weak attosecond pulse, whereby the light-matter interaction is linear 

and can be described via first-order perturbation theory. This short trigger pulse can 

be approximated by a Dirac delta function at time zero, 𝐹(𝑡) = 𝐹0 ∙ 𝛿(𝑡), and the 

causality is given by stating that the dipole moment is zero before the trigger pulse 

arrives, i.e., 𝜇(𝑡 < 0) = 0. The spectrum of the 𝛿-like pulse is flat, and thereby for 

certain limited spectral range, equation 2.71 can be approximated by  

𝐴(𝜔) ∝ 𝜔 𝕀𝔪(
ℱ[𝜇(𝑡)]

ℱ[𝐹(𝑡)]
) ≈  𝜔0  

𝕀𝔪(ℱ[𝜇(𝑡)])

𝐹0
, ( 2.72 ) 

where 𝜔0 is a constant frequency. Using the Kramers–Kronig relations and 

discarding the moment at negative times due to causality, one can solve equation 2.72 

for the complex-valued dipole moment at positive times, which reads 

𝜇(𝑡) ∝ ℱ−1[𝑖𝐴(𝜔)](𝑡) =
1

√2𝜋
∫ 𝑖𝐴(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔

+∞

−∞

  for  𝑡 > 0. ( 2.73 ) 

The physical quantity of this time-dependent dipole response can then be retrieved 

by taking the real part of this expression. 

The crucial point about equation 2.73 is that it holds even if the response obey 

complex time dependence, which, for instance, can be caused by the interaction of 

the atoms with a second (strong) time-delayed laser pulse. The whole manipulation 

of the dipole response due to this additional interaction will be imprinted in the 

absorption spectrum, and the dipole moment can still be reconstructed in amplitude 

and phase by using equation 2.73. The only condition is that the excitation pulse (the 

trigger) is instantaneous, and the dipole moment is zero before the excitation.  

As was discussed in reference [51], the instantaneous-trigger requirement can even 

be softened. Realistic attosecond pulses are not 𝛿-like, but they have certain pulse 

durations 𝑇atto, which would contradict the instantaneous condition. However, one 

can show that equation 2.73 still holds if the trigger pulse duration is shorter than any 

other timescales of the system, which are, here, the decay time of the dipole response 

𝑇𝜇 and the duration of the interaction 𝑇int, i.e., 𝑇atto ≪ 𝑇𝜇, 𝑇int. The finite pulse 

duration of the attosecond pulse will, however, lead to a temporal smoothing of the 

results for the dipole moment, which is given by the convolution with the function of 

the pulse of finite width. 

Owing to the descriptive illustration of the ongoing physics, when looking at the 

time-dependent dipole moment, the method for its reconstruction will be extensively 

used throughout the thesis. By doing so, the absorption spectrum will always be 

filtered for different energy regions of interest, which helps to select and compare 

different dynamics involving different excited atomic states. 

https://www.dict.cc/?s=illustration


 

34 

The Helium Atom 

In its neutral form, helium has a doubly charged nucleus and two electrons. The 

equation of motion for the wave function of both electrons is given by the 

Schrödinger equation 2.39. The Coulomb repulsion term in this equation and the 

indistinguishability of the fermionic electrons lead to correlations of the electrons in 

their dynamics. Due to the relative simplicity and the electron correlation, helium 

became a benchmark system for many time-resolved absorption spectroscopy 

experiments [54–58]. In this work, the strong-field-disturbed electron dynamics at 

the ionization threshold will be investigated. Therefore, the properties of the helium 

system will be briefly introduced in this section, where further details can, for 

instance, be found in the references [46,47].   

  As a result of the electron correlation, the wave function that is the solution of 

the Schrödinger equation 2.39 cannot be separated into individual wave functions for 

each electron, i.e., 

𝜓(𝑟1, 𝑟2, 𝑡) ≠ 𝜓
(1)(𝑟1, 𝑡) ∙ 𝜓

(2)(𝑟2, 𝑡). ( 2.74 ) 

Furthermore, an analytical solution of this three-body system is not known or at least 

was not published (yet). Therefore, the quantitative results of the helium atom’s 

properties, like the energies of its bound states, rely on measurements or predictions 

using numerical calculations [59–63]. 

When both electrons occupy the 1s shell, helium is in its ground state, which 

means both electrons have the principle quantum number 𝑛 = 1 and no angular 

momentum, i.e., angular quantum number 𝑙 = 0. Considering the spin of the electrons 

and the Pauli exclusion principle [64], the total electron wave function has to be 

antisymmetric under the simultaneous exchange of electron spin and coordinates. 

Therefore, helium has two state series belonging to the parahelium, where the spatial 

wave function is symmetric under exchange, and to the orthohelium, where the spatial 

wave function is antisymmetric. In the following, only parahelium will be considered 

since orthohelium is metastable and decays to the parahelium ground state, and within 

the dipole approximation, no excitation to the ortho states will happen.  

If one electron is excited from the ground state, it will—considering the dipole 

transition rules—occupy the 𝑛 > 1, 𝑙 = 1 shells, which is the 1s𝑛p Rydberg series 

that converges to the first ionization continuum denoted by 𝑁 = 1. The states that are 

accessed by dipole allowed transitions are often called bright states, and the states, 

which are dipole forbidden from the ground state, are called dark states. Therefore, 

the bright states are the 1s𝑛p states, and the dark states are the 1s𝑛s, 1s𝑛d states, etc. 

Often the notation for the states follows the Russell-Saunders term symbol given by 

𝐿𝜋 
2𝑆+1 . Here 𝐿 is the total angular momentum quantum number, 𝑆 is the total spin 

quantum number, and 𝜋 denotes the parity of the state, which can be even (e or +1) 
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or odd (o or -1). The ground state of the helium atom within this notation is 1Se. The 

transition rules from the initial state 𝑖 to the final state 𝑓 are Δ𝐿 = ±1, 𝜋𝑖𝜋𝑓 = -1 and 

Δ𝑆 = 0. 

The two-electron structure of the helium atom has a variety of consequences. 

Aside from the single-electron excitations, both electrons can be excited by a single 

photon. These accessed doubly excited states form a Rydberg series converging to 

the 𝑁 = 2 threshold at ~65.40 eV. They lie energetically above the first ionization 

threshold 𝑁 = 1 and are thus degenerate with the ionization continuum, in which one 

electron is ionized, and the other occupies the ground state of the ion. This degeneracy 

and the Coulomb repulsion between the electrons lead to a coupling between the 

doubly excited states and the ionized state known as configuration interaction. Due 

to this interaction, the doubly excited states autoionize, and therefore these states 

possess much shorter lifetimes than the singly excited states. Three different doubly 

excited state manifolds are dipole allowed from the ground state, namely the 2s𝑛p, 

the 2p𝑛s, and the 2p𝑛d series. Transitions to the latter are unfavored, leading to a low 

photoabsorption cross-section, and they have not been observed in the measurements 

presented here. Since the electrons are indistinguishable, the 2s𝑛p and 2p𝑛s states 

couple, and the observed transitions are linear combinations of these states denoted 

by 

sp2,𝑛± =
1

√2
(2s𝑛p ± 2p𝑛s), ( 2.75 ) 

where the ’+’-series appears stronger. The singly excited and the doubly excited 

states relevant in this thesis are depicted in the level diagram shown in figure 2.3. 

The process of autoionization of the doubly excited states gives rise to 

asymmetries in the cross-sections at the transition resonances. Beutler has observed 

these asymmetries first [65], and later they were theoretically explained by Fano [66], 

wherefore, these resonances are called Fano resonances. Fano has shown that the 

asymmetric line shapes result from the interference between different transition paths 

to the same final states. In the case of helium, the transition from the ground state to 

the ionization continuum has two contributions. One transition is directly into the 

continuum, and the other is via the autoionizing states. These contributions interfere 

with an opposite sign on each energetic side of the resonances leading to the 

asymmetric line shapes. 

More formally, due to the coupling of the doubly excited state with the ionization 

continuum, the stationary eigenstate of the Hamiltonian |𝜓𝐸⟩ becomes a 

superposition of the discrete unperturbed bound state |𝜓⟩ and the continuum state 

|𝜉𝐸⟩. Fano related the transition amplitude from the ground state |𝜓𝑔⟩ to this energy 

eigenstate and to the continuum state and showed that it can be parameterized by the 

so-called 𝑞-parameter 
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|⟨𝜓𝐸|𝑇̂|𝜓𝑔⟩|
2

|⟨𝜉𝐸|𝑇̂|𝜓𝑔⟩|
2 =

|𝑞 + 𝜀|2

1 + 𝜀2
 ( 2.76 ) 

with 𝑇̂ being the transition operator and 𝜀 the reduced energy  

𝜀 =
𝐸 − 𝐸𝜙𝐸
𝛤 2⁄

. ( 2.77 ) 

Figure 2.3: Level diagram of the helium atom for the levels converging to the thresholds of the 

two continua 𝑵 = 1 and 𝑵 = 2 relevant for this work. The levels are grouped to the 𝐒𝐞 
𝟏 , 𝐏𝐨 

𝟏 , 

and 𝐃𝐞 
𝟏  manifolds. Note that the energy axis is broken two times. The values are taken from 

[61, 62]. 



 

37 

Here 𝐸𝜙𝐸 and 𝛤 are the energy and linewidth of the transition resonance to the 

discrete bound state |𝜙𝐸⟩ that is the original discrete state |𝜓⟩ modified by the 

continuum states. 

The 𝑞-parameter relates the strength of the different interfering contributions 

𝑞 =
⟨𝜙𝐸|𝑇̂|𝜓𝑔⟩

𝜋𝑉𝐸
∗⟨𝜉𝐸|𝑇̂|𝜓𝑔⟩

, ( 2.78 ) 

where 𝑉𝐸 = ⟨𝜉𝐸|𝐻̂|𝜓⟩ is the strength of the configuration interaction. 

In the end, the observed cross-section across a resonance to a doubly excited state  

will be directly proportional to the transition ratio given in equation 2.76 

𝜎 = 𝐴
|𝑞 + 𝜀|2

1 + 𝜀2
+ 𝜎NR, ( 2.79 ) 

where 𝐴 is the strength of the resonance and σNR  denotes the non-resonant 

background absorption, which can result from different ionization channels. 

The cross-sections for different 𝑞-parameters are shown in figure 2.4. For small 

negative or positive values of 𝑞, the cross-section is asymmetric across the resonance, 

and for 𝑞 = 0, only a drop of the cross-section is obtained, which is known as window 

resonance. For very large negative or positive values, equation 2.78 states that the 

configuration interaction is negligible, or the amplitude of the direct transition to the 

continuum is low. This leads to a cross-section with the well-known Lorentzian line 

shape. 

Figure 2.4: The cross-section of the asymmetric Fano resonance for different 𝒒-paramters versus 

the reduced energy defined by equation 2.77. a) For 𝒒 = -1, coming from lower energies across 

the resonance the cross-section increases first, drops fast to low values and recovers to 1. b) For 

𝒒 = 0 the cross-section only drops at the resonance revealing a window resonance. c) The cross-

section for 𝒒 = 1 is inverted to the cross-section for 𝒒 = -1 in a). d) For very large positive and 

negative values for 𝒒, the resonance has the well-known Lorentzian line shape.  
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The Dipole Control Model 

As introduced in a previous section, the photoabsorption cross-section is linked to 

the imaginary part of the dipole moment; see equation 2.69. Thus, the asymmetric 

Fano-shaped absorption lines of the helium doubly excited resonances should have 

an explicit correspondence in the time-dependent dipole moment. It was shown in 

reference [35] that this is given by linking the Fano asymmetry parameter 𝑞 to the 

initial phase of the dipole moment after its excitation by a delta-like pulse at 𝑡 = 0. It 

is then given by 

𝜇(𝑡) ∝ 𝑖 𝑒−
𝛤

2ℏ
𝑡−𝑖

𝐸

ℏ
𝑡+𝑖𝜙Fano(𝑞) ( 2.80 ) 

with the relation 

𝜙Fano(𝑞) = 2 arg(𝑞 − 𝑖) ( 2.81 ) 

and the back transformation 

𝑞(𝜙Fano) = − cot (
𝜙Fano(𝑞)

2
) . ( 2.82 ) 

Assuming a flat excitation spectrum, this dipole response leads to an absorption 

cross-section that reads 

𝜎(𝜔) ∝ 𝕀𝔪[𝜇̃(𝜔)] ∝ 𝕀𝔪 [∫ 𝜇(𝑡)𝑒𝑖𝜔𝑡𝑑𝑡
∞

−∞

] ∝ 𝕀𝔪 [
𝑒𝑖𝜙Fano(𝑞)

(𝐸 − ℏ𝜔) − 𝑖 𝛤 2⁄
]. ( 2.83 ) 

For a zero Fano phase, the dipole moment results again in the well-known Lorentzian-

shaped absorption line corresponding to 𝑞 = ±∞.  

In reference [35], it was possible to control this initial phase by dressing the 

excited state with a strong near-infrared (NIR) pulse immediately after its excitation. 

This dressing leads to a phase shift in the dipole moment given by the product of the 

pulse duration and the NIR-induced energy shift and thereby changes the absorption 

line shape from Lorentzian to Fano and vice versa. Here, the phase shift on the dipole 

moment was at the instant of the excitation. In a more recent work [33], this picture 

was extended, where the phase shift happens with a controllable time delay. 

Similarly, it was induced by an NIR pulse, but now with a certain delay with respect 

to the excitation. The phase shift was still approximated to happen impulsively since 

the pulse durations were short compared to the lifetimes of the excited states. 

Furthermore, the strong pulse could deplete the excited states by means of ionization 

or resonant coupling to other states, which impulsively reduces the response 

amplitude after a certain time delay.  

The laser-induced manipulations of the dipole response were described in the time 

domain by the so-called dipole control model (DCM). In this model, the response is 

split into two sequential parts. The first describes the freely decaying dipole moment 



 

39 

starting at time 𝑡 = 0, and at the time delay 𝜏, the phase and amplitude of the moment 

are impulsively changed by the laser: 

𝜇(𝑡, 𝜏) ∝ {
        𝑖 𝑒−

𝛤

2ℏ
𝑡−𝑖

𝐸

ℏ
𝑡+𝑖𝜙Fano(𝑞)                                      for  0 < 𝑡 < 𝜏

𝑖 𝑒−
𝛤

2ℏ
𝑡−𝑖

𝐸

ℏ
𝑡+𝑖𝜙Fano(𝑞) ∙ 𝐴DCM(𝜏)𝑒

𝑖𝜙DCM(𝜏) for  𝑡 > 𝜏
 ( 2.84 ) 

The resulting cross-section can even be found analytically by means of the Fourier 

transformation and results in 

𝜎(𝜔) ∝ 𝕀𝔪 [
1 − 𝑒

−
𝛤

2ℏ
𝜏−𝑖(

𝐸

ℏ
−𝜔)𝜏

(1 − 𝐴DCM(𝜏)𝑒
𝑖𝜙DCM(𝜏))

(𝐸 − ℏ𝜔) − 𝑖 𝛤 2⁄
 𝑒𝑖𝜙Fano(𝑞)]. ( 2.85 ) 

This equation will later be used to fit the absorption line shapes of resonances from 

bound-bound transitions. More details of the DCM will be discussed in the sixth 

chapter of this thesis, where a model will be introduced that describes the 

manipulation of the dipole moment in time beyond the impulsive approximation. 

The Attosecond Pulse via High Harmonic Generation 

The goal of this thesis is to study the electron dynamics in the helium atom within 

strong fields. For this purpose, the quantum dynamics shall be initiated by a transition 

to a superposition of coherently excited states. As presented in the section about the 

helium atom, the transition energies from the ground to the excited states are on the 

order of tens of eV. To be able to drive these transitions with single photons, one 

needs laser pulses with a frequency bandwidth that covers the vacuum ultraviolet or 

extreme ultraviolet (XUV) spectral region. Furthermore, the speed of the dynamics 

is governed by the energy differences of the excited states, which is on the order of a 

few femtoseconds. The excitation step should ideally be instantaneous, defining time 

zero. Thus, pulses below the femtosecond, approaching the attosecond regime are 

beneficial. 

For the production of such pulses in a tabletop system, high harmonic generation 

(HHG) became the method of choice [39,67]. This is a highly nonlinear coherent 

light-matter interaction process, where a strong laser pulse with a duration of several 

femtoseconds and peak intensities of more than 1014 W/cm2 is partly converted into 

a single or a train of pulses with durations on the attosecond timescale. The photon 

energies of these pulses are multiples of the central photon energies of the 

fundamental pulse up to few hundreds of eV [68]. The generation process can be 

formulated quantum mechanically or more intuitively by a quasi-classical three-step 

model [69,70]. Both will be briefly introduced in the following, whereas more 

detailed descriptions can be found in the references [40,71]. 

In the classical model, an atom is exposed to an oscillating electric field of a strong 

laser pulse, as depicted in figure 2.5. In the first step of the model, the strong electric 
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field deforms the Coulomb potential of the atom to which an electron is subjected. 

As a result, the electron may tunnel through the Coulomb barrier. The field forces the 

electron away from the residual ion, whereby it gets accelerated and gains kinetic 

energy 𝐸kin, the second step. In the next half-cycle of the oscillatory field, the free 

electron gets driven back into the ion, which can lead to the recombination of the 

electron, the last and third step. The recombination energy can be ejected by a high-

energy photon with the energy 

ℏ𝜔HHG = 𝐸kin + 𝐼p. ( 2.86 ) 

Within this classical treatment, one can show that the electron can follow two 

different trajectories that lead to the same kinetic energy. They depend on the time 

when the ionization step happens within the electric field cycle, and they are known 

as the short and the long trajectory. The time window for the tunnel ionization for 

each trajectory covering a broad recombination energy spectrum is below a quarter 

of the fundamental electric field cycle. This leads to the emittance of a broad photon 

energy spectrum, known as the plateau region, which, in turn, leads to a pulse on the 

attosecond timescale. When the electron is accelerated in the laser field, it can acquire 

the maximal kinetic energies of 3.17 𝑈p. Therefore, the emitted photon energy 

spectrum is limited to a certain cut-off that is given by 

ℏ𝜔HHG,cut−off = 3.17 𝑈p + 𝐼p. ( 2.87 ) 

In the quantum-mechanical description, the electron is treated as a wave packet 

consisting of the ground state wave function and an ionized wave function. The 

ionized part is accelerated in the laser field, and it is driven back to the vicinity of the 

parent ion. This leads to an interference of the ionized and ground-state wave function 

and results in a fast oscillating dipole moment. This dipole moment, in turn, is the 

source that generates the high harmonic field. Due to the sub-cycle nature of the 

Figure 2.5: Sketch of the three-step model to explain the generation of high harmonics. From 

left to right: An electron (green orange) occupies a bound state (grey line) in the Coulomb 

potential of an atom (blue). If the laser field (red curve) increases, the potential, to which the 

electron is subjected to, gets deformed, and the electron may tunnel through the Coulomb 

potential (black wavy line). As the field cycle evolves, the liberated electron gains kinetic energy 

and can be forced back to the parent ion when the field flips sign. The electron can then 

recombine into its initial state and release its energy in the form of a high-energy photon, which 

is represented by a violet pulse. 
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production of the harmonics, the attosecond pulses are directly locked in phase and 

time to the electric field of the fundamental laser pulse. 

In the described models for the underlying process in HHG, only a single atom is 

considered. However, the harmonics are typically produced in an atomic cloud, and 

the microscopic responses of each individual atom are coherently added up into a 

macroscopic signal. In order to increase the harmonic yield, one has thus to optimize 

the phase matching between the individual atomic emitters. Experimentally this can 

be done by placing the atomic cloud at a different position within the Rayleigh range 

of the spatially focused fundamental laser beam or by adjusting a certain atomic 

density [72]. Even in the best phase-matching conditions, the overall conversion 

efficiency will be 10-6 to 10-4. Thus, the field strength of the attosecond pulses is 

weak, and the interaction between these pulses and target media can often be treated 

perturbatively. 

In HHG, the ionization and recombination of the electrons happen every half-cycle 

of the fundamental field, leading to a train of attosecond pulses with half-cycle 

repetition. In the spectral domain, their interference gives rise to a discrete harmonic 

comb spectrum with an energy spacing of two fundamental photons 2ℏ𝜔Fund. 

Furthermore, using an isotropic conversion medium as an atomic cloud, for symmetry 

reasons, only harmonics with an odd number of the fundamental photon energy are 

produced. If the generation process is limited to only one half-cycle of the 

fundamental oscillation, a single attosecond pulse will be produced, which 

corresponds to an almost flat broadband energy spectrum. This isolation of an 

attosecond pulse can be achieved by using a gating mechanism. Different gating 

mechanisms have been developed, e.g., polarization gating [73,74], ionization gating 

[75,76], or lighthouse gating [77]. 

For the conversion medium, most often, rare gases are used due to their relative 

high ionization potentials. This increases the obtainable photon energies (see 

equation 2.86) and reduces the generation of plasma, which would lead to spatial and 

temporal distortion of the fundamental laser pulse and therewith perturb the phase 

matching. Besides the atomic conversion media, nowadays, attosecond pulses are 

produced using conversion media in the condensed [78] or in the liquid phase [79,80]. 

As seen by equation 2.86, the highest achievable photon energy depends on the 

ponderomotive potential 𝑈p. It is proportional to the laser intensity and the 

wavelength squared; see equation 2.33. Thus, for longer wavelengths of the 

fundamental laser, higher photon energies are obtainable. However, the 

recombination efficiency scales with  𝜆Fund
−6   ̶  𝜆Fund

−7  [81]. Since the photon yield 

strongly decreases for high wavelengths, driving laser pulses in the NIR or visible 

spectral region are typically used for HHG.



 

 

 



 

 

3. Experimental setup 

For the observation of quantum mechanical dynamics in atoms by absorption 

spectroscopy on the electrons’ natural timescale of an attosecond, an experimental 

setup with a high temporal and spectral resolution is needed. For this purpose, 

attosecond transient absorption spectroscopy (ATAS) is a suitable method. In this 

chapter, this experimental method is described, together with its implementation by 

an all-optical attosecond beamline at the Max Planck Institute for Nuclear Physics, 

which has already been treated in several other theses, e.g., [51,82–85]. The 

description here emphasizes in more detail the experimental components that were 

developed within this doctoral dissertation and provides, in addition to that, a 

reference for the future. 

In ATAS, a laser pulse with a pulse duration on the attosecond timescale is 

produced and delayed in time with respect to an (intense) femtosecond laser pulse in 

the near-infrared (NIR) spectral region. The attosecond pulse, which is in the extreme 

ultraviolet (XUV) spectral region, propagates through a target of interest, and its 

transmission spectrum is recoded by an XUV spectrometer afterwards. Spectral 

absorption signatures such as sharp absorption lines or continuous spectral 

absorption, which are characteristics of the target, are then embedded in the XUV 

transmission spectrum. The NIR pulse manipulates these spectral signatures, and 

their changes are recorded for different time delays between the XUV and NIR pulse, 

which is the basic concept of ATAS, or for different NIR intensities. 

As discussed in the previous chapter, in order to produce attosecond light pulses 

on a tabletop system, one uses high harmonic generation (HHG) of a laser pulse 

preferentially in the NIR spectral region, which is converted using (often) an atomic 

gas ensemble within an evacuated environment. For HHG, high peak intensities on 

the order of 1014 W/cm2 are needed that are achievable by combining high pulse 

energies with ultrashort pulse durations and small focal spot sizes. To reach these 

pulse specifications, one needs several pulse amplification and pulse-duration 

compression stages in a single laser system.  

In this chapter, first, the technical aspects of a laser system for the production of a 

few-cycle NIR pulse are described. Second, the measurement of the pulse durations, 

their optimization, and stabilization are treated. The discussion follows the 

experimental realization of the HHG and thereby the production of attosecond pulses. 

The two pulses are then used to realize a time-delay and intensity-dependent transient 

absorption spectroscopy experiment in a, here called, attosecond beamline. The 

chapter ends with two upgrades of the beamline: an external interferometer for the 

NIR beam in order to realize an NIR-polarization-dependent experiment and the 
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spectral measurement of the blue-shift of the fundamental NIR accumulated in the 

process of HHG. 

Generation of Ultrashort Near-Infrared Pulses 

The laser setup starts with a commercial system, the FEMTOPOWERTM HE/HR 

CEP4, by FEMTOLASERS (now Spectra-Physics), which consists of a carrier-

envelope-phase-stabilized oscillator and a multi-pass chirped-pulse amplifier (CPA). 

A sketch of the laser system’s components is shown in figure 3.1. In the following, 

the components of this specific system used to obtain the results presented in this 

thesis are described. However, the optical techniques used by the system, the mode-

locking and the CPA are standard techniques of many ultrashort laser systems in 

different areas also outside physics, wherefore, the inventors of the CPA have even 

been honored by the Nobel prize recently [11,86,87]. 

The oscillator has a titanium-doped sapphire (Ti:Sa) crystal as a gain medium in a 

mode-locking cavity and a CEP-stabilization module. The Ti:Sa is pumped by a 

pump laser (Millenia by Spectra-Physics) at ~3.5 W. The output laser pulse of the 

oscillator cavity has a continuous octave-spanning spectrum centered at 800 nm 

central wavelength, and it supports sub-10 fs pulse duration with a pulse energy of 

6 nJ. After leaving the oscillator cavity by leaking through an output mirror at a 

repetition rate of 75 MHz, the pulse train is steered into the CEP-stabilization module 

(CEP4). In this module, the carrier-envelope offset frequency 𝑓CEO of the pulse train 

is determined. For this purpose, a difference frequency signal is produced by focusing 

Pump laser

Ti:Sa oscillator
cavity

CEP Module

CPA
Pump laser

Pockel‘s cell

Oscillator Chirped Pulse Amplifier

Stretcher

Ti:Sa
Cryo

Grating
compressor

Dazzler

Figure 3.1: Sketch of the commercial laser system for the generation of near-infrared pulses, 

which is split into two parts, an oscillator and a chirped pulse amplifier. The arrows indicate the 

propagation of the laser pulse steered by optical mirrors (black bars) through the several pulse 

manipulation stages (colored boxes). The abbreviation Ti:Sa stands for titanium-doped sapphire 

crystal, Cryo for cryogenic cooler, CEP for carrier-envelop phase, and CPA for chirped-pulse 

amplification. The functionality of the individual components is described in the main text. 



 

45 

the oscillator’s output pulses into a periodically poled lithium niobate crystal. The 

difference frequency then beats with a low-frequency line of the fundamental one-

optical-octave-spanning spectrum. See reference [88] for more information about this 

difference frequency generation scheme. Using the deviation from a set point 

(~10 MHz) of this beat signal as an error signal, long term drifts of the frequency 

offset are compensated by thermal stabilization of the Ti:Sa crystal in the oscillator 

(slow loop) and by the automatically controlled moving of dispersive glass wedges 

inside the oscillator’s cavity geometry (CEP-O’clock). The short term drifts of the 

offset frequency are compensated by an acousto-optic frequency shifter (AOFS) 

inside the CEP module. It is triggered by the offset frequency plus the repetition rate 

of the oscillator. This shifter diffracts the laser beam by an acoustic wave into 

different spatial beam orders and thereby subtracts the frequency offset from the 

frequency comb spectrum. This corresponds to no pulse-to-pulse phase change in the 

time domain. With this feed-forward technique, a CEP stabilization with a standard 

deviation of a few mrad is achievable [89]. 

After coupling-out from the CEP module, the pulsed laser beam is used to seed 

another Ti:Sa laser leading to its amplification. Here, the seed pulse passes the same 

gain medium ten times in total. In order to prevent damage in the crystal by the peak 

power of the seed pulse, first, the pulse is stretched into the picosecond timescale to 

lower the peak intensity below the damage threshold. For this purpose, the pulse 

propagates through fused-silica that adds a positive group delay dispersion (GDD) 

onto the temporal phase of the pulse, which results in a positive chirp in time. The 

introduction of a chirp on the pulse before its amplification triggered the naming of 

the chirped pulse amplification laser system. The gain medium is pumped by a Q-

switched pump laser (DM-50 by Photonics Industries) at a repetition rate of 3 kHz 

and high average power of around 40 W [90]. The Ti:Sa-crystal absorbs this power, 

and for further heat compensation and stabilization purpose (reducing thermal 

lensing), it is cryogenically cooled to ~102 K under high vacuum conditions of           

10-7 mbar total pressure. 

