
  G
ue

st
 (

gu
es

t)
 IP

:  
86

.5
6.

15
.1

3 
O

n:
 M

on
, 0

8 
F

eb
 2

02
1 

07
:0

4:
44

Phylogenetic signal in phonotactics

Jayden L. Macklin-Cordes,1 Claire Bowern2 and
Erich R. Round1,3,4

1 The University of Queensland | 2 Yale University | 3 University of Surrey
| 4 Max Planck Institute for the Science of Human History

Phylogenetic methods have broad potential in linguistics beyond tree infer-
ence. Here, we show how a phylogenetic approach opens the possibility of
gaining historical insights from entirely new kinds of linguistic data – in this
instance, statistical phonotactics. We extract phonotactic data from 112
Pama-Nyungan vocabularies and apply tests for phylogenetic signal, quanti-
fying the degree to which the data reflect phylogenetic history. We test three
datasets: (1) binary variables recording the presence or absence of biphones
(two-segment sequences) in a lexicon (2) frequencies of transitions between
segments, and (3) frequencies of transitions between natural sound classes.
Australian languages have been characterized as having a high degree of
phonotactic homogeneity. Nevertheless, we detect phylogenetic signal in all
datasets. Phylogenetic signal is greater in finer-grained frequency data than
in binary data, and greatest in natural-class-based data. These results
demonstrate the viability of employing a new source of readily extractable
data in historical and comparative linguistics.

Keywords: historical signal, phylogenetic comparative methods, historical
linguistics, phonology, comparative linguistics, linguistic phylogenetics,
Pama-Nyungan, Australian languages

1. Introduction

A defining methodological development in 21st century historical linguistics has
been the adoption of computational phylogenetic methods for inferring phyloge-
netic trees of languages (Steiner et al. 2011; Bowern 2018a; Jäger 2019). The com-
putational implementation of these methods means that it is possible to analyse
large samples of languages, thereby inferring the phylogeny (evolutionary tree) of
large language families at a scale and level of internal detail that would be diffi-
cult, if not impossible, to ascertain manually by a human researcher (Bowern &
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Atkinson 2012:827). There is more to phylogenetics than building trees, and there
exists untapped potential to explore the language sciences and human history
with a phylogenetic approach. For example, in linguistics, phylogenetic methods
have been integrated with geography to infer population movements (Walker &
Ribeiro 2011; Bouckaert et al. 2018). In comparative biology, phylogenetic meth-
ods have been applied profitably to investigations of community ecology (Webb
et al. 2002), ecological niche conservatism (Losos 2008), paeleobiology (Sallan &
Friedman 2012) and quantitative genetics (Villemereuil & Nakagawa 2014). At the
heart of these methods, however, is a sound understanding of the evolutionary
dynamics of comparative structures. In this paper, we present a foundational step
by detecting phylogenetic signal, the tendency of related species (in our case, lan-
guage varieties) to share greater-than-chance resemblances (Blomberg & Garland
2002), in quantitative phonotactic variation.

Throughout recent advances in linguistic phylogenetics, less attention has
been paid to methodological development at the stage of data preparation. Large-
scale linguistic phylogenetic studies (e.g., Chang et al. 2015; Bouckaert et al. 2018;
Kolipakam et al. 2018) continue, by-and-large, to rely on lexical data which have
been manually coded according to the principles of the comparative method (as
described by Meillet 1925; Durie & Ross 1996; Campbell 2004; Weiss 2014) – the
comparative method being the long-standing gold-standard of historical linguis-
tic methodology. This article demonstrates that phonotactics can also present a
source of historical information. We find that, for a sample of 112 Pama-Nyungan
language varieties, collections of relatively simple and semi-automatically-
extracted phonotactic variables (termed characters throughout) contain phyloge-
netic signal. This has positive implications for the utility of such phonotactic data
in linguistic phylogenetic inquiry, but also introduces methodological considera-
tions for phonological typology.

In §1–2, we discuss the motivations for looking at phonotactics as a source
of historical signal, and we give some broader scientific context that motivates
the methodological approach we take later on. In §3–6, we present tests for
phylogenetic signal in phonotactic characters extracted from wordlists for 112
Pama-Nyungan language varieties. Section 3 details the materials used and ref-
erence phylogeny. Section 4 tests for phylogenetic signal in binary characters
that code the presence or absence of biphones (two-segment sequences) in each
wordlist, capturing information on the permissibility of certain sequences in a
language. Section 5 also tests for phylogenetic signal in biphones, but extracts a
finer-grained level of variation by taking into account the relative frequencies
of transitions between segments. Section 6 groups segments into natural sound
classes and tests for phylogenetic signal in characters coding the relative frequen-
cies of transitions between different classes. We finish in §7–8 with discussion of
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the limitations of the study design, implications of the results and directions for
future research.

1.1 Motivations

There are at least two reasons why consideration of alternative data sources could
be fruitful in historical linguistics. The first is that a bottleneck persists in linguis-
tic phylogenetics when it comes to data processing. The data for most linguistic
phylogenetic studies are lexical cognate data – typically binary characters mark-
ing the presence or absence of a cognate word in the lexicon of each language –
which have been assembled from the manual judgements of expert linguists using
the traditional comparative method of historical linguistics (e.g., Weiss 2014).
Although data assembled in this way is likely to remain the benchmark in his-
torical linguistics for the foreseeable future, it nevertheless constitutes slow and
painstaking work (notwithstanding efforts to automate parts of the process; see
List et al. 2017; Rama et al. 2018; List et al. 2018). This restricts the pool of lan-
guages that can be included in phylogenetic research to those that have been more
thoroughly documented, introducing the risk of a sampling bias, where relatively
well-studied regions of the global linguistic landscape are over-represented in his-
torical and comparative work.

The second motivation for considering alternative historical data sources is
that there are inherent limitations associated with lexical data. Undetected seman-
tic shifts and borrowed lexical items erode patterns of vertical inheritance in the
lexicon of a language. Put another way, these changes create noise in the historical
signal in the lexicon of a language. Chance resemblances between non-historically
cognate words are another source of noise in lexical data. Eventually, semantic
shifts, borrowings and chance resemblances will accumulate to a point where gen-
uine historical signal is indistinguishable from noise. This imposes a maximal cap
on the time-depth to which the comparative method can be applied, which is typ-
ically assumed to sit somewhere around 10,000 years BP, based on the approxi-
mate age of the Afro-Asiatic family (Nichols 1997: 135). Some phylogenetic studies
have attempted to push back the time-depth limitations of lexical data by using
characters that code for a range of grammatical features, under the rationale that
a language’s grammatical structures should be more historically stable than its lex-
icon (Dunn et al. 2005; Rexová et al. 2006). However, contrary to expectation, a
recent study suggests that grammatical characters evolve faster than lexical data
(Greenhill et al. 2017). Differing rates of evolution are also found in phonology,
specifically the rates of change in vowel inventories versus consonant invento-
ries (Moran & Verkerk 2018; Moran et al. 2020). An additional issue with gram-
matical characters is that the space of possibilities for a grammatical variable is

Phylogenetic signal in phonotactics [3]



  G
ue

st
 (

gu
es

t)
 IP

:  
86

.5
6.

15
.1

3 
O

n:
 M

on
, 0

8 
F

eb
 2

02
1 

07
:0

4:
44

often restricted. This means that chance similarities due to homoplasy (parallel
historical changes) will be much more frequent (cf. Chang et al. 2015). For exam-
ple, many unrelated languages will share the same basic word order by chance,
because there is a logical limit on the number of basic word order categories.

1.2 Phonotactics as a source of historical signal

The motivation for considering a language’s phonotactics as a potential source
of historical information is based partly on practical and partly on theoretical
observations. From a practical perspective, it is possible to extract phonotactic
data with relative ease, at scale, from otherwise resource-poor languages. This is
because the bulk of a language’s phonotactic system can be extracted directly from
phonemicized wordlists. As long as there is a wordlist of suitable length (Dockum
& Bowern 2019) and a phonological analysis of the language, phonotactic infor-
mation can be deduced and coded from the sequences of segments found in the
wordlist with a high degree of automation. This modest minimum requirement
with regards to language resources is a valuable property in less documented lin-
guistic regions of the world. We detail the process of data extraction for this study
in §3 below.

An additional benefit of extracting phonotactic data from wordlists is the
potential for expanding the depth of comparative datasets. Although macro-scale
studies, including hundreds or even thousands of the world’s languages (in other
words, broader datasets), are increasingly common in comparative linguistics,
less attention has been paid to the number of characters per language (dataset
depth). It is quite a different situation in evolutionary biology, where there has
been tremendous growth in whole genome sequencing, thanks to technological
advances and falling costs (Delsuc et al. 2005; Wortley et al. 2005). This, conse-
quently, has led to tremendous growth in the depth of biological datasets. This is
an important consideration because the quantity of characters required by mod-
ern computational phylogenetic methods can be substantial (Wortley et al. 2005;
Marin et al. 2018). Certainly, phonotactic data is unlikely to approach the scale of
large genomic datasets in biology, but it could effectively deepen historical linguis-
tic datasets.

From a theoretical perspective, there is reason to suspect that the phonotac-
tics of a language preserve a degree of historical signal. There is some evidence
that when a borrowed word enters the lexicon of a language, speakers tend to
adapt it to suit the phonotactic patterns of that language (Hyman 1970; Silverman
1992; Crawford 2009; Kang 2011). Consequently, in such a case the historical
phonotactic structure of the lexicon remains largely intact, even as particular
ancestral words are lost and replaced (a property termed pertinacity by Dresher &
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Lahiri 2005). Similarly, historical phonotactic properties of a language will remain
in the phonotactics of a language in the case of an undetected semantic shift.

Laboratory evidence shows that speakers have a high degree of sensitivity to
the statistical distribution of phonological segments and structures when produc-
ing novel words. Examples of such studies include Coleman & Pierrehumbert
(1997); Albright & Hayes (2003) and Hayes & Londe (2006), among others (see
Gordon 2016: 20–21). Lexical innovation then, should have a relatively conserva-
tive impact on the frequency distributions of phonotactic characters. Every new
word that enters a language’s lexicon will have a minute impact on the frequencies
of segments and particular sequences of segments in that language. But, over time,
the cumulative effect of a new lexicon entering a language on phonological and
phonotactic frequency distributions will be more modest than if speakers gener-
ated new words with no regard for existing frequencies. Thus, there is reason to
expect that quantitative phonotactic characters are likely to be conservative.