After the 4th pass through the gain crystal, the laser beam is directed into a Pockels 

cell and a Dazzler crystal. The fast-switching Pockels cell selects one pulse of the 

pulse train synchronized with the pump laser, which leads to a lowering of the 

repetition rate of the whole laser to 3 kHz. The selection is achieved by rotating the 

polarization of a single pulse by 𝜋/2 with an electronically triggered birefringent 

material in the Pockels cell. A cubic beam splitter after the cell lets the polarization-

rotated pulse pass while the other polarization is dumped. The Dazzler module 

consists of a birefringent para-tellurite crystal as an acousto-optic modulator with the 

option to tune the spectral phase and amplitude of the acoustic wave in the crystal. 

During the diffraction of the pulse, the acoustic wave imprints a controllable phase 

onto the time phase of the pulse and changes its spectral amplitude. Shaping the 

spectral amplitude helps to reduce gain-narrowing in the amplifier. With the help of 
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the Dazzler, one can thus control the total temporal shape of the pulse at the output 

of the laser system, and therewith one can tune the time duration of the pulse even at 

the entrance of the experimental attosecond beamline, which will be shown below. 

The timings between the Pockels cell, the amplifier pump laser, and the Dazzler are 

crucial for an efficient and stable laser pulse amplification. Therefore, they are 

controlled by a timing unit, which can delay the different electric trigger signals of 

the components with respect to each other. 

After passing the Dazzler, the selected pulse passes another six times the Ti:Sa 

crystal and gets amplified in total to a single pulse energy of about 3.5 mJ. This 

energy is distributed on the picosecond timescale. In order to increase the peak 

intensity and lower the pulse duration, the pulse is guided into a grating compressor. 

In this compressor, the laser beam is diffracted by two transmission gratings into all 

the different colors it consists of. Each color propagates a different path length 

through the compressor and is back-reflected into the gratings, which synthesize the 

parts back into a single pulsed beam. The net effect of the grating compressor is the 

introduction of a negative GDD, i.e., a negative frequency chirp, on the pulse. It 

thereby compresses it down to about 20 to 25 fs. This pulse duration is longer than 

the initial seed pulse due to gain narrowing of the pulse spectrum centered at 780-

790 nm with a bandwidth of about 100 nm. The pulse loses some energy during 

propagation through the compressor. The final pulse energy is 3 mJ, such that at 

3 kHz repetition rate, it leads to the average output power of 9 W. 

Since the amplification efficiency crucially depends on the beam pointing of the 

seed, it is stabilized by a beam alignment system. Here, two four-quadratic 

photodiodes record the intensity across the transverse section of the laser beam at two 

different points. They are positioned in front of the amplification stage and thereby 

creating an error signal if the beam-pointing moves, which can be caused, for 

instance, by temperature or humidity fluctuations inside the laboratory. The error 

signal is used to steer two Piezo-actuated mirrors, which compensate for the beam 

movement. With the help of two sensors and mirrors, one can correct both shifts of 

the position of the beam pointing and the propagation angle with respect to the optical 

components. Another beam alignment system is implemented to stabilize the pointing 

of the focus into the hollow-core fiber, the utilization of which will be discussed in 

the next section. 

Compression of the Pulse Duration to the Few-Cycle Regime 

As mentioned above, the time resolution of a transient absorption measurement is 

linked to the duration of the pulses used for the experiment. In order to observe 

changes of the absorption within femtoseconds (typical evolution timescale for wave 

packets in helium), ultrashort pulses with a duration of at most a few femtoseconds 
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are needed. Thus, one has to further compress the output pulse of the NIR laser, 

delivering pulses of 20 to 25 fs, down in time.  

In addition, ultrashort NIR pule durations facilitate the generation of high 

harmonics used for the experiment. Since the NIR pulse central wavelength 𝜆𝑐 is 

about 780 nm, one laser electric field cycle at a particular position of the laser beam’s 

propagation path takes 𝑡 = 𝜆𝑐/𝑐 ≈ 2.6 fs, where 𝑐 is the speed of light. Thus, by 

compressing the NIR pulse to a few femtoseconds, the whole pulse mainly consists 

of only a few electric field cycles. In this case, the pulse energy is concentrated in 

these cycles leading to high peak intensities. Since high harmonic generation is a 

nonlinear process in peak intensity, its efficiency increases [91,92]. Furthermore, if 

only a few intense cycles exist, the attosecond pulse train will consist of only a few 

pulses or even of only one isolated pulse with only some weak satellites. If the leading 

NIR cycle is even strong enough to almost fully ionize the conversion medium, the 

phase matching for the following cycles will be destroyed. Forcing this NIR-cycle-

intensity-dependent isolation of an attosecond pulse is known as ionization gating 

[75,76]. The ionization gating technique is used in this work to obtain almost a single 

attosecond pulse and/or to obtain a broad and continuous harmonics spectrum. 

For the time compression of the NIR pulse to only a few cycles, the laser beam is 

guided through a doubly differently pumped hollow-core fiber and a chirped mirror 

compressor. Figure 3.2 sketches the experimental setup for the compression stages. 

In general, due to the Fourier limit, one has to broaden the spectrum of the pulse in 

order to decrease its time duration. In the setup, the broadening is achieved by the 

generation of additional frequencies induced by self-phase modulation during the 

propagation through helium in the hollow-core fiber. Self-phase modulation is a 
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Figure 3.2: The experimental setup for the time compression of the 20 fs NIR Laser output pulses 

to the few-cycle time regime with pulse durations below 5 fs. The spectrum of the pulse is 

broadened by a doubly differentially pumped hollow-core fiber and the introduced positive 

chirp is compensated by an array of chirped mirrors. The dispersion is fine-tuned by fused-silica 

glass wedges. The details of the components can be found in the main text. 
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strong-field process based on light-matter interaction and can intuitively be explained 

as follows. The refractive index 𝑛 of a laser propagation medium depends in second-

order on the laser peak intensity 𝐼. Since for a pulsed laser the peak intensity is time-

dependent, this time dependency will be imprinted on the refractive index, i.e.,         

𝑛 = 𝑛(𝑡) = 𝑛0 + 𝑛2𝐼(𝑡). As described in the theory chapter, this index enters in the 

phase term of the pulse’s electric field and changes the wave vector                                

𝑘 =  𝑘0𝑛(𝑡) = 𝑘(𝑡). All time dependencies in the phase can be attributed to the 

frequencies of the pulse. Thus, in the rising and falling edge of the laser pulse, when 

the refractive index is strongly time-dependent, new frequency components are added 

spectrally to the left and to the right of the incident spectrum. Self-phase modulation 

contributes mainly to the frequency adding. However, effects like HHG, multi-wave 

mixing, or cross-phase modulation can also take place. The reader can consult the 

reference [93] for more details about these different processes. 

Self-phase modulation is efficient for intense pulses. To increase the intensity of 

the output pulse of the NIR laser, it is focused into the helium gas medium by a 

focusing mirror. In order to avoid possible beam astigmatism due to the focusing 

optics, the beam is folded before entering the fiber setup. The purpose of the hollow-

core fiber is to guide the laser beam on a small beam waist, i.e., with high intensity, 

and avoid its divergence after the focus. Thereby, it increases the interaction length 

for the self-phase modulation. The fiber is a glass capillary, which is a 1.5 m long and 

has a 310 µm inner diameter core, where the laser beam is reflected inside at the 

cladding. It is put on a stiff but lightweight construction rail to prevent any bending 

of the fiber, which would lead to losses of beam energy. Furthermore, it is mounted 

inside vacuum tubes to guarantee an only rare-gas-filled environment. The laser beam 

enters and exits the tubes through Brewster-angled glass windows. The laser focus 

position in propagation direction and possible residual astigmatism can be fine-tuned 

by a remotely controlled slightly biconvex lens located in front of the grating 

compressor inside the NIR laser. 

For the conversion medium in the fiber, the rare gas helium is used. Helium has a 

high ionization potential, which makes it robust against ionization. However, if using 

a static helium pressure inside the system, the high intensities at the laser focus could 

still lead to high plasma creation at the entrance and at the output of the fiber. The 

plasma could either destroy the laser focus, which would lead to less efficiency for 

the fiber coupling, or could lead to sputtering by charged helium fragments and 

thereby degradation of the fiber cladding. In order to reduce the plasma, the vacuum 

tubes are pumped from both sides below 10 mbar, while a constant gas pressure of 

about 2.5 bar is supplied in the middle of the fiber. With this, the gas medium enters 

the fiber core through a small crack in the cladding of the fiber and flows towards the 

ends of the fiber, where the gas is pumped out so that a static pressure gradient to 

both sides is formed. In order to prevent any other gas flows except through the fiber 

core, the vacuum tube system is split into three sealed segments. The fiber is threaded 

https://www.dict.cc/englisch-deutsch/lightweight.html
https://www.dict.cc/englisch-deutsch/construction.html
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through small holes in the vacuum flanges and glued onto them by a sealing paste 

(Torr Seal). 

The benefit of this doubly differentially pumped hollow-core fiber system is the 

spectral broadening of the pulse to an optical octave-spanning spectrum combined 

with high output power while avoiding distortions of the laser beam profile. With 

proper spatial alignment of the system, a power output efficiency of more than 55 % 

is reachable, meaning by using 9 W input laser power, 5 W output power can be 

expected. Some beam energy is lost at the transient points, i.e., at the input and output 

of the fiber and at the crack in the middle. To minimize the loss, one has, in particular, 

to take care of the production of the crack. It is realized by cutting the fiber into two 

halves with a glass cutter and stacking them back together without a visible gap. 

The attainable output beam profile depends on the batch in the fiber production 

process. In an ideal case, the fiber supports only the transverse electromagnetic mode 

of the lowest order (TEM00) when the laser propagates through it while suppressing 

all higher orders. However, the output mode is always a mixture of different modes, 

whereby the lowest order should dominate. In order to achieve this, one has to slightly 

tilt the fiber with respect to the laser propagation direction in the alignment procedure. 

Furthermore, while stringing together the two fiber parts, one has to take care that a 

desirable output beam mode is supported after cutting. Figure 3.3 shows an example 

of the far-field beam profile for an uncut fiber in a) and after cutting and aligning the 

same fiber in subfigure b). Both profile images show an almost round intensity profile 

except for some slight changes. Figure 3.4 a) shows a photographic picture of the 

Figure 3.3: Camera pictures of the beam profile in the far field of the hollow-core fiber output, 

where the color-coding shows the beam intensity in arbitrary units.  The white solid and dashed 

line marks the position with the highest intensity for the vertical and horizontal direction, 

respectively, which are calculated by the camera software. The round interference pattern are 

dirt on the camera objective. a) The beam profile before fiber cutting. b) The beam profile after 

cutting. Despite some small deviation an almost round mode is achievable before and after 

cutting. 
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laser beam propagating through the cut point of the fiber. The red light is caused by 

scattering of the laser beam in the fiber resulting in a loss of the output power. 

The achievable broadening of the spectrum depends on the gas pressure applied 

in the middle of the hollow-core fiber system. Figure 3.5 shows obtainable spectra 

for different incident helium pressures, which are recorded at the far-field of the fiber 

output by a flexible visible light spectrometer (USB2000+ by Ocean Optics). The 

higher the helium pressure, the broader is the spectrum, and the greater is the shift of 

the central wavelength towards lower values. Higher pressures than 2.6 bar would 

lead to even broader spectra. However, then the output power efficiency rapidly 

decreases, the beam mode starts to become distorted, or the focus shifts due to 

changes in the refractive index caused by the helium. For an optimal fiber setup, one 

has to make a tradeoff between the helium pressure and the spatial alignment of the 

system in order to simultaneously achieve high output power, broad spectrum, and 

an acceptable output beam profile. In the end, the divergent output laser beam is 

collimated by a convex mirror that is again in a folding geometry in order to avoid 

possible astigmatism. The collimating mirror is mounted on a micrometer translation 

stage and therewith provides access to fine-tune the divergence of the beam at the 

entrance of the attosecond beamline, where the beam is focused again. 

The self-phase modulation process and the propagation in air imprint a positive 

chirp onto the spectral phase of the laser pulse. For a rule of thumb, one meter of air 

results in GDD of about 35 fs2 at a wavelength of 800 nm. To compensate for this 

Figure 3.4: Photographic picture of the experimental setup for the pulse compression to the few-

cycle of the electric field carrier. a) The cut of the hollow-core fiber with the laser pulse 

propagating through, which is observed through an optical view port. The red light is present 

due to the scattering of the pulse on the cladding of the fiber and at the cut position. b) The array 

of chirped mirrors with the laser beam hitting each mirror in its center. The faint trace of the 

beam propagation path is visible due to scattering at air molecules. 
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chirp and therewith compress the spectrally broadened pulse in time, the beam is 

directed through a chirped mirror compressor. It consists of an array of five or seven 

pairs of broad-band dispersive mirrors (PC70 by UltraFast Innovations). During the 

reflection of the beam by the mirrors, different wavelengths of the pulse have 

different penetration depth into the mirror’s multi-layer coating resulting in a 

wavelength-dependent propagation path length. With this, each pair of mirrors 

introduces a net GDD of -40 fs2. Figure 3.4 b) shows a photographic picture of the 

chirped mirror compressor while the laser beam is reflected back and forth. The 

mirror coating is designed for a certain angle of incidence of 5° and 19° for a pair, 

respectively. Thus, in the alignment procedure, one has to take care that the beam 

propagation direction adheres to this angle; otherwise, the compressor could add 

higher orders of spectral dispersion onto the pulse. Furthermore, depending on the 

exact experimental condition and therewith the additional dispersive components 

needed further downstream for a specific experiment, one can guide the beam either 

through five or seven pairs of chirped mirrors. By doing so, the compressor provides 

flexibility for several demands of negative dispersion. 

In front of the compressor, the laser beam passes a pair of fused silica glass wedges 

with a 4° apex angle. The wedges are mounted on remotely controlled translation 

stages. With the help of the wedges, one can fine-tune the total spectral dispersion 

such that the shortest pulses are generated at the target position of the attosecond 

beamline. The positioning of the wedges before the compressor helps to avoid laser-

induced damages in the glass, since here, the pulse is still stretched in time due to the 

dispersion that is accumulated in the fiber. After the whole broadening and 

Figure 3.5: Example of normalized spectra of the near-infrared laser pulse after spectral 

broadening in the doubly differentially pumped hollow-core fiber for different incident helium 

pressures. The higher the pressure the broader the spectrum and the lower is the central 

wavelength. 
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compressor stages, the typical pulse specification is a pulse duration below 5 fs, i.e., 

a few-cycle pulse, with a pulse energy greater than 1 mJ at 3 kHz repetition rate. 

Measuring and Controlling the Time Shape of the Pulse 

For the measurement of pulse duration on the order of femtoseconds, usual 

electronic devices like light sensors are unsuitable because their response time is in 

the nanosecond timescale, and therewith they are six orders of magnitude slower. 

Instead, a process is needed, which is on the same timescale or even faster. Since 

nothing shorter than the pulses themselves are commonly available in a laser 

laboratory, they are used to measure their own duration. However, a straightforward 

light-light interaction does not exist, and therefore the common measurement 

technique for ultrashort pulses uses a nonlinear medium. Here, the pulse is often split 

into two or more copies and focused onto the medium producing an electromagnetic 

wave signal with new mixed frequencies. A workhorse realization of this kind of 

measurement technique is the optical autocorrelator. Here, the new wave signal is 

recorded while scanning an introduced time delay between two copies of the incident 

pulse. In doing so, one can retrieve the incident pulse in the time domain by the time 

trace of the new signal. 

Although the autocorrelator method produces reliable results for optical pulses 

with relatively long durations, it fails for few-cycle pulses because then the 

autocorrelation trace becomes ambiguous [94]. As discussed in the fundamentals 

chapter, an ultrashort pulse can be expressed by its amplitude and phase in the time 

or in the frequency domain, whereby the Fourier transformation links both domains. 

Thus, by measuring the spectral amplitude and phase, one can completely retrieve 

the time shape of the pulse. Several optical techniques using measurements in the 

spectral domain have been developed in the last decades like frequency-resolved 

optical gating (FROG) [95], spectral-phase interferometry for direct electric-field 

reconstruction (SPIDER) [96], or dispersion-scan (D-Scan) [97,98]. For the 

characterization of the pulses used in this thesis, the D-Scan method is used. 

In the D-scan setup, a second harmonic (SH) signal of the broadband pulse is 

generated in a beta-barium borate (BBO) crystal while scanning the GDD of the 

pulse. The dispersion of the pulse is controlled by moving the glass wedges 

introduced in the previous section and thereby changing the thickness of glass 

material the pulse has to propagate through. The spectrum of the SH is then recoded 

by a flexible high-resolution UV fiber spectrometer (HR4000+ by Ocean Optics) for 

different glass insertions. Figure 3.6 c) shows an example of a spectral trace of the 

SH signal. Here, for a certain wedge position (around 0 mm in the relative scale), the 

spectrum of the SH becomes broad and narrows again for more or less glass insertion, 
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i.e., more or less dispersion. At the position where the broadest spectrum is obtained, 

the introduced GDD is such that the shortest pulse is generated at the BBO-crystal. 

The expected result of the D-Scan trace can be expressed by an analytical formula 

that incorporates the intensity spectrum and the spectral phase of the fundamental 

NIR pulse given by [97] 

𝑆̃(𝜔, 𝑧) ∝ |∫ [∫ 𝐹̃(𝜔′)𝑒𝑖𝑘(𝜔
′)𝑧

+∞

−∞

𝑒𝑖𝜔
′𝑡  𝑑𝜔′]

2+∞

−∞

𝑒−𝑖𝜔𝑡  𝑑𝑡|

2

. ( 3.1 ) 

By using a measured fundamental spectrum, see figure 3.6 b) and the analytical 

formula, the spectral phase of the NIR pulse can be retrieved by an iterative 

algorithm. Hereby, a randomized spectral phase is initialized, and an expected D-

Scan trace is calculated. This simulated D-Scan trace is then compared to the 

measured one, and an error signal is produced, whereby the initial spectral phase is 

iteratively adapted. More details about this iterative retrieval algorithm can be found 

in the references [99–101]. Figure 3.6 d) presents the retrieved D-Scan trace after 

15000 iterations, which fits well with the measured trace in c), and in b), the 

corresponding spectral phase of the fundamental light pulse is shown in red. Using 

this phase and the previously recorded fundamental spectrum, the time shape of the 

Figure 3.6: Measurement of the pulse duration of the few-cycle near-infrared laser pulse by the 

dispersion scan (D-Scan) method. a) The shortest retrieved temporal shape of the pulse intensity 

achievable for the best glass wedge position.  The full width at half maximum results in 5 fs. b) 

The measured intensity spectrum of the laser pulse and the retrieved spectral phase for the best 

wedge position. c) The measured D-Scan trace, which is the intensity spectrum of the second 

harmonic of the laser produced in an nonlinear beta-barium borate (BBO) crystal for different 

glass insertion of the wedge and therefore different dispersion on the laser pulse. d) The 

retrieved D-Scan trace from a iterative algorithm that tried to recover the measured trace. The 

trace is obtained after 15000 iterations and by this the spectral phase together with the time 

shape of the pulse is calculated, which are shown in a) and b).  



 

54 

pulse can be calculated. Figure 3.6 a) shows the pulse intensity in time for the 

dispersion setting, the wedge position, which generates the shortest pulse. A main 

peak with a full width at half maximum (FWHM) around 5 fs is observed. 

In the retrieved temporal shape of the pulse, some small satellite pulses next to the 

central peak are visible. In order to realize good experimental conditions, high 

contrast between these pulses is most often desired. The appearance of the satellites 

results from orders of the spectral phase higher than the GDD, which is accumulated 

in the pulse during its propagation through air, the laser setup, the fiber, and the 

chirped mirror compressor. Since the glass wedges introduce only minor third or 

fourth-order dispersion, they are unsuitable for minimizing the strength of the 

satellites. However, with the Dazzler mentioned above, one can control these spectral 

phase orders that cause the satellite pulses [102]. 

This is realized by controlling either the GDD, the third-order dispersion (TOD), 

or the fourth-order dispersion of the sound wave applied to the acoustic optical crystal 

of the Dazzler. Figure 3.7 shows the retrieved pulse temporal shape from separate D-

Scan traces for different Dazzler settings. In subfigure a) a small satellite pulse next 

to the main pulse for negative times and a second satellite around 30 fs is visible. The 

pulse contrast here is 7.7, which is the ratio between the intensity of the main and 

satellite pulse, and the retrieved pulse duration is 5 fs FWHM. By changing the 

applied TOD in the Dazzler settings from -361×103 fs3 to -358×103 fs3, the contrast 

can be enhanced to 13.0, and the pulse duration can be suppressed down to 4.7 fs 

Figure 3.7: Temporal shapes of the few-cycle near-infrared laser pulse intensity for different 

settings of the Dazzler. The respective dispersions on the sound wave applied to the Dazzlers 

crystal are shown on the left side of the pulse. a) Next to the main peak the pulse shows small 

satellites as a pre (at ~-10 fs) and post-pulse (at ~30 fs). The contrast, i.e., the division of the main 

pulse amplitude by the greatest satellites pulse amplitude, results in only 7.7. b) By changing the 

third-order dispersion (TOD) on the sound wave of the Dazzler compared to the settings in a), 

the contrast increases to 13. Furthermore the pulse duration in full width half maximum 

(FWHM) decreases from 5.0 fs in a) to 4.7 fs. c) Changing iteratively the TOD, the group delay 

dispersion (GDD) and the fourth order dispersion, one can almost suppress all satellites and 

results in a contrast above 20 and a FWHM pulse duration of 4.6. Since the Dazzler is located 

before the hollow-core fiber, the change of the settings influences the broadening behavior such 

that the intensity spectrum supports a Fourier transform limited pulse (FTL) of only 3.7 fs. 
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FWHM, see subfigure b). Note that the change of the dispersion given by the Dazzler 

is applied on the pulse inside the NIR laser and therewith before the spectral 

broadening by the fiber and the temporal compression by the chirp mirror array. Thus, 

the change in the dispersion here propagates with the pulse through the whole pulse 

compression stage. Furthermore, the change of the dispersion in the laser also 

changes the temporal shape in front of the hollow-core fiber, and thereby it influences 

the self-phase modulation in the fiber, which can lead to differences in spectral 

broadening and throughput efficiencies. The shortest pulse achievable by a given 

spectrum is the Fourier transform limit (FTL) pulse, which is obtainable if one 

Fourier transforms the pulse spectrum assuming a flat spectral phase. Therefore, the 

pulse duration changes from 4.1 fs in subfigure a) to 4.0 fs in subfigure b). Further 

compression of the pulse duration and contrast enhancement is achievable by also 

changing the fourth-order dispersion. Subfigure c) shows an example of a 4.6 fs pulse 

with a contrast of 20.8 between the main peak and the satellites for an almost optimal 

Dazzler setting. Although one can change the GDD of the pulse by the wedge position 

in principle, the change of the GDD by the Dazzler here is applied in order to 

compensate for the changes in the other orders and thereby increase the spectral 

broadening in the fiber as mentioned above. 

Carrier-Envelope Phase Stabilisation 

The carrier-envelope phase (CEP) of a laser pulse describes, as mentioned in the 

fundamentals chapter, the phase slippage between the carrier and the envelope of the 

pulse’s electric field. Hence, in the case of an ultrashort laser pulse, in particular, for 

a few-cycle pulse, the CEP strongly determines the maximum strength of the electric 

field. For a CEP of 0 or 𝜋 the absolute value of the electric field is higher at the point 

in time with maximal field envelope than the electric field at any moment of a pulse 

with a different CEP. Thus, processes that are sensitive to the electric field of a laser 

pulse, for instance, the high harmonic generation, strongly depend on the CEP. In this 

thesis, the ionization gating technique is used to produce almost isolated attosecond 

pulses and therewith a broad continuous harmonic spectrum. Taken together, for 

stable and reliable experimental conditions, enhancement of the high-harmonic yield, 

and good harmonic spectral properties, one needs to control and stabilize the CEP at 

the light-matter interaction point. 

As discussed in the section about the generation of ultrashort NIR pulses, the fast 

fluctuation of the CEP in the oscillator’s cavity is stabilized by the feed-forward 

method using an acousto-optic frequency shifter. However, it cannot stabilize all long 

term drifts of the CEP due to, for instance, thermal or air pressure fluctuation, which 

are accumulated during the propagation of the pulse on the whole optical table. For 

this purpose, a second CEP stabilization module is used. 
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The module consists of an f-2f interferometer for the CEP measurement [103,104] 

and a piezo-driven glass wedge to change the CEP. The measurement is performed 

close to the entrance of the attosecond beamline. Figure 3.8 a) shows a picture of the 

measurement setup with red arrows indicating the laser propagation direction. The 

laser beam enters the setup from the bottom by a periscope, and it is focused by a 

spherical mirror into the conversion medium for high harmonic generation in the 

beamline. The entrance is a fused-silica glass window with a 45° angle of incidence. 

The most power of the beam is transmitted through the glass into the beamline, and 

about 1 % is reflected to the next pick-up mirror. Reflections occur on both surfaces 

of the window so that a double pulse in time is created. In order to obtain a clean 

interference signal in the f-2f interferometer, one thus has to block one pulse. The 

most convenient point to do so is the position of both beam foci because here, they 

are clearly separable. In the setup, the back of the steering mirror SM1 serves as the 

blocking material. After the focus in air, the divergent beam is collimated by a second 

spherical mirror to allow a convenient alignment of the beam into the interferometer 

using the steering mirrors SM1 and SM2. 

In the f-2f interferometer, a second harmonic signal of the fundamental pulse is 

produced in a BBO, which is aligned with respect to the beam in order to achieve 

f-2f 

Interferometer 
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a) 

Figure 3.8: The carrier-envelope phase (CEP) stabilization of the few-cycle near-infrared pulse in 

front of the attosecond beamline. a) The experimental setup to measure the CEP by an f-2f 

interferometer. The red arrow indicate the laser propagation direction. In order to measure the 

CEP close to the high-harmonics generation point, the weak reflection on the entrance window to 

the beamline is used for the measurement. The components are discussed in the main text. b) An 

example of the interference pattern recorded by the f-2f interferometer. The position of this pattern 

in wavelength direction has to be controlled in order to stabilize the CEP. c) A histogram of the 

stabilized CEP for several hours. The stabilization is achieved by moving a piezo-driven wedge in 

the near-infrared laser (not shown). The deviation from the target CEP of 0.0 rad is normal 

distributed. A fit by a Gaussian fit function (orange dashed curve) results in a standard deviation 

of the CEP of 332 mrad. 
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good phase-matching conditions. The spectrum of the fundamental spans at least an 

octave so that if one overlaps the fundamental with the second harmonic signal, 

spectral interference appears, which is recorded by a spectrometer. Figure 3.8 b) 

shows an example of observable interference fringes. The spectral position of the 

fringes is linked to the carrier-envelope offset frequency of the pulse train, which, in 

turn, is proportional to the CEP. By measuring the spectral phase of the fringes using 

Fourier transformation, one thus can deduce a relative value for the CEP. 

Deviations from a desired value for the CEP are used as an error signal to feed a 

proportional-integral-controller. The controller applies a specific voltage to a piezo 

accumulator that moves a dispersion glass wedge, which is placed in the stretcher 

stage inside the NIR laser. Since the attosecond beamline is evacuated, the change of 

the laser pulse's CEP inside the beamline is negligible. Thus, placing the 

measurement part directly before the beamline and the controlling part in the NIR 

laser has the benefit that all CEP fluctuations, which are accumulated during the 

whole pulse propagation through the amplifier, the hollow-core fiber, and the chirped 

mirror compressor, can be compensated at once and this without any additional 

disturbance factor, see also reference [105]. The piezo-controller and the 

spectrometer are both triggered by a fraction of the laser’s repetition rate in order to 

stabilize the CEP on a synchronized shot to shot basis. Figure 3.8 c) shows a 

histogram of a stabilized CEP measurement under typical laser performance 

conditions. A fit on the histogram by a Gaussian function results in a CEP standard 

deviation of only about 330 mrad. 

The Attosecond Beamline 

The attosecond beamline is the core of the experimental setup. Here the attosecond 

pulse is produced and overlapped spatially and temporally with the (NIR) 

femtosecond pulse. Both pulses are focused together on the target of investigation. 

By scanning an applied time delay between the attosecond and the femtosecond pulse 

in an interferometric way, the quantum mechanical dynamics of the target can be 

studied within a time resolution on its natural timescale. Hereby, the observable is 

the spectrum of the attosecond pulse, which is transmitted through the target and 

recorded in propagation direction by a grating-based spectrometer. This measurement 

procedure is called here attosecond transient absorption spectroscopy. 

The production of pulses on the attosecond timescale with a tabletop system is 

based on the generation of high harmonics of a preferentially long-wavelength laser. 

For this purpose, the NIR laser is focused by a spherical mirror, 1 m radius of 

curvature, into the conversion gas neon, argon, or xenon. The harmonics are in the 

XUV spectral region. Since the characteristic absorption length of an XUV pulse in 

air is less than 1 mm, the HHG and therewith the whole following experimental setup 
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is placed and has to be controlled inside vacuum chambers. A rendered computer-

aided design of the whole beamline is shown in figure 3.9. For this purpose, a vacuum 

of about 10−3 mbar is enough, but due to the high gas load in the HHG and target 

chamber, a high pumping speed is needed. Furthermore, considering the high 

intensity of the laser and the high photon energy of the XUV pulse, a vacuum below 

10−8 mbar can increase the lifetime of the optical components in the beamline, which 

otherwise would lead to the deposition of carbon on the optical components from 

residual oil vapor after some time. 

In the experiment, the same fundamental NIR laser pulse used for the HHG can 

be reused for the time-delay and/or intensity-dependent transient absorption 

spectroscopy measurement. This reusing provides inherent stability against timing 

jitter between both pulses since the XUV pulse is phase-locked to the NIR pulse due 

to its production process. Here, the propagation paths of both pulses are then the 

same, and the interferometer geometry is a line of the two collinear pulses. Since the 

NIR pulse and XUV pulse are defined in different spectral regions, they have a 

different divergence after the focus for the HHG [38]. This difference is exploited in 

the experimental setup in order to separate the two pulses in time and space and 

control the intensity of the NIR pulse. 

A schematic view of the realization of the pulse manipulation is shown in 

figure 3.10. The NIR pulse is focused into a machine-drilled pinhole of an HHG- 
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Figure 3.9: Computer-aided design of the attosecond beamline. The whole setup is placed inside 

vacuum. Each optical component for the manipulation of the pulses, the target of investigation 

and the grating-based spectrometer are located in separate vacuum chambers in order to realize 

differential pumping between the points with high gas load, i.e., the high harmonic generation 

(HHG) and target chambers and the optical component, in particular in the mirror and grating 

chamber. Details about the purpose of each components can be found in the main text. The 

figure is adapted from reference [85]. 
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Figure 3.10: A schematic setup of the attosecond beamline. The near-infrared (NIR) pulse and 

the extreme ultraviolet (XUV) pulse are both focused into a helium target. The XUV induces a 

decaying dipole moment in the target, which is manipulated by the NIR pulse. The different 

manipulation stages to perform the experiment are indicated. They are the control of the NIR 

intensity by an iris aperture, the control of the time delay between the NIR and XUV pulse by a 

split mirror, their focusing by the toroidal mirror, their spatial separation by a concentric band-

pass filter, and the recording of the XUV spectrum by a grating-based spectrometer. An example 

of the XUV transmission and in situ reference signal recorded by the spectrometer camera 

(CCD) is shown. The figure is adapted from reference [85]. 

conversion-gas-filled ceramic tube. The 3 mm thick tube helps to apply a local gas 

pressure up to hundreds of mbar without venting the whole beamline. The gas flows 

out of the tube through the pinhole with a 100 or up to 300 µm inner diameter and is 

pumped out by a turbo-molecular pump (HiPace 2300 by Pfeiffer Vacuum) that is 

flanged on top of the HHG chamber. A constant flow of gas has the advantage that 

the conversion medium is always renewed after its ionization by the NIR laser. 

Together with a stabilized gas pressure supply, this provides a constant path-length 

density for the laser. For the tube, the ceramic Macor® is used due to its mechanical 

resistance, where otherwise a material like stainless steel could melt and be cut under 

the high field intensity in the laser focus in the alignment procedure. Remotely-

controllable motorized translation stages help to align the gas tube with respect to the 

position of the focus in the direction of the optical axis to achieve optimized phase-

matching conditions for the HHG and in the direction perpendicular to the optical 

axis for high power throughput. 

A closed-loop iris with zero-aperture capability controls the intensity of the NIR 

pulse. It blocks parts of the NIR light, whereby the collinearly propagating XUV 

pulse is not affected due to its smaller divergence. The steps in the closing of the iris 

are not linear to the NIR laser intensity change. This is because the intensity is not 

constant across the transverse beam profile and, in particular, considering optical 

beam propagation, a smaller beam waist due to the iris closing results in a greater 

beam waist in the focus of the target and therewith in a lower intensity. Thus, if one 

wants to perform intensity-dependent measurements, the NIR intensity in a certain 
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measurement campaign has to be calibrated. Some examples of doing so will be 

addressed in the next chapter. 

The time delay between the NIR and XUV pulse is controlled by a split-mirror, 

for which an inner mirror is placed in and can be translated with respect to a fixed 

outer mirror introducing a different path length for each pulse. The two beams hit 

both mirrors in a grazing incidence angle of 15° in order to increase the mirror’s 

reflectivity for a spectrally broadband range, in particular, for the XUV. The inner 

mirror is designed to reflect best the XUV pulse, and therefore it is gold-coated, and 

its dimension of 2 mm in height and 10 mm in width fits – considering the incident 

angle – the beam size of the XUV pulse. The outer mirror is silver-coated and can 

highly reflect the NIR pulse. The inner mirror is mounted on a piezoelectric stage 

(PIHera by Physik Instrumente), which can move the mirror perpendicular to its 

surface with nanometer precision. 

Using a continuous wave helium-neon-alignment-laser (HeNe), the 

interferometric stability of the split-mirror can be measured. For this purpose, the 

HeNe is reflected on both mirrors, and the spatial interference is recorded by a camera 

close to a focus position further downstream. By scanning the piezo position, the 

intensity on a certain region of interest of the camera oscillates due to the interference 

between the HeNe beams that are split on the mirrors, see figure 3.11 a). The exposure 

time of the camera must be shorter than every integration time used for the 

experiment later in order to cover all parasitic frequencies, which might influence the 

piezo stability. The oscillation should follow a sinusoidal curve with the periodicity 

of the HeNe wavelength of 632.8 nm divided by the sine of the angle of incidence. 

Instabilities cause deviations from this periodicity in the piezo movement, which are 

shown in figure 3.11 b) in units of time. The standard error of this deviation results 

in a possible time delay resolution of 26.9 as which is only one-tenth of the typical 

XUV pulse duration. 

Figure 3.11: Time delay stability of the collinear interferometer geometry. a) The intensity of an 

interfering continuous wave helium-neon laser at a certain region of interest on the recording 

camera for different piezo position of the split-mirror. The oscillation period follows the 

wavelength of the laser considering the angle of incidence of 15°. b) Deviation of the phase from 

a perfect sinusoidal oscillation in a) translated in the time domain. The standard error of 

deviation results in 27 as stability for the time-delay scan. 
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After applying a time delay between the XUV and NIR pulse, both pulses are 

focused into the target by a toroidal mirror. With the toroidal shape, the focus in the 

HHG medium is mapped one to one onto the target, which minimizes possible 

aberration of the focus. Although the interferometer geometry provides, as shown 

above, high passive timing stability, the translation of the inner mirror in the grazing 

incidence causes a displacement of the XUV focus in the target. After simple 

geometrical considerations, applying 1 fs time delay results in a parallel beam 

displacement of about 1.1 µm. The focus size of the typical NIR beam is 80 µm and 

of the XUV beam about 20 µm. Thus, in a time-delay scan of an experimental run, 

one has to make sure that both foci are always in the spatial overlap, whereby this 

walk-off effect limits the maximal time-delay range to about 50 fs. Therefore, all the 

following experimental results are in this time-delay window. Furthermore, the 

parallel displacement of the XUV beam causes a time-delay-dependent shift of the 

recorded XUV spectrum and influences the output efficiency through the pinhole of 

the target tube. However, one can correct these effects in retrospect to the 

measurement, as will be shown in the next chapter. 

Despite the different divergences of the beams on the split-mirror, a fraction of the 

NIR beam is still reflected by the inner, and a fraction of the XUV beam is reflected 

by the outer mirror, respectively. In order to get rid of these residual spectral 

components on the mirrors and thereby realize a total temporal and spatial separation 

between the XUV and the NIR pulse, a concentric filter is placed after the mirror 

setup, which spatially separates the NIR and XUV beams. Here a round 200-nm-thin 

metallic filter-foil (manufactured by Lebow) blocks the central NIR part and, at the 

same time, lets pass the XUV component from the inner mirror. The used species of 

the metals depend on the investigated photon energies. For the photon energies 

between 16 and 72.5 eV, the most practical to use is aluminum. For low harmonic 

energies between 12 and 16.5 eV, indium, and energies between 72.5 and above 

200 eV zirconium can be used [106]. The spectral filter transmission of the species 

is shown in figure 3.12 a). In particular, indium has a low XUV transmission of below 

25% and therewith strongly suppresses the harmonic signal, which makes its usage 

experimentally challenging. The metallic foil with a diameter of 2 mm is glued onto 

a home-built twisted Kapton® wire or is directly glued onto a Kapton® foil with a 

central hole. The foil or the wire are mounted on a 4 cm outer diameter aluminum 

ring, which is held in place by a variable and in vacuum movable support array, see 

figure 3.12 c), d), and e). 
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To filter out the residual XUV that is reflected by the outer mirror of the split-

mirror setup, two membrane filters can be used, which are a 2 µm thin nitrocellulose 

(by National Photocolor) or a 7.5-micron thin Kapton® foil (by Lebow). The 

nitrocellulose pellicle blocks very efficiently all XUV spectral components, whereby 

all effects on the NIR pulse are negligible. However, it is fragile and can easily break 

also by the light pressure of the intense NIR pulse, which makes its handling difficult. 

Compared to that, the Kapton® foil is more stable, such that the foil can even serve 

as a supporter for the metallic filter, see figure 3.12 d). This has the advantage that 

no further spatial alignment between the central hole in the NIR filter and the metallic 

XUV filter is needed. However, the transmission of the Kapton® foil is 90%, which 

is measured by dividing the recorded NIR spectrum with and without Kapton in the 

beam path, and its spectral transmission window is limited to about 500 nm on the 

short wavelength side, see figure 3.12 b). Furthermore, one has to take the dispersion 

of the foil into account. Its group velocity dispersion (GVD) can be calculated by 

values for the refractive index taken from the reference [107], which is shown in 

figure 3.12 b). The thickness of the foil is 7.5 µm, and that leads to a wavelength-

average group-delay dispersion of about 4.5 fs2. In order to generate a short pulse in 

c)

d)

e)
a)

b)

Figure 3.12: The concentric filter for the spatial separation of the near-infrared (NIR) and 

extreme-ultraviolet (XUV) pulse. a) Different metallic species for the 200-nm-thin transmission 

filter can be used for different spectral regions of the XUV from 12 eV using indium (In) to 

aluminum (Al) around 50 eV up to 200 eV using zirconium (Zr). b) The measured transmission 

and calculated wavelength-dependent group velocity dispersion of the Kapton® NIR filter. c) A 

metal filter glued onto a home-built twisted Kapton® wire. The wire is mounted on 4 mm 

aluminum ring and placed in the variable filter supporter. d) The Kapton® NIR filter with 

directly glued aluminum XUV filter on top. e) A photographic picture of the whole filter setup 

in the vacuum chamber. The supporter can hold four different concentric filters for different 

experimental settings and it can be moved in all dimensions inside vacuum for alignment 

purpose. The data for a) and b) are taken from references [106] and [107], and the pictures are 

adapted from reference [85].  



 

63 

the target, this dispersion has to be compensated for by the movable glass wedges in 

front of the beamline, which correspond to an additional 100 µm fused silica glass or 

moving the wedge on the stage by 1.4 mm. However, this additional glass also affects 

the NIR dispersion in the HHG conversion medium, which may influence the HHG 

process, and one has to make a tradeoff between the best harmonic spectrum and the 

shortest pulse in the target. 

On the same mount for the concentric filter, a small XUV transmission grating is 

glued onto a Kapton® wire. The grating is a thin and 3 mm in diameter wire grid that 

is commonly used for transmission electron microscopy (TEM). Its wire spacing is 

such that it diffracts the XUV beam into different spatial orders and, at the same time, 

lets the NIR beam almost unaffected. Figure 3.13 shows a photographic picture of 

the TEM-grid and the diffraction pattern for a green alignment laser. The zeroth order 

of the diffraction is focused into the target, and its transmission spectrum is recorded 

a) 

b) c) d) 
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+1st 

-1st 

0th 

+1st 

-1st 
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+1st 

TEM-grids 

metallic XUV Filter 

Figure 3.13: Functionality of the XUV diffraction grid for the in situ XUV reference. a) The 

transmission electron microscopy grids (TEM-grids) are glued onto home-built  

Kapton® wires and mounted on the variable supporter of the concentric band-pass filter array. 

The shown grids have a different grid spacing used for different XUV spectral regions. b) The 

modeled spatial diffraction pattern in the view of the laser propagation direction. c) Photographic 

picture of a diffraction pattern of a green alignment laser propagating through the TEM-grid and 

blocked on a laboratory wall. The achieved pattern reproduces well the modeled one. d) A 

computer-aided design of the target tube. The 0th order diffraction propagates through the target 

pinhole while the +1st order passes the target from above through a groove of the tube without 

being affected by the target gas. All other orders of the diffraction pattern (not shown) are 

mechanically blocked by the target tube. Some picture are adapted from reference [85]. 



 

64 

by the XUV spectrometer further downstream. Therewith, it provides the main 

observable in the experiment. The first order on top passes the target and serves as an 

unabsorbed in situ XUV reference spectrum, which is recorded by the XUV 

spectrometer as well and, in particular, in the same integration time. As will be shown 

in the next chapter, this reference spectrum can be used to normalize the transmission 

spectrum, which is needed in order to compare the measurement results from 

quantum mechanical model simulations. More details about the experimental setup 

for this in situ XUV reference can be found in the references [51,85]. 

After passing the annular band-pass filter array and the TEM-grid, the NIR and 

the XUV beam are both focused on the gas target of investigation. The gas flows 

from a pinhole in a gas-filled Marcor® tube with a similar setup that is used for the 

HHG conversion medium. After the target the NIR is filtered out by a second metallic 

filter protecting the following XUV spectrometer from stray light or light-induced 

damage. Due to the fabrication procedure, the metallic filters have small microholes 

producing small NIR leakages through the filters.  In order to minimize these leakages 

and therewith decrease the integration background in the XUV spectrometer, a stack 

of two filters is used. 

The dispersive element of the spectrometer is an aberration-corrected concave 

grating (by Hitachi) with a variable groove density. It provides a flat-field 

spectroscopic image, which is recorded by a back-illuminated thermo-electrically 

cooled camera (CCD, PIXIS 400B by Princeton Instruments). The grating 

compensates the disadvantage of conventional gratings, which generate an image on 

a Rowland circle and thereby cause aberrations if flat cameras record the spectrum. 

With this grating and the above-mentioned camera, one can measure the XUV 

spectrum with a resolving power of up to 1500. 

For XUV energies of interest between 10 and 100 eV, two gold-coated Pyrex 

gratings are used. The first has 1200 grooves per mm on average and is used for 

wavelengths from 11 to 62 nm corresponding to about 20 to 112 eV photon energy. 

The second has 600 grooves per mm on average with increased efficiency for 

wavelengths between 22 to 124 nm corresponding to 10 to 56 eV. Both gratings are 

stacked onto a variable home-built stage, allowing to switch between the gratings 

under vacuum conditions remotely. Each grating is mounted on a mirror mount to 

provide access to separately tune their position and angle of incidence for high 

diffraction efficiency and resolution [27]. 

The here presented components of the attosecond beamline are sufficient to 

perform a transient absorption experiment. In the following, two further upgrades of 

this beamline will be presented, which were conducted as part of this dissertation. 
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Time-Delay Interferometer with Circular Polarization 

In the attosecond beamline, the NIR pulse used for the HHG is reused as a (strong) 

perturbing laser field for transient absorption measurements. With this, high passive 

time-delay stability can be achieved. However, a drawback is the previously 

discussed walk-off of the XUV beam when scanning the time delay, which in turn 

limits the accessible time-delay range to about 50 fs. Furthermore, the collinear 

propagation geometry hinders additional manipulations on the NIR pulse, like its 

temporal shape or polarization, since both would affect the HHG as well. In 

particular, if one wants to perform experiments with circular NIR polarization, the 

HHG process would break down because it critically depends on the ellipticity of the 

driving pulse [108]. Changing the NIR polarization after the HHG is, in principle, 

possible; see, for instance, reference [109]. However, considering the used NIR pulse 

durations of below 5 fs, standard optical components to do so would introduce too 

much dispersion to realize short pulses in both the high-harmonics conversion and 

the target medium. In order to get access to longer delay ranges and different 

polarizations, the NIR beam can be split before and recombined within the beamline. 

 Figure 3.14 shows a sketch of a realized experimental setup. Here, the NIR beam 

impinges on a glass anti-reflection coated beam splitter, which reflects 30% of the 

beam's power. The residual transmitted power is used to generate high harmonics, 

and the reflected part passes some manipulating optical components and enters the 

beamline from a separate optical access port. Both interferometer paths recombine 

inside the vacuum beamline by a mirror with a 2 mm central hole drilled under 45° 

with respect to the reflective surface. The XUV pulse produced in the HHG medium 

can pass the mirror through the hole without being affected due to its small 

divergence, while the mirror substrate blocks parts of the generating fundamental 

NIR. The NIR, which is reflected by the beam splitter, is reflected by the hole mirror 

under 45° and propagates afterwards collinear with the XUV beam. Due to the central 

hole, the NIR beam profile obtains a donut-shaped mode, which is, nevertheless, 

similar to the mode after the concentric band-pass filter. The splitting and 

recombination lead in total to an interferometer geometry with two separate arms that 

are called the HHG and the external NIR arm in the following. For each 

interferometer arm, the optical path length and the pulse dispersion have to be 

controlled in order to be able to perform a time-delay scan across the time overlap 

with pulses as short as possible. 

The optical path length and therewith the time delay between the pulses 

propagating through the two arms can be scanned by an optical retroreflector in the 
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external NIR arm. It is mounted on a piezo-driven stage (PIHera by Physik 

Instrumente). The stage has a travel range of 260 µm that corresponds in this 

geometry to a maximal time-delay range of 1.7 ps. This is much longer than the delay 

range of 50 fs mentioned above and can be used to investigate dynamics on a longer 

timescale, e.g., vibrational wave-packet dynamics in molecular targets. In order to 

make sure that one can scan across the time overlap, the positioning of the whole 

retroreflector can be aligned by an additional micrometer stage. The interferometer 

stability is measured again by recording the spatial interference of a continuous wave 

HeNe laser propagating through both arms by a fast camera. It results in a passive 

timing stability of ~ 350 as in full operation mode, i.e., all electronic devices and 

turbopumps are on. Details of the stability measurement and a reliable alignment 

procedure for the time and spatial overlap can be found in reference [110]. 

In this setup, an experiment with different NIR polarization can be performed. It 

is controlled by an additional broadband polarization retarder in the NIR external 

arm, for instance, a λ/4 wave plate depicted in figure 3.14. Hereby, one has to 

consider that the retarder and the optical access port to the vacuum beamline 

introduce additional pulse dispersion, which has to be compensated, for instance, by 

the positioning of the glass wedges. Additionally, a focusing of the external NIR 

beam is necessary in order to obtain NIR divergence properties similar to the collinear 

Beam Splitter 

Retroreflector 

Focusing Mirror 
Focusing Mirror 

HHG Medium 

Hole Mirror 

Aperture, Split-Mirror,  

Toroidal Mirror 

 and Band-Pass Filter 

Target 

λ/4 Retarder 

Dispersive Glass 

External NIR Arm 

HHG Arm 

Figure 3.14: Sketch of the optical setup for the two-arm interferometer. The pulse on the HHG 

arm is used for the HHG while the pulse on the external NIR arm is used to perform the time-

delay or intensity-dependent transient absorption experiment. The time delay between the pulses 

and the NIR polarization can be controlled by a retroreflector and polarization retarder in the 

external NIR arm, respectively.  Further details of the components can be found in the main text. 

The drawing is adapted from reference [110]. 
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interferometer geometry. With this, one can still make use of the following 

divergence-dependent components, i.e., the aperture for the NIR intensity control, the 

concentric band-pass filter for the spatial separation, and the aberration-free one to 

one focus mapping by the toroidal mirror. 

To further mention, the here introduced interferometer allows realizing, additional 

to the used ionization gating, a gating technique for the HHG that relies on the 

polarization of the driving pulse such as generalized double optical gating [74]. This 

gating technique is not practical with the collinear interferometer geometry since the 

polarization-dependent temporal shape of the NIR laser used to gate the HHG would 

also be present in the target medium, where here a pure linear or circular polarization 

is often desired. 

Blue-Shifts of the Near-Infrared Spectrum 

The first step in HHG, as discussed in the fundamentals chapter, is the tunnel 

ionization of the conversion medium’s atoms. This leads to an increased number of 

free electrons in the medium during the interaction with the intense NIR pulse. The 

freed electrons result in a time-dependent change of the local refractive index, which 

in turn changes the spectral properties of the NIR pulse when it is propagating through 

the medium. In the collinear interferometer geometry, the NIR pulse for the HHG is 

reused further downstream for the time-delay and intensity-dependent experiments. 

Since some features in the measurement results depend on the NIR spectrum, as will 

be discussed further below, one has to consider these changes in the NIR spectrum. 

For low electron densities ρe the relative change of the wavelength λ of a certain 

spectral component is proportional to the time derivative of the density times the 

interaction path length L [111,112] 

𝛥𝜆

𝜆
∝ −𝐿 

𝜕𝜌e
𝜕𝑡

. ( 3.2 ) 

The minus sign effectively leads to a blue shift of the spectrum. Figure 3.15 shows 

the experimental setup for the recording of the NIR spectrum inside vacuum and 

some examples of spectra for different HHG conversion media and pressures. Here, 

the NIR can scatter at a remotely controlled iris aperture when it is completely closed. 

An in-vacuum optical fiber catches the scattered light and directs it into a 

spectrometer outside the vacuum (USB2000+ by Ocean Optics). The blue shift 

depends on the used HHG conversion medium. Using neon, almost no shift is present 

due to its high ionization potential of 21.6 eV and therewith low free electron 

densities, see subfigure 3.15 b). However, using argon or xenon with lower ionization 

potentials as conversion media, the blue-shift of the NIR spectrum is not negligible 
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even for lower backing pressures in the HHG tube, see subfigure 3.15 c). Further 

details about this setup can be found in reference [113]. 

Since the free-electron-induced change of the refractive index shifts the central 

wavelength of the NIR spectrum to lower values, it can also be used for wavelength-

dependent measurements in the future. A possible scan parameter could be the 

conversion gas or its pressures to achieve different central NIR wavelengths in the 

target. Furthermore, the iris aperture is utilized for a pre-attenuation of the NIR 

power. In particular, when using the fragile indium foils for the XUV filtering before 

the spectrometer, the foils can break by the heating and light-pressure of the NIR 

beam [27]. By closing the aperture such that the low divergent XUV beam can still 

pass through the opening, the high divergent NIR beam can partly be blocked, and 

the lifetime of the filters might be enhanced. 

 

a) 

Figure 3.15: Measurement of the blue-shifted near-infrared spectrum. a) A photograph of the 

experimental setup for the measurement of the spectrum in the target chamber. The red arrow 

indicates the propagation direction of the laser pulse. After passing the target (here  rear view) 

the laser beam hits a closed iris. The scattered light is caught by an optical fiber which directs 

the light into an Ocean Optics spectrometer outside the vacuum. b)  The  NIR spectrum in the 

target chamber with and without Neon as HHG conversion medium. c) The NIR spectrum for 

Argon as conversion medium. 
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4. Data Processing and Calibration 

In attosecond transient absorption spectroscopy, the measured observable is the 

XUV transmission spectrum through a target medium with respect to a time-delayed 

strong NIR pulse. It is recorded as described in the previous chapter by a dispersive 

grating and an XUV camera. Here, the spectral data are collected fully automatically 

via a computer-aided scanning of the experimental parameters that are mainly the 

position of the inner mirror to scan the pulses’ time delay and closing or opening of 

the iris-aperture to control the NIR intensity. The experimental set parameters are 

voltages to the piezos, which drive the inner mirror and the iris. Thus, for reliable 

interpretations of the spectral data, calibrations for these parameters are needed. 

Furthermore, since the strengths of the transmitted intensity spectra depend on the 

incident XUV intensity focused on the target, one typically normalizes the 

transmission spectrum by an unaffected reference spectrum and calculates therewith 

the medium’s absorbance. The present chapter aims to compactly describe the main 

data processing steps in order to generate the results data of the transient absorption 

experiment with high sensitivity. The physical interpretation of the results will solely 

be given in the following chapters, where this chapter serves as a reference describing 

the methods in order not to disturb the discussion of the results. 

From Transmission to Absorbance Spectra 

A CCD camera with 1340 x 400 pixels records the XUV transmission spectrum, 

which can be translated along the image plane of the flat-field spectrum produced by 

the variable line-spaced grating in the spectrometer. An example of the recorded 

camera raw image of the transmission through helium is depicted in figure 4.1. Here, 

the color encodes the XUV photon counts on the camera pixels for the integration 

time of 4 s that is 12,000 consecutive laser shots. Due to the dispersion of the grating, 

the horizontal direction on the camera is approximately linear to the wavelength of 

the XUV pulse. The vertical direction corresponds to the spatial dimension of the 

XUV beam.  

The signal strip between the solid black lines on the lower part of figure 4.1. is the 

actual transmission signal through the target medium, whereby the absorption from 

resonant transitions in the helium atoms are visible as sharp vertical gaps in the 

spectrum. The smooth changes of the signal strength along the horizontal pixel 

direction is the modulation of the high-harmonic incident spectrum. Due to its highly 

nonlinear generation processes, this spectrum changes from shot to shot. However, 

in the end, one wants to investigate the NIR-induced changes of the transmission 
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while scanning the time delay between the XUV and NIR pulse. Thus, the fluctuation 

of the incident harmonic spectrum will overlap with the changes of interest and 

thereby reduce the measurement sensitivity. Furthermore, due to the modulated 

spectral structure of the harmonics, the absorption signals are spectrally on a signal 

slope, and thereby their line shapes are slightly changed; see for both figures 4.2 a) 

and 4.3 c) and the discussion further below. In order to get rid of these transmission 

changes by the harmonic fluctuation and the modulated spectral structure, one can 

normalize the signal by referencing it to the harmonic incident spectrum. 

For the acquisition of the reference XUV spectrum, different methods are used 

with method-specific advantages and drawbacks. A straightforward and simple 

approach is to measure the transmission spectrum with and without the target in the 

propagation path of the XUV pulse. However, here the recording is sequential, and 

due to the shot to shot fluctuation of the harmonic spectrum, one needs many spectra 

at one specific experimental parameter set point in order to be able to average out the 

fluctuations sufficiently. Therefore, long measurement times together with high long-

term laser stabilities are needed, which makes this approach experimentally 

challenging. 

A second commonly used approach is the so-called Fourier referencing. With this, 

one exploits that the harmonic spectrum is—for good phase-matching conditions in 

the generation of the high harmonics—only smoothly modulated across the XUV 

Figure 4.1: Raw camera data of the transmission spectrum of helium. The axes are the 

400 x 1340 pixel of the camera, whereby the horizontal pixels are approximately linear with the 

wavelength and the vertical pixels correspond to the divergence of the XUV pulse beam. The 

color depicts the photon counts over an integration time of 4 seconds that corresponds to 12,000 

consecutive laser shots. The spectrum is cut after horizontal pixel 1300 by a geometrical block 

in the spectrometer setup. The horizontal spectrum between the solid lines is the transmission 

signal through helium, where the absorption lines are visible as sharp cuts in the continuous 

spectrum. The skewed spectra between the dashed lines are the unabsorbed in situ XUV 

reference. An arrow indicates the appearance of the second spatial diffraction order by the TEM 

grid for the in situ reference. The region between the dashed dotted lines is used for the 

background determination. 
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wavelength compared to the sharp absorption lines. Utilizing Fourier transforming of 

the transmission signal with respect to the wavelength direction and using a low pass 

filter, one can reconstruct the XUV reference directly from the transmission in a 

single acquisition. While this approach provides reliable results for sharp absorption 

features, it fails for broad signals. In particular, it hides NIR-induced changes in the 

absorption in the ionization continuum since they are expected to appear with similar 

wavelength-dependency like the harmonic spectrum. Furthermore, the exact shapes 

of the absorption lines are influenced by the low-pass settings, where one has to make 

a tradeoff between a reliable reconstruction of the incident harmonic spectrum and 

reducing artifacts in the absorption spectral line shapes. This is, in particular, 

important for the ionization threshold since it shows a step-like increase of the 

absorption above the threshold and therewith corresponds to a broad signal in the 

Fourier domain. Therefore, the Fourier low-pass filter will partly include the Fourier 

signal of the ionization threshold and leave a residual absorption step in the XUV 

reference spectrum. More details about this method, together with the advantages and 

disadvantages, can be found in the references [27,57,82,85]. 