This is not to say that a language’s phonotactic system remains completely
immobile over time. Phonotactic systems are affected by sound changes and are
not totally immune to borrowing. As mentioned above, frequencies of phono-
tactic characters will shift, however gradually, with the accumulation of lexical
innovations. We make no strong claim about phonotactics being the key to a
language’s history. We merely note there are grounds to expect that phonotactic
data will often be historically conservative, relative to cognate data which contains
noise from lexical innovation, borrowing and semantic shift. Correspondingly,
our hypothesis is that phonotactic data will contain relatively strong historical sig-
nal, which we test in §4–6 below.

Many kinds of phonotactic structures exist, which could be studied phylo-
genetically. Here, because we wish to adhere to the basic methodological princi-
ple of studying maximally simple and clear cases first before progressing to more
complex ones, we limit ourselves to the simplest of phonotactic structures, namely
biphones. That being said, there is every reason to expect our results would gener-
alize, perhaps with interesting variations, to other phonotactic structures. More-
over, many of those structures would have the same benefits as our biphones, in
terms of their being readily generated in an automated fashion from wordlists.
This will be a promising direction for future investigation.

2. Phylogenetic signal

The concept of phylogenetic signal (Blomberg & Garland 2002; Blomberg et al.
2003: 717) originates in comparative biology, where it refers to the tendency of
phylogenetically related species to resemble one another to a greater degree than

Phylogenetic signal in phonotactics [5]
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would otherwise be expected by chance. This expectation derives from the evolu-
tionary history shared between species. Two closely-related species, which share
a relatively recent common ancestor, have had less time in which to diverge evo-
lutionarily. We expect more distantly-related species, whose most recent common
ancestor lies much further in the past, to tend to be more different, since they have
spent longer on separate evolutionary paths.

Phylogenetic signal manifests itself as phylogenetic autocorrelation in compar-
ative studies. That is, species observations in a comparative dataset tend not to
behave as independent data points, but rather pattern as a function of the amount
of shared evolutionary history between species. For many statistical methods
that assume data are independent and identically distributed (i.i.d.), this is a
problem. Phylogenetic autocorrelation has long been recognized as an issue in
linguistic typology and comparative biology, and both fields share comparable
histories of developing sampling methodologies that attempt to correct for or off-
set phylogenetic relatedness in some way. More recent times have seen the rise
of phylogenetic comparative methods, statistical methods that directly account for
phylogenetic autocorrelation, rather than offsetting it, beginning with founda-
tional works by Felsenstein (1985) and Grafen (1989).1 Although now practically
ubiquitous in comparative biology, uptake of phylogenetic comparative methods
has been slower in comparative linguistics (notwithstanding studies such as Dunn
et al. 2011; Maurits & Griffiths 2014; Verkerk 2014; Birchall 2015; Zhou & Bowern
2015; Calude & Verkerk 2016; Dunn et al. 2017; Verkerk 2017; Widmer et al. 2017;
Blasi et al. 2019).

Since the turn of the century, methods have been developed for explicitly
quantifying the degree of phylogenetic signal in a dataset (Revell et al. 2008: 591).
Measuring phylogenetic signal can be the first step of a comparative study, to test
whether there is sufficient phylogenetic signal to necessitate implementation of a
phylogenetic comparative method in a later stage of analysis, or to establish the
suitability of standard statistical methods if no phylogenetic signal is detected.
Measures of phylogenetic signal can also be used to re-evaluate the validity of
older results that pre-date modern phylogenetic comparative methods, as in
Freckleton et al. (2002). In other instances, the presence or absence of phyloge-
netic signal in certain data may be an interesting result in itself. In this study, we
present a novel source of linguistic data which traditionally has not been con-
sidered a salient source of historical signal for historical linguistic study (indeed,
given descriptions of Australian languages, it may have been considered a partic-
ularly unlikely source of historical signal; see §3.1). We use measures of phyloge-

1. See Nunn (2011) for discussion.
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netic signal to test the hypothesis that our data contain historical information and,
therefore, could contribute to future historical linguistic study.

Blomberg et al. (2003) provide a set of statistics for measuring phylogenetic
signal, which remains prevalent today (for example, Balisi et al. 2018; Hutchinson
et al. 2018; Leff et al. 2018). We use one of these statistics, K. The K statistic has
the desirable property of being independent of the size and shape of the phylo-
genetic tree being investigated, which means that studies with different sample
sizes can be compared directly. Briefly (following Blomberg et al. 2003:722), the
calculation of K requires three components: (i) character data (i.e., observations
for the variable of interest); (ii) a reference phylogeny, a phylogenetic tree which
has been generated independently from the character data; and (iii) a Brown-
ian motion model of evolution.2 These components entail two assumptions of the
method: the assumption that the reference phylogeny is an accurate representa-
tion of the phylogenetic history of the populations being studied and the assump-
tion that Brownian motion accurately models the evolution of the character data.
In practice, the reference phylogeny will be subject to uncertainty. We return to
this point in §7 and evaluate the robustness of our results against phylogenetic
uncertainty. Similarly, in practice, the Brownian motion model may not be realis-
tic. Nevertheless, it is a simple model and straightforward to implement, and thus
commonly used as a starting point before exploring more complex models of evo-
lution later on. We discuss this further in §7 and outline possible extensions to the
model for future study, taking sound change processes into account. To the extent
that Brownian motion fails to model the evolution of phonotactic characters, this
should make it more difficult to detect phylogenetic signal.

The K statistic is calculated by, firstly, taking the mean squared error of the
data (MSE0), as measured from a phylogenetic mean,3 and dividing it by the mean
squared error of the data (MSE), calculated using a variance-covariance matrix
of phylogenetic distances between tips in the reference tree (see Blomberg et al.
2003). This latter value, MSE, will be small when the pattern of covariance in
the data matches what would be expected given the phylogenetic distances in
the reference tree, leading to a high MSE0/MSE ratio and vice versa. Thus, a

2. A Brownian motion model of evolution describes a model of character evolution where the
character can move up or down with equal probability as it evolves through time. Under this
model of evolution, variance in character values throughout a phylogeny will increase propor-
tionally as time elapses.
3. Simply taking the mean of some variable would be misleading in cases where members of
a particularly large clade happen to share similar values at an extreme end of the range. A phy-
logenetic mean is an estimate of the mean which takes into account any overrepresentation by
larger subclades (see, for example, Garland & Díaz-Uriarte 1999).

Phylogenetic signal in phonotactics [7]
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high MSE0/MSE ratio indicates higher phylogenetic signal. Finally, the observed
MSE0/MSE ratio can be scaled according to the expected MSE0/MSE ratio given a
Brownian motion model of evolution. This gives a statistic, K, which can be com-
pared directly between studies using different trees. When K =1, this suggests a
perfect match between the covariance observed in the data and what would be
expected given the reference tree and the assumption of Brownian motion evo-
lution. When K< 1, close relatives in the tree bear less resemblance in the data
than would be expected under the Brownian motion assumption. K> 1 is also pos-
sible – this occurs where there is less variance in the data than expected, given
the Brownian motion assumption and divergence times suggested by the refer-
ence tree. In other words, close relatives bear closer resemblance than would
be expected if the variable evolved along the tree following a Brownian motion
model of evolution.

Blomberg et al. (2003) also present a randomization procedure for testing
whether the degree of phylogenetic signal in a dataset is statistically significant.
The randomization procedure utilizes Felsenstein’s (1985) phylogenetic indepen-
dent contrasts (PICs) method. Felsenstein’s insight is that, although two character
values (x and y) from two sister taxa cannot be considered independent due to
phylogenetic autocorrelation, the contrast between them (x–y) is phylogenetically
independent, since these values can only diverge in the time since the two sisters
split from their most recent common ancestor. Given a set of character data and
a phylogenetic tree, Felsenstein (1985) presents a method for harvesting a whole
set of phylogenetically independent data points, PICs, which can be used for sta-
tistical analysis in lieu of the raw set of observations. Blomberg et al. (2003) take
advantage of the expectation that, given a Brownian motion model of evolution,
PIC variance is expected to be proportional to time. PICs among more closely-
related taxa will tend to be lower than more distant relatives, since they have had
less time to diverge from common ancestors. The randomization procedure first
extracts PICs for a given character and records the variance. Then, it extracts
PICs and records the variance after randomly shuffling character data among taxa
(thereby destroying phylogenetic signal). PIC variance is recorded typically for
many thousands of such random permutations. If the true PIC variance (for orig-
inal, unshuffled data) is lower than the variance of PICs in > 95% of random per-
mutations, the null hypothesis of no phylogenetic signal can be rejected at the
conventional 95% confidence level.

In this study, we also use a second statistic, D, which was developed to mea-
sure phylogenetic signal in binary data. The D statistic is described by Fritz &
Purvis (2010). To summarize briefly, the D statistic is based on the sum of differ-
ences between sister tips and sister clades, ∑d. First, differences between values
at the tips of the tree are summed. Since D concerns binary variables, each taxon
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will either have a 0 or 1 value. At the level of the tips, then, all sister tips will either
share the same value (in which case, the difference=0) or one tip will have a 0
value and the other will have a 1 value (in which case, the difference=1). Nodes
immediately above the tree tips are given the average value of their daughter tips
below (which, in a fully bifurcating phylogeny, will either be 0, 0.5 or 1). This
process is repeated for all nodes in the tree, until a total sum of differences, ∑d,
is reached. At two extremes, data may be maximally clumped, such that all 1s are
grouped together in the same clade in the tree and likewise for all 0s, or data may
be maximally dispersed, such that no two sister tips share the same value (every
pair of sisters contains a 1 and a 0, leading to a maximal sum of differences). Lying
somewhere in between will be both (i) a distribution that is entirely random rel-
ative to phylogenetic structure and (ii) a distribution that is clumped exactly to
the degree expected if the character evolved along the tree following a Brownian
motion model of evolution. Two permutation procedures are used to determine
where these two points lie for a given dataset and phylogenetic tree. Firstly, like
Blomberg et al.’s permutation test described above, character values are shuffled
at random among tips of the tree many times over, thereby destroying phyloge-
netic signal. The sums of differences are taken from each random permutation to
obtain a distribution of sums of differences, given phylogenetic randomness: ∑dr.
Then, to obtain a contrasting distribution of sums of differences, the process of
character evolution along the tree following a Brownian motion model is simu-
lated many times over. Since Brownian motion is a model of evolution of continu-
ous characters, and what we need here is a distribution of binary character values,
the permutation test simulates the evolution of a continuous-valued character and
then simply binarizes the tip values to 0 or 1 by observing whether they fall above
or below a threshold value. This threshold is set to whatever level will produce
the same proportion of 1s and 0s as observed in the real data. The sums of dif-
ferences are then taken from each simulation, giving a distribution where phylo-
genetic signal is present: ∑db. Finally, the D statistic is determined by scaling the
observed sum of differences relative to the means of the two reference distribu-
tions just described:

(1)

Scaling D in this way provides a standardized statistic with the desirable property
that it can be compared between different sets of data, with trees of different sizes
and shapes, as with K for continuous characters. One disadvantage of D, however,
is that it requires quite large sample sizes (>50), below which it loses statistical
power.