A third recently developed approach is the recording of the incident XUV 

spectrum simultaneously with the transmission spectrum in one single acquisition. 

The production of this in situ XUV reference in the experimental setup is already 

described in the previous chapter. Its spectrum is visible by the tilted signal strip 

between the dashed lines in figure 4.1. It is a weak copy of the unabsorbed 

transmission spectrum, and it is tilted due to the dispersion of the TEM grid, making 

the vertical pixel direction on the camera slightly wavelength dependent. The 

reference signal can be obtained by averaging between the region of interest given by 

the dashed lines in figure 4.1 and shown in figure 4.2. By cutting out the reference 

signal, one has to check that the averaged reference spectrum should not qualitatively 

change when slightly changing the region of interest (dashed line in figure 4.1) in 

order to obtain reliable results for the absorbance. In principle, one can cut out the 

reference signal by a region of interest that is horizontal and parallel with the camera 

pixels. However, this will accumulate more background noise of the camera and add 

artificial signals, for instance, due to the spatial second order of the TEM grid, which 

is not geometrically blocked and slightly visible in figure 4.1, indicated by a black 

arrow. 

The averaged XUV transmission and reference spectra are depicted in 

figure 4.2 a). Here the reference is multiplied by a factor 𝑐 = 7.7 for better visibility, 

whereby this multiplication factor 𝑐 is determined by the diffraction efficiency of the 

TEM-grid, and it is slightly different after every alignment of the grid in the 

attosecond beamline. For its determination, the relative strength of the transmission 

and reference spectra can be measured without the target gas. By doing so, one has 

to keep in mind that the harmonic spectrum can be broad, and the second-order 

spectrum of the spectrometer grating may overlap with the first order transmission 
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spectrum. This second-order spectrum is, however, almost completely absorbed after 

switching on the target gas due to the high absorption of the ionization continuum, 

effectively changing the multiplication factor. Instead, one can see, by using 

equation 2.70 for the calculation of the absorption, that the factor 𝑐 simply leads to 

an offset of the absorbance 

𝐴(𝜔) = − log10 (
𝐼(𝜔)

𝑐 ∙ 𝐼0(𝜔)
) = − log10 (

𝐼(𝜔)

𝐼0(𝜔)
) + log10 𝑐, ( 4.1 ) 

Therefore, it is just subtracted after the recording. Furthermore, for the correct 

calculation of the absorbance, the background photon counts of the camera have to 

be subtracted from the transmission and the reference before the absorption is 

calculated. It can be obtained on the same camera image, above the in situ reference 

spectrum, in the region of interest given between the dashed-dotted lines in figure 4.1 

and shown in figure 4.2 b). It shows a slight dip at the position of the ionization 

threshold, which is probably due to a blooming effect, which is a characteristic of the 

CCD cameras, or residual XUV light from the diffraction of the XUV beam on the 

target gas. This XUV diffraction is most efficient close to resonances [114] and 

thereby also at the sharp onset of the ionization threshold. 

The absorption calculated with equation 4.1 shows the absorption of the resonant 

transition from the ground state to the singly excited states in helium, depicted in 

figure 4.2 c) in units of optical density. Furthermore, the absorption of the first 

Figure 4.2: The calculation of the absorbance. The horizontal camera pixels are approximately 

linear with the wavelength of the XUV pulse a) The transmission signal in blue averaged over 

the region of interested and with dips at energies of the dipole allowed transitions from the 

ground state of helium. The ionization threshold is visible by the drop of the transmission at 

roughly camera pixel 560. The dashed orange curve is the in situ reference averaged over the 

region of interest. It is multiplied by a factor 7.7 for a better comparison with the transmission 

signal. b) The camera background averaged in the region of interest. The background was 

subtracted from transmission and reference in a). c) The absorbance calculated with 

equation 4.1 in units of optical density. 
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ionization continuum is visible together with its threshold by the step-like increase of 

the absorption around camera pixel 560. This absorbance signal is obtainable for 

different positions of the inner mirror controlling the time-delay between the NIR and 

XUV pulses, as shown in figure 4.3 a) for no NIR. One can directly see the 

improvement of the visibility of the absorption lines compared to the inner-mirror-

dependent transmission signal depicted in subfigure c). The lineouts at the camera 

pixel 475, indicated by a grey dashed line in c), is shown in d). While the transmission 

signal falls by scanning the inner-mirror position, the absorbance stays almost 

constant. Its fluctuation is in the order of ~11 mOD and defines the measurement 

sensitivity for the absorption. It is further improved by averaging the absorbance for 

many scans of the inner mirror, shown in subfigure b) for five scans. The 

corresponding lineout in subfigure d) yields a sensitivity of ~6 mOD, which is a 

sufficient precision for a clean observation of many NIR-laser-induced changes of 

the absorption. 

Figure 4.3: Inner-mirror scans of the transmission and calculated absorbance. a) The 

absorbance in units of optical density for different inner-mirror position, where the NIR is 

blocked by the iris aperture. The absorption lines of resonant transitions in helium are visible 

by vertical lines. They are slightly tilted, which is an effect of the walk-off of the XUV beam and 

it will be corrected further below. b) The absorbance in the same camera region like in a) 

averaged over 5 scans of the inner mirror. The noise across the scan is greatly suppressed. c) 

XUV transmission intensity spectrum through helium for different inner-mirror position. The 

absorption by helium is visible by vertical gaps in the spectrum. The intensity increases from 

low to high camera pixel due to the structure of the incident harmonic spectrum. The dashed 

grey vertical lines indicate the position where the lineout is taken for d). d) Lineout of the 

transmission (Trans.) and absorbance (Abs. or Ave. Abs.) taken from a), b), and c) versus inner-

mirror position. The sensitivity of the inner-mirror-dependent signal changes are higher for the 

absorbance, where the lineouts of the averaged absorbance results in a precision of 6 mOD 
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Additional improvements of the signal to noise are achieved by exploiting that the 

reference and the background are smooth curves with the camera pixel position. Since 

their signals are weak, the camera noise imprinted on them will dominate the noise 

after the absorbance calculation. Using a rectangular sliding average between a few 

camera pixels for the reference and the background (here for three pixels) reduces 

their noise while negligibly affecting the absorption signal. Furthermore, as visible 

in figure 4.3 d), the absorbance is slightly linear dependent on the inner-mirror 

position. Since no NIR was present in this scan, it can be attributed to an artifact of 

the calculation procedure by the in situ reference. Most likely, it is due to small spatial 

clippings of either the main or reference XUV beam on the target cell, which changes 

while scanning the inner mirror caused by the above-mentioned XUV walk-off. This 

clipping leads to a change of the relative strength of the observed transmission or 

reference signal and thereby to a different calculated absorbance. Experimentally, it 

can be partly compensated by tracking the position of the target cell with the inner-

mirror position. Instead, one can argue that the clipping leads just to an inner-mirror-

dependent offset log10 𝑐 in equation 4.1. This offset is the same for all the scans with 

and without NIR, and therefore it is determined once by a scan without NIR and 

globally corrected for all other scans with NIR. 

Photon Energy Calibration 

The absorption lines visible in the transient absorption data correspond to specific 

electronic transitions that are dipole-allowed from the ground state of the atom. For 

the quantum mechanical interpretation of NIR-induced effects in the absorption, it is 

thus beneficial to assign the absorption lines to the transition. Furthermore, as 

discussed in the fundamentals chapter, the presence of strong-field effects depend on 

the relative energy between the field given in terms of ponderomotive energy and the 

typical energies of the system. In order to consider this relation and perform the state 

assignment, a calibration of the excitation photon energy is needed. 

A dispersive reflection grating achieves the separation of the different energies of 

the harmonic spectrum in the spectrometer. Figure 4.4 a) shows a drawing of the 

dimension of the grating. The different wavelengths of the XUV pulse are projected 

on the spectral plane, where the CCD camera records the photons. For the dispersion 

of the XUV wavelength 𝜆 one can approximately use the grating equation 

𝑚 𝜆 = 𝑔[sin(𝛼) − sin(𝛽)], ( 4.2 ) 

where 𝑚 is the spectral order of the dispersion, 𝛼 and 𝛽 are the angle of incidence 

and angle of reflection, respectively, and 𝑔 is the effective grating constant. In the 

experiment, two different gratings exist for the highest efficiency in two different 

energy regions of interest. One has a grating constant 𝑔 = 1/1200 mm for the 
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wavelength range between 11 and 62 nm, and the second with 𝑔 = 1/600 mm is for 

wavelengths between 22 and 124 nm, which corresponds to about 20 to 112 eV and 

10 to 56 eV photon energy, respectively. With the grating equation and considering 

the geometry of the experimental setup, the XUV wavelength can be related to the 

camera pixel by the equation 

𝜆 =
𝑔

𝑚

[
 
 
 

sin(𝛼) −
1

√(
𝑥

𝐿
)
2
+ 1]

 
 
 

. ( 4.3 ) 

Here, 𝐿 is the distance between the grating and the camera, and 𝑥 is the position of 

the camera with respect to the grating substrate surface, see figure 4.4, which can be 

changed in order to scan the whole spectral plane by the camera of finite size. 

Furthermore, with the adjustment of 𝐿 and the orientation of the camera with respect 

to the spectral plane, the final spectral resolution can be improved, which will be 

discussed in the next section. 

 Slight changes in the parameters in equation 4.3 influence the mapping of the 

wavelength to the camera pixels. Therefore the equation can be used to generate a 

photon energy calibration curve by fitting the absorption line positions where the 

transition energy is known. The free fit parameters are then 𝛼 and 𝑥 𝐿⁄ . In the case of 

the energy region between 20 and 30 eV, helium itself can be used, since, without the 

presence of the NIR, only the dipole-allowed transitions from the 1s2 ground state to 

the singly excited 1s𝑛p Rydberg series are visible. Blue crosses show the 

corresponding positions in figure 4.4 b) together with the best fit. In principle, one 

can also use a polynomial fit function, e.g., a linear function in the present case, to 

obtain the energy calibration curve. However, the lines are often, and also here, 

concentrated on a small region on the camera, and using only a polynomial fit 

Grating Normal 

Entrance Slit 

Spectral Plane 

350 mm L = 469 mm 

𝛼 𝛽′ 

𝛼  = 85.3° 

𝛽′ = 79.6° 

𝛽′′= 67.3° 
𝛽′′ 

𝑥 

a) 

b) 

Figure 4.4: The flat-field spectrometer grating and its calibration. a) A sketch of the grating with 

the design dimensions. For a high spectral resolution, the experiment should adhere to the design 

values given in the sketch. b) The calibration of the camera pixel to the excitation XUV photon 

energy. Blue crosses indicate the camera pixel positions of the visible singly excited absorption 

lines with known resonance wavelengths. The red curve is the fit of the wavelength to the camera 

pixel given using equation 4.3 and is also given in units of eV by the right axis. 
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function could lead to high errors above this series, i.e., here in the ionization 

continuum above 24.5 eV. 

As mentioned in the chapter on the experimental setup, the moving of the inner 

mirror in the split-mirror setup introduces a walk-off of the XUV beam. As a 

consequence, it slightly changes the angle of incidence on the spectrometer grating. 

Thus, the calibration curve will depend on the position of the inner mirror. Since the 

angle of incidence 𝛼 ≈ 85° is large, and its changes are small, the wavelength shift is 

approximately linear with the inner-mirror position. For the correction of this walk-

off effect, one can trace the position of the NIR-free absorption line, i.e., without 

field-induced line-shape changes, and shift the calibration curve in camera pixel 

direction. Figure 4.5 shows the 1s4p absorption line without and with compensation 

of the walk-off. By knowing the strength of the compensation for the spectra without 

NIR, it can be readily applied to the spectra where the NIR is present. Note due to the 

walk-off, the whole signal on the camera is shifted, i.e., both the transmission and the 

in situ reference signal. Thus, it is beneficial to compensate for the walk-off before 

cutting out the reference signal by a tilted region of interest since otherwise, the 

reference signal will slightly step out of the region. Furthermore, for a similar reason, 

the correction of the photon energy calibration should be applied before the above-

mentioned correcting of the inner-mirror-position-dependent offset. 

The Effect of Finite Spectrometer Resolution 

In the interpretation of the absorption strength, in particular, if one wants to 

compare the absorption from bound-bound and bound-continuum transitions, one has 

to consider the finite spectrometer resolution carefully. Its importance is noticeable, 

in particular, for the singly-excited Rydberg series in helium. Here the static 

absorption of the resonant transitions visible in figure 4.2 c) appears small compared 

to the absorbance of the ionization continuum. However, the photoionization cross 

section of the helium close above the threshold is 7.5 Mb, and the cross-sections of 

the resonant transitions are several orders of magnitude higher [63,115,116]. Figure 

Figure 4.5: The correction of the shift of the 

calibration curve with the inner-mirror position 

due to the walk-off of the XUV beam. a) the 1s4p 

absorption line where no NIR is present. The 

energy shift of the line is solely attributed to the 

walk-off and it can be compensated by shifting 

the calibration curve in pixel direction for 

different mirror positions as shown in b). 
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4.6 shows the cross-section of helium given by a numerical model simulation, which 

will be described in the following chapter. The sharp vertical lines are the resonant 

lines and are up to a hundred times higher than the cross-section plateau starting at 

24.58 eV that is the first ionization continuum. 

In order to compare the cross-section to the measurement, the absorbance in units 

of optical density, according to equation 2.70, has to be calculated. Here, commonly 

the spectrometer resolution is considered by convolving the cross-section by a point 

spread function of Gaussian shape 𝐾(𝜔) given by: 

𝐾(𝜔) =  
1

√2𝜋𝜎res
2
𝑒
−
1

2
(

𝜔

𝜎res
)
2

 ( 4.4 ) 

where 𝜎res is the spectrometer energy resolution. Equation 2.70 is then modified to  

𝐴′(𝜔) =
𝜎(𝜔) ∗ 𝐾(𝜔)

ln 10
 𝜌 𝑙, ( 4.5 ) 

where ∗ is the convolution operator. The resulting absorbance for the experimental 

helium density of 𝜌 ≈ 1.2∙1018 cm-3 that corresponds to a backing pressure of 50 mbar 

and a propagation length of 𝑙 = 3 mm is shown in blue in the subfigure 4.6 c). 

Comparing with the measured absorbance, see figure 4.2 c), here, the absorbance of 

the resonant transitions is overestimated, whereby the absorption strength of the 

continuum is on a similar scale as in the measurement. Thus, while this approach of 

Figure 4.6: From cross section to the 

absorbance considering the experimental 

spectrometer resolution. a) Simulated cross 

section of helium where the sharp features are 

transition resonances and the plateau above 

24.58 eV is the first ionization continuum. b) 

The input and output spectrum after 

absorbance in helium. c) The calculated 

absorbance spectrum. Blue is the absorbance 

where directly the cross section is convolved 

with the spectrometer resolution, equation 4.5 

and the orange line is the absorbance whereby 

the output spectrum is calculated and 

convolved first, equation 4.6. 
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considering the spectrometer resolution by convolving the cross-section is 

appropriate for relatively broad spectral lines, it fails for sharp lines with high cross-

sections.  

The XUV spectrometer records the transmitted intensity rather than directly the 

absorbance. According to Beer’s law given by equation 2.68, the cross-section enters 

in the exponent of the factor that is multiplied with the incident spectrum. 

Figure 4.6 b) shows an example of a simulated incident and transmission XUV 

spectrum. The sharp lines in subfigure a) become sharp dips in the transmission 

spectrum, whereby their depth is even not distinguishable anymore for the first lines 

with the lowest energy. Applying the convolution with the function for the 

spectrometer resolution onto this transmission spectrum leads to the absorbance that 

is shown by the orange dashed curve in subfigure c). The equation used for the 

calculation reads 

𝐴′′(𝜔) = − log10 (
𝐾(𝜔) ∗ [𝐼0(𝜔)𝑒

−𝜎(𝜔)𝜌𝑙]

𝐼0(𝜔)
). ( 4.6 ) 

With this procedure, the absorbance of the resonant transitions is highly suppressed 

compared to the continuum absorption. To summarize, the reason for the low 

resonant absorption lines observed in the measurement despite their high cross-

section is the convolution of the transmission spectrum with the finite spectrometer 

resolution. As a consequence, if the NIR laser is present, it will broaden the resonant 

absorption lines and therewith increase their visible absorption strength. 

Time Delay Calibration 

As will be discussed in the chapters about the experimental results, the signatures 

of laser-driven quantum-dynamical processes, like NIR-induced couplings among 

bound quantum states, are observable in transient absorption spectroscopy typically 

by NIR-electric-field-cycle or even NIR-sub-cycle oscillations of the absorption. For 

the central wavelength of  ~750 nm, one NIR-field-cycle is about 2.5 fs. Thus, in 

order to be sufficiently sensitive for sub-cycle oscillations of the absorption, one 

needs a time-delay resolution of below 250 as, which corresponds to ten time-

sampling points of the oscillation. This resolution is provided by the interferometer 

geometry of the attosecond beamline, where both NIR and XUV co-propagate and 

are split in time by the split mirror setup. Here, the inner mirror is translated with 

respect to the outer mirror by a piezo-driven translation stage. Experimentally, one 

cannot adjust a certain time-delay point but rather a voltage on the piezo. Therefore 

for further analysis, the time delay has to be calibrated with the piezo position. 

For its first estimation, one can consider the geometry of the split-mirror with the 

grazing incidence angle 𝜃 of the laser beam onto the mirror setup. Here, the moving 
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of the translation stage of the inner mirror by ∆𝑥 results in a laser-propagation-path-

length change of ∆𝑙 and yields a time-delay change Δ𝜏 that is given by  

∆𝜏 =
𝛥𝑙

𝑐
=  
2 𝛥𝑥 sin 𝜃

𝑐
, ( 4.7 ) 

where 𝑐 is the speed of light. Using the design gracing incidence angle of 𝜃 = 15°, 

this corresponds to ~1.727 fs for the translation of the stage by 1 µm. Since the 

incident angle depends on the alignment of the lasers, this time-delay dependence 

might change slightly. For a more reliable calibration, it can be measured using a 

helium-neon alignment laser with a known wavelength 𝜆HeNe. It is impinged onto the 

mirror setup, and its interference is recorded in the focus, which is a similar setup, as 

was described in the experimental setup chapter. Figure 3.11 shows the intensity 

oscillation of the interference while scanning the translation stage position. From the 

slope 𝑚 of the oscillation phase, one can directly access the time-delay change, which 

reads 

∆𝑡 =  
𝑚

𝛥𝑥
 
𝜆HeNe
2𝜋 𝑐

. ( 4.8 ) 

The here presented measurement yields a change of 1.705 fs per µm, where the 

typical relative error by this calibration is below 1%. A similar procedure can be 

performed for the interferometer geometry with the externally incoupled NIR laser 

pulse that results in a time-delay change of ~6.67 fs per µm translation. 

It is often sufficient to know the relative delay between the XUV and the NIR 

pulses. However, for some timing-sensitive processes like the ionization gating of the 

time-dependent dipole moment, which will be treated in the last result chapter of this 

thesis, the knowledge about the point of absolute time overlap between the pulses is 

needed. A simple approach to find this overlap is to impinge the short NIR pulse onto 

the split-mirror setup and to record its beam profile in its focus position by a camera. 

By setting the inner-mirror stage position close to time overlap, an NIR-interference 

pattern appears on the camera. While scanning the time-delay position, the point of 

the highest visibility of the interference can be interpreted as the point where the 

maxima of the pulse envelope are in overlap, i.e., defining time zero. 

This procedure, however, provides just an estimation of the point of time overlap 

because it crucially depends on the experimental settings. For instance, choosing 

different annular filter material in the attosecond beamline will lead – according to 

equation 2.24 – to different retardation of the pulses depending on the material’s 

dispersion. It also depends on the relative orientation of the mirrors in the split-mirror 

setup, and small changes here for a better spatial alignment of the overlap of the XUV 

and NIR foci in the target influence the time overlap point. Furthermore, when using 

not the co-propagating interferometer geometry but the NIR pulse that is externally 

coupled into the beamline, every additional optical component for the manipulation 
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of the NIR pulse changes the overlap of the pulses. Thus, a reliable procedure for the 

determination of the time overlap has to be applicable during operation. 

For this purpose, timing-sensitive strong-field-induced effects can be used for the 

determination of the time overlap. For instance, one can strong-field ionize the atom 

after its XUV excitation. With this, the XUV-induced dipole moment is cut when the 

NIR laser is present, and the strength of the absorption lines in the XUV spectrum 

will depend on the time delay of the pulses, where it will be minimal in the time 

overlap. An example of this method was applied to the autoionizing states in argon, 

so-called window resonances [24,117]. Other exploitable effects are the sub-cycle 

build-up of ion absorption lines [118] or the strong-field-induced ponderomotive shift 

of the atomic state's energy. The shift leads to the modification of the absorption line 

shape [35], which can be traced by the dipole control model (DCM) that was 

discussed in the fundamentals chapter and treated in further detail in the references 

[84,119]. 

Figure 4.7 a) shows the line shape of the sp24+ doubly excited state in helium for 

different time delays of the XUV and NIR. This line shape can be fitted by the 

Figure 4.7: Determination of the time overlap of the NIR and XUV pulses. a) Time-dependent 

absorption spectrum of the sp24+ doubly excited state in helium. Negative delays means the NIR 

precedes the XUV pulse. The data are averaged in time for one NIR electric field cycle in order 

to suppress sub-cycle oscillation of the absorption line due to resonant couplings to other states. 

The NIR induces a change in the absorption line shape, which can be attributed to a phase shift 

in the dipole response that generates the absorption line. b) The fit results applied on the 

measured data using the dipole-control model given by equation 2.85. It reproduces all main 

features of the measurement. c) The laser-induced phase in blue resulting from the fit on the 

spectral absorption data. The red line is a fit to the phase of the function given by equation 4.9, 

where the pulse for the ponderomotive potential calculation is modeled by a sinh2-shaped 

intensity envelope. d) The ponderomotive shift in blue dots extracted from the fit results of the 

laser-induced phase by taking  its time derivative. The red line is a fit to the data using 

equation 2.33 for the ponderomotive potential. 
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function for the dipole moment in the spectral domain given by equation 2.85, as is 

shown in subfigure b). Here, the amplitude for the ionization of the line is set to unity, 

and the DCM phase is a free fit parameter. The result for the phase is shown in 

subfigure c), and it is a smooth increasing curve across the time overlap. According 

to the reference [119], the time-delay-dependent phase 𝜙(𝜏) is given by the equation  

𝜙(𝜏) =
𝑚

ℏ
∫ 𝑈𝑝(𝑡 − 𝜏, 𝜏FWHM

∞

0

)𝑑𝑡 + 𝑐. ( 4.9 ) 

It is the time-integrated ponderomotive shift 𝑈P that the NIR laser pulse with pulse 

duration 𝜏FWHM induces onto the state. The fit parameter 𝑐 is the data offset, and 𝑚 

is a multiplication factor ≤1, which depends on the considered state. It accounts for 

the susceptibility of the state to be affected by the strong laser field. It is generally 

higher the energetically closer the bound state is to the continuum, i.e., the more 

loosely bound the state is to the core. Using equation 4.9, one can fit the time-delay 

dependent phase, shown in red in figure 4.7 c), whereby reliable fit results are 

obtained by modeling the NIR laser pulse with a sech2 time-shape given by equation 

2.3 with a pulse duration of 5.5 fs. The inflection point of the fit then corresponds to 

the time position when the dipole excitation occurs in the maximum of the NIR field 

envelope, i.e., in the time overlap. Thus, the time axis can be shifted such that time 

zero is at this point, which is already done in the figures. Note that the time-delay 

value is also used in the fit procedure of the spectral line shape by the DCM model. 

Therefore, one has to iteratively fit the line shape again with the shifted time-delay 

axis of the data and test the final convergence. 

The pulse-like shape of the NIR-induced ponderomotive shift can be seen by 

taking the derivative of the time-delay-dependent phase. Figure 4.7 d) shows ℏ
𝑑𝜙(𝜏)

𝑑𝜏
 

by blue dots in units of energy. The observed peak of the shift should be symmetric 

around the time overlap. Here one can directly fit the function for 𝑈P given by 

equation 2.33 in order to obtain the pulse duration and the zero time position, depicted 

by a red line in the figure. The fit results are similar to those obtained by directly 

fitting the laser-induced phase. Furthermore, the derivative here shows the maximal 

magnitude of the ponderomotive shift, which is proportional to the peak intensity of 

the NIR pulse and whose calibration will be discussed in the following section. 

Peak Intensity Calibration 

The NIR intensities can be defined to be strong, as discussed in the fundamentals 

chapter, if the corresponding energy scale, e.g., the ponderomotive potential, is 

comparable with energies of the target system, for instance, the ionization energy or 

transition energies between resonances. This definition is practicable because one 

observes different laser-induced quantum-dynamical processes to be dominant with 
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weak or with strong fields. In addition, from a scientific perspective, these processes 

are of great interest in the transition from weak to strong intensities. In the 

experiment, one can adjust the NIR laser intensity by closing and opening of an iris-

aperture. Here, one systematically cuts out power from the beam profile of the NIR 

laser beam, and thereby the intensity in the target is a monotonic function of the iris 

opening. However, it is not linear with the iris position because the cutting of the 

power is centrosymmetric starting from the outer part of the beam profile, and the 

power is not the same across the transverse section of the beam. Furthermore, the 

cutting effectively leads to a change in the beam waist. Thus according to the laws of 

laser beam propagation [38], it changes the focus size and thereby the peak intensity 

in the target. Hence, in order to know the intensity regimes in the experiment and to 

be able to compare the measurement results with benchmark simulations, the NIR 

intensities have to be calibrated with the iris opening position. 

In the field of attosecond transient absorption spectroscopy, the peak intensity and 

the pulse duration in the target is typically determined directly by means of 

photoelectron streaking experiments additional to the absorption measurement; see, 

for instance [120,121]. However, the time of flight apparatus needed for this type of 

experiment is not yet implemented in the attosecond beamline during the data 

acquisition for this dissertation, but it is planned to upgrade the setup in the future. 

Nevertheless, the order magnitude of the peak intensity can often be deduced by other 

procedures. A straightforward method is to measure the average NIR power and the 

beam waist in the target focus for different iris-aperture openings. Using the 

equations 2.9 and 2.10 and knowing the pulse duration and repetition rate of the laser, 

the peak intensity can directly be calculated and thereby related to the iris position.  

However, this procedure neglects that the XUV focus and therewith the interaction 

volume in the target is smaller than the NIR focus, and thus not the whole laser power 

contributes to the experiment. Furthermore, the macroscopic signal is generated by 

the coherent superposition of the dipole responses of the atoms in the gaseous target 

cloud, and not every atom is subjected to the same NIR intensity, which makes the 

need for a spatial focus averaging. 

For a more reliable intensity calibration, a method is needed, which is in situ and 

treat better the experimental conditions. For this purpose, an intensity-dependent 

effect in the absorption can be used, similar as for the determination of the time 

overlap of the pulses. As shown in figure 4.7, the ponderomotive shift of the state’s 

energy is linked to the line shape of the doubly excited states in helium. Since the 

peak intensity goes linear with the shift, see equation 2.33, one can readily scan the 

iris opening and trace the maximal applied ponderomotive shift. By doing so, one 

should favorably choose a state, which is as loosely bound as possible, i.e., a high 

Rydberg state, since then the parameter 𝑚 in equation 4.9 is close to unity. This 

procedure applies only to a certain limit of intensities since, at some point, the strong-

field ionization of the state is too high, and the strength of the absorption line 
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decreases or even vanishes such that the determination of the laser-induced phase by 

the fitting procedure breaks down.  