Phylogenetic signal in phonotactics [9]
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Two p values determine the statistical significance of D, one each for the null
hypotheses that D= 0 (phylogenetic signal present) and D= 1 (the character is dis-
tributed randomly relative to phylogenetic structure). These p values are obtained
by comparing the observed sum of sister tip/clade differences (∑d) to the two
distributions of simulated sums of sister tip/clade differences described above
(∑dr and ∑db). The fraction of randomly simulated ∑dr scores smaller than the
observed ∑d is taken as the p value for H0(D = 1). Conversely, the the p value for
H0(D=0) is defined as the proportion of the simulated ∑db scores greater than the
observed ∑d value.

To summarize, phylogenetic signal is the tendency of closely related species
to share closer character resemblances than more distantly related species, due to
their relatively greater shared evolutionary history. Given a reference phylogeny
and an evolutionary model, it is possible to quantify phylogenetic signal for a
character of interest by comparing the contrasts between closely related species to
species selected at random from the tree. In this study, we quantify phylogenetic
signal in phonotactic data with the aid of a phylogenetic reference tree of Pama-
Nyungan languages and the two statistical implementations described above. We
use the K statistic developed by Blomberg et al. (2003) to quantify phylogenetic
signal in continuous, frequency-based character data and we use the accompa-
nying randomization procedure to test the statistical significance of that signal.
Likewise, we use the D statistic developed by Fritz & Purvis (2010) to quantify
phylognetic signal in binary character data and we use its corresponding random-
ization procedure to test for statistical signficance as well – with the randomiza-
tion procedure, in this latter instance, testing against two null hypotheses: one of
phylogenetic signal, and one of random noise.

3. Materials

Our study measures phylogenetic signal in a variety of types of phonotactic char-
acters, extracted using semi-automated methods from wordlists within the Pama-
Nyungan family (Australia). Throughout, we take the doculect to be our unit
of study. A doculect is a language variety as documented in a given resource
(Cysouw & Good 2007; Good & Cysouw 2013). That is to say, we treat each
wordlist as its own unit of study, without making any claims about the status of the
documented language variety as a language or dialect. This agnosticism is advan-
tageous in phylogenetic studies, since the terms ‘language’ and ‘dialect’ imply
something about the relationship of a documented language variety to other doc-
umented language varieties, and a commitment to one term or the other therefore
represents a phylogenetic assumption.

[10] Jayden L. Macklin-Cordes, Claire Bowern and Erich R. Round
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3.1 Language sample

Pama-Nyungan is by far the largest language family on the Australian continent,
covering nearly 90% of its landmass (everywhere except for three areas: part of
the Top End, part of the Kimberley, and the whole of Tasmania) and encompass-
ing around two-thirds of the languages present at the time of European settlement
(Bowern & Atkinson 2012: 817). Pama-Nyungan was first proposed and named by
Kenneth Hale (Wurm 1963: 136) and it has been the subject of considerable his-
torical linguistic study since this time. Although the family has presented some
challenges for historical linguistics, the phylogenetic unity of Pama-Nyungan has
been established on traditional historical linguistic grounds (Alpher 2004) with
many subgroups identified within (for example, O’Grady et al. 1966; Wurm 1972;
Austin 1981). For an overview of the history of Pama-Nyungan classification, see
Bowern & Koch (2004: Chapter 1–5) and Koch (2014). Bowern & Atkinson (2012)
perform a computational phylogenetic analysis of Pama-Nyungan using lexical
data from 194 language varieties, providing for the first time a fully bifurcat-
ing phylogeny of the entire Pama-Nyungan family. Bouckaert et al. (2018) subse-
quently perform a phylogeographic analysis using the same dataset, but refined
and expanded to 306 language varieties and including a geographic element to
estimate the point of origin and spread pattern of the family through time and
space.

The Pama-Nyungan family provides an excellent test case for the present
study. It holds practical advantages which make the task of phonological compar-
ison easier, but it also provides us with a deliberately high bar to clear from a
theoretical perspective. Both of these features are a result of the unusual degree
of phonological homogeneity observed among Australian languages. Australian
languages have long been noted for a degree of similarity between phonological
inventories of contrastive segments that is exceptional and unexpected in light
of the phylogenetic and geographical breadth of the family, the level of diversity
observed in vocabulary and aspects of grammar, and the level of phonological
diversity found in comparably-sized families of languages elsewhere in the world.
This has been noted as early as Schmidt (1919) and in more recent times by Capell
(1956); Voegelin et al. (1963); Dixon (1980); Busby (1982); Hamilton (1996); Baker
(2014); Bowern (2017) and Round (2021a), among others. This curious level of
homogeneity extends to phonotactics too (Dixon 1980; Hamilton 1996; Baker
2014; Round 2021b).

On one hand, the abundance of similar phonological inventories makes the
task of comparison between them easier, because it limits the problem of dataset
sparsity. Consider a character coding the frequency of some sequence of two seg-
ments xy in a language: This character can only be compared between languages

Phylogenetic signal in phonotactics [11]
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that contain both x and y segments in their inventories. If a language lacks either
segment in its inventory, then the character will be coded as absent or missing (as
distinct from 0, where a language possesses both segments but never permits them
in sequence). We expect fewer missing values in Australia, where languages tend to
share a large proportion of directly comparable segments, when compared to other
parts of the world where we would expect to see many more missing values.

On the other hand, an ostensibly high degree of phonological homogeneity,
in spite of considerable phylo-genetic diversity, presents challenges for historical
linguistics. Baker (2014: 141) and Alpher (2004: 103) have both written on the diffi-
culties for historical reconstruction in Australia because of this. Moreover, a phy-
logeny implies some degree of historical divergence, but in the case of Australian
languages, there would appear to be little by way of phonological divergence, let
alone divergences which are phylogenetically patterned. We therefore choose to
study an Australian language family as a deliberately difficult test case, where we
expect the bar to be set high with respect to detecting phylogenetic signal.

Gasser & Bowern (2014) counter prevailing views on Australian phonological
homogeneity. They find that common assumptions, of the kind discussed above
and commonly found repeated in reference grammars, mask a degree of variation
which is otherwise revealed by, firstly, extracting data on segmental inventories
directly from wordlists and, secondly, considering segmental frequencies
extracted from wordlists. This result motivates our current approach; here, we
are also concerned with matters of frequency, extracted directly from language
wordlists. However, we look at different kinds of characters, pertaining not to sin-
gle segments but to biphones, and consider them with respect to their phyloge-
netic implications.

3.2 Wordlists

Our Pama-Nyungan phonotactic data is extracted from 112 wordlists which are
part of a database under development by the last author (Round 2017b), extending
the CHIRILA resources for Australian languages (Bowern 2016). In this study
we restrict our attention to the most accurate sources available, and use only
lexical data that is compiled by trained linguists and for which the underlying
dataset is available in published or archived form. Additionally, we restrict our
sample to wordlists containing a minimum of 250 words. We include this cut-off
since measurement accuracy is a concern for smaller wordlists. A documented
wordlist is necessarily only a subset of the complete lexicon of a language and it
is unclear how big a wordlist must be before frequency statistics begin to stabi-
lize around a sufficient level of accuracy. There is some work in this space con-
cerning frequencies of single segments (Dockum & Bowern 2019), suggesting a

[12] Jayden L. Macklin-Cordes, Claire Bowern and Erich R. Round
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rapid decline in the accuracy of phoneme frequencies as wordlists drop below
250 words. Longer wordlists will always be better, however we select 250 words as
a reasonable compromise which maintains a generally broad coverage of Pama-
Nyungan languages. The 112 language varieties in our sample represent 26 of the
36 major Pama-Nyungan subgroups and 3 isolates listed in Bowern (2018b). We
return to the subject of wordlist sizes and potential implications for our results in
§7.1.

Figure 1. Lexicon sizes.

Bibliographic details for all underlying data are available in §S2 of the Supple-
mentary Information. Owing to differences in the length of primary sources, there
is considerable diversity in the size of the lexicons we use. As shown in Figure 1,
the difference from smallest to largest is over an order of magnitude (min. 250,
max. 4955), with the middle fifty percent between 518 and 1364 items. Mean lexi-
con size is 1109 (SD 913).

Original source data, which is typically orthographic and, if digital, is some-
times mixed with metadata or other extraneous material, has undergone extensive
data scrubbing, conversion to phonemic form using language-specific orthogra-
phy profiles (Moran & Cysouw 2018), and additional automated and manual error
checking. These procedures ensure basic data cleanliness. Separately however, it
has long been recognized that the segmental-phonological analysis of languages
is a non-deterministic process (Chao 1934; Hockett 1963; Hyman 2008; Dresher
2009). Two linguists faced with the same data may produce different analyses,
not due to error but due to different applications of the very many analytic cri-
teria that figure into any analysis of segments. Consequently, the cross-linguistic
phonological record varies not only according to language facts per se, but due
also to variation in the practice of linguistic analysis. Recent literature (Lass 1984;
Hyman 2008; Van der Hulst 2017; Round 2017a; Kiparsky 2018) emphasizes the

Phylogenetic signal in phonotactics [13]
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value of normalizing source descriptions prior to the analysis of cross-linguistic
phonological datasets. This is not an information destroying process – it does not
‘standardize’ languages – but it may shift information from one part of the rep-
resentation (e.g., contrast between individual symbols) to another (e.g., contrasts
between sequences of symbols), in order that information is located in a com-
parable way across the languages in the dataset, and therefore is more amenable
to comparative analysis. Our wordlist data is normalized is this sense. Complex
segments are split into simple sequences (e.g., prenasalized stops are split into a
homorganic nasal + stop sequence); long vowels are represented as a sequence
of identical short vowels, and vowel-glide-vowel sequences in which the glide is
homorganic with either vowel are normalized to vowel-vowel; fortis consonants
are represented as a sequence of identical short consonants, and positionally neu-
tralized fortis/lenis stops as singletons; laminal consonants which do not figure in
a pre-palatal versus dental opposition are represented as palatal, and rhotic glides
which do not figure in an alveolar versus post-alveolar opposition are represented
as post-alveolar (see also Round 2019a; Round 2019b). The phonotactic charac-
ter sets used in this study were extracted from these normalized, comparably seg-
mented wordlists.

3.3 Reference phylogeny

The reference phylogeny we use is a maximum clade credibility tree4 of 285
Pama-Nyungan language varieties inferred using lexical cognate characters by
the second author (Figure S1, Supplementary Information). It was inferred inde-
pendently of this study, prior to this study’s conception and without the involve-
ment of the first and third authors. It was inferred using the same Stochastic
Dollo model as Bowern & Atkinson (2012), but with an expanded and refined
dataset. Further details of the model and phylogeny construction are described in
Bowern & Atkinson (2012); Bowern (2015) and Bouckaert et al. (2018). The cog-
nate dataset used to infer the reference phylogeny is available on Zenodo (Bowern
2018b). See §S1 of the Supplementary Information for more information on the
reference phylogeny.

4. Bayesian phylogenetic methods return not a single phylogenetic tree but a posterior distrib-
ution of many possible trees. These trees can be summarized into a single maximum clade cred-
ibility tree with confidence levels for each node in the tree, corresponding to how frequently
that node appears in the posterior sample. It is the maximum clade credibility tree that we use
for a reference phylogeny in this study. See Bowern & Atkinson (2012) and Bouckaert et al.
(2018) for a full explanation of the methods used to infer the phylogenies considered in this sec-
tion.

[14] Jayden L. Macklin-Cordes, Claire Bowern and Erich R. Round
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We considered a reference tree from a newer phylogeographic analysis of
Pama-Nyungan based on largely the same data plus further expansion to 304
doculects and continued refinement (Bouckaert et al. 2018), however, we opted
against its use for this particular study. The reason for this is that, although
Bayesian inference of phylogenetic tree topology is considered generally robust
to the levels of lexical borrowing observed among Pama-Nyungan languages
(Greenhill et al. 2009; Bowern et al. 2011), borrowing still has the effect of reduc-
ing branch lengths across the tree (Greenhill et al. 2009). This effect, and conse-
quently the accuracy of branch length estimates, is equally applicable to both trees
considered here. However, the geographic element in the phylogeographic study
uses, in part, branch lengths to model geographic dispersal. The posterior dis-
tribution of trees, which is jointly informed by cognate data and geography, may
therefore show a bias towards geographically proximal languages whose apparent
divergence times have been reduced by high rates of borrowing. Thus, although
branch length estimates will be impacted by borrowing in any phylogenetic study
of Pama-Nyungan, there is more chance of borrowing affecting topology in the
phylogeographic study.

We consider it unlikely that the overall conclusions of the study would be
altered by the choice of which version of the Pama-Nyungan phylogeny we use
as a reference tree. Each of the studies referenced above produced highly congru-
ent Pama-Nyungan phylogenies (for a detailed comparison, see Bouckaert et al.
2018). Furthermore, Bouckaert et al. (2018) features fixed clade priors based on
subgroups identified in earlier studies, so topological differences are constrained
to some extent by design. Nevertheless, the accuracy of the reference tree is a key
assumption of the methods we use in this study, and thus phylogenetic uncer-
tainty is an important consideration. We return to this point in §7.1 and evaluate
the overall robustness of our results to phylogenetic uncertainty by replicating a
subset of phylogenetic signal tests over a posterior sample of trees.

As discussed above, we treat each wordlist in our study as its own doculect.
The reference tree in this study was inferred using a similar approach, while
remaining less-committal about the particular status of the unit of analysis.
Resources were sometimes combined for a particular language, but they are also
frequently broken up into separate units, particularly when the resources come
from different authors and different time periods. We have taken care to match
the wordlists in this study to their exact or best corresponding tip in the reference
tree. In most cases, the wordlists we use here are the same as those used to gener-
ate the cognacy judgements used to infer the reference phylogeny. In other cases,
we use a different source to the one used for the reference phylogeny but there is,
nevertheless, a straightforward one-to-one mapping between the language vari-
ety our wordlist represents and a corresponding tip in the tree. In one case, our

Phylogenetic signal in phonotactics [15]
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Mudburra source (Nash et al. 1988) matches neither of the sources for the two
Mudburra tips in the reference phylogeny. However, the two varieties in the ref-
erence phylogeny have the same date. This entails that when either of them is
removed from the tree, the exact same result is obtained in terms of tree geome-
try, which is what is significant for our investigation. Accordingly, we remove one
and match our source to the other.

4. Phylogenetic signal in binary phonotactic data

In the simplest case, the phonotactics of different languages may be compared
in terms of which sequences of two segments (biphones) they permit and which
they do not. If claims about the relative homogeneity of phonotactic constraints in
Australian languages hold, then we would expect this kind of comparison to yield
little, if any, phylogenetic signal.

In this test, we construct the dataset as follows: We automatically extract
from all wordlists every unique sequence of two segments – or more accurately,
sequences of xy where each of x and y is either a phonological segment or a word
boundary ‘#’. Each sequence becomes a character (variable) in the dataset, for
which every language receives a binary value: 1 if the sequence xy is found in
the language’s wordlist (even if only once); 0 if the language contains both seg-
ments in its inventory but the sequence xy never appears in its wordlist; or, NA
(not applicable, missing) if the language does not contain one (or both) of either
segment x or y in its inventory (and therefore cannot contain the sequence xy a
priori). Binary data of this kind represents sequence permissibility: Where a lan-
guage contains both segments in its inventory, it will either permit them to appear
together in sequence or it will not. In this respect, the information encoded by
these characters is similar to what one might find in the phonotactics section of
a descriptive grammar, where one often encounters a description in prose and/
or a basic tabulation of which segments are permitted and where, within syllable
and word structures. However, this kind of information is also, in a sense, quite
coarsegrained, since there are only two possible values. A sequence which is very
common in one language will be coded in exactly the same way as a sequence
which only appears a handful of times in another language.

We apply the D test individually to each character in the dataset that meets
two conditions: at least 50 non-missing values (due to the aforementioned relia-
bility issue with sample sizes smaller than this) and at least one instance of varia-
tion (we do not test characters where all languages share identical 1 or 0 values).
Given the extensive history of description of Australian languages as phonotac-
tically homogenous, our prior expectation is that testing binary data will fail to

[16] Jayden L. Macklin-Cordes, Claire Bowern and Erich R. Round
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yield significant phylogenetic signal. Indeed, we might expect that D will fall sig-
nificantly below 0, indicating that values are clumped among tips on the reference
phylogeny even more conservatively than would be expected if they had evolved
in the same phylogenetic pattern as lexical data.

To evaluate the statistical significance of D for any given character, a p value is
estimated for each of two null hypotheses: The null hypothesis that D= 1 (H0(D=1),
character values are distributed randomly with regards to phylogeny) and the
null hypothesis that D =0 (H0(D=0), character values are distributed as could be
expected if the character has evolved along the phylogeny according to a Brown-
ian motion model). Each p value is calculated using the permutation procedure
described at the end of §2. Our distributions of randomly simulated and phyloge-
netically simulated sums of sister tip/clade differences (∑dr and ∑db) are obtained
via 10,000 permutations per biphone. The conventional cutoff for statistical sig-
nificance is p= 0.05. Here, we use the corresponding Bonferroni-corrected cutoff
of 0.025.5 For any given character, there are six possible results:

– D is significantly below 0. Character values are even more tightly clumped
among close relatives than Brownian motion alone would lead us to expect.

– D is significantly below 1 and not significantly different from 0. The data pat-
terns phylogenetically, i.e., there is phylogenetic signal.

– D is significantly above 0 and below 1. The data is neither clearly random nor
clearly phylogenetic.

– D is significantly above 0 and not significantly different from 1. It is consistent
with randomness, not phylogeny.

– D is significantly above 1. It is even more dispersed than expected via a ran-
dom process.

– D is not significantly distinct from 0 nor 1. The patterning of the data is inde-
terminate, and cannot be distinguished from randomness nor from Brownian
phylogenetic evolution.6

5. Bonferroni correction is used because the conventional threshold for statistical significance,
0.05, represents the expected chance of a false discovery (false positive). This figure is known
as the type I error rate (α). The chance of a false discovery is multiplied when multiple tests
are carried out. Bonferroni correction, which involves dividing the threshold for statistical sig-
nificance by the number of tests being conducted, ensures that the chance of observing a false
positive in any of the set of tests remains at the conventional rate, α=0.05. In our case, two null
hypotheses are tested for each character, hence we divide the threshold for statistical signifi-
cance by two, ensuring the chance of a false positive for any particular character is 0.05.
6. Technically, an indeterminate result can also arise in the seemingly contradictory instance
that D is significantly below 0 but not significantly distinct from 1. This can happen when the
distributions of phylogenetic and random simulations are highly overlapping and the random

Phylogenetic signal in phonotactics [17]
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Figure 2. Density of D estimates for binary biphone characters. Dotted lines mark D =0,
the phylogenetic expectation, and D =1, the random expectation. Mean D for all
characters is 0.43, marked in red.

To summarize, the testing procedure proceeds as follows. For each binary
biphone character, if the character has at least 50 non-NA values and the character
has at least one ‘1’ and one ‘0’ value (i.e., not every value is identical), then test as
follows (otherwise discard):

– Calculate D.
– Conduct randomization procedure to calculate p for H0(D =0).
– Conduct randomization procedure to calculate p for H0(D =1).

A result is interpreted from the combination of D and two p values.

distribution is wider and flatter than the phylogenetic distribution. We observed one instance
of this for a biphone with a single ‘1’ value and 72 ‘0’ values. As one would expect when every
language but one shares the same value, this biphone is more clumped than in almost all sim-
ulations – 99.25% of phylogenetic simulations and 98.57% of random simulations. This makes
the biphone statistically significantly more clumped than the phylogenetic expectation but frac-
tionally misses the threshold for statistical significance (98.75% for a Bonferroni-corrected, two-
tailed p test) in determining whether it is significantly different from the random expectation.
This rare anomaly can only occur in cases of extremely skewed data (for example, when all lan-
guages share an identical value except for one outlier language), where phylogenetic and ran-
dom simulations tend to overlap. We discuss the effect of highly skewed data and the effect of
removing such data in §4.2 below.