Another approach is to directly compare the measured absorption for different 

intensities with results of numerical model simulations. As an example, one can trace 

the Autler-Townes splitting of the 2s2p doubly excited absorption line in helium for 

different iris openings. The splitting is due to the two-NIR-photon resonant coupling 

of the 2s2p state at 60.15 eV with the sp23+ state at 63.66 eV via the intermediate 2p2 

state lying at 62.06 eV. Figure 4.8 a) shows the absorption line for different time 

delays between the XUV and NIR pulse. It is split into a symmetric doublet at slightly 

positive delays when the states are subjected to the almost full NIR pulse, indicated 

by a grey arrow in the figure. This signal that is time-averaged around the time of 

maximal splitting, is shown in figure 4.8 c) for different iris openings, and it can be 

compared with the results of the numerical model simulation shown in subfigure d). 

Figure 4.8: Calibration of the NIR intensity with the iris-aperture opening. a) Time-delay-

dependent transient absorption spectrum of the 2s2p doubly excited state in helium. Negative 

time delays mean that the NIR proceeds the XUV pulse. The data is averaged in time by one 

NIR-electric-field cycle in order to suppress the sub-cycle oscillation of the absorbance due to 

resonant couplings to other states. These couplings lead to the Autler-Townes splitting of the 

resonant absorption line, which is indicated by a grey arrow. b) The in situ calibration curve of 

the NIR intensity for different opening positions of the iris aperture valid for a specific NIR 

input power. The curve is obtained by comparison of the measured Autler-Townes splitting   

with results of a numerical model simulation. The shaded area denotes the 20% error by this 

calibration procedure. c) The measured splitting for different openings of the iris. The data is a 

three data point average around the time of maximal splitting shown in a). The grey dotted line 

indicates the trace of the splitting, whose position is used for the intensity calibration. d) The 

expected line splitting calculated by a numerical model simulation for different NIR intensities. 

This result it used as a reference to generate the calibration curve in c). 
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In this model, the above-mentioned states are coupled by a simulated NIR pulse with 

a certain intensity, and their response is calculated via solving the time-dependent 

Schrödinger equation in a split-step algorithm. An example of the implementation of 

such a numerical simulation will be given in the next chapter. By comparing the 

traces indicated by the dotted line in figure c), one can assign the iris openings to the 

specific NIR peak intensity, which is shown in subfigure b). Here the position of zero 

means full closing of the iris. Due to this comparison, the error is estimated to be 

20%. The field intensity increases nonlinearly for the openings between 5 and 10 and 

shows a plateau below and above these values. Although the intensity values here are 

only valid for the specific input power used for the scan, the general trend of the 

intensity increase with iris opening position is provided. However, one should still 

calibrate the peak intensity for every single experiment. Furthermore, special caution 

has to be exercised if one scans the time-delay between the XUV and NIR since the 

split mirror introduces a walk-off, i.e., lateral displacement of the XUV focus with 

respect to the NIR focus. Thus one obtains an inner-mirror-dependent NIR intensity. 

This limits the maximal time-delay range, and one has to align both foci such that 

they stay in the overlap in this limited range of interest. 

 



 

 

5. Attosecond Transient Absorption of a 

Continuum Threshold 

With the possibility to generate attosecond light pulses by means of high harmonic 

generation, many time-resolved measurements have been performed for the 

investigation of light-matter interaction of atomic, molecular, and solid-state systems 

with a time resolution on the natural timescale of electronic excitations; see the 

references [21–26,28] to mention a few. The high time resolution has been achieved 

in these experiments via scanning a time delay between an isolated attosecond pulse 

or a pulse train and a second ultrashort (and strong) laser pulse that are focused on 

the target under investigation. These pulses excite or ionize the target, and the 

measured observable is either the spectrum of the photoionized fragments, i.e., the 

photoelectrons or the ions, or the photoabsorption spectrum. 

When measuring the photoionization fragments, the target has to be ionized, 

meaning that at least one electron is always excited into the continuum. Here, the 

ionization is achieved either by single-photon ionization or utilizing multiphoton or 

multicolor ionization. In typical experiments, the yield or the spectra of 

photoelectrons or photoions are measured by a detector that is located far away from 

the light-matter interaction point. With the help of the measured kinetic energy, the 

point of impingement on the detector, or both, one can trace back to the point in time 

and/or space of the light-matter interaction to study the light-induced dynamics [122]. 

By doing so in a time-resolved manner, one is sensitive to phases between different 

ionization pathways or streaking traces [120]. This sensitivity to these phases allows, 

for instance, to access and control the quantum phases between resonant transitions 

[123–125], to measure the temporal structure of the laser pulses [126], or to determine 

the ionization delays on the attosecond time scale [127,128].  

For the delay experiments, the Coulomb interaction of the freed electron with the 

residual electrons or the ionic core dominantly governs the duration of the delays 

during the ionization process. Thus, for slow photoelectrons with small kinetic 

energies, which remain longer in the vicinity of the parent ion, these delays become 

longer [129]. Furthermore, since the impact of the Coulomb potential is not small for 

slow electrons, the often-used strong-field approximation breaks down, which 

neglects the Coulomb field with respect to the electric field [130]. Thus, new insight 

about the light-matter interaction can be expected from measurements of light-

induced time-dependent structures on slow photoelectrons, which are electrons 

excited closely above the ionization threshold [130–136]. 
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The complementary type of experiments on the attosecond timescale is based on the 

measurement of the XUV photoabsorption spectrum. Here, one directly accesses 

light-induced dynamics on electronic bound states of a system. With this all-optical 

method, one can resolve state-specific transitions far below, close to as well as 

embedded in an ionization continuum. However, in contrast to the 

photoelectrons/ions measurements, here, one does not need to ionize the system. 

Instead, the laser-induced modification of the absorption spectrum observed in these 

measurements can be attributed to the laser-induced changes of the time-dependent 

dipole moment of the non-ionized system. This dipole moment interferes coherently 

with the XUV excitation pulse and leads to the absorption spectrum, which encodes 

the characteristic laser-induced changes. This interferometric understanding 

intuitively explains the sensitivity to laser-induced phase and amplitude 

modifications of the resonances [31,33,35]. To further point out, as seen by the 

equation 2.58, the XUV-induced dipole response is dominated by the overlap of the 

excited and ground-state spatial wave function. Thus, by measuring the time-

dependent dipole moment using absorption spectroscopy, the system is probed 

locally at the light-matter interaction point within the atom.  

Despite most experiments in the field of attosecond transient absorption 

spectroscopy concentrated on dynamics involving resonant transitions, the XUV 

pulse can also ionize the system. Thus the dipole moment between the continuum and 

the ground state is expected to give rise to light-induced structures in the transient 

absorption spectra as well. Similar to resonant absorption lines, one should be 

sensitive to light-induced phase shifts or amplitude modifications of the continuum 

states encoded in these structures. Furthermore, due to the local measurement 

scheme, the probed photoelectron is nearby to the residual ion, where its dynamics 

are expected to be most strongly influenced by the Coulomb potential. The first 

treatments of the XUV absorption spectrum for a smooth continuum, i.e., well above 

the ionization threshold, were theoretically addressed in reference [137], and 

transient absorption measurements have been performed at the ionization threshold 

in helium [56,138–140]. However, there the results are interpreted by laser-induced 

couplings between bound states, and the role of the time-dependent continuum dipole 

moment has not yet been elucidated. 

This chapter discusses the signatures of the ionization threshold in attosecond 

transient absorption spectroscopy in the case of helium. The here presented 

absorption measurements become sufficiently sensitive for the first time with the help 

of the in situ XUV reference method. This allows one to reconstruct the time-

dependent dipole moment that generates the spectrum at the threshold, which is a 

probe of slow free electrons in the vicinity of the ionic core. Thus, this study is a step 

towards linking local measurements by transient absorption spectroscopy and slow 

electron measurement in phase-sensitive photoionization measurements. Parts of this 



 

87 

chapter have been published in the reference [1], and the discussion here will 

therefore adhere closely to this publication. 

Sub-Cycle-Resolved Response of the Continuum Threshold 

in Helium 

With the high time and spectral resolution of the attosecond beamline, the effects 

of the NIR pulse on the absorption of the helium atom at the first ionization threshold 

can be resolved. Figure 5.1 shows the time-delay-dependent transient absorption 

spectra of helium around its first ionization threshold. The data processing steps to 

obtain this spectra from the experimental data acquisition are described in the 

previous chapter. The spectra show modifications of the bound absorption lines 

typical for transient absorption, like NIR-induced broadenings, NIR-sub-cycle 

oscillations of the line strength, or hyperbolic structures with respect to the time 

delay. All these can be attributed to NIR-induced resonant or non-resonant couplings 

between bound and continuum states. Here the discussion will focus on the NIR-

modified absorption of the ionization threshold, while the interested reader may find 

further information for the absorption of the bound states in the references 

[33,55,56,138,139]. 

At XUV photon energies higher than the ionization threshold at about 24.58 eV, 

mainly two characteristic features are observed. The first is a fast NIR-half-cycle 

oscillation, which appears across a broad spectral range both below and above the 

ionization threshold. To investigate this in more detail, figure 5.1 b) depicts the 

amplitude of the Fourier transform with respect to the time-delay axis. The fast 

oscillation leads to diagonal Fourier peaks around 3 eV in Fourier energy, which 

Figure 5.1: Time-delay-dependent transient 

absorption spectra of the first ionization 

threshold in helium. a) Absorption spectra for 

different time delays between the NIR and XUV 

pulse, where negative delays mean that the NIR 

precedes the XUV pulse. The observed NIR-

induced modifications of the spectra are 

discussed in the main text. b) The amplitude of 

the Fourier transform of the absorption with 

respect to the time-delay axis in a). The NIR-

sub-cycle oscillations of the absorption lead to 

Fourier signals around 3.2 eV Fourier energy 

that is about twice the NIR central photon 

energy. Slow hyperbolic-like structures in the 

absorption spectra lead to diagonal Fourier 

signals close to zero Fourier energy. 
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corresponds to twice the NIR central photon energy of about 1.6 eV, thereby 

indicating a two-NIR-photon coupling process. One can isolate this feature in the 

transient absorption spectra by applying a band-pass filter around the diagonal peaks 

in the Fourier domain and Fourier transforming back in the time delay domain. The 

result that is zoomed into the threshold region is shown in 5.2 a) together with the 

filtered Fourier signal in b). Here the strong DC-Fourier signal is subtracted such that 

the absorption step of the ionization threshold is suppressed. The oscillation shows 

several phase jumps at photon energies of resonant absorption lines and, in particular, 

across the ionization threshold. Since the absorption signal results from the 

constructive or destructive interference of the XUV-induced time-dependent dipole 

moment with the XUV electric field, see fundamentals chapter, the phase jumps may 

be attributed to phase shifts of the dipole moment energetically below and above an 

absorption line. The visibility of the phase jump across the ionization threshold could 

indicate that the response of the continuum influences the dipole moment of the atom, 

and it has to be included for its whole interpretation, which will be further discussed 

below. 

The second feature visible in the transient absorption spectra is a slow hyperbolic-

like structure after the XUV-NIR temporal overlap, which converges to photon 

energies close to the continuum edge for increasing time delays, see figure 5.2 b). 

Figure 5.2: Time-delay-dependent change in the absorption for two different frequency regions 

of the change. a) NIR-induced absorption change in the periodicity of the half-NIR-cycle 

oscillation. The oscillation appears in a broad spectral range and phase jumps appear across 

resonant absorption lines and the ionization threshold. b) The filtered Fourier signal from the 

measurement leading to the change in absorbance shown in a). c) Slow absorption changes. 

Above the ionization threshold hyperbolic-like features appear, which leads to diagonal Fourier 

signals for low Fourier energy shown in d). 
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This structure leads to a diagonal feature of the Fourier amplitude near-zero Fourier 

energy, which intersects the photon-energy axis to XUV energies of the Rydberg 

states and the continuum threshold. For better visibility, the zoom-in of this signal 

with an applied filter for the low Fourier energies is shown in figure 5.2 c) and d). 

As mentioned above, the spectrum for each time delay corresponds to a time-

dependent dipole moment of the helium atoms. With the help of the method for its 

reconstruction directly from the absorption spectrum, presented in the fundamentals 

chapter, and in particular, in reference [50], the response of the ionization threshold 

can be traced in real-time. Here, one can exploit that the reconstruction method serves 

the possibility to select different energy regions of interest since both the absorption 

of the Rydberg lines as well as of the non-resonant ionization continuum contribute 

significantly to the total reconstructed dipole. In order to isolate the response of the 

continuum, an asymmetric super Gauss filter function 𝐹G(𝜔) can be used, which cut 

out the absorption of the continuum and has the form 

𝐹𝐺(𝜔) =  

{
 
 

 
 exp (−(

|𝜔 −𝜔0|

𝛺left
)

𝑛left

)    for 𝜔 ≤ 𝜔0

 exp (−(
|𝜔 − 𝜔0|

𝛺right
)

𝑛right

)  for 𝜔 > 𝜔0.

 ( 5.1 ) 

The parameter 𝜔 is the photon energy, 𝜔0 is the energy position, 𝛺left and 𝛺right the 

left and right-sided width, and 𝑛left and 𝑛right the left and right-sided order of the 

asymmetric filter, respectively. Figure 5.3 a) shows this filter together with the static 

absorption of helium without the NIR. By choosing appropriate parameters, this filter 

ensures that the filtering process only weakly contributes to the results of the time-

dependent dipole. For instance, by including the ionization continuum within the 

filter, a relative smooth right part, i.e., for higher photon energies, with a large 𝛺right 

suppresses a false dipole signal for long real times, which would be present by using 

a sharp-edged filter. On the left side, the absorption is almost zero closely below the 

threshold, and thus a filter with sharp edges does not significantly change the result. 

The amplitude of the dipole response of the ionization threshold without the 

presence of the NIR is shown in figure 5.3 b). The response falls rapidly for the first 

few femtoseconds, which corresponds to the broad spectral structure of the ionization 

continuum, and it shows some small revivals of the dipole, which can be attributed 

to the step-like increase of the absorption across the ionization threshold. This 

response can be reconstructed for different time delays of the, now present, NIR, 

which is shown in subfigure c). Here, the NIR induces oscillations of the response 

around the time overlap of the XUV excitation and the NIR pulse. Furthermore, a 

structure appears, which follows in real time the time-delay position of the NIR. For 

better visibility of the NIR-induced changes of the dipole response, subfigure d) 

depicts the dipole response subtracted by the static response without NIR, shown in 

b). Here, the fast oscillation is more pronounced. Furthermore, one can observe a 
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drop and increase of the dipole response for short real times that are indicated by 

black arrows.  

The here presented features in the time-delay-dependent absorption spectra at the 

ionization threshold could have different origins. For instance, so-called light-

induced states could appear in the threshold’s energy region. These are states which 

are mapped into the continuum by one or two NIR photon from lower bound states, 

and they are mainly visible in the time overlap of the NIR and the XUV pulse [55]. 

Furthermore, as already discussed, the fast modulation of the absorption at the 

threshold could be caused by two-photon couplings among bound states. 

Nevertheless, also the absorption of the ionization continuum itself might contribute 

to these features. In order to mechanistically understand and isolate possible 

contributions of the ionization continuum in the spectra, a method is needed that is 

able to selectively switch on and off the presence of the continuum and thereby test 

the changes in the absorption. For this purpose, a quantum-mechanical multi-level 

Figure 5.3: Time and time-delay-dependent dipole response of the ionization threshold in 

helium. a) The absorption spectrum of the ionization threshold without NIR and the applied 

spectral asymmetric filter for the dipole reconstruction method. b) The amplitude of the time-

dependent dipole moment of the ionization threshold. Corresponding to the broad spectrum of 

the ionization continuum the dipole is a fast decreasing function in time with some small revivals 

reflecting the step in the absorption across the threshold. c) The time-dependent dipole moment 

amplitude dressed with a time delayed NIR pulse. Fast and slow oscillation with respect to the 

time delay and real time appear. d) The dipole moment shown in c) subtracted by the moment 

without NIR shown in b) for better visibility of the oscillations. Despite the fast half-NIR-cycle 

oscillation of the dipole moment with respect to the time delay, it shows an overall enhancement 

and drop in real time following the NIR time position, which is indicated by arrows. 
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model is applied to simulate numerically the absorption response in helium that will 

be introduced in the following sections. 

Quantum Mechanical Multi-Level Model Simulation 

For a reliable comparison between the measured spectra with results of numerical 

model simulations and in order to identify the contributions of the continuum in the 

transient absorption spectra, a flexible and modular simulation algorithm is needed. 

High flexibility is provided by simulations using a multi-level model. Here, the 

energy levels are represented by bound states, as well as discrete continuum states of 

the simulated atom. The total state |𝜓(𝑡)⟩ is then given by a superposition of bound 

|𝜙𝑖⟩ and continuum states |𝜉𝑖⟩ 

|𝜓(𝑡)⟩ =∑𝛼𝑖
𝑖

(𝑡)|𝜙𝑖⟩ +∑𝛽𝑗
𝑗

(𝑡)|𝜉𝑗⟩, ( 5.2 ) 

with their corresponding time-dependent complex-valued state amplitudes 𝛼𝑖(𝑡) and 

𝛽𝑖(𝑡), respectively. The modeling of the continuum by the discrete levels will be 

described in the next section, while first, the steps of the simulation algorithm are 

introduced. In order to simplify the equations and reduce the numerical costs, for the 

calculation, the atomic unit system is used (a.u.). The derivation of the equation will 

thus adhere to this system. The definition of this system and the conversion factors 

to the common SI units are given in the appendix. 

The states are excited by an XUV pulse, and then they are strongly coupled by a 

time-delayed NIR pulse. The dipole response of the modeled helium is calculated 

with the help of the complex-valued time- and time-delay-dependent dipole moment 

𝜇(𝑡, 𝜏) between the levels. With this dipole moment, one can generate the XUV 

photoabsorption cross-section for every NIR-XUV time-delay position 𝜏 by [141] 

𝜎(𝜔, 𝜏) = 𝑔 4𝜋𝛼𝜔 𝕀𝔪 {
𝜇(𝜔, 𝜏)

𝐹̃XUV(𝜔)
}. ( 5.3 ) 

Here 𝑔 is the number of considered electrons (𝑔 = 2 for helium), 𝛼 ≈ 1/137 is the 

fine structure constant, 𝜇(𝜔, 𝜏) is the Fourier transform of 𝜇(𝑡, 𝜏) with respect to the 

real-time, and 𝐹̃XUV(𝜔) is the complex-valued XUV excitation spectrum. This cross-

section is proportional to the XUV-photon-absorbance, which can be compared to the 

measured spectra in the end. 

The algorithm for the simulation is numerically implemented by a parallelized 

Python script using matrix representation. Here, the total state is written as a state 

vector, where the vector elements are the state’s amplitudes 
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|𝜓(𝑡)⟩ =

(

 
 
 

𝛼0(𝑡)
⋮

𝛼𝑀(𝑡) 

𝛽0(𝑡)
⋮

𝛽𝑁(𝑡) )

 
 
 

 ( 5.4 ) 

with 𝑀 representing the number of bound and 𝑁 the number of continuum states. The 

state vector is then numerically propagated in time by a split-step algorithm [142] 

that solves the Schrödinger equation 

𝑖ℏ
𝑑

𝑑𝑡
|𝜓(𝑡)⟩ =  [𝐻̂0 + 𝐻̂int(𝑡)]|𝜓(𝑡)⟩. ( 5.5 ) 

Here 𝐻̂0 is free Hamiltonian, which is represented by a diagonal matrix with the 

energies of the states as entries, and 𝐻̂int(𝑡) is the interaction Hamiltonian with the 

NIR pulse in the dipole approximation given by 

𝐻̂int = 𝜇̂int 𝐹NIR(𝑡) = (

0 𝜇0,1    ⋯        𝜇0,𝑁

𝜇1,0 ⋱           ⋮
⋮

𝜇𝑁,0 ⋯

⋱
  𝜇𝑁,𝑁−1

𝜇𝑁−1,𝑁
0

)𝐹NIR(𝑡), ( 5.6 ) 

where 𝜇𝑖.𝑗 is the dipole moment between state 𝑖 and 𝑗 with 𝜇𝑖,𝑗 = 𝜇𝑗,𝑖
∗ . 𝐹NIR(𝑡) is the 

time-dependent NIR electric field defined on a numerical time grid. 

At the beginning of the simulation, only the ground state is occupied, i.e., 

𝛼0(𝑡) = 1, and the amplitudes of all other states are zero. As introduced in the 

fundamentals chapter, the ground state of helium is the state where both electrons are 

in the 1s energy level. Considering the dipole-transition rules, the weak XUV pulse 

perturbatively populates all odd excited states with p-symmetry given by previously 

derived equation 2.48 for the temporal change of the state amplitude in perturbation 

theory. The model includes the bound states with even and odd parities, the s-, p- and 

d-symmetries up to 1s4s, 1s5p, and 1s8d, as well as the odd-parity continuum states 

1s𝐸p. 

After the XUV excitation, the state vector is transformed into an eigenstate of the 

interaction Hamiltonian. The transformation matrix 𝑇̂ consist of the basis 

eigenvectors that are obtained by the diagonalization of the dipole matrix 𝜇̂int. The 

transformed state is then propagated with one time step Δ𝑡 dressed by the time-

dependent NIR electric field. Finally, the state is back-transformed to an eigenstate 

of the free Hamiltonian. To summarize, the operations for the NIR interaction are: 

|𝜓(𝑡 + 𝛥𝑡)⟩ = 𝑇̂ [𝑒−𝑖𝐸int𝛥𝑡 𝐹NIR(𝑡) ∙ [𝑇̂𝑇 ∙ |𝜓(𝑡)⟩]], ( 5.7 ) 

where 𝐸int are the eigenvalue of 𝜇̂intAnd" ∙ " denotes the dot product. At the end of 

the algorithm, one step with the free energies is applied 

|𝜓(𝑡 + 𝛥𝑡)⟩ = |𝜓(𝑡)⟩ ∙ 𝑒
−(𝑖𝐸0+

𝛤

2
)𝛥𝑡
, ( 5.8 ) 
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where 𝐸0 is the vector with the eigenvalues of the free Hamiltonian 𝐻̂0, and Γ is the 

decay vector, which accounts for the de-excitation of the states. The values for the 

decay rate of the states will be given below. Finally, the dipole matrix element is 

calculated via 

𝜇(𝑡) =  ⟨𝜓𝑔|𝜇̂int|𝜓(𝑡)⟩, ( 5.9 ) 

where |𝜓𝑔⟩ is the ground state. In principle, one can calculate the whole dipole 

moment; however, the XUV spectrum is dominated only by the dipole moment 

between the excited and ground state, and it is, therefore, sufficient to use the 

approximated equation 5.9. Here,  the valid assumption is made that the amplitude of 

the ground state always remains almost unity since the XUV only perturbatively 

populates the excited state from the ground state. The NIR intensity and its photon 

energy are too low that it has only a negligible impact on the depopulation of the 

ground state. 

The described algorithm is applied on a time grid and for different time delays 

between the XUV and NIR pulse. Here, the length of the time grid determines the 

resulting energy resolution of the simulated spectra, and the time step size determines 

the maximal observable photon energy without producing numerical artifacts. In the 

simulated spectra shown below, the photon energy resolution is 0.0002 eV, which 

corresponds to the total propagation time of about 20 ps (~850000 a.u.). The highest 

photon energy of interest is set to 40 eV, which is about 15 eV above the ionization 

threshold, and therefore it needs the time step size of about 10 as (~0.43 a.u.). Thereby 

the simulation performs 2,000,000 time steps in total. 

The XUV pulse is modeled by a cos2-shaped intensity envelope in time with the 

pulse duration of 150 attoseconds full width at half maximum (FWHM), and it is 

energetically centered at 24.5 eV photon energy. This definition leads to a sufficiently 

Figure 5.4: The XUV (in blue) and NIR (in red) pulses used for the model simulation. a) The 

electric field of both pulses in time. For better visibility each pulse has its own y-axis. Here, the 

time delay between the pulses is set to 5 fs. b) The intensity spectra of the two pulses. The XUV 

spectrum is centered around the ionization threshold of helium (~24.58 eV) and the central NIR 

photon energy is 1.6 eV. 
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broad excitation spectrum with well-defined limits covering the XUV energy region 

of interest between 20 and 30 eV, see figure 5.4. The time-delayed NIR pulse has a 

Gaussian intensity profile, a duration of 5 fs FWHM, central photon energy of 1.6 eV, 

and a peak intensity of ~9.3 ∙1012 W/cm2, as it is similar to the NIR pulse in the 

experiment. 

Modeling of the Continuum Threshold 

In the multi-level model simulation, each state has specific properties that are its 

energy 𝐸𝑖, the decay rate in terms of the decay constant Γ𝑖 and values for the dipole 

moments to all other states. For the first few bound states, the values for the energies 

and dipole moments can be found in different references [62,63]. However, as in the 

references, the values for the oscillator strength are often given rather than directly 

the dipole moments. With the definition of the dipole moment given by equation 2.57, 

one can relate the oscillator strength 𝑓1,2 to the absolute value for the dipole moment 

[63,143]. It is given by (for clarity in SI units): 

𝜇1,2 = − 𝑒 |√
3ℏ

2𝑚e𝜔1,2
𝑓1,2, | ( 5.10 ) 

where 𝑚e is the electron mass (= 1 a. u.) and 𝜔1,2 is the transition angular frequency. 

In the equation, one neglects the mass of the electron compared to the proton mass, 

which would, including the ratio, only be a ~√0.1% correction. Furthermore, only 

the linear polarization of the XUV and NIR pulses are treated. Thus, the electric-

field-induced couplings are only among states with magnetic quantum number 

𝑚𝑙 = 0, and thereby any states’ degeneracy factor is unity. The dipole moments 

between the bound states used for the simulation are summarized in table 2 and 3 of 

the appendix. 

The natural lifetimes of the singly-excited states in helium are in the order of 

several nanoseconds [144], which corresponds to natural absorption linewidths below 

1 µeV. The XUV spectrometer has, however, in the spectral range of the singly-

excited Rydberg series, a spectral resolution of about 10 meV. Thus, it cannot resolve 

these narrow lines in the experiment. In order to observe these lines, they have to be 

(NIR-induced) broadened to several meV of spectral width first. In the end, the 

absorption spectra resulting from the model simulation should be compared to the 

measured spectra. Therefore the simulated spectra have to be convolved with the 

spectral resolution of the experiment. Thus, it is sufficient to use lifetimes in the 

picosecond timescale for the bound states in the simulation, which corresponds to 

linewidths in the order of hundreds of µeV. These lifetimes are at least 2 orders of 

magnitude longer than any timescale for light-induced modification of the atomic 

response, and so they will not change the results. In addition, since the maximal 
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propagation time of the simulation determine the spectral resolution, the shorter 

lifetimes relax this simulation time and therewith reduce the numerical costs. 

For states with energies above the ionization threshold, no published values are 

known. Thus, these values have to be calculated using some model assumptions. By 

doing so, the solutions should guarantee that the shape of the simulated continuum 

absorption is similar to the measured absorption. That means one has to reproduce 

the step-like increase of the absorption across the ionization threshold, the continuous 

absorption above the threshold, and the slight decrease of the absorption strength for 

higher energies. For this purpose, one can calculate the energies of the state in the 

continuum by assuming that the free electron is in a box potential. The scaling of the 

energy 𝐸𝑛 with the continuum states’ number 𝑛 is then given by 

𝐸𝑛 = 𝜀 𝑛
2 + 𝐼p, ( 5.11 ) 

where 𝐼p = 24.58 eV is the ionization potential, and 𝜀 is a proportionality factor. If 

the volume of the model box 𝑉 increases, this factor will decrease, and in the limit of 

an infinite box, 𝜀 tends to zero 

𝑙𝑖𝑚
𝑉→∞

𝜀 = 0. ( 5.12 ) 

By choosing small values for 𝜀, i.e., a large model box, the resulting individual 

absorption lines in the continuum will – if a certain linewidth is given - start to overlap 

with each other. Close to the limiting case of equation 5.12, they will therewith 

generate a flat absorption spectrum. 

In a real atom, the total number of continuum states 𝑁 is infinite. In the simulation, 

one has to cap 𝑁, and thereby the resulting flat absorption is cut at a specific maximal 

energy. This leads to a second threshold on the high energy side of the spectrum, and 

one has to verify that this artificial threshold is not affecting the final results. 

Furthermore, by choosing small 𝜀 and considering equation 5.11, one has to increase 

𝑁 in order to obtain an absorption in a broad spectral range above the ionization 

threshold. However, the computational costs scale with the square of 𝑁, and therefore 

one has to make a tradeoff between choosing 𝜀 as small as possible with still tractable 

𝑁. In the following, 𝜀 is set to 10-4 eV, which is two orders of magnitude smaller than 

the energy resolution of the measurement. The number of the states is therefore set 

to 400 in order to cover photon energies up to at least 15 eV above the threshold, and 

thereby the energy corresponds to a continuum state’s momentum of above 1 a.u.; 

see description below. 

The XUV-photon-absorption calculated by equation 5.3 is dominated by the 

dipole moment between the ground state and the excited (bound or continuum) states. 

Considering equation 2.58, this dipole moment depends on the spatial overlap 

between the electronic wave function of the excited states and the ground-state wave 

function. If a real atom is ionized, i.e., the atom is excited into continuum states, the 

liberated electron will leave the parent ion. Thus, the electronic wave function will 
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lose the overlap with the ground-state wave function over time, and therewith the 

dipole moment between these states decreases. In order to account for this dipole 

decrease in the model simulation, the continuum states have an effective decay, and 

thereby one obtains non-zero absorption linewidths for the continuum states in the 

absorption spectrum. Here, the decay constant 𝛤𝑛 of continuum state 𝑛 linearly scales 

with the velocity of the freed electron, which is (in atomic units) the state’s 

momentum 𝑝𝑛. The momentum can be calculated by the excess energy that is given 

by the difference between the state's energy and the ionization potential 𝐼p 

𝛤𝑛 = 𝛾 𝑝𝑛 =  𝛾√2(𝐸𝑛 − 𝐼p) = 𝛾 2 √𝜀 𝑛. ( 5.13 ) 

The last equality uses equation 5.11. 

Equation 5.13 states that the decay rate scales linearly with the continuum state 

number 𝑛. The linear proportionality factor 𝛾 determines the final linewidth in the 

absorption spectrum, and it has to be chosen such that the individual lines are not 

visible anymore, i.e., all absorption lines add up into a flat continuous absorption 

spectrum. Although the linear scaling of the decay rate with the state’s momentum is 

a model approximation, the proportionality factor has an intuitive interpretation. Its 

reciprocal is the characteristic distance in atomic units of the electron from the atomic 

core that leads to the decrease of the wave function overlap and therewith of the 

dipole moment. 

The absolute value of the dipole moments between bound and continuum states 

can be calculated by solving the integral given by equation 2.58. In order to do so, 

the wave function for the bound and continuum states are needed. In first 

approximation, only one electron of the helium atom is active, i.e., it is excited or 

ionized, and the other electron stays on its lowest quantum level and therewith screens 

the charge of the atomic core seen by the excited or ionized electron. Thus, the wave 

function of the continuum states can be approximated by hydrogenic atomic structure 

theory with an effective core charge 𝑍eff. Here, one can assume, with good 

approximation, that this effective charge is unity for all states except for the ground 

state. 

Using the hydrogenic atomic structure theory, the wave functions are Coulomb 

wave functions, which are the solutions of the time-independent Schrödinger 

equation of the hydrogen atom with negative or positive energy. The Coulomb 

potential is only distance-dependent, and thus the wave function can be factorized 

[46] 

𝜓𝑖(𝑟) =  𝜒𝑖(𝑟)𝑌𝑙𝑖,𝑚𝑖
(𝜃, 𝜑), ( 5.14 ) 

where 𝜒𝑖(𝑟) is the, yet to be determined, radial wave function and 𝑌𝑙𝑖,𝑚𝑖
(𝜃, 𝜑) is the 

spherical harmonic of state 𝑖 with angular momentum quantum number 𝑙𝑖 and 

magnetic quantum number 𝑚𝑖. 𝑟, 𝜃, and 𝜑, are the radial distance, polar angle, and 
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azimuthal angle of the spherical coordinate system, respectively. Using this 

decomposition of the wave function, equation 2.85 reduces to the dipole moment 

from the state 1 to state 2 given by 

𝜇1,2 = −𝐶1,2∫ 𝜒2
∗(𝑟) 𝑟3 𝜒1(𝑟)𝑑𝑟

∞

0

, ( 5.15 ) 

with the prefactor 

𝐶1,2 = ∫∫ 𝑌𝑙2,𝑚2

∗ (𝜃, 𝜑) sin 𝜃  cos 𝜃  𝑌𝑙1,𝑚1
(𝜃, 𝜑) 𝑑𝜑 𝑑𝜃

2𝜋

0

𝜋

0

. ( 5.16 ) 

This factor exhibits all the dipole transition rules and is only nonzero if |𝑙1 − 𝑙2| = 1 

and |𝑚1 −𝑚2| ≤ 1. Here, it is assumed that the polarization of the XUV pulse points 

in the 𝑧 = 𝑟 cos 𝜃 direction. 

For the radial wave function, two different general solutions exist depending on 

whether the energy of the solution is negative or positive, i.e., the state is bound or 

unbound [145,146]. For the bound solution (subscript 𝑏) for a particular principal 

quantum number 𝑛, one gets 

𝜒𝑏(𝑟) = 𝒩𝑏(𝑛, 𝑙, 𝑍eff) 𝑒
−𝑟𝑍eff 𝑛⁄  𝑟𝑙 𝐹1(−𝑛 + 𝑙 + 1;  2𝑙 + 2;  2𝑟 𝑍eff 𝑛⁄ )1

 . ( 5.17 ) 

Here, 𝒩𝑏(𝑛, 𝑙, 𝑍) is a normalization factor given by 

𝒩𝑏(𝑛, 𝑙, 𝑍) = 2
𝑙+1 (

𝑍eff
𝑛
)
𝑙√(𝑛 + 𝑙)! (𝑛 − 𝑙 − 1)!⁄

(2𝑙 + 1)! 𝑛2 𝑍eff
3/2⁄  

, ( 5.18 ) 

and 𝐹11
  is the confluent hypergeometric function of the first kind that is 

𝐹1(𝑎; 𝑏; 𝑧)1
 = ∑

(𝑎)𝑘
(𝑏)𝑘

 
𝑧𝑘

𝑘!

∞

𝑘=0

, ( 5.19 ) 

with the notation 

(𝑥)0 = 1  and  (𝑥)𝑛 = ∏(𝑥 + 𝑘 − 1)

𝑛

𝑘=1

. ( 5.20 ) 

For the unbound state, the continuum state with subscript 𝑐, the solution is given for 

a certain momentum 𝑝𝑐 by 

𝜒𝑐(𝑟) = 𝒩𝑐(𝑝𝑐 , 𝑙, 𝑍eff) 𝑒
𝑖𝑝𝑐𝑟 𝑟𝑙 𝐹1(− 𝑖𝑍eff 𝑝𝑐 + 𝑙 + 1⁄ ;  2𝑙 + 2; −2𝑖𝑝𝑐𝑟)1

 , ( 5.21 ) 

with the normalization 

𝒩𝑐(𝑝𝑐 , 𝑙, 𝑍eff) = 2
𝑙𝑝𝑐
𝑙+1 𝑒𝜋𝑍/2𝑝𝑐  

√2/𝜋 |𝛤(𝑙 + 1 + 𝑖𝑍eff/𝑝𝑐)|

(2𝑙 + 1)! 
, ( 5.22 ) 

where 𝛤 is the gamma function. Figure 5.5 shows the radial wave function given by 

equation 5.17 and 5.21 for different momenta of the continuum states. The continuum 

wave function is an oscillatory function and nonzero also for considerable distances, 
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and the envelope slowly decreases when the distance approaches zero. The 

periodicity depends on the state’s momentum, and it is faster for higher momenta. 

The results for the dipole moments are sensitive to the spatial overlap between the 

wave functions, and thus as visible in figure 5.5, for higher momenta, the dipole 

moment increases first and decreases again; see also figure 5.7. 

The whole model has now three free parameters that are 𝛾, 𝜀 and 𝑍eff, which 

influence the shape of the simulated continuum absorption. Figure 5.6 shows the 

behavior of the absorption spectrum for different combinations of these parameters. 

By changing the decay rate proportionality factor 𝛾, the most dominant effect is that 

the step-like increase of the absorption across the ionization threshold becomes 

softened, in particular, below the threshold. For high 𝛾 the step-like increase even 

vanishes, which can be seen by the green line in subfigure 5.6 a). Thus, in order to 

observe the threshold absorption step, the continuum states with energies closely 

above the threshold have to be very long-lived. This is intuitive since they represent 

free electrons with very low momenta, and the long lifetimes also apply to the high 

Rydberg states that are also energetically close to the threshold. 

The effective charge of the ground state for the calculation of the dipole moments 

mainly changes the slope of the absorption versus energy, see subfigure 5.6 b). For 

𝑍eff = 2, i.e., there is no screening of the doubly-charged helium core if the electron 

is in the ground state, an almost flat absorption across the energies is obtained. For 

lower effective charges, i.e., the inactive electron screens the helium core, the 

absorption has a maximum closely above the threshold and gets lower for higher 

photon energies. The energy step size 𝜀 has a minor influence on the overall shape of 

the absorption. Choosing too high values results in an absorption spectrum, where 

the individual lines are still discernable; see green line in subfigure 5.6 c). For values 

below the energy resolution, all individual absorption lines add up to a flat continuous 

Figure 5.5: The radial wave function versus the radial distance in atomic units of the ground 

state given by equation 5.17 and for the continuum states by equation 5.21 for different 

momentum p in atomic units. 
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absorption. Figure 5.6 d) shows the comparison of the measured and simulated 

absorption spectra for almost optimal parameters. The excellent agreement is 

achieved by the parameters γ = 10−2, 𝑍eff = 1.4, and 𝜀 = 10−4eV, which will be 

used in the following. Tests showed that slight changes in these free parameters do 

not change the key findings that are discussed below. 

Figure 5.7 summarizes the behavior of the continuum states’ properties, i.e., the 

energy, the decay rate, and the dipole moments to the ground state for the above-

mentioned parameters. According to equations 5.11 and 5.13, the energy scales 

quadratically, and the decay rate linearly with the state number. The dipole moment 

increases very rapidly, and after a peak, it decreases again. Subfigure b) depicts the 

density of states, that is Δ𝑁 Δ𝐸⁄ , the decay rate, and the dipole moments versus the 

excitation photon energy. It demonstrates the following: In order to represent the 

step-like increase of the absorption across the ionization threshold, a high density of 

states closely above the ionization threshold is needed, where the absorption of the 

states adds up. In the limit of very small energy step sizes, i.e., large model boxes, 

this would lead to a divergence of the density of states and therewith the absorption. 

However, the dipole moments decrease fast towards zero if one comes closer to the 

threshold, and thereby the individual states get less occupied by the XUV-excitation. 

Thus, the decrease of the dipole moment compensates the divergence of the density 

of states at the threshold, and together they lead to the absorption shape of the 

continuum onset similar to the measured onset. Furthermore, the amplitude of the 

dipole moments peaks at about 28 eV photon energy and decreases again almost 

Figure 5.6: The simulated absorption spectra for different free parameter of the model. a) The 

spectra by changing the decay rate 𝜸 while 𝜺 = 𝟏𝟎−𝟒𝒆𝑽 and 𝒁𝐞𝐟𝐟 = 𝟏. 𝟒. b) The spectra for 

different 𝒁𝐞𝐟𝐟 and 𝜸 = 𝟏𝟎−𝟐 and 𝜺 = 𝟏𝟎−𝟒𝒆𝑽. c) Spectra for different 𝜺 and fixed 𝜸 = 𝟏𝟎−𝟐 and 

𝒁𝐞𝐟𝐟 = 𝟏. 𝟒. The behavior of the spectrum with the tuning of the parameter is discussed in the 

main text. d) Overall agreement of the measured and the simulated absorption spectra for the 

parameter 𝜸 = 𝟏𝟎−𝟐, 𝜺 = 𝟏𝟎−𝟒𝒆𝑽, and 𝒁𝐞𝐟𝐟 = 𝟏. 𝟒. The small Rydberg series is visible in the 

measured absorption spectrum, which is, however, not yet included in the simulation. 
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linear for higher energies. This decrease finally leads to the decrease of the XUV 

absorption for higher photon energies that can also be observed in the measurement. 

Note that all parameters change the total absorption strength, as seen in figure 5.6. 

For example, by choosing a small energy spacing, a higher number of states is 

needed, according to equation 5.11, in order to cover a broad energy spectrum. These 

states add up their absorption and therefore lead to higher absorption. However, not 

the total but rather the change of the absorption for different time-delays of the 

perturbing NIR pulse is of interest. So one can always normalize the final result. 

Comparision of the Simulated and Measured Response 

Figure 5.8 presents the results of the transient absorption spectra obtained by the 

model simulation with and without including the continuum absorption. Here, the 

photoabsorption cross-section is calculated into the absorbance by considering the 

experimental spectrometer resolution of 8 meV via the XUV transmission spectra, a 

procedure introduced in the previous chapter. Without continuum, subfigure a), some 

experimentally observed structures, for instance, the half-NIR-cycle modulation, are 

qualitatively reproduced. They appear, in particular, around the energy of the 

ionization threshold and lead to the diagonal Fourier feature at 3.2 eV Fourier energy, 

as shown in subfigure b). Thus, the origin of this feature at these photon energies is 

the all-optical interference between the direct XUV light and the delayed XUV-NIR 

transitions through the 1s𝑛p states, thereby creating light-induced states. This is 

consistent with previous observations, and the presence of the continuum threshold 

is not necessary for its explanation [33,138,139]. However, by applying the Fourier 

Figure 5.7: The continuum state’s properties. a) The energy, the decay rate, and the dipole 

moment to the ground state with respect to the state number. b) The density of states, the decay 

rate, and the dipole moment versus the excitation photon energy. For the calculation of dipole 

moments the effective core charge for the ground state is 𝒁𝐞𝐟𝐟 = 𝟏. 𝟒 and unity for the continuum 

states. In b) the density of states is shown given by 𝚫𝑵 𝚫𝑬⁄ . It divergences towards infinity and 

the dipole moment convergeces to zero at the ionization threshold of about 24.58 eV. 
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filter again around this Fourier feature, it turns out that the continuum is needed to 

reproduce the observed phase shift of the oscillation across the threshold, see 

figure 5.9. Furthermore, concerning the Fourier signal close to zero Fourier energy 

and photon energies above the ionization threshold, the simulation without the 

continuum show almost no signal, whereas the measured data show rich structures in 

this region, see figure 5.8 e) and f). 

By adding the continuum states to the state manifold of the simulation, additional 

features arise, which are shown in figures 5.8 c) and d). First, the sharp absorption 

step at the ionization threshold of 24.58 eV is reproduced. Second, the hyperbolic 

structures above the ionization energy become more pronounced in the time-delay-

dependent absorption spectra. This leads, in agreement with the experimental 

observation, to diagonal Fourier features intersecting the photon-energy axis at the 

ionization threshold. As a result, this comparison shows that the hyperbolic structures 

at the ionization threshold are linked to the NIR-induced couplings between bound 

and continuum states. As a result of this, the ionization threshold shows a similar—

not a priori clear—behavior in the time-resolved absorption spectra, as is the case for 

a bound–bound transition. 

Figure 5.8: Simulated and measured time-delay-dependent transient absorption spectra. 

Positive time delays mean that the NIR follows the XUV pulse. a) Simulated transient absorption 

spectra without including the continuum response in the model simulation. Many NIR-induced 

features observed in the measured spectra are reproduced. However, the hyperbolic structure 

seen in the measurement is suppressed, indicated by a dotted curve. b) Fourier Signal by Fourier 

transformation of the time-delay axis in a). Almost no Fourier signal is observed above threshold 

and low Fourier energy. c) Simulated spectra with including the continuum in the model 

simulation. The hyperbolic structures observed in the measurement are recovered. It results in 

a diagonal Fourier signal above threshold and low Fourier energy in d). e) For comparison 

zoom-in of the measured spectra at the ionization threshold in helium. The hyperbolic structure 

above threshold is highlighted by a dotted line. f) Amplitude of the Fourier transform with 

respect to the time delay axis in e). 
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The results of the numerical model simulation can be used, as shown above, as a 

toy experiment yielding a time-delay-dependent absorption spectrum. With this, one 

can reconstruct the time-dependent dipole moment from the absorption spectra 

similar to previously done with the measurement spectra. Figure 5.10 shows the 

reconstructed amplitude of the dipole resulting from the simulation in a) and again 

from the measurement in b). Here, one can directly reproduce the oscillation of the 

amplitude for short real times. A possible explanation of this oscillation will be given 

Figure 5.10: Comparison of the time and time-delay-dependent dipole response of the ionization 

threshold. a) The simulated NIR-induced change of the dipole response of only the threshold. A 

drop and revival of the response in real time that is observed in the measurement is reproduced. 

b) A zoom-in in the change of the measured dipole response from figure 5.3. 

Figure 5.9: Phase-shift of the half-cycle oscillation of the absorption across the ionization 

threshold. a) The simulated absorbance without continuum states. The phase of the oscillation 

is almost flat as a function of the photon energy average over delays between -4 and 4 fs shown 

in b). c) The half-cycle oscillation of the absorbance with including the continuum state in the 

simulation. Here a phase step of the oscillation is visible between photon energies below and 

above the threshold that is shown in d). e) The measured change in absorbance showing the 

phase step that is quantified in f). 
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further below, whereby first, the model of the continuum used in the simulation 

should be tested, and the origin of the hyperbolic-like structure in the absorption is 

identified. 

Continuum Modeling by a Numerical Grid Potential 

The above-described modeling of the continuum states has the advantage that one 

has ready access to all parameters, like the coupling strength between bound and 

continuum states or one can simulate with or without the continuum. However, only 

one continuum with the p-symmetry is considered, and, in principle, also the 

continuum with s- and d-symmetry may change the final results. Furthermore, the 

choice of the model, i.e., the scaling laws with respect to the number of states given 

by equation 5.11 or 5.13 or the determination of the dipole moments by the 

hydrogenic atomic structure theory, could influence the final observations. 

In order to validate the results, one can compute the energies and dipole moments 

more rigorously by using a heuristic radial potential of the helium atom that is defined 

on a numerical grid. The states' energies are then obtained by the diagonalization of 

the Hamiltonian, which incorporates this potential. Furthermore, one can also 

calculate the wave function on the grid and thereby obtain numerically the dipole 

moments between these eigenstates considering the pre-factors for the angular 

momentum given by equation 5.16. The radial potential is given by1  

𝑉(𝑟) = −
1

𝑟
− ( 

1

𝑟
+  1.3313)  𝑒(–3.0634 𝑟), ( 5.23 ) 

and it is depicted in figure 5.11. Here, it is multiplied by the radial distance 𝑟 in order 

to make the potential shape visible despite the singularity at 𝑟 =  0. For small radii, 

this potential approximates the Coulomb potential as seen by an electron close to the 

doubly charged helium core, i.e., lim
𝑟→0

𝑉(𝑟) = −2/𝑟. For larger radii, the potential 

converges to a Coulomb potential of a singly charged core, i.e., the other bound 

electron completely screens the helium atom. To include also the free continuum 

                                                 

1 The potential and the wave functions together with the state’s energies and the dipole moments 

were developed and calculated by Prof. Dr. Klaus Bartschat. 

Figure 5.11: The effective Coulomb potential 

times the radial distance for better visibility. 

For low radii the potential approximates the 

Coulomb potential by the doubly charged 

helium core. For larger radii the other bound 

electron screens the core and the potential is  

Coulomb-like with a singly charged core. 



 

104 

wave functions as solutions of the Schrödinger equation, the potential is set to infinite 

at the limit of the grid. Thereby it represents a box potential for large radial distances. 

The potential reproduces the bound-state energies with an accuracy of about 1%. 

Furthermore, it presents a systematic way to account (approximately) for the high-

lying Rydberg states and the continuous transition to the discretized continuum for 

higher energies. 

The decay constants for the bound states are again set such that the corresponding 

characteristic lifetimes are 1 ps. For the decay of the continuum states, equation 5.13 

is reused. With this, the momentum of continuum state 𝑛 is calculated by its kinetic 

energy that is the difference between the total energy and the potential energy 

𝐸𝑛,kin = 𝐸𝑛 − 𝐸𝑛,pot, ( 5.24 ) 

and the potential energy is the expectation value of the potential 

 𝐸𝑛,pot = ∫ 𝜓𝑛
∗(𝑟) 𝑉(𝑟) 𝜓𝑛(𝑟) 𝑟

2𝑑𝑟,
𝑎

0

 ( 5.25 ) 

where 𝑎 is the grid size. The two free parameters, the grid discretization step size, 

and the total grid size, determine the number of states within a given energy interval 

and the number of bound states in the system. The total number of states is 400, and 

it is set such that it is similar to the number used for the modeling of the continuum 

in the previous section. 

The behavior of the resulting total energy, the potential energy, and the kinetic 

energy given by the heuristic potential of equation 5.23 versus the state number is 

depicted in figure 5.12 a), where zero energy is set to the ionization threshold. For 

the first few states, the total energy is negative, and therewith they correspond to the 

bound states of the system. At the ionization threshold around state number 20, the 

curve becomes flat, indicating a high density of states, and above the threshold, the 

increase of the total energy with the state number is again approximately quadratic 

like it is the case for the previous continuum model in a box potential described 

above. The potential energy is negative for the bound state and zero for the continuum 

states above the threshold, representing the free electrons that are almost unaffected 

by the Coulomb potential of the residual ion. 

The advantage of the here presented model is the continuous change of the density 

of states energetically across the ionization threshold from Rydberg-like to an 𝑛2-

dependence in a box potential, see figure 5.12 b). Similar to the previous model of 

the continuum, the dipole moment from the ground to the dipole-allowed 1s𝑛p 

manifold of excited states shows a minimum at the threshold. Therewith the 

divergence of the density of states at threshold is compensated by the low occupation 

of these states due to the low dipole moments from the ground state. In the 

figure 5.12, only the properties of the states with p-symmetry are shown. However, 

this model includes all continuum states with the relevant symmetries, i.e., the s-, p- 

and d-symmetries, which show similar behavior of their properties. With this model, 
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one can therefore test whether the even-parity continua affect the time-dependent 

absorption spectrum. 

The resulting absorption spectra, together with the Fourier signal with respect to 

the time delay, are shown in figure 5.13. Here many features that are also observed 

in the measurement are reproduced. In particular, the hyperbolic structure above the 

ionization threshold is still present, and it leads to the diagonal Fourier feature 

pointing to the ionization threshold, see subfigure b). To conclude, the laser-induced 

hyperbolic-like structure is not sensitive to the exact modeling of the continuum, but 

instead, it is a universal feature of the field-driven response of an ionization threshold. 

Figure 5.12: The energies and the states’ properties of the atomic model resulting from the 

heuristic helium potential given by equation 5.23. a) The total, potential, and kinetic energy 

versus the number of the state in the simulation. Negative energies for the total energy 

corresponds to bound states and positive energies to continuum states. The trends of the energies 

are discussed in the main text. b) The dipole moment from the ground to excited states of the 

1snp manifold and the density of states for different photon energies. At the threshold the density 

of states diverges, whereby the dipole moment tends to zero and increases again for higher 

energies, i.e., to the smooth continuum. 

Figure 5.13: Simulated time-delay-dependent 

transient absorption spectra with the He+ 

potential. a) The absorption at the first 

ionization threshold. The hyperbolic structure 

above threshold is reproduced and indicated by 

a dotted curve. (b) Fourier amplitude with 

respect to the time-delay axis in (a). The fast and 

slow oscillations generate diagonal Fourier 

signals. The hyperbolic structure leads to a 

diagonal above the threshold and at low Fourier 

energy similar to the observation in the 

measurement. 
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Laser-Induced Ponderomotive Shift on the Continuum 

Making use of the modularity of the multi-level model, one can obtain further 

insight into the origin of the hyperbolic structure in the time-delay-dependent 

absorption spectra above the ionization threshold. One can switch off the NIR-

induced dipole couplings between the excited bound and continuum states by 

artificially setting their dipole moments to zero. Instead, the NIR pulse should 

artificially induce only an energy shift on the free electron’s energy, expressed in 

atomic units by: 

𝐸𝑖(𝑡) =
(𝑝𝑖 − 𝐴(𝑡))

2

2
. ( 5.26 ) 

Here 𝐴(𝑡) = −∫ 𝐹NIR(𝑡
′)𝑑𝑡′

𝑡

−∞
 is the time-dependent vector potential of the NIR 

electric field expressed in atomic units, which adds a ponderomotive shift to the 

energy 𝐸𝑖(𝑡) of the continuum states with momentum 𝑝𝑖. Since the square in the 

numerator in equation 5.26 introduces a mixing term of the kind 𝑝𝑖𝐴(𝑡), the free time 

evolution of the state given by equation 5.8 will depend on the sign of the momentum. 

This sign represents the spatial propagation direction of the electrons in the 

polarization plane of the laser pulses. However, in the experiment, the total dipole 

signal is generated by an ensemble of ionized atoms with equal distribution for 

negative and positive signs of the free electron’s momentum. Thus, in order to 

account for this isotropy of the electron’s propagation directions, one has to double 

the number of continuum states in the simulation. These two continuum manifolds 

have positive and negative momenta and therewith a different time evolution. In the 

end, one has to coherently add up their contributions to the total observed time-

dependent dipole given by equation 5.9 and use this to calculate the photoabsorption 

cross-section.  

The resulting time-delay-dependent absorption spectrum, shown in figure 5.14, 

readily shows the hyperbolic structure at the continuum threshold, as observed in the 

measurement. Thus, the ponderomotive energy shift (or ac-Stark shift, if the dipole 

couplings between the bound and continuum states are included) is sufficient to 

qualitatively explain the typical time-dependent perturbed response of the continuum 

onset. Note that the Fourier signal at low Fourier energy, shown in the subfigure b), 

is almost symmetric around the ionization threshold. However, in the measurement, 

the signal below the threshold is suppressed, which is probably due to the domination 

of Fourier signatures resulting from couplings between high-lying Rydberg states 

with the ionization continuum. Furthermore, the ponderomotive energy amounts here 

to only ~0.2 eV, much smaller than the NIR photon energy of 1.6 eV. Thus, as 

discussed in the fundamentals, this NIR field strength is often considered to be weak. 

However, here a clear strong-field-induced ponderomotive dressing effect is 
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identified, owing to the high sensitivity to small energy shifts within XUV transient 

absorption spectroscopy. 

Signatures of Electron Recollision 

In the real-time-and-time-delay-dependent dipole response spectrally at the 

ionization threshold, a revival structure appears, which follows the NIR after the 

XUV excitation, i.e., at positive time delays, shown in figures 5.3 and 5.10. Since the 

spectral window used in the reconstruction of the dipole is above the ionization 

threshold, the response corresponds to atomic states representing the free electron in 

the ionization continuum. Thus, one might explain the revival structure with the free 

electron’s wave packet being pushed back into the parent ion forced by the NIR field, 

which can be interpreted as XUV-excited and NIR-driven recollision of the electron. 

To test this hypothesis, a framework is needed that links the increase of the dipole 

moment with the center of gravity of the wave packet’s amplitude representing the 

free electron. For this purpose, another simulation is conducted based on solving the 

time-dependent Schrödinger equation on a spatial grid. The following shall introduce 

the model of the simulation where further details can be found in the references [110]. 

The time propagation is achieved using a split-step algorithm again. Here, the 

evolution of the wave function represents the spatial dynamics of a single electron of 

the helium atom. Its other electron is not active and just screens the charge of the 

helium core. This assumption is known as the single-active-electron approximation. 

Furthermore, since previous studies show good reproducibility of the main features 

observed in measured absorption spectra with models using reduced spatial 

dimensionality [147], the propagation of the wave function is calculated on a single 

Figure 5.14: Effects on the attosecond transient 

absorption spectra, where the NIR only 

introduces a ponderomotive shift onto the 

continuum states’ energy. a) The simulated 

time-delay-dependent transient absorption 

spectra. The hyperbolic-like feature above the 

ionization threshold is reproduced indicated by 

a dotted curve. b) The amplitude of the Fourier 

transform with respect to the time delay in a). 

The hyperbolic structure leads to a diagonal 

Fourier feature pointing to the threshold 

similar to what is observed in the measured 

spectra. 
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spatial dimension 𝑥. This provides some computational simplicity and lowers the 

numerical costs. Here, the total grid size is ±512 a. u., with a spatial grid step size of 

𝛥𝑥 = 0.25 a. u. resulting in a total number of grid points of 𝑁 = 4096. 