[18] Jayden L. Macklin-Cordes, Claire Bowern and Erich R. Round
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4.1 Results for binary phonotactic data

We estimate D for 415 biphone characters using a script based on the phylo.d func-
tion in the caper package (Orme et al. 2013), implemented in the statistical soft-
ware R (R Core Team 2017).7 The 415 D values cluster centrally around a mean
of 0.43. The distribution is leptokurtic (kurtosis =11.42), meaning there are more
outliers relative to a normal distribution, making the distribution appear as a tall,
narrow peak with long tails (Figure 2). The standard deviation is large (3.74).

The D test was of indeterminate significance for half of all characters (234
characters, 56% of the dataset). The D scores for 160 characters (39% of the total
dataset) show evidence of phylogenetic signal. Just 17 characters (4%) show the
opposite result, where the character is consistent with randomness and there is no
phylogenetic signal present. Both null hypotheses are rejected for the remaining
4 characters, all of which are more clumped than their phylogenetic expectation.
None fall somewhere between phylogenetic and random expectations (where D is
significantly above 0 but significantly below 1), nor are any significantly more dis-
persed than the random expectation. The distribution of these results among dif-
ferent biphone characters is plotted in Figure 3. Note that we expect around 5% of
null hypothesis rejections (approximately 9 of 185 rejected null hypotheses) to be
false discoveries. Nevertheless, when considering the whole dataset as an ensem-
ble rather than each character individually, a general result can be discerned. The
clearest conclusion is that binary, permissibility-based characters tend to be low
yielding in information, giving a statistically significant outcome in fewer than
half of cases. Nevertheless, where a significant result can be determined, phylo-
genetic signal does tend to be present – to a degree that is perhaps surprising
in light of previous literature describing the relative homogeneity of Australian
phonotactic restrictions and their lack of utility in historical endeavours. This
result suggests there may be a greater degree of historical information contained
in Pama-Nyungan phonotactics than previously thought. However, it may be that
a finer-grained approach to data extraction is needed in order to detect it.

These results can be compared to two earlier studies performing the same
test on much smaller samples of languages. In the first, Macklin-Cordes & Round
(2015) find no evidence for phylogenetic signal in the Yolngu subgroup of Pama-
Nyungan – rather, data are significantly over-clumped, suggesting a higher degree
of conservatism in phonotactic restrictions relative to lexical data. They fail to

7. The dataset for this and subsequent tests are available on Zenodo at http://doi.org/10.5281
/zenodo.3988775. This repository also includes a full table of results and the R scripts used to
perform the analysis and produce figures for the paper. See §S3 of the Supplementary Informa-
tion for usage instructions and a full description of these materials.

Phylogenetic signal in phonotactics [19]
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Figure 3. Phylogenetic signal significance testing for binary biphone characters. This grid
colour-codes each biphone character according to the results of its respective significance
tests. The grid is arranged such that the vertical axis represents the first segment of the
biphone and the horizontal axis represents the second segment. Besides a tendency for
phonotactic restrictions at word boundaries to show phylogenetic signal, few patterns
stand out.

reject a null hypothesis of D= 0 for Ngumpin-Yapa, suggesting there may be a
degree of phylogenetic signal in the Ngumpin-Yapa dataset. However, the pilot
study results should be treated with caution – particularly the failure to reject
the D= 0 null hypothesis in the case of Ngumpin-Yapa – due to the small sample
sizes (10 languages for Ngumpin-Yapa, 7 for Yolngu), well below the minimum
of 50 taxa recommended by Fritz & Purvis (2010). Dockum (2018) performs the
same analysis using biphone characters from 20 Tai language varieties of the Kra-
Dai family. In contrast to Macklin-Cordes & Round (2015), Dockum finds some
evidence of phylogenetic signal in the Tai data and suggests perhaps the earlier
result was due to insufficient variation in that particular language sample rather
than a limitation of binary biphone characters per se. Although the low informa-
tion yield from binary data is to be expected, our results here appear to support
Dockum’s conclusion.

4.2 Robustness checks

Given a sufficient number of taxa for which data are available (>50), D scores
should reflect a degree of phylogenetic signal present in the data, independently

[20] Jayden L. Macklin-Cordes, Claire Bowern and Erich R. Round
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of tree size (the number of taxa) and shape (branching patterns). To check this, in
Figure 4(A) for each character we plot its D score against the number of doculects
for which it had non-missing values. Irrespective of the number of doculects that
supply non-missing values, the D scores appear to cluster centrally around mean
D for the dataset, suggesting that D is not being unduly affected by missing val-
ues for particular characters. A second check leads to rather different results, how-
ever. We check whether skewed distributions of character values affects D scores
(Figure 4(B)). Here, we consider the distribution of 1s and 0s for each charac-
ter and plot D against how skewed the distribution of character values is towards
a particular value. For example, a character where there are 108 ‘1’ values in the
dataset and only 4 ‘0’ values will have a skewing rating of 0.96 (the count of ‘1’ val-
ues, 108, divided by 112 total observations). Here, we find that when the ratio of 1s
and 0s for a character is highly unequal, estimates of D tend towards extreme mag-
nitudes while also being unrevealing, that is, statistically indistinguishable from 0
and 1.8 As described above, Australian languages are known for homogeneity in
phonological inventories and phonotactic restrictions, so consequently there are
many characters with skewed distributions affecting the results. In Figures 5–6, we
plot a subset of the D test results, restricted to characters with less skewing.

Figure 4. Scatterplot of D scores against (A) the number of doculects with non-missing
values for each character and (B) the skewing of the distribution of 1s and 0s for each
character. D clusters evenly around the mean regardless of the number of missing values.
Variation in D increases greatly among characters where all but 1 or a few doculects share
the same value, but the results are overwhelmingly not significant.

8. Note that it is a desirable feature of the D test that it should return a lack of significance
when there is a near-complete lack of variability in the data for the test to evaluate. This is an
issue with the data, not the test.

Phylogenetic signal in phonotactics [21]
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Figure 5. Density of D estimates for binary biphone characters where character values
are skewed less than 97:3.

5. Phylogenetic signal in continuous phonotactic data

We test whether a higher degree of phylogenetic signal is detectable in
continuous-valued biphone characters. As in the previous test, we take every pos-
sible sequence of two segments, or biphones, in our sample of 112 Pama-Nyungan
wordlists. In this case, however, rather than simply coding for the presence of
a biphone in a language’s lexicon, we consider the relative frequencies of tran-
sitions between the segments in that biphone across the language’s lexicon. For
each biphone character, we take two values: The Markov chain forward transition
probability – that is, for a biphone xy, the probability of x being followed by y,
normalized over all instances of x. This captures, if only in a basic way, our aware-
ness that words do not consist of strings of independent segments, but rather the
probability of observing some segment is very much dependent on what came
before it. Secondly, we take Markov chain backward transition probabilities – that
is, for the biphone xy, the probability of y being preceded by x, normalized over
all instances of y in the lexicon. The frequency characters we extract come from
wordlists. This is advantageous in that they are somewhat independent of word
frequency effects since each word is counted only once, in contrast to frequencies
extracted from language corpora. On the other hand, speakers show sensitivity to
phoneme frequencies in language use (for example, when coining novel words)
(Coleman & Pierrehumbert 1997; Zuraw 2000; Ernestus & Baayen 2003; Albright
& Hayes 2003; Eddington 2004; Hayes & Londe 2006; Gordon 2016) so word fre-
quency will likely have some effect on phoneme and biphone frequency even in

[22] Jayden L. Macklin-Cordes, Claire Bowern and Erich R. Round
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Figure 6. D scores for binary biphone characters where character values are skewed less
than 97:3. Red shades show a character’s proximity to D =0 – darker red indicates
stronger phylogenetic signal. Blue shades show a character’s proximity to D =1, where
character values are distributed randomly. This heat grid shows the proximity of each
individual character’s D value to D =0, its expectation if the character evolved along the
phylogeny following a Brownian motion process. The vertical axis represents the first
segment of the biphone, the horizontal axis represents the second segment.

a wordlist. Investigation of phylogenetic signal in frequency characters extracted
from corpora versus wordlists may be a possibility for future study.

We quantify phylogenetic signal by estimating K (Blomberg et al. 2003) indi-
vidually for each character, using the multiPhylosignal function, in the picante
package (Kembel et al. 2010), in R statistical software. The K test has somewhat
greater statistical power than the D test, enabling us to apply the test to characters
with as few as 20 non-missing values. Calculation of K works with non-zero values
only, so zero values (where the language contains both segments x and y but x
is never followed by y, or vice versa) are considered not applicable and removed
from calculation. A total of 490 characters (245 biphone forward transition proba-
bilities and 245 backward transition probabilities) meet the criterion of at least 20
languages with non-missing and non-zero values for testing. Subsequently, to eval-
uate whether the level of phylogenetic signal is significant for a given character,

Phylogenetic signal in phonotactics [23]
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we conduct Blomberg, Garland and Ives’ (2003) randomization procedure with
10,000 random permutations per character.

To summarize, this testing procedure proceeds as follows. For each biphone
frequency character, if the character has at least 20 non-NA values and the charac-
ter has at least two unique frequency values (i.e., not every character value is the
same), then test as follows (otherwise discard):

– Calculate K.
– Conduct randomization procedure to calculate p for H0(K=0).

Mean K for all 490 characters is 0.54 (SD 0.21) (Figure 7). This is comparable to
certain physiological traits presented as examples of biological traits with a high
degree of phylogenetic signal by Blomberg et al. (2003), for example, K =0.55 for
log body mass of primates. Using the Blomberg et al. (2003) randomization pro-
cedure, we find a statistically significant degree of phylogenetic signal for 351 of
490 characters (178 forward transition characters, 173 backward transition charac-
ters), or 72% of the total dataset.

Figure 7. Density of K scores for all frequency-based biphone character (frequencies of
both forward and backward transitions between segments).

We consider whether phylogenetic signal is higher or lower in certain kinds
of biphone characters. Figure 8 shows a matrix of K scores for forward transition
characters, with rows and columns arranged by phonological natural class. No
clear pattern stands out.

[24] Jayden L. Macklin-Cordes, Claire Bowern and Erich R. Round
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Figure 8. Phylogenetic signal for forward transition frequencies. This heat grid shows K
scores for biphone characters (forward transition frequencies only). Each square
represents a biphone (where the first segment is listed on the vertical axis and second
segment on the horizontal axis). Data points are taken from the frequencies of each
biphone, xy, over the total frequency of segment x in each language, and then
phylogenetic signal K is measured for each biphone. Darker red shades indicate a
stronger degree of phylogenetic signal. As with the D test, no clear pattern of high versus
low K scores stands out, although there is a high degree of phylogenetic signal in the
dataset overall. The symbols /ȶ, ȵ, ȴ/ represent alveo-palatals.

5.1 Robustness checks

Although K is intended to be a measure of phylogenetic signal that is indepen-
dent of tree size and shape, tree size and shape can have some effect on results
in practice (Münkemüller et al. 2012). We wish to check that the Pama-Nyungan
tree does not contain any unusual properties that could cause either the K sta-
tistic or the randomization procedure to perform unexpectedly. To do this, we
allow simulated characters to evolve specifically along the Pama-Nyungan ref-
erence tree. We vary the model of evolution, between perfect Brownian motion
along the entire tree and pure randomness generated directly at the tips of the
tree, by mixing different strengths of Brownian phylogenetic signal and non-
phylogenetic noise. 1000 traits are simulated at each percentage point interval for

Phylogenetic signal in phonotactics [25]
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100,000 total simulated traits (in other words, 1000 traits simulated with 100%
Brownian motion, then 1000 traits simulated with 99% Brownian motion and 1%
randomness, and so on, until the traits evolve 100% at random). Each simulated
trait is then tested for statistical significance using the randomization procedure
described in §2, with 1000 repetitions to determine a p value. In a robust test-
ing scenario, K will scale appropriately between 0 and 1 according to the level
of Brownian motion and random noise being simulated, and the randomization
procedure will distinguish between traits with and without a significant degree
of phylogenetic signal with a satisfactory amount of Type I (false positive) and
Type II (false negative) errors.

Figure 9. Behaviour of the K statistic and randomization procedure with the Pama-
Nyungan reference phylogeny. Artificial characters are simulated evolving along the
phylogeny with varying levels of non-Brownian noise. When a pure Brownian motion
process operates, K averages around 1 as expected. Where there is no Brownian process at
all (and therefore no phylogenetic signal) K is elevated to around 0.2 – likely an artefact
of this particular tree size and shape.

The results are plotted in Figure 9. The K statistic shows a considerable degree
of variability but, in the absence of substantial random noise, centres slightly
below K =1 which suggests the statistic is behaving as expected (if not slightly
conservatively) when phylogenetic signal is present. For characters whose simu-
lated evolution is near-random, the baseline of K seems to be elevated a little by
our particular reference tree, with non-phylogenetic simulated characters rang-
ing from the expected K= 0 to around K =0.3. This should be kept in mind when
interpreting K scores across our results. As for the randomization procedure,
Figure 9(B) shows the percentage of simulated traits that were identified as having
a significant degree of phylogenetic signal (p <0.05) at a given level of Brownian
motion mixed with random noise. Above around 65% Brownian motion, there are
no Type II errors. The ability to detect significant phylogenetic signal drops as the
level of random noise increases beyond 35%, though overall the test’s sensitivity
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seems acceptable. At the opposite extreme, where characters are simulated com-
pletely at random (and, therefore, there is no phylogenetic signal to detect) the
randomization procedure falsely detects phylogenetic signal 5.4% of the time, very
close to the expected false discovery rate of 5% (given the conventional threshold
for statistical significance of α =0.05). On the basis of these simulations, we are
satisfied that randomization procedure is sufficiently robust, given the particular
size and shape of the Pama-Nyungan reference phylogeny.

As a final check, we consider whether the K statistic might be affected by the
quantity of missing or ‘not applicable’ values for a given character. We inspect this
visually by plotting, for all biphone characters, the relation between a biphone’s
K score and the number of language varieties with non-missing data points on
which K was calculated (Figure 10). When K is calculated on fewer than around
40 non-missing values, the statistic shows a wider degree of variability. In addi-
tion, phylogenetic signal is deemed statistically significant for fewer characters in
this range, suggesting that the quantity of missing values is affecting the statistical
power of the test. However, all K scores cluster centrally around the mean regard-
less of the number of languages with non-missing values, suggesting that the mean
K we observe for the dataset overall is not significantly affected by missing data.

Figure 10. Estimates of K for forward and backward transition frequency characters
plotted against the number of doculects with non-missing values for each character.
Although some statistical power is lost and variability increases among characters with
more missing values, K scores cluster evenly around mean K (0.52).

Phylogenetic signal in phonotactics [27]
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5.2 Forward transitions versus backward transitions

We find no significant difference in the means of K for forward transition char-
acters (mean K =0.544) and backward transition characters (mean K= 0.537)
(t =0.33, df =487.97, p =0.74, 95% CI [−0.03, 0.04]).

The distributions of K scores for forward and backward transitions are plotted
in Figure 11, showing a high degree of overlap between the two.

Figure 11. Distribution of K scores for forward transition frequencies versus backward
transition frequencies. We find no significant difference between these character types.

5.3 Normalization of character values

Visual inspection of the density plots for each character shows there is a tendency
for character data to be negatively skewed (the weight of the distribution is left-
of-centre), although this is not universally the case. To test whether the particular,
heavy-tailed nature of the data has an effect on tests for phylogenetic signal, we
apply Tukey’s Ladder of Powers transformation to each character in the dataset
and re-run both the K test and randomization procedure. This is a power trans-
formation, which makes the data fit a normal distribution as closely as possible.
It does this by finding the power transformation value, λ, that maximizes the W
statistic of the Shapiro-Wilk test for normality for each character individually.
For our purposes, this transformation is effectively a change in the evolutionary
model: A Brownian motion process is still assumed – a character value may wan-
der up or down with equal probability – but, in this model, character values shift
up or down along a transformed scale.

[28] Jayden L. Macklin-Cordes, Claire Bowern and Erich R. Round
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Mean K for normalized character data is 0.55 (SD 0.2). Of 490 characters,
405 or 83% (206 forward transitions, 199 backward transitions) contain phyloge-
netic signal significantly above the random expectation. There is no statistically
significant difference between mean K for untransformed data (0.54) versus mean
K for normalized data (t =0.49, df =972.26, p= 0.622, 95% CI [−0.02, 0.03]) – see
Figure 12.

Figure 12. Distributions of K for untransformed character values and their normalized
counterparts. We find no significant difference between these distributions.

6. Phylogenetic signal in natural-class-based characters

One limitation of analysing phylogenetic signal in biphone characters is the
assumption that every biphone character is a statistically independent obser-
vation. In historical linguistic processes, however, phonological segments rarely
behave independently. Rather, sound changes are applied to whole sound classes,
thereby affecting any one of various cross-cutting sets of phonological segments
(and, therefore, biphone characters we have used in this study).

To account for this non-independence and more faithfully model what we
know about how phonotactic systems operate in a language, we extract forward
and backward transition probabilities for sequences of phonological features. For
the purposes of this experiment, word boundaries are counted as a class and vow-
els are reduced to a single ‘vowel’ class. Three sets of characters are extracted:
forward and backward transition probabilities between natural classes based on
place of articulation (segments belonging to the following classes: word boundary,

Phylogenetic signal in phonotactics [29]
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labial, dental, alveolar, retroflex, palatal, velar, glottal, vowel); forward and back-
ward transition probabilities between natural classes based on major places of
articulation, where coronal contrasts have been collapsed (word boundary, labial,
apical, laminal, velar, vowel); and natural classes based on manner of articulation
(word boundary, obstruent, nasal, vibrant, lateral, glide, rhotic glide, vowel). The
choice of natural classes is based on well-established principles of organization
among segments in Australian languages (Dixon 1980; Hamilton 1996; Baker 2014;
Round 2021a; Round 2021b).

Table 1. Summary of K analysis for forward and backward transition frequencies
between different natural classes. The two rightmost columns indicate the total number
of characters analysed and the percentage of those characters with a significant degree of
phylogenetic signal according to the randomization procedure.

Classes Mean K n characters significant (%)

Place 0.61 126 94

Major place 0.63  96 75

Manner 0.59  88 66

Figure 13. Comparison of K scores for transitions between different kinds of natural
classes. The differences between all three distributions are not statistically significant.

Table 1 presents mean K and the proportion of significant characters for
each of these three natural-class-based datasets. All show highly similar distrib-
utions (Figure 13). There is no statistically significant difference in the means of
K for the three feature types, according to a one-way ANOVA (F(2, 307)= 0.49,
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p =0.616). An Anderson-Darling k-sample test, which tests the hypothesis that
k independent samples come from a common, unspecified distribution (i.e., no
prior assumption about normality) also finds no significant difference in the
distributions of K scores for the three natural-class-based datasets (AD= 2.19,
T.AD =0.18, p =0.329).

6.1 Natural-class-based characters versus biphones

We compare the degree of phylogenetic signal in the biphone data tested in §5 to
the natural-class-based data tested here (see Figure 14). Mean K for all natural-
class-based characters is 0.61, which is significantly higher than the mean K
for biphone data, 0.54 (t= 4.38, df =622.47, p< 0.001, 95% CI [0.04, 0.1]). The
Kolmogorov-Smirnov test, which is more sensitive to the overall shape of the dis-
tribution than a t-test comparison of means, also finds a significant distinction
between K for biphone characters and K for natural-class-based characters
(D =0.21, p <0.001).

Figure 14. Distributions of K scores for biphone characters, coding the relative
frequencies of transitions between phonological segments, and natural-class-based
characters, coding the relative frequencies of transitions between natural classes of
segments. Phylogenetic signal is higher overall in the natural-class-based dataset than the
biphone-based dataset.

Phylogenetic signal in phonotactics [31]
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7. Discussion

Computational phylogenetic methods are increasingly commonplace in historical
linguistics. However, there has been relatively less consideration of the range of
data types that might profitably be used with computational phylogenetic meth-
ods, beyond traditional, manually-assembled sets of lexical cognate data. In this
study, we have considered the potential utility of quantitative phonotactic data for
historical linguistics, for the reasons that quantitative phonotactic data is (i) read-
ily extractable from basic wordlists, and (ii) may show certain kinds of historical
conservatism, where the historical signal in more traditional lexical data would be
affected by borrowing and lexical innovation.