The electron is subjected to a Coulomb potential of a singly charged core. Since 

this potential exhibits a singularity at the origin, it leads to numerical troubleshoots 

or artifacts. To avoid this, commonly, the potential is smoothed out in the origin by 

substituting it with a so-called soft-core potential [147]. Furthermore, to account for 

the decrease of the wave packet when the electron leaves the vicinity of the parent 

ion, an imaginary potential 𝑖𝑉Bound(𝑥) is added to the soft-core potential at the 

boundaries of the spatial grid. This results in a spatially dependent decrease of the 

wave function at the edges of the grid during its time propagation. The effects of this 

absorbing boundary on the behavior of the wave function together with different set 

parameters of the soft-core potential are discussed in [110]. The total potential is then 

expressed in atomic units by 

𝑉(𝑥) =
−1

√𝑥2 + 𝑎
− 𝑖𝑉Bound(𝑥). ( 5.27 ) 

Here a = 0.483 is set such that the first unbound eigenstate of the laser-field-free 

Hamiltonian has an energy of 24.58 eV, i.e., the energy of the first ionization 

threshold in helium. The potential is shown in figure 5.15. 

 The interaction of the electron with the electric field 𝐹(𝑡) of the combined NIR 

and XUV pulses is defined in the length gauge using the dipole approximation. With 

this, the total Hamiltonian reads in atomic units 

𝐻̂(𝑥, 𝑝, 𝑡) =
𝑝2

2
+ 𝑉(𝑥) − 𝑥𝐹(𝑡), ( 5.28 ) 

where 𝑝 is the momentum of the wave function. The propagation of the wave function 

in time using the split-step method is then given by 

𝜓(𝑥, 𝑡 + 𝛥𝑡) = 𝑒−𝑖
[𝑉(𝑥)−𝑥𝐹(𝑡)]

𝛥𝑡

2 ∙ ℱ−1 [𝑒−𝑖
𝑝2

2
𝛥𝑡 ∙ ℱ [𝑒−𝑖

[𝑉(𝑥)−𝑥𝐹(𝑡)]
𝛥𝑡

2 ∙ 𝜓(𝑥, 𝑡)]]. ( 5.29 ) 

Here, ℱ and ℱ−1 denotes the Fourier transformation and back-transformation along 

the spatial grid dimension, respectively. 

Figure 5.15: Spatial model potential of the 

helium atom for a single active electron defined 

on an numerical grid in one dimension. The 

Coulomb potential (solid blue) of the atomic 

core is approximated by a soft-core potential to 

avoid the singularity at the origin. The 

imaginary potential (dashed red) provides the 

absorbing boundaries at the edges of the grid. 
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The resulting absolute value of the wave function is presented in figure 5.16 b), 

where for better visibility, the difference of the wave function is shown given by 

𝛥𝜓(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)| − [|𝜓NIR(𝑥, 𝑡)| − |𝜓0(𝑥)|] − [|𝜓XUV(𝑥, 𝑡)| − |𝜓0(𝑥)|]
− |𝜓0(𝑥)|. 

( 5.30 ) 

Here 𝜓NIR(𝑥), 𝜓XUV(𝑥), and 𝜓0(𝑥) denote the wave functions if only the NIR or 

XUV pulse is present in the simulation and the initial ground state wave function, 

respectively. The pulses which drive this wave function are depicted in subfigure c), 

where the XUV pulse marks time zero indicated by a violet dashed line. In the figure, 

one can see several field-induced effects that are marked by letters “a,” “b,” and “c.” 

Parts of the wave function are directly ionized by the XUV pulse and escape the 

vicinity of the core, indicated by an “a”. Another part is wiggling around the central 

Figure 5.16: Recolliding electron wave-packet dynamics. a) The time-dependent dipole response 

reconstructed from the absorption spectrum above the ionization threshold. The spectrum is 

calculated from the dynamics of the wave function in the one dimensional spatial grid 

simulation. For better visibility the amplitude of the dipole response without an NIR pulse is 

subtracted from the response in the simulation with NIR. The local maxima of the response are 

highlighted by black lines. b) Light-induced dynamics of the wave function on the spatial grid. 

Here a difference in wave function is shown that is defined by equation 5.30 and therewith 

emphasizes the light-induced dynamics. Different effects are observed: the ionization of the 

electron marked by an “a”, the field-driven wiggling around the center “b” and the wave packet  

beating of bound states “c”. The dotted curve denotes a possible classical trajectory of an 

electron in both the laser field and Coulomb field calculated by equation 5.32. Black crosses 

mark the time position of the local maxima of the dipole response from a). c) The used pulses in 

the one-dimensional grid simulation. The violet dashed line indicates the XUV excitation pulse, 

which defines time zero and the red curve depicts the NIR electric field. The figure is adapted 

from [110]. 
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position following the NIR pulse, marked by “b”, and a small fraction oscillates in 

real-time also for later times and is located close to the center, “c”. The latter 

represents the beating of the coherently excited bound state wave packet. The 

wiggling part represents the NIR-driven recollision of the free electron in the atomic 

core, whereby a small fraction gets bound again, i.e., recombines into the atom, which 

is visible by the increase of the oscillatory wave function’s amplitude after the first 

recollision. 

With the evolution of the wave function driven by both pulses at hand, one can 

calculate the absorption spectra via equation 5.3 and using the time-dependent dipole 

moment 

𝜇(𝑡) = ∫𝜓∗(𝑥, 𝑡) 𝑥 𝜓(𝑥, 𝑡) 𝑑𝑥

𝐿

−𝐿

, ( 5.31 ) 

where 𝐿 = 512 a.u. is the boundary of the spatial grid. To compare the simulated 

results with the measured response, one is interested in the dipole response spectrally 

above the ionization threshold. Therefore, the absorption spectrum is filtered with the 

same spectral window used for the measurement, and the time-dependent dipole 

moment is reconstructed again from the filtered spectrum using its Fourier transform. 

The so obtained response amplitude is depicted in figure 5.16 a), whereby the 

response that results from a simulation without the NIR pulse is subtracted, i.e., Δ𝜇 =

|𝜇(𝑡)| − |𝜇XUV(𝑡)|. It shows a revival of the response amplitude at different real-

times, similar to what is observed in the measurement. The time positions of the local 

maxima of the amplitude are marked by black lines in a) and crosses in subfigure b). 

It turns out that the maxima of the response appear when the recollision of the electron 

wave function happens. 

The interpretation that the wave function of the ionized electron recollides with 

the parent ion can further be tested. For this purpose, the white dotted curve in figure 

5.16 b) presents a classical trajectory of an electron, subjected to the Coulomb field 

of the parent ion and the laser field. Its equation of motion is given by  

𝑑2

𝑑𝑡2
𝑥(𝑡) =  −𝐹(𝑡) −

𝑑(ℛℯ[𝑉(𝑥)])

𝑑𝑥
. ( 5.32 ) 

The exact solution of this equation depends on the initial conditions given by the 

initial position and the initial velocity of the electron at time zero. Here, it is assumed 

that the electron is ionized by the XUV pulse, defining the initial time at the position 

𝑥0 = 0 with the excess energy of 
𝑚e𝑣0

2

2
= 0.80 eV (in SI), i.e., the energy difference 

of the XUV-ionization photon energy and the ionization potential. The trajectory 

agrees well with the major part of the wiggling wave function supporting the 

recollision hypothesis. 

The probability of the electron recollision should depend on the polarization of the 

NIR pulse, similar to the electron recombination probability in the process of high 
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harmonic generation (HHG). It depends on the ellipticity of the NIR polarization, 

which is observable by the strong ellipticity dependence of the harmonic yield [108]. 

In HHG, the ionization mechanism is tunnel ionization, whereby here, the ionization 

is induced by the XUV pulse. However, the recombination step is similar, a colliding 

motion of the electron forced by the oscillatory NIR field.  

The signature of this polarization dependence can be measured by the presented 

attosecond beamline using the external interferometer setup, discussed in the chapter 

on the experimental setup. For this purpose, the polarization of the NIR, which 

interacts with the target, is switched from linear to circular using a broadband quarter-

Figure 5.17: Measured intensity-dependent dipole response for linearly and circularly polarized 

NIR fields. The differences in the dipole response amplitude with and without NIR for the time 

overlap of the NIR pulse and XUV excitation are plotted. a) The dipole response for the linear 

polarization. The time positions for the lineouts in c) and d) are marked by white dotted lines. 

b) The dipole response for the circular polarization.  A deviation of the response compared to 

the response in a) is observed within the black dashed box at high NIR intensities. It might be 

explained by the laser-driven recollision of the electron into the parent ion. c) Lineouts of the 

dipole response from a) and b) for low NIR intensities. The responses for the different 

polarizations are qualitatively the same. The error bars are the standard errors of 12 individual 

measurements. d) Lineout of the responses for high NIR intensities. Here, the responses 

significantly deviate from each other pointing to the importance of the electron recollision in the 

response. The figure is adapted from [110]. 



 

112 

wave plate. Figure 5.17 shows the reconstructed dipole response above the ionization 

threshold for the linear polarization in a) and the circular polarization in b) for 

different NIR intensities. Here again, the differences in the response with and without 

NIR is plotted. While for low intensities (~1012 - 1013 W/cm2), the response is rather 

similar; for higher intensities (~1014 W/cm2), the responses significantly deviate from 

each other within the dashed black box in the figures. For a better visibility, 

figure 5.17 c) and d) depict exemplary lineouts of the responses for the two NIR 

intensity regions, marked by dotted white lines in a) and b).  

This observed deviation can be explained as follows. For rather low intensities, 

light-induced states are present in the absorption spectra around the ionization 

threshold, as discussed above. They rely on the couplings of bound states with one or 

several NIR photons. This photon picture is a perturbative treatment of the light-

matter interaction, which breaks down for high intensities. However, the recollision 

phenomenon is purely describable in the strong-field limit, similar to the HHG 

process. Therefore, one might interpret the matching of the responses for low 

intensities by the domination of contributions from light-induced effects other than 

the electron recollision. For high intensities, however, the presence of light-induced 

states is suppressed, and the response might be mainly governed by the recollision of 

the ionized electron, which is a response that depends on the polarization of the NIR 

field. 

 



 

 

6. The Build-up of the Dipole Response 

Ultrashort and intense laser pulses have been successfully used to gain knowledge 

in (correlated) electron dynamics within atoms or molecules on their natural 

timescale [21,23,148,149]. As a notable example, using these pulses, it was possible 

to resolve the laser-induced dynamics of and between autoionizing states in time 

[24,57]. As introduced in the fundamentals chapter, these states are excited states that 

are degenerate with and coupled to an ionization continuum via configuration 

interaction [66]. It results in the interference of quantum-paths of the direct ionization 

of the atom and the ionization via the excited states. The spectroscopic signature of 

this interference is an asymmetric absorption line shape, the so-called Fano-line 

shape. Here, key physical questions are how the quantum-paths interference emerges 

and how long it takes. These had been theoretically predicted first [150–155] and 

later experimentally investigated for the case of the 2s2p doubly excited state in the 

helium atom using photoelectron [156] as well as attosecond transient absorption 

spectroscopy [31]. 

In the absorption spectroscopy measurement, the formation of the 2s2p Fano-

shaped absorption line has been probed in time directly from the measured XUV 

absorption spectrum. This was done by temporally gating the XUV-excited dipole 

response of the helium atom by means of time-delayed depletion of the 2s2p state 

using strong-field-ionization by an intense few-cycle NIR laser pulse. The measured 

build-up of the Fano resonance was compared to absorption spectra resulting from an 

ab initio simulation and an analytical gating model. In the model, the response of the 

isolated Fano resonance was excited and depleted impulsively, similar to the 

approach used in the dipole control model that is introduced in the fundamentals 

chapter. 

The results of this study lead to further crucial questions. First, typically used 

analytical models of strong-field ionization are often based on the single-active-

electron approximation [42,157]. In these, only the (often) outermost electron is 

considered in the ionization process, while the role of the other electrons of the atom 

is assumed to merely screen the charge of the atomic core. However, for the case of 

the doubly excited states, the electrons are highly correlated, and one question is how 

this correlation is imprinted in the ionization. Recently, theoretical work addresses 

the quantum dynamics of two active electrons during the process of strong-field 

ionization [158–161]. Second, what are the dynamics during the build-up not for only 

an isolated resonance but for a coherently excited wave packet involving multiple 

excited states? Resolving their build-up simultaneously could provide a more 

comprehensive time-domain understanding of electron dynamics influencing the 
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build-up. Third, as stated in reference [31], in order to time-resolve the resonant 

build-up dynamics, the closing time of the strong-field-ionization gate needs to be 

shorter than the natural decay time of the XUV-excited states, which corresponds to 

the build-up time of resonant absorption features. For instance, the bound doubly 

excited states in helium have an autoionization decay time on the order of 100 fs or 

longer, and therewith this condition is fulfilled for an NIR pulse of 5 fs duration. 

However, the question arises whether the approach of gating the dipole response by 

strong-field-ionization is also applicable to other even faster decaying states, e.g., the 

continuum states in close proximity to the ionization threshold. To address this 

question, one should ideally quantify here the gating fall time within the strong pulse, 

where the pulse duration only represents an upper limit. Fourth, as discussed in the 

previous chapter, the NIR-induced ponderomotive energy shifts on the resonant and 

continuum states have a non-negligible impact on the absorption spectra. Thus, is it 

possible to derive a gating model including the energy shift and which goes beyond 

the impulsive analytic gating model? Such a model would deliver a more intuitive 

understanding of the ongoing physics in contrast to ab initio model simulations, 

which are comprehensive but less descriptive. 

The following study presented in this chapter provides first steps to tackle these 

questions. First, a strong-field-ionization gating model is introduced, which 

incorporates the NIR-induced ponderomotive energy shift and takes into account the 

temporal shape of the NIR intensity. The model is then applied to gate the responses 

of two distinct spectral regions. These are the ultrafast response of multiple doubly 

excited states converging to the 𝑁 = 2 ionization continuum of the excited helium 

ion and the singly excited Rydberg series, including the first ionization threshold. For 

a better comparison of the modeled and the measured absorption spectra, the 

measured dipole response is used as an input response, which results from the 

reconstruction of the time-dependent dipole moment of the measured static 

absorption spectrum without NIR. With this, the spectral signatures in the observed 

absorption are identified that are caused by a non-perfect impulsive ionization gate. 

As a result, with the gating model, the build-up of the absorption lines in the 

doubly excited spectral region is determined. Furthermore, the separations of the 

partly overlapping Fano resonances are resolved in time. For the singly excited 

spectral region, the similar transient absorption spectra are shown as discussed in the 

previous chapter. However, here the intensities of the NIR laser are at least one order 

of magnitude higher (~1013 W/cm2 or higher), beyond the range where modifications 

in the transient absorption spectra can be interpreted as a ponderomotive energy shift. 

At the end of the chapter, the build-up of the dipole responses of both spectral regions 

is presented in the time-domain, where the strong-field-driven dynamics during the 

ionization of the XUV-excited coherent wave packets can be resolved. With this, it 

is possible to quantify the gating fall time and the gating time position within the 

strong few-cycle laser pulse. Furthermore, first indications of deviations from the 
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single-active electron approximation are observed in the ionization-gated response. 

Parts of the presented results have been published in the reference [2], and therefore 

the discussion will closely follow the publication. 

The Strong-Field-Ionization Gate Model 

Time-delay-dependent absorption spectra typically show features of different 

processes during the interaction between the target atoms and the strong laser field. 

The following will assign some of the features to the corresponding strong-field 

processes. Figure 6.1 a) depicts in blue the unperturbed dipole moment for the first 

10 fs for the energy region of the doubly-excited Rydberg series of helium starting 

from the sp23+ up to the 𝑁 = 2 continuum. Here, the response is reconstructed from 

the static XUV absorption with the help of the dipole reconstruction method, which 

is described in fundamentals and in the reference [50]. In this method, the continuous 

background absorption of the 𝑁 = 1 continuum is subtracted from the total 

absorption spectrum before reconstruction, which leads to a dipole response starting 

at zero for zero time, and it is oscillating around zero. The visible beating of the 

response in time reflects the coherently excited wave packet of the series. From the 

dipole moment, one can then get back to the absorption spectra using Fourier 

transformation shown in figures 6.1 c), f), and i). 

The ionization of XUV-excited states leads to the gating of the dipole moment, 

switching it off when the sudden ionization takes place. This gate can be 

approximated by a Heaviside gate, i.e., a function 

𝐺𝜃(𝑡) =  1 − 𝜃(𝑡 − 𝜏G), ( 6.1 ) 

which is multiplied with the time-dependent dipole moment, see figure 6.1 b). Here, 

𝜃(𝑡) is the Heaviside function and 𝜏G denotes the time delay between the XUV-

excitation pulse and the strong NIR pulse. The resulting dipole moment is depicted 

in orange in figure 6.1 a), which overlays with the blue unperturbed response and 

suddenly vanishes at 5 fs, the time when the gate acts on it. By scanning the time 

delay 𝜏G of the gate, one obtains the time-delay-dependent absorption spectra for this 

gated response shown in figure 6.1 c). For negative delays, i.e., when the gating laser 

pulse precedes the excitation of the dipole, no gating takes place, and the absorption 

spectra are given by the static spectrum as if no gating laser were present. For positive 

delays close to zero, the dipole moment is suppressed so fast after the excitation that 

it leads to a flat absorption and, for slightly later delays, to a strong broadening of the 

absorption lines of the Rydberg series. For delays of 10 fs or higher, individual 

absorption lines start to form, regaining the shape of the static absorption for very 

large delays. The investigation of this time-delay-dependent formation of the 

absorption is at the heart of this build-up study of the dipole response at an ionization 

threshold. 
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The sudden suppression of the dipole moment in time leads to spectral side lobes 

around the absorption lines. The energy positions of these are time-delay-dependent, 

and they converge to the parent absorption lines for higher delays. In the time-delay 

absorption spectra, they show up as hyperbolic-like features around the lines. As will 

be seen further below, the strength of these hyperbolic features is overemphasized 

Figure 6.1: Ionization gating model. a) The unperturbed time-dependent dipole moment in blue 

is truncated at 5 fs (orange line). b) Heaviside gate function centered at 5 fs that is multiplied 

with the dipole moment. c) Absorbance spectra for different time delays using the Heaviside 

amplitude gate. Details of the visible features are discussed in the text. d) Unperturbed dipole 

moment (blue) and the moment which is gated by an sigmoidal gate function centered at 5 fs 

(orange). e) The sigmodal gate function used in subfigure d). f) Time-delay-dependent 

absorption spectra for the sigmoidal gate. The arrow indicates the decrease of the hyperbolic 

structures caused by the gating function is smooth in time. g) Unperturbed (blue) and gated 

dipole moment (orange) in the case of a sigmoidal gate which suppresses the dipole to 10% for 

long times. h) The sigmoidal gate with the maximal suppression of 10% for long delays . i) The 

resulting absorption spectra for the 10% sigmoidal gate. A weak residual absorption line is 

visible for time overlap due to the incomplete suppression. 
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compared to the features in the measured spectra due to the sharp gate given by the 

Heaviside function. To smooth out this effect, one can approximate the gate function 

by a sigmoidal function shown in figure 6.1 e), which is given by the equation: 

𝐺S(𝑡) = 1 +  
1

𝑒
𝑡−𝜏G
𝛴 +

1

𝐴G

−
1

𝑒
−𝜏G
𝛴 +

1

𝐴G

. 
( 6.2 ) 

Here, 𝜏G, 𝛴, and 𝐴G are the gate time position, the gate fall time, and the gate 

amplitude, respectively. In the equation, the middle term is an inverted sigmoidal 

function, and the other terms ensure that the gate starts for 𝑡 = 0 at unity for every 

time position 𝜏G. The resulting dipole response, gated at 5 fs delay, is shown in orange 

in figure 6.1 d) again together with the unperturbed moment in blue. Instead of a 

sudden vanishing, here, the dipole moment decreases smoothly to zero around the 

gating time position. The resulting time-delay-dependent absorption spectra are 

depicted in figure 6.1 f). Utilizing the smoother gate suppresses the strength of the 

hyperbolic features, which is indicated by the grey arrow. Furthermore, the sharp step 

at zero time delay disappears compared to the spectra with the Heaviside gate 

function.  

Under experimental conditions, the strong NIR may not completely ionize all 

target atoms. Thus, a more realistic gate would not suppress the dipole moment 

completely. Figure 6.1 h) shows a sigmoidal gate located at 5 fs, which falls only to 

10% for longer times. The resulting dipole moment, shown in orange in figure 6.1 g), 

decreases around 5 fs but is not entirely suppressed. In the corresponding time-delay-

dependent absorption spectra, figure 6.1 h), the small residual absorption series 

appears for short positive delays, which is indicated by the grey arrow in the figure. 

Although this residual absorption line signal is also visible in the measured absorption 

presented below, in the simulated absorption, the line shapes deviate from the 

experimentally observed ones. As in the chapters above described, the line shape is 

linked to the phase of the dipole moment.  

A second laser-induced process is the energetic shift of the oscillating dipole 

moment due to either ponderomotive or ac-Stark shifts of the energies of the states in 

the Rydberg series. In first approximation, the short laser pulse effectively induces a 

phase step onto the dipole moment centered in time at the time delay of the pulse, see 

figure 6.2 b) for an example of a π phase step. The resulting time-dependent dipole 

is depicted in orange in figure 6.2 a) together with the unperturbed moment in blue, 

where the phase step is added (or subtracted depending on the definition of the 

Fourier transformation) to the phase of the dipole. This phase jump leads in the time-

delay-dependent absorption spectra again to the hyperbolic features, see figure 6.2 c). 

In addition, the shapes of the absorption line are inverted for short positive delays 

and switch back to the unperturbed shapes for higher delays. 
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 Now, in analogy to the gate model for the amplitude of the dipole moment, the 

continuous phase shift is introduced. One example is shown in figure 6.2 e). This 

laser-induced phase is calculated by a ponderomotive shift that a modeled laser pulse 

of sinh2-shape would induce with a central photon energy of 726 nm, FWHM pulse 

duration of 2 fs, and 20 TW/cm2 peak intensity; see equation 4.9. The corresponding 

dipole moment and the absorption spectra are shown in figure d) and f), respectively. 

Figure 6.2: Laser-induced phase shift model. a) The unperturbed time-dependent dipole 

moment in blue is instantaneously shifted in phase at 5 fs (orange line). b) Phase step function 

centered at 5 fs that is used to shift the phase of the dipole moment. c) Absorbance spectra for 

different time delays of the phase step function. Details of the visible features are discussed in 

the text. d) Unperturbed dipole moment (blue) and the moment which is smoothly shifted in 

phase by ponderomotive shift using a sinh2-shape laser pulse (orange). e) The phase sweep 

function used in subfigure d). f) Time-delay-dependent absorption spectra with the phase sweep 

centered at different time delays. The arrows indicate the changes of the hyperbolic structures 

caused by the phase sweep. g) Unperturbed (blue) and gated and phase shifted dipole moment 

(orange) in the case of a sigmoidal gate and smooth phase sweep. h) The sigmoidal gate and 

phase sweep used for g). i) The resulting absorption spectra for the combination of the sigmoidal 

gate and phase sweep. 
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The inversion of the line shapes for short positive delays, and the convergence to the 

unperturbed shapes for longer delays persist with this phase sweep. However, as in 

the evaluation of the gate, the strength of the hyperbolic structure decreases, but in 

this case, the suppression is greater for the low energy side compared to the high 

energy indicated by the grey arrows in figure 6.2 f). 

Both discussed laser-induced processes, i.e., the strong-field ionization and the 

energy shift, take place simultaneously. Figure 6.2 g) and i) show the time-dependent 

dipole and the corresponding time-delay-dependent absorption spectra of the 

response, which is gated by the sigmoidal function and the phase of which is shifted 

by the phase sweep, depicted in figure 6.2 h). For short positive delays, the absorption 

lines are broadened due to the ionization, and their shapes are modified due to the 

phase shift. The combination of both processes lets the absorption lines effectively 

appear to emerge from higher energies marked by the grey arrow figure 6.2 i), and 

they converge to the (lower) energy and shape of the unperturbed series for longer 

delays. Note that the formation of the series, in this case, is limited neither by the gate 

fall time nor by the phase sweep duration since the build-up of the absorption lines 

shows similar timescales as for the instantaneous step cases in figure 6.1 c) and 6.2 c). 

However, for longer durations of the intense laser pulse, the gate fall time or the phase 

sweep duration can dominate the timescale, such that information about the duration 

of the build-up can become blurred. Through evaluating the time-dependent dipole 

moment, one may characterize the gate fall time for different time delays, which will 

be demonstrated further below. 

The two processes are generally not separable and are induced by the same intense 

laser pulse. Thus, by changing the pulse settings, both processes will change their 

strength in a correlated way. Furthermore, at some peak intensity of the pulse, the 

ionization process can saturate, meaning if most of the atoms in the target ensemble 

are ionized, no further ionization will be possible. This can also happen already at the 

tails of the pulse. To account for this ionization saturation, the gate acting on the 

dipole amplitude can be modeled with the help of a rate equation for the time-

dependent number of atoms not yet ionized 𝑁(𝑡). This is possible since the strength 

of the dipole scales linearly with the number of excited – but not ionized – atoms in 

the target. The rate equation reads: 

𝑁̇(𝑡) = −𝜎 𝛷(𝑡)𝑁(𝑡). ( 6.3 ) 

Here, 𝜎 is the single-photon ionization cross-section of the excited target and Φ(t) 

denotes the time-dependent photon flux of the ionizing laser pulse, 

𝛷(𝑡) =
𝐼(𝑡)

ℏ𝜔
, ( 6.4 ) 

where 𝐼(𝑡) is the time-dependent intensity of the pulse. In first approximation, only 

the central photon energy ℏ𝜔𝑐 of the pulse is considered. Furthermore, the rate 

equation is given for single-photon ionization, but higher orders, i.e., multi-photon or 
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tunnel ionization, might be possible for a sufficiently intense pulse. The rate equation 

model leads to the time-dependent gate: 

𝐺(𝑡) = 𝑒
−∫ 𝜎 

𝐼(𝑡̃,𝜏G)

ℏ𝜔𝑐
𝑑𝑡̃

𝑡

0 ≈ 𝑒
−∑ 𝜎 

𝐼(𝑡̃,𝜏G)

ℏ𝜔𝑐
𝛥𝑡̃𝑡

𝑡̃=0 , ( 6.5 ) 

where 𝛥𝑡 is the numerical time step size of the model.  

Figure 6.3 shows this gate calculated by a pulse with a sinh2-shaped intensity 

profile with peak intensity of 17 TW/cm2, a central wavelength of 710 nm and a pulse 

duration of 5 fs FWHM, see the grey curve in figure part a). Here, the cross-section 

of 𝜎 = 10 Mb is taken. The lines of different colors depict the gate for different time 

delays. Coming from negative delays (-5 fs in blue), where the gate decreases the 

dipole amplitude to only about 90%, the gate drops very rapidly when the time delay 

is scanned across zero (from -2.5 fs in orange to overlap in green and +2.5 fs in red). 

The violet line shows the gate for 10 fs time delay, that is the time the depicted pulse 

is centered around. Note that this gate already drops to ~20% when the center of the 

pulse is passing, as is indicated by a vertical dashed line in the figure. Thus, the 

leading edge of the pulse is sufficiently intense to almost ionize all atoms in the target. 

However, despite this saturation effect, the gate does not drop to 0 when the pulse is 

gone for late times. Note, the gate fall time depends on the shape of the leading edge 

of the strong laser pulse and, in particular, it is less dependent on the total pulse 

duration. In the experiment, the pulse often consists of a central spike with satellite 

pulses; see the experimental setup chapter. Thus, one typically can achieve gate fall 

times shorter than the pulse duration used for the gate. 

Figure 6.3 b) shows the phase for different time delays, which are induced by the 

ponderomotive potential of the laser pulse in grey. Unlike the gate, the laser-induced 

phase is time-symmetric with the pulse, i.e., its inflection point is at the center of the 

pulse. Thus, given a sufficiently intense pulse, line-shape changes of the absorption 

are retarded to the suppression of the line amplitude by the ionization gate.  

Figure 6.3: The ionization gate model using the ionization rate of the atoms within the laser field. 

a) Amplitude gate, which is multiplied with the time-dependent dipole moment for different time 

delays of the gate. The laser pulse used to calculate the gate by equation 6.5 is shown in grey. b) 

Phase shift which is introduced to the phase of the dipole for different time delays. The 

ponderomotive potential to calculate the laser-induced phase by equation 4.9 is shown in grey. 
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The Build-up of an Ionization Threshold and Doubly 

Excited Rydberg Series 

Using the introduced ionization gate model, equation 4.9 and 6.5, one can obtain 

the time-dependent absorption spectra of the doubly excited Rydberg series, 

presented in figure 6.4 b), and quantitatively compare it with the experimentally 

observed spectra in figure 6.4 a). The unperturbed time-dependent dipole moment 

that is gated by the model and used to calculated the absorption spectra is obtained 

by reconstructing the dipole moment from a measured static absorption spectrum 

without NIR. The central wavelength of 𝜆 = 726 nm and pulse duration of 𝜏 = 5.5 fs 

of the sinh2-shape pulse used for the gating model are experimentally measured. The 

peak intensity of 𝐼 = 12 TW/cm2 and the ionization cross-section 𝜎 = 12 Mb are 

estimated by the ponderomotive shift and the line suppression visible in the 

experiment, respectively. 