We extracted frequencies of transitions between phonological segments in
scrubbed and comparably segmented wordlists representing 112 Pama-Nyungan
language varieties. As points of comparison, we extracted two additional datasets:
Firstly, a binarized version of the dataset, which simply records whether or not
particular two-segment sequences, a.k.a. biphones, are present in a language’s
wordlist. This is to emulate, in a simple sense, the kind of information which is
often recorded in the phonology section of published descriptive grammars. We
also extracted frequencies for transitions between natural classes of sounds. This
is to account (at least, to some partial degree) for the fact that phonological seg-
ments tend not to evolve independently but pattern into natural classes, thereby
limiting the independence of biphone-based variables.

To test whether historical information is preserved in our phonotactic
datasets, we tested for phylogenetic signal, that is, the degree to which variance in
the data reflects the evolutionary history of the 112 language varieties. We took an
independent phylogenetic tree, inferred by the second author using lexical cog-
nate data, and assumed a simple Brownian motion model of evolution. Our first
key finding is that a significant degree of phylogenetic signal is detected in all
three datasets – binary, segment-based and sound-class-based. Finding phyloge-
netic signal in the binary dataset is somewhat surprising, given previous descrip-
tions of homogeneity in the phonotactics of Australian languages. Our second key
finding is that phylogenetic signal is significantly stronger in the higher-definition,
frequency-based datasets than it is in the binary dataset. In turn, phylogenetic sig-
nal in the sound-class-based dataset is significantly stronger than the segment-
based datasets. We took a closer look at certain comparisons within datasets,
namely, whether there is a difference between forward and backward transitions,
different kinds of sound classes, or between original (heavy-tailed) data and trans-
formed data (to more closely fit a normal distribution). In all three cases, no sig-
nificant differences were found.

[32] Jayden L. Macklin-Cordes, Claire Bowern and Erich R. Round



  G
ue

st
 (

gu
es

t)
 IP

:  
86

.5
6.

15
.1

3 
O

n:
 M

on
, 0

8 
F

eb
 2

02
1 

07
:0

4:
44

Figure 15. Comparison of K statistics using a 100-tree posterior sample versus the
maximum clade credibility tree alone.

7.1 Overall robustness

One important assumption of our method is that the tree being used as a ref-
erence phylogeny is an accurate depiction of the phylogeny for the languages in
question. It is impossible to verify if this assumption is being satisfied with com-
plete certainty, since it is impossible to observe the past and record a phylogeny
directly. Instead, we must rely on the best available data and methods to infer
a best estimate of the true historical phylogeny. As described in §3.3, the Pama-
Nyungan phylogeny we use in this study was inferred by the second author using
lexical cognate data and a Bayesian computational method that produces a large
posterior sample of trees. The posterior sample contains a large number of trees,
all of which have a relatively high plausibility, and relatively equal plausibility, of
being correct. However, we require a single tree. We select it using the maximum
clade credibility method, which runs as follows. All trees contain hierarchies of
clades. For any two trees, we can compare how many clades they share. In our
posterior sample, we can ask which one tree shares the greatest number of clades
with all others (we can also ask which trees rank second, third, fourth, etc. accord-
ing to the same metric). Thus in §6 we used the maximum clade credibility tree
drawn from our posterior sample of trees. This is a commonly used approach
in the phylogenetic sciences for summarising many trees, using a single tree that
is maximally representative of the whole sample. However, naturally there is no
guarantee that the maximum clade credibility tree is the true tree. It may be the
case that a better representation of the true Pama-Nyungan phylogeny (assuming

Phylogenetic signal in phonotactics [33]
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it is best represented by a single tree) exists among the many other trees the pos-
terior sample. This kind of uncertainty is known as phylogenetic uncertainty.

To evaluate the robustness of our results against phylogenetic uncertainty, we
repeat the K test for phylogenetic signal using a set of alternative trees. Namely,
we test a subset of sound-class-based characters against each of 100 trees that we
select from the posterior sample. The subset of characters includes forward and
backward transitions between place features, and forward and backward transi-
tions between manner features. The trees selected are the 100 top-ranked trees in
the posterior sample according to the maximum clade credibility metric. In this
way, we incorporate a degree of uncertainty in the topology and branch lengths
of the Pama-Nyungan phylogeny, while restricting our attention to a subset of
the most representative alternatives in the posterior sample. Note that overall the
Pama-Nyungan tree is quite well resolved, so these trees differ from one another
only minimally.

214 sound class characters in total are tested, giving 21,400 K statistics in total
(each character multiplied by 100 trees). The mean of these K scores is 0.59, which
compares to a mean K of 0.6 for the same characters applied only to the maxi-
mum clade credibility tree as in §6. This difference is not statistically significant
(t =−0.92, df =217.21, p =0.359, 95% CI [−0.05, 0.02]). The distributions of these
K scores are illustrated in Figure 15. This result suggests our results are robust to
phylogenetic uncertainty associated with our reference tree. The maximum clade
credibility tree we use is not significantly inflating or deflating the K statistic.

A reviewer points out that we have only demonstrated robustness to phylo-
genetic uncertainty for a Pama-Nyungan phylogeny generated with a particular
lexical dataset. We have not demonstrated robustness to potential further refine-
ment of the Pama-Nyungan phylogeny that may come about with future expan-
sion and/or refinement of the lexical dataset, and/or inclusion of data from other
linguistic domains such as morphology. Future revisions of the Pama-Nyungan
phylogeny will necessitate further robustness testing. The effect of such revisions
may be to strengthen phylogenetic signal in phonotactic data (if limitations of the
current phylogeny manifest as noise in the signal), weaken phylogenetic signal (if,
for example, phonotactic data were to correlate more strongly with lexical data
than morphological or other kinds of data), or be neutral in effect.

In §3.2 we mentioned that our wordlists vary significantly is size. The length
of a wordlist can correlate with many other linguistic properties that it has. For
instance, in our data, the number of entries in a wordlist and the mean phone-
mic length of those entries have a Pearson’s correlation coefficient of r= 0.71
(p <0.001). That is, longer lists tend to contain longer words (presumably since
shorter lists are weighted towards more basic, shorter vocabulary items). The exis-
tence of correlations like this means that it is not possible simply to ‘counterbal-
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A.

B.

Figure 16. Wordlists ranked by size. (A) shows every second wordlist in the language
sample. (B) shows the middle 50% of wordlists. Each subset contains the same number of
wordlists but discrepancy in their size is greatly reduced in (B).

Phylogenetic signal in phonotactics [35]
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ance’ the length of wordlists by sub-sampling or resampling their items so that
the resampled lists all have the same length. For example, the resampled lists that
derive from longer underlying lists would still contain longer words. Nevertheless,
it would still be desirable to know whether our results in §4–6 are unduly influ-
enced by the disparity in our wordlist lengths, by manipulating wordlist length in
a controlled fashion. To do this, we extracted two different language sub-samples
from our dataset. For the first, we ranked all wordlists by size and selected every
second language, producing a sample half the original size but with the same dis-
parity in lengths. For the second, we ranked all wordlists by size and selected the
middle 50% of the ranking, again producing a sample of half the size but this time
with heavily reduced disparity, as shown in Figure 16. Wordlists in the middle 50%
range in length from 528 to 1361 (mean 870).

For these samples, we ran K tests on the same subset of place and manner
natural class characters as for the tree uncertainty robustness test above. Our rea-
soning is that if wordlist disparity strongly affects the estimation of phylogenetic
signal, then we should see a clear difference in the results. Mean K for the mid-
dle 50% of wordlists is 0.78, which is somewhat greater than the mean for every
second wordlist, 0.69. This difference is small but statistically significant (t= 3.6,
df =425.76, p= 0, 95% CI [0.04, 0.13]). This suggests that disparities in wordlist
length are somewhat degrading the phylogenetic signal in our data, although
there remains broad similarity between them, as pictured in Figure 17.

Figure 17. Comparison of K statistics using only wordlists falling within the 25th and 75th
quantiles (middle 50%) for wordlist size, versus a sample of every 2nd wordlist (when
ranked in order of size).
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One attributing factor for this small degradation in phylogenetic signal may
be measurement error among the bottom quartile of small wordlists. Throughout
this study, we have assumed that all character values are accurate and do not
account for measurement error. Accounting for measurement error when testing
for phylogenetic signal is an area of active development in comparative biology
(Zheng et al. 2009). In future studies, this degradation in phylogenetic signal
could be investigated by relating variation in K statistics carefully to various lin-
guistic properties that correlate with the length of wordlists.

7.2 Limitations

Any investigation of phylogenetic signal in essence is an investigation of cross-
linguistic (dis)similarity. Accordingly, whenever our representations of linguistic
facts are altered, then the phylogenetic signal detectable in them will almost cer-
tainly change to some degree. In this paper, our focus has been trained on the
initial, fundamental question of whether phylogenetic signal is detectable in max-
imally simple phonotactic characters. However, as work like ours increases, one
priority will be to examine how investigators’ choices about how data is repre-
sented affects results.

Relevant for the current study, in §3.2 we described a process of normal-
ization. The motivation for this was to attempt to minimize certain aspects of
variation in phonological representation that can arise from variation in how dif-
ferent linguists analyse the same essential facts (Chao 1934; Hockett 1963; Hyman
2008; Dresher 2009). While normalization per se ought to improve the quality
of cross-linguistic comparisons that the data enables, there is still the question
of which targets one ought to normalize the data towards, and what effect that
choice can have. For example, a reviewer asks whether our choice to split up
complex segments might amplify phylogenetic signal if it leads to certain phy-
logenetically distributed complex segments counting instead as biphones. This
can be answered in three ways. First, in the general case, since splitting segments
changes representations, it will alter aspects of (dis)similarity in the data, and so
is very likely to affect phylogenetic signal in some manner. Second, in this par-
ticular case, the reviewer is likely to be correct, due to details of our method.
Any cross-linguistically rare, complex segment would likely get excluded from
our dataset. This is because, although it would figure in certain biphones, we
have made use only of biphones that reach a minimal level of recurrence across
our language sample, and thus the biphones containing the rare segment quite
likely would not qualify. However, if we split this complex segment into two seg-
ments, thus into a biphone, the resulting biphone may well have sufficient cross-
linguistic recurrence to qualify for inclusion in our dataset, and subsequently may
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contribute to raising phylogenetic signal. A final observation on this point is that
such questions, about how choices in data representation interact with the results
from corresponding quantitative analysis, are made tractable by our method of
data preparation. Unlike many state-of-the-art cross-linguistic datasets, in which
values for each language are hand-coded and thus incapable of being ‘recalcu-
lated’ under altered assumptions, our phonotactic characters are generated algo-
rithmically from an underlying, very rich dataset. With a change to algorithmic
parameters, we can systematically split segments or glue them together, neutral-
ize them or keep them distinct, and document what we have done and how. As
mentioned, in this paper our focus is on the simple existence of phylogenetic sig-
nal. Our methods, though, naturally extend to enable comprehensive checking
of such interactions between data choices and results. Ultimately, as a discipline,
we would like this to be true for all typological research, not just phylogenetics
(Round 2017a). An advantage of our general approach is that it open the doors to
this rigorous mode of inquiry.

A further limitation of this study relates to the assumption that the data being
tested for phylogenetic signal are independent of the data used to infer the refer-
ence phylogeny. In this study, the wordlists from which we extracted phonotac-
tic characters contain, as a small subset, the basic vocabulary items from which
lexical cognate characters were inferred and subsequently used to build the refer-
ence phylogeny. It is unclear exactly to what degree this inclusion of basic vocab-
ulary compromises the independence of our reference tree and phonotactic data.
A reviewer points out that cognate data and phonotactic data are still somewhat
independent, even when extracted from identical wordlists, since phonotactic
attributes are not directly called on to make cognacy judgements. Neverthe-
less, sound change affects both phonotactics and cognate identification, so some
degree of non-independence is to be expected. To ascertain whether this effect
is significant, future studies could parameterize the inclusion/exclusion of basic
vocabulary from the phonotactic data.

One reviewer raises the correlation between phylogeny and geography. A
noted limitation of phylogenetic comparative methods is the inability to account
for geography as a possible confound (Sookias et al. 2018) and this limitation
applies to this study. Although we leave it as a priority for future work, the
task of disentangling phylogeny and geography is not intractable. For example,
Freckleton & Jetz (2009) present a method for quantifying the relative degree of
spatial versus phylogenetic effects in comparative characters.

One final point to note is that recent research suggests that phylogenetic sig-
nal can be inflated when character values evolve according to a Levy process,
where a character value can wander as per a Brownian motion process, but with
the addition of discontinuous paths (i.e., sudden jumps in the character’s value)
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(Uyeda et al. 2018). This is a realistic concern in the linguistic context, where seg-
ment frequencies are subject to sudden shifts caused by phonological mergers and
splits. The possibility of Levy-like evolutionary processes is a matter of concern
also in comparative biology and methods to investigate it are subject to active
development in that field (Uyeda et al. 2018).

8. Conclusion

Historical and synchronic comparative linguistics are increasingly making use of
phylogenetic methods for the same reasons that led biologists to switch to them
several decades ago. Our central contention has been that phylogenetic methods
not only give us new ways of studying existing comparative data sets, but open
up the possibility to derive insights from new kinds of data. Here we demonstrate
the potential for phylogenetically investigating phonotactic data, by showing that
it indeed contains the kind of phylogenetic signal which is the prerequisite for a
whole spectrum of phylogenetic analyses.

We find significant phylogenetic signal for several hundred phonotactic char-
acters extracted semi-automatically from 112 Pama-Nyungan wordlists, demon-
strating that historical information is detectable in phonotactic data, even at the
relatively simple level of biphones and despite ostensibly high phonological uni-
formity. Contrary to the prevailing view in literature on Australian languages, and
contrary to the findings of an earlier pilot study on a much smaller language sam-
ple, we find that binary characters marking the presence or absence of biphones
in a doculect contain enough phylogenetically-patterned variation to detect phy-
logenetic signal. However, we find that statistical power is relatively low when
operating with coarse-grained binary data and quantification of the degree of
phylogenetic signal is affected by a large number of low-variation characters,
where all but one or a few doculects share the same value. We find stronger phylo-
genetic signal in biphone characters of forward and backward transition frequen-
cies. This reaffirms the results of earlier work, for the first time on a sample of
languages spanning an entire large family and the vast majority of a continent.
It also reaffirms earlier findings that Australian phonologies show a greater level
of variation than traditionally has been appreciated, once matters of frequency
are taken into account. We find a significantly greater level of phylogenetic sig-
nal again in characters based on the frequencies of forward and backward tran-
sitions between natural sound classes. The sound-class-based approach reduces
the quantity of characters available to test, but limits sparsity in the dataset
and accounts somewhat better for the role of sound classes in the evolution-
ary processes that affect phonotactic patterns in human language. Interestingly,
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although there exists considerable variation in the level of phylogenetic signal
found in individual characters, we find no observable pattern to this variation in
segment-based biphone characters nor between the mean levels of phylogenetic
signal observed for different kinds of sound classes (e.g., characters concerning
place versus manner of articulation).

This work has implications for comparative linguistics, both typological and
historical. Firstly, we recommend the use of phylogenetic comparative methods in
typological work where the phylogenetic independence of a language sample (or
lack thereof ) is paramount. In the immediate term, this should be the case for any
typological work concerning phonotactics, even in parts of the world such as Aus-
tralia where phonotactics traditionally have been assumed to be relatively inde-
pendent of phylogeny. Beyond phonotactics, however, explicit measurements of
phylogenetic signal can be made for any set of cross-linguistic data and this can
be built into statistical analysis, even in the presence of gaps and uncertainty in
phylogenetic knowledge. In two decades of quantitative development in historical
linguistics, there has still been relatively limited consideration of the kinds of char-
acters used for inferring linguistic histories. The phonotactic characters presented
here can be extracted relatively simply and in large quantities from wordlists, even
where a full descriptive grammar is not available. Here, we test only the degree
to which patterns of variation in our data match our independent, pre-existing
knowledge of the phylogenetic history of the Pama-Nyungan family. However, the
results suggest that phonotactic data of this kind could be used where the phy-
logeny is less certain, either by incorporating phonotactic data into phylogenetic
inference directly or by constraining parts of the tree where lexical data on its own
returns some doubt.
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Résumé

Les méthodes phylogénétiques ont le potentiel en linguistique pour faire de l’inférence des
arbres. Ici, nous montrons comment une approche phylogénétique peut être utilisée avec de
nouveaux types de données linguistiques – la phonotactique statistique. Nous quantifions le
signal phylogénétique – le degré auquel les données reflètent la phylogénie – dans 112 voca-
bulaires de la familie Pama-Nyungan. Nous testons trois types de données : (1) des variables
binaires enregistrant la présence ou l’absence de biphones (séquences de deux segments) (2) les
fréquences de les transitions entre segments, et (3) les fréquences de transitions entre les classes
sonores naturelles. Nous détectons un signal phylogénétique dans tous les ensembles de don-
nées. Le signal phylogénétique est plus élevé dans les données de fréquence plus détaillé que
dans les données binaires, et le plus grand dans les données qui enregistrent des classes sonores.
Ces résultats montrent que c’est possible d’employer une nouvelle source de données facilement
extractibles en linguistique historique.

Zusammanfassung

Phylogenetische Methoden haben ein breites Potenzial in der Linguistik, das über die Inferenz
von Bäumen hinausgeht. Hier zeigen wir, wie ein phylogenetischer Ansatz mit neuen Arten
von Sprachdaten verwendet werden kann – in diesem Fall mit statistischer Phonotaktik. Wir
quantifizieren das phylogenetische Signal – den Grad, in dem die Daten die Phylogenie wider-
spiegeln – in phonotaktischen Daten aus 112 Pama-Nyungan-Vokabularen. Wir testen drei
Datensätze: (1) binäre Variablen, die das Vorhandensein oder Fehlen von Biphonen (Zwei-
Segment-Sequenzen) aufzeichnen. (2) Häufigkeit von Übergängen zwischen Segmenten und
(3) Häufigkeit von Übergängen zwischen natürlichen Lautklassen. Wir erkennen phylogene-
tische Signale in allen Datensätzen. Phylogenetische Signal ist in feinkörnigeren Frequenzda-
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ten größer als in binären Daten und in Daten auf Basis natürlicher Klassen am größten. Diese
Ergebnisse zeigen die Durchführbarkeit davon, eine neue Quelle leicht extrahierbarer Daten in
der historischen und vergleichenden Linguistik einzusetzen.

Address for correspondence

Jayden L. Macklin-Cordes
School of Languages and Cultures
The University of Queensland
Room 320, Gordon Greenwood Building (32)
St Lucia QLD 4072
Australia
jayden.macklincordes@uqconnect.edu.au

Co-author information

Claire Bowern
Department of Linguistics
Yale University
claire.bowern@yale.edu

Erich R. Round
School of Languages and Cultures
The University of Queensland
e.round@uq.edu.au

Publication history

Date received: 17 January 2020
Date accepted: 27 August 2020
Published online: 2 February 2021

https://orcid.org/0000-0003-1910-3969

https://orcid.org/0000-0002-9512-4393 https://orcid.org/0000-0002-7533-8052

Phylogenetic signal in phonotactics [49]

mailto:jayden.macklincordes@uqconnect.edu.au
https://orcid.org/0000-0003-1910-3969
https://orcid.org/0000-0003-1910-3969
mailto:claire.bowern@yale.edu
https://orcid.org/0000-0002-9512-4393
https://orcid.org/0000-0002-9512-4393
mailto:e.round@uq.edu.au
https://orcid.org/0000-0002-7533-8052
https://orcid.org/0000-0002-7533-8052

	Phylogenetic signal in phonotactics
	Jayden L. Macklin-Cordes,1 Claire Bowern2 and Erich R. Round1341The University of Queensland | 2Yale University | 3University of Surrey | 4Max Planck Institute for the Science of Human History
	1.Introduction
	1.1Motivations
	1.2Phonotactics as a source of historical signal

	2.Phylogenetic signal
	3.Materials
	3.1Language sample
	3.2Wordlists
	3.3Reference phylogeny

	4.Phylogenetic signal in binary phonotactic data
	4.1Results for binary phonotactic data
	4.2Robustness checks

	5.Phylogenetic signal in continuous phonotactic data
	5.1Robustness checks
	5.2Forward transitions versus backward transitions
	5.3Normalization of character values

	6.Phylogenetic signal in natural-class-based characters
	6.1Natural-class-based characters versus biphones

	7.Discussion
	7.1Overall robustness
	7.2Limitations

	8.Conclusion
	Funding
	Acknowledgements
	Author contribution statement
	References
	
	Résumé

	
	Zusammanfassung

	Address for correspondence
	Co-author information
	Publication history