The agreement between the measured and the modeled spectra is remarkable. All 

of the earlier discussed features, i.e., line broadening, energy shifting, line-shape 

changes, and hyperbolic structures, are well reproduced. It is worth to point out that 

the here presented modeled spectra are only obtained by the Fourier transform of the 

time-dependent dipole moment smoothly gated in the time domain. Despite the good 

agreement, some differences remain. In the experiment, a residual rippling of the 

absorption versus the time delay is present, in particular for the sp2,3+ line. This is due 

to a two-NIR-photon coupling between the 2s2p (not shown) and the sp2,3+ doubly-

excited states, which is thoroughly discussed in reference [58]. 

Figure 6.4: Time-delay-dependent absorption spectra of the doubly excited states in helium. 

Negative delays mean that the gating NIR proceeds the XUV-excitation a) The measured 

absorption spectra, where the absorption lines are suppressed and the shape of which is modified 

by the strong NIR pulse around the time overlap of the NIR and XUV-excitation. b) The 

simulated absorption spectra by the ionization-gating and phase-shift model. 
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For the higher-lying Rydberg states and the second ionization threshold, some 

deviations around the time overlap appear. However, due to the small experimental 

signal here, only little insight can be gained. To increase the visibility of the signal 

around these higher-lying states and the ionization threshold, figure 6.5 presents the 

measured and modeled time-delay-depended absorption spectra for the singly-

excited Rydberg series in helium. Here, the measured absorption spectra are time-

averaged around one NIR-electric-field-cycle in order to suppress sub-cycle 

oscillation due to resonant couplings, which is not included in the ionization gating 

model. The measured pulse parameters used for the model are 𝜆 = 710 nm and 

𝜏 = 5 fs. The peak intensity of  𝐼 = 17 TW/cm2, and the ionization cross-section of 

𝜎 = 10 Mb are again estimated by comparison with the experimentally observed 

spectra. With the help of the higher XUV-absorption cross-section of the first 

ionization threshold, which results in a higher signal-to-noise ratio, in particular, for 

the steep increase of the absorbance across the ionization threshold (marked by the 

letter “a” in figure 6.5 a)),  comparisons of the measured and model spectra become 

more fruitful. 

By this comparison, one can see the gating of the dipole moment for photon 

energies in the absorption continuum, which is marked by the letter “b” in figure 6.5 

a). Thus, by using the gating model, one can study the build-up of the ionization 

threshold similar to what is already done for the single 2s2p doubly-excited 

absorption line in helium [31]. At the time overlap, however, the measured absorption 

at the threshold drops less than in the model. This is possibly due to the strong shifting 

of the absorption lines of the Rydberg series into the ionization continuum, marked 

Figure 6.5: The build-up of the first ionization threshold in helium. a) The measured time-

dependent absorption spectrum, where the response of the resonant states and the ionization 

threshold are gated and phase shifted in time by the strong NIR pulse. The “a” marks the almost 

unperturbed first ionization threshold of helium, “b” the trace of the strong-field gated build-

up of the ionization threshold, and “c” marks the time-resolved appearance – emergence – of 

the Rydberg states from the ionization continuum. b) The simulated transient absorption 

spectra using the ionization gate model. 
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by letter c. The lines seem to emerge from the continuum, which is barely reproduced 

by the model. The assumption of a constant ionization cross-section for all dipole 

response frequencies might cause this deviation. Since the ionization cross-sections 

of the real atomic states are different, and since the intense laser does not have a flat 

spectral profile, the ionization of the target should be energy dependent. Thus, 

treating the cross-section to be dependent on the photon energy could improve the 

build-up model, which is, however, beyond the scope of the current thesis. 

For better visibility of the absorbance gating at the ionization threshold, figure 6.6 

depicts lineouts of the absorbance for different time delays. Subfigure a) shows the 

suppression of the ionization threshold measured across the time overlap. For 

negative delays (-15 fs), the threshold manifests in a step-like increase of the 

absorbance around the photon energy ~24.6 eV. As the ionization gate suppresses the 

dipole response a few femtoseconds after excitation (5 fs delay), the absorption 

spectrum becomes flat across the threshold. For later delays, the absorbance becomes 

Figure 6.6: Lineouts of the absorbance measuring the build-up of the ionization threshold. a) 

and b) measured absorbance for different time delays of the NIR. The ionization threshold is 

suppressed around time overlap from a step-like increase of the absorbance across the threshold 

to a flat absorption spectrum. For later times the absorption lines and the threshold revive. c) 

and d) simulated absorbance using the gating model of the time-dependent dipole moment. The 

suppression and the revival of the absorption lines and the threshold are reproduced. 
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more modulated by the emergence of the resonance lines that become narrow and 

shift from high to lower energies, see figure 6.6 b). Subfigures c) and d) present the 

lineouts of the modeled spectra for the same time delays as in the measurement. The 

suppression at time overlap and the revival behavior for later delays are reproduced, 

which validate the picture that the response of the ionization threshold is gated in 

time by NIR-induced ionization. 

Time-dependent Separation of Individual Rydberg Lines 

As mentioned in the previous sections, the ionization of the target shortly after 

XUV-excitation results in the strong broadening of the absorption lines. If these lines 

are close in energy, they will start to overlap spectrally by the broadening. For later 

delays, the dipole moment has more time to evolve freely, which leads to separable 

absorption lines. In order to quantify this time-delay-dependent separation, the 

following energy-dependent function is used to fit lineouts of the NIR-ionization 

gated absorption spectra of the doubly excited states of helium for different time 

delays: 

𝐴(𝐸) = 𝐵(𝐸) +∑𝐴𝑗
(𝑞org,𝑗

2 + 1)

(𝑞mod,𝑗
2 + 1)

𝑛

𝑗=1

 (
(𝑞mod,𝑗 + 𝜀𝑗)

2

𝜀𝑗
2 + 1

− 1). ( 6.6 ) 

This function is an incoherent sum of modified Fano-shaped absorption lines. 𝑞org,𝑗 

is the original predetermined asymmetry parameter of the jth doubly-excited Fano 

line, see equation 2.79. The free fit parameters 𝐴𝑗 , 𝑞mod,𝑗, and 𝜀𝑗 are the amplitude, 

the modified asymmetry parameter, and the reduced energy of the jth line, 

respectively. The reduced energy is given by 𝜀𝑗 = (𝐸 − 𝐸𝑗)/(𝛤𝑗/2), where 𝐸𝑗 is the 

energy position and 𝛤𝑗 is the linewidth of line j. 𝐵(𝐸) denotes the energy-dependent 

non-resonant background given by  

𝐵(𝐸) =  𝑐0 + 𝛼 𝐸 +  𝛽 𝐸
2 + 𝛾 𝐸3 ( 6.7 ) 

with the fit parameters 𝑐0, 𝛼, 𝛽, and 𝛾. In the fit, the function 6.6 is convolved by a 

Gaussian function 𝐺(𝐸) with a width of ~ 20 meV to account for the finite 

experimental spectrometer resolution. The total fit function 𝑆(𝐸) then reads: 

𝑆(𝐸) =  𝐴(𝐸) ∗ 𝐺(𝐸). ( 6.8 ) 

Figure 6.7 a) shows the result of the energy position and linewidth versus the time 

delay of the sp2,3+ up to the sp2,6+ line in a different color. In the figure, the line 

position refers to the energy position 𝐸𝑗 and the shaded area to the linewidth 𝛤𝑗 of line 

j. All four fitted lines show, as expected, a narrowing and a shifting to lower energy 

for later delays approaching their unperturbed energy positions as they are less 

influenced by the NIR-induced energy shift. In subfigure 6.7 b), the reference 

absorption spectrum for negative delays (𝜏 = -12 fs) is shown when the NIR passes 
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the target prior to excitation and thus does not have any effect on the absorption lines. 

The fit routine incorporates a dynamical time-delay-dependent number of lines, i.e., 

𝑛 in equation 6.6 depends on the time-delay. With this, one can determine at which 

delay the individual absorption lines start to become discernible from the ionization 

background. In figure 6.7 a), this is indicated by the appearance of the color line for 

the fit results at a certain time delay. The fit, including lines energetically higher than 

the sp2,6+, does not converge because their signal-to-noise ratio is too low. In the 

measurement, the signal is mostly limited by the spectrometer resolution of ~1500. 

Thus, by further enhancing the resolution, one might observe the line separation even 

for the higher-lying lines above the sp2,6+ line. 

With the help of the fit, one can observe the time when neighboring line pairs 

separate. This separation time 𝜏s can be defined as the time when the energy 

difference of the line pair is greater than the sum of the respective linewidths, i.e. 

when the shaded areas in figure 6.7 a) do not overlap anymore. This is indicated by 

dashed vertical lines in the figure. The fit results in the separation times 𝜏s,1 = 12.2 fs 

for the sp2,3+ - sp2,4+, 𝜏s,2 = 23.8 fs for the sp2,4+ - sp2,5+, and τs,3 = 26.7 fs for the 

sp2,5+ - sp2,6+ line pair. The energetically closer the lines are, the longer must be the 

delays in order to separate them. This can be intuitively explained as follows. If the 

lines are closer in energy, the respective dipole moments will need more time to freely 

evolve in order to generate absorption lines which can be separated. 

Figure 6.7: Ionization-gated resonance-energy position and linewidth of the sp2,n+ Rydberg series 

in doubly excited helium. a) Results of the fit algorithm. Solid lines indicate the resonance 

position 𝑬𝒋, and the shaded areas indicate the resonance width 𝜞𝒋 of state 𝒋. The times 𝝉𝐬,𝒋 

(vertical dashed lines) mark the delay when spectral lines are separable for the first time from 

each other during their build-up. b) Reference absorption spectrum measured at τ ≈ –12.5 fs. 
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The fit routine also incorporates the NIR-induced modifications of the line shapes, 

which are captured by the modified asymmetry parameter 𝑞mod,j. This parameter 

quantifies, as discussed in the fundamentals chapter, the relation of the transition 

amplitudes for direct ionization and the ionization by configuration interaction of a 

doubly-excited state. Figure 6.8 presents 𝑞mod,j for different time delays of the sp2,3+, 

sp2,4+  and sp2,5+ lines. Here, the shaded areas show the fit error for this parameter, 

which becomes greater for lower delays due to the smaller amplitude of the line. 

Together with some modifications over the delay, a common minimum of the 

parameters at about 15 fs appears. This might link to wave-packet dynamics of the 

coherently excited states, which are imprinted in a common modification of the line 

shapes. Further investigation using ab initio model simulation could resolve the 

origin of this joint behavior, which is, however, beyond the scope of this thesis. 

The Build-up in the Time Domain and Strong-field 

Ionization-Gate Characterization 

With the dipole reconstruction method, the build-up process can be traced in real-

time, and thereby one can capture the dynamics during the NIR strong-field 

ionization. Furthermore, the reconstruction method provides the possibility to select 

different energy regions of interest by applying different spectral filters on the 

absorption spectrum. Figure 6.9 a) presents the dipole amplitude with a window in 

the spectral region between 62.5 eV and 69.0 eV, i.e., on the wave packet with all 

Rydberg states starting from the sp2,3+. For negative time delays, the beating of the 

amplitude in real time is visible, reflecting the unperturbed wave-packet dynamics of 

the coherently excited states. Close to the time overlap, the dipole amplitude 

decreases fast and recovers for longer delays following the time position of the NIR 

pulse. 

 The fast decrease after time overlap is due to the onset of the ionization gate. 

Thus, this gate is imprinted in the real-time and time-delay-dependent dipole 

amplitude and thereby can be characterized. For this purpose, the following function 

is applied to fit the time-dependent dipole amplitude for positive delays starting at 

4 fs: 

Figure 6.8: Fit results of the modified q-

parameter of the sp2,n+ Rydberg series in doubly 

excited helium with the shaded area indicating 

the standard error. The q-parameters show a 

common local minimum around time delay 

15 fs, which might be connected to coherent 

wave-packet dynamics of the Rydberg series.  
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𝑅(𝑡) = 𝐴D(𝑡) ∙ [
1

𝑒
𝑡−𝜏G
𝛴 +

1

𝐴G

+ (1 − 𝐴G)]. ( 6.9 ) 

In this function, a sigmoidal gate within the bracket is multiplied with a reference 

response 𝐴D(𝑡). Here, 𝜏G, 𝛴, and 𝐴G as above are the gate time position, the gate fall 

time, and the gate amplitude, respectively. The normalization with a sigmoidal 

function for 𝑡 = 0 fs is, unlike to equation 6.2, not necessary here since only time 

positions longer than the expected fall time, 𝜏G > 𝛴, are considered, and therewith 

this gate function starts always approximately at unity for 𝑡 = 0 fs. The reference 

dipole amplitude is obtained by averaging the time-dependent dipole for negative 

delays between -20 and -12 fs when no ionization gate is present.  

The resulting dipole amplitude is shown in the inset of figure 6.9 b) and agrees 

well with the measured signal. The gate position and the gate fall time is presented in 

subfigure c). Here the linewidth represents the position error obtained by the standard 

error of the fitting results of three subsequently measured dipole amplitudes. As 

expected, the gate time position linearly follows the central position of the strong NIR 

pulse, and the gate fall time is almost constant. The light blue line is a linear fit of the 

gate position with a slope one and intercepts the ordinate at -3.4 fs time delay. Thus, 

the rising edge of the 5.5 fs NIR pulse is sufficiently strong to ionize the target almost 

completely and therewith gate the dipole response in time. The gate fall time is fitted 

by a constant function shown in red in subfigure c), which results in a fall time of 

only 𝛴 = 1.2 fs. Therewith the ionization gate here is one of the fastest gates ever 

observed and, in particular, shorter than the pulse duration and the cycle of the light 

field (~2.5 fs) used for the gate. 

Figure 6.9: Gated time-dependent dipole response in doubly excited helium. a) Amplitude of the 

time-dependent dipole moment, reconstructed for the Rydberg series of the doubly excited states 

in helium starting from the sp2,3+. b) Best fit on the time-dependent response given by 

equation 6.9. c) Results of the time-gate position (blue) and gate fall time (orange) from a fit to 

the reconstructed dipole moments. The line thickness indicates the statistical error over three 

separate time-delay scans with the same NIR intensity. Straight light blue and dark red lines are 

a linear and constant-value fit to the experimentally extracted gate position and fall time, 

respectively. 
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Although both the gate position and the fall time show the expected trends, a slight 

deviation of a position linearly following the NIR and constant fall time is observed. 

This could be linked to wave-packet dynamics of the excited states, which might 

influence the intra-pulse ionization rate yielding the gate. Further investigations, 

including comparisons with ab initio model simulations, might resolve the origin of 

these deviations and clarify possible contributions of wave-packet dynamics. 

The reconstruction method can be applied as well on the energy region at the first 

ionization threshold in helium and thereby trace its build-up in the time domain. Here, 

one can again use the asymmetric super Gauss filter function 𝐹(𝜔), which has been 

introduced above and which is given by equation 5.1. Figure 6.10 shows in a) – c) 

the absorbance for negative delays in blue with three different filter settings in red, 

selecting the region of interest. In subfigure a), the filter selects both energy regions, 

while in b) the absorption lines by the bound Rydberg states and in c) the ionization 

continuum together with its threshold absorption are filtered. The respective time- 

and time-delay-dependent dipole amplitudes are presented in figure 6.10 d), e), and 

f). For the filter, which includes the absorption spectrum below and above the 

ionization threshold, the wave-packet beating is observed for negative delays, see 

subfigure d). This is similar to the observation for the doubly excited region in 

figure 6.9 a). Furthermore, the strong suppression of the dipole amplitude close to 

time overlap and the recovering of the dipole following the NIR pulse are reproduced. 

If now only the bound absorption lines are filtered, similar behavior of the dipole 

amplitude is observed, subfigure e). Thus, most of the signal in d), in particular for 

longer real times, is due to the wave packet of the coherently excited Rydberg states. 

If selecting only the energy region of the ionization continuum, the amplitude 

decreases very rapidly in real time due to the broad absorption spectrum of the 

continuum, subfigure f). However, a faint signal remains, which depends on the 

timing of the NIR pulse. 

In this time-domain view, a clear indication appears that the continuum absorption 

is actually gated by the NIR-induced ionization. Shortly after pulse overlap, i.e., 

around 3 fs time delay, a drop of the dipole amplitude is observed. If the strong NIR 

would only contribute with a ponderomotive shift leading to an effective phase shift 

of the dipole moment, this drop would not be present. This is shown by the inset in 

subfigure f), where the phase shift model on the continuum response, as described 

above, is used without amplitude gating. As a result, the fall time of the strong-field-

induced ionization gate is indeed fast enough to gate the ultrafast response of the 

ionization threshold. Since a presence of a continuum threshold is not limited to an 

atomic target, but rather it is a general property of different materials like molecules 

or, in particular, solid-state system, the here presented study of using an ultrafast 
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ionization gate allows many investigations on the build-up processes of responses in 

general.

Figure 6.10: Gated time-dependent dipole 

response of the first ionization threshold in 

helium. a), b), and c) Transient absorption 

spectra in helium in blue for around -10 fs 

time delay and three different spectral filters 

for the reconstruction of the time-dependent 

dipole moment. In a) the filter includes both  

the Rydberg series and the ionization 

continuum, whereas in b) only the Rydberg 

series and in c) only the ionization continuum 

is filtered. d), e), and f) The time and time-

delay-dependent dipole moment for the 

different spectral filters in a), b), and c). The 

build-up of the dipole following the NIR 

pulse is observed in all three cases. 



 

 

 



 

 

7. Summary and Conclusion 

The general subject of this thesis is the investigation of the quantum-mechanical 

dynamics of electrons excited in helium to states in the vicinity of the ionization 

threshold. The electrons are coherently excited by using an attosecond pulse in the 

extreme ultraviolet (XUV) spectral range, which generates an XUV dipole response 

driven by the dipole moment between the excited (continuum) states and the ground 

state of helium. The response interferes with the XUV excitation pulse, and the 

interference is measured by means of attosecond transient absorption spectroscopy 

across the ionization threshold. In this interferometric method, the dipole response is 

further manipulated by an ultrashort and strong near-infrared (NIR) laser pulse, and 

its changes are resolved in time by recording XUV transient absorption spectra for 

different time delays between the NIR interaction and the XUV excitation. Since the 

XUV dipole response is dominated by the overlap integral between the excited states 

and the ground-state wave functions, the investigated response above the ionization 

threshold is a measure of the dynamics of free electrons in close proximity of the 

parent ion. Thus, the laser-field-modified dipole response at an ionization threshold 

provides access to laser-driven electron dynamics in the vicinity of the Coulomb field 

singularity of an ion. 

The transient absorption spectra are recorded by an attosecond beamline with high 

temporal (~ 85 as) and spectral (𝐸 Δ𝐸 ⁄ ~ 1500) resolution. In the course of the 

dissertation, the experimental setup has been upgraded by several components. A 

doubly differentially pumped hollow-core fiber was designed and implemented. It 

allows one to spectrally broaden the NIR laser pulse in order to shorten its pulse 

duration down to ~ 4 fs and simultaneously achieve high output pulse energies 

(~ 1.5 mJ) from the fiber. For reliable experimental laser conditions, an optical setup 

to measure and stabilize the carrier-envelope phase (CEP) of the ultrashort NIR pulse 

in front of the attosecond beamline has been installed, which provides access to 

control the CEP within a standard deviation of ~ 330 mrad. Furthermore, the 

attosecond beamline was extended by a variable filter setup to separate in time and 

space the XUV and NIR pulse, by an NIR spectrometer to measure in situ the blue 

shift of the NIR spectrum in the high harmonic generation process, and by an external 

beam path interferometer to access the field polarization of the NIR in a transient 

absorption experiment. 

In the measured time-delay-dependent absorption spectra of helium presented 

here, several laser-induced spectro-temporal structures are observed both below and 

above the ionization threshold. The observations were facilitated by the development 

of a procedure for recording the XUV reference spectrum in situ. It allows to resolve 
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weak structures in the target’s absorbance with a sensitivity of a few thousandths of 

an optical density unit. By comparing the measured transient absorption spectra with 

the results of different quantum-mechanical model simulations, it was possible to 

identify the underlying processes of light-matter interaction leading to the observed 

structures in the absorption. 

First, a multi-level model simulation was conducted, which treats the bound and 

continuum states of the helium atom by discretized levels. Within this model, one can 

selectively switch on and off the continuum or the coupling between the continuum 

and the bound states. This flexibility helps to isolate the contributions of the 

ionization continuum to the observed transient absorption structures. It was found 

that the laser-driven response of the ionization threshold shows a similar—not a priori 

clear—time-resolved behavior as resonances of bound-bound transitions. The 

response spectrally imprints a hyperbolic-like structure above the ionization 

threshold, which can be linked to the NIR-induced energy shift of the photoelectron’s 

kinetic energy in the vicinity of the atomic core. 

Due to the interferometric principle of transient absorption spectroscopy, the 

measurement is sensitive to the amplitude and phase of the atomic dipole response. 

Thus, it can be reconstructed in real-time directly from the XUV absorption spectra 

by means of Fourier transformation. The real-time–time-delay analysis of the dipole 

response shows a revival of its amplitude following the timing position of the NIR 

pulse, which can be interpreted as an NIR-driven electron recollision into the parent 

ion after its XUV-ionization. Signatures of this revival have been reproduced by 

simulating the dipole response by a laser-driven electron wave packet model, which 

is defined on a numerical one-dimensional spatial grid. Here, the wave packet is 

subjected to a singly excited atomic core, and it shows an NIR-driven wiggling 

around the core in correlation with the increase of the dipole amplitude. In addition, 

these findings are supported by calculations of classical electron trajectories in an 

oscillating laser field, where it was found that the dynamics of the wave function’s 

center of gravity can be described well. Furthermore, first measurements to probe the 

signature of electron recollisions in the dipole response are presented using linear and 

circular field polarization of the NIR pulse. 

Regarding the presented transient absorption spectra with high NIR intensities, the 

observed structures at the ionization threshold in helium are not well described 

exclusively by an energy shift of the continuum states anymore. Here, the strong-

field-ionization of the helium atoms leads to a non-negligible time-delay-dependent 

decrease of the dipole response. This process can be modeled by gating the dipole 

response in the time domain and calculating the resulting absorption spectra using 

Fourier transformation. In the course of this work, a strong-field-ionization gating 

model is introduced, which includes both the time-dependent decrease of the dipole 

response amplitude and the laser-induced phase shift beyond the impulsive limit, 

where amplitude gate and phase shift instantaneously act on the response. With this, 
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the build-up dynamics of complex spectral signatures can be understood, which 

consists of multiple asymmetric Fano resonances of the doubly excited Rydberg 

series close to the 𝑁 = 2 ionization threshold in helium. As a result, the time-

dependent separation of the partly overlapping Fano resonances and their laser-

modified line-shape-asymmetry have been extracted quantitatively. In addition, the 

time-domain observation of the dipole response revealed the ionization gate position 

and the gating fall time to be as short as ~1.2 fs. Furthermore, this strong-field-

ionization technique was applied to the first ionization threshold of helium, where its 

build-up in the time domain has been observed for the first time.  

To conclude, attosecond transient absorption spectroscopy is a powerful tool to 

study light-matter interaction and laser-induced dynamics not only between bound 

states, but it can be extended to a continuum of states near an ionization threshold. 

Here, one is sensitive to the amplitude and the phase of the dipole response generated 

from coherently excited states, energetically lying in the transition region between 

the neutral and the ionized atom. Additionally, this dipole response can be controlled 

by using strong-field-ionization gating and laser-induced phase shifts via 

ponderomotive energy shifts of the continuum states, while its evolution is traced in 

time.  

Resolving laser-induced energy shifts of slow photoelectrons in the vicinity of the 

parent ion might lead to a better understanding of the effects caused by the Coulomb 

potential during the ionization process. One could imagine that the magnitude of the 

laser-induced phase shift on the dipole response depends on the kinetic energy of the 

ionized electron, i.e., the excitation photon energy above the threshold. Slow 

electrons may stay longer in close proximity to the ionic core and are thereby are 

stronger influenced by the Coulomb potential, while faster electrons leave the ion 

earlier, and the observed phase shift could be purely described by the ponderomotive 

energy shift. The presented field-driven dynamics were already observed at moderate 

laser intensities. Thus, the here introduced phase-sensitive measurement procedure 

near an ionization threshold might be helpful for condensed phase targets, where 

damage thresholds typically set an upper limit to the allowed laser intensity [162]. 

The signature of the electron recollision into the ionic core can be further validated 

by model simulations, which solve the time-dependent Schrödinger equation of the 

helium atom on a two- or three-dimensional spatial grid. With this, one can directly 

compare the dipole response for circularly and linearly polarized NIR fields and 

thereby identify the evolution of the response that is caused by the recollision. Further 

insight might be gained by solving the trajectory of a spatial electron wave packet 

forced by the oscillatory NIR field beyond the strong-field approximation, i.e., in the 

presence of the Coulomb potential. This would directly consider the dispersion and 

the spreading of the wave packet resulting in a decrease of the dipole response and 

identify the influence of the Coulomb potential. 
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As mentioned in the introduction of this thesis, one ultimate goal in the field of 

time-resolved spectroscopy is to temporally and spatially resolve or even control the 

trajectories of electrons and nuclei during chemical reactions. Regarding this goal, 

the presented work shows a way to investigate the dynamics of liberated electrons in 

the vicinity of a parent ion within strong and ultrashort fields. They are probed by the 

induced dipole response at the ionization threshold in helium. Since owing an 

ionization threshold is a general property of media, this method can be extended to 

the molecular case. In particular, here, the response can even be site-selective within 

a molecule using time-resolved spectroscopy of transitions from deeply bound states 

of an atom in the molecule to a continuum of states closely above the ionization 

threshold. 

 



 

 

8. Appendix 

Atomic Units 

The system of atomic units (a. u.) is often used in the field of atomic and molecular 

physics. It scales the physical dimensions by physical properties of the hydrogen 

atom such that it minimizes the quantities in many equations. Here the conventions 

are that the elementary charge, the electron mass, the reduced Planck constant, and 

the Coulomb’s constant are unity 

𝑒 = 𝑚e = ℏ =
1

4𝜋𝜀0
= 1. ( 8.1 ) 

The most famous unit system is the International System of Units (SI units), which 

is also used in this thesis. Table 1 presents some selected conversion factors from the 

atomic units system to the SI units taken from [46]. 

Dimension Value in SI units 

Electric charge 1.602 × 10-19 C 

Electric dipole moment 8.478 × 10-30 C m 

Mass 9.109 × 10-31 kg 

Length 5.292 × 10-11 m 

Momentum 1.993 × 10-24 kg m s-1 

Action 1.055 × 10-34 J s 

Time 2.419 × 10-17 s 

Energy 4.360 × 10-18 J = 27.211 eV 

Electric Field 5.142 × 1011 V m-1 

Field Intensity 3.509 × 1016 W cm-2 

Table 1: Conversion factors from the atomic units system into the International System of Units 

(SI units) for up to the third decimal place. Taken from [46]. 
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Singly Excited Bound States of Helium 

The tabulated dipole moments are calculated using equation 5.10 from the 

oscillator strengths taken from the reference [63]. These values are used in the multi-

level model simulation described in the main text. 

 1s2 1s2s 1s3s 1s4s 

1s2p 0.729 5.057 1.870 0.656 

1s3p 0.360 1.580 12.382 4.628 

1s4p 0.227 0.801 2.671 22.714 

1s5p 0.160 0.515 1.352 4.003 

1s6p 0.121 0.371 0.874 2.001 

1s7p 0.095 0.286 0.6333 1.287 

Table 2: The dipole moments between the s and p states of the singly excited bound states of 

helium. The dipole moments are given in atomic units. 

 1s2p 1s3p 1s4p 1s5p 

1s3d 3.954 8.218 0.966 0.361 

1s4d 1.397 6.389 16.648 2.272 

1s5d 0.791 2.457 9.379 28.162 

1s6d 0.535 1.431 3.656 12.962 

1s7d 0.396 0.982 2.139 5.023 

1s8d 0.311 0.736 1.473 2.934 

Table 3: The dipole moments between the p and d states of the singly excited bound states of 

helium. The dipole moments are given in atomic units. 
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