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Abstract— We propose to use a model-based generative loss
for training hand pose estimators on depth images based on a
volumetric hand model. This additional loss allows training
of a hand pose estimator that accurately infers the entire
set of 21 hand keypoints while only using supervision for
6 easy-to-annotate keypoints (fingertips and wrist). We show
that our partially-supervised method achieves results that
are comparable to those of fully-supervised methods which
enforce articulation consistency. Moreover, for the first time
we demonstrate that such an approach can be used to train on
datasets that have erroneous annotations, i.e. “ground truth”
with notable measurement errors, while obtaining predictions
that explain the depth images better than the given “ground
truth”.

I. INTRODUCTION

Accurate hand-pose estimation from monocular depth im-
ages is vital for applications such as fine-grained control in
human–computer interaction, or virtual and augmented real-
ity [25]. However, it is a challenging task due to e.g. complex
poses, self-similarities, and self-occlusions. Many existing
methods address these challenges with powerful learning-
based tools. Such methods dominate the benchmarks on
large public datasets such as NYU [36], and Hands in the
Million Challenge (HIM) [41]. Most of these approaches
are trained in a fully supervised manner to predict the full
set of 21 hand keypoint positions in 3D. However, the
current lack of large-scale training datasets that are accurate
and diverse causes such methods to overfit. This makes it
difficult to generalize well to new settings, or even across
benchmarks [41]. Retraining these methods on different data
requires the full set of 21 (3D) keypoint annotations, which
are tedious to obtain. More importantly, this process is prone
to errors in the data annotations, either due to measurement
errors, or due to human errors. Additionally, methods that
learn a direct mapping from depth image to keypoints
often ignore the inherent geometry of the hands, such as
constant bone lengths or joint angle limits. As such, albeit
their general good performance, these methods may produce
bio-mechanically implausible poses [38]. An alternative to
learning-based approaches are model-based hand tracking
methods, such as [15], [27], [32], [35], among others. These
methods use generative hand models to recover the pose
that best explains the image through an analysis-by-synthesis
strategy. While not suffering from anatomical inconsisten-
cies, and generalizing better to yet-unseen scenarios, they
require good initialization of the model parameters in order
to minimize the non-convex energy function.
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Fig. 1: Our method uses self-supervision to compensate for
erroneous “ground truths” (Blue), resulting in predictions
(Green) that better fit the observed depth image.

Our method addresses the shortcomings of both ap-
proaches with a generative model-based loss embedded into
a learning-based method. Based on a volumetric Gaussian
hand model, this loss incorporates additional annotation-free
self-supervision from the depth image. When combined with
anatomical priors, this supervision can take the place of the
majority of joint annotations for resolving hand pose and
bone length ambiguities. In total, our approach reduces the
number of required annotations from 21 to 6, a 71% decrease.
At the same time, the learning-based framework enables
accurate and efficient inference during test time without
requiring initialization. This effectively combines the main
advantages of the two popular categories.

Most existing methods that utilize a model-based loss
[13], [14], [38], [43] do not explain the input images in
a generative manner. As such, they still require the full
set of 21 annotated keypoints per frame. Additionally, due
to the reliance on the annotations as the only source of
supervision, these methods can overfit to errors and biases
in the annotations. We demonstrate that our method can
overcome such errors through the use of our additional
generative loss.

We summarize our main contributions as follows:
• Compared to classical fully supervised methods, our

generative loss significantly reduces the amount of
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annotations need to accurately infer the full hand pose.
• Despite ambiguities resulting from the reduced anno-

tations, our method can simultaneously infer pose and
bone lengths at test time.

• We provide a new dataset, HANDID, which includes
fingertips and wrist annotations for 7 users to address
the lack of hand shape variations in existing datasets.

• Most importantly, for the first time we demonstrate that
such an approach can produce hand pose predictions
that better fit to the depth image than the “ground truth”
annotations it is trained on.

II. RELATED WORK

Existing approaches for hand pose estimation can be
broadly categorized into learning-based approaches, model-
based approaches, and hybrid approaches.

Discriminative, learning-based approaches. These
methods regress the pose parameters directly from image
and annotation pairings. Tompson et al. [36] first used a
Convolutional Neural Network (CNN) for the task of hand
pose estimation. From this foundation, many methods [17],
[24] develop novel architectures and training procedures to
better model the nonlinear manifold of hand poses. Recent
methods investigate the use of different input representations
such as multi-view, voxels, and point clouds, [5], [6], [7] to
take advantage of known camera intrinsics.

Generative, model-based approaches. These methods
iteratively refine an estimated pose by fitting a 3D hand
model to the input depth image. Previous work demonstrated
that energies based on articulated, rigid, part-based models
of the hand can be optimized to provide good tracking [20],
[15]. Additional 3D hand representations, including contin-
uous subdivision surfaces [31], collection of Gaussians [26],
[28], sphere meshes [34], and articulated signed distance
functions [32], have been proposed with the goal of creating
detailed models that are still fast to optimize.

Hybrid approaches. These methods combine learning-
based and model-based approaches into one framework to
combine the strengths of both. One class of hybrid methods
uses learning-based components in a tracking framework
to initialize, update, or otherwise guide the tracker’s con-
vergence to the correct pose [18], [23], [27], [29], [30],
[12]. These methods are more robust than the traditional
model-based trackers, but must trade-off model and solver
efficiency with accuracy during runtime. Another class of
hybrid methods uses the learning-based framework and in-
corporates a model-based loss, usually based on a kinematic
skeleton [13], [14], [38], [40], [43]. These methods can
better enforce anatomically plausible pose predictions by
including pose priors losses in the model space. However,
since the model is not generative, they still rely on difficult-
to-acquire annotations and overfit to annotation errors if
present.

Our proposed hybrid method incorporates a loss that is
both generative and model-based, into the learning frame-
work. Unlike other hybrid approaches, the generative model
provides supervision from the input depth image. With that,

we are able to reduce the requirements on the quantity and
accuracy of annotations needed for training, thereby reducing
the necessary human effort for data annotation.

Model-based Autoencoder. Autoencoders are used for
obtaining compressed representations from a distribution of
inputs. They consist of an encoder that maps the input
to a compact code, and a decoder that maps the code
back to the (approximate) input. Although the encoder and
decoder are usually trained jointly, the encoder can learn
to invert a generative model being used as the decoder in
an self-supervised manner [16]. As a learning objective,
the model-based decoder can draw upon the entire training
corpus as regularizer to overcome local minima that arise
from noise or ambiguities present in a single image. Tewari
et al. [33] use such an autoencoder with a face model to
estimate and disentangle face shape, expression, reflectance,
and illumination. Recently, such approaches have also been
proposed for hand pose estimation in RGB images [2], [3],
[8]. These methods have in common that they use geometric
cues (e.g. annotated silhouettes and paired depth map) as
supervision for training. Dibra et al. [4] and Wan et al. [37]
use autoencoders for inverting a hand model to solve the
hand pose estimation problem from depth images without
additional cues. In contrast to [4], our use of a volumetric
Gaussian hand model [27] as a decoder provides a stronger
shape prior than their unconstrained articulating point cloud.
This allows our method to solve the much harder problem of
combined pose and shape estimation, while their method can-
not adapt the hand shape at test time. Although conceptually
our method has similarities with the (concurrently developed)
work [37], our method uses a smooth hand representation
compared to their spherical representation. More importantly,
we extensively study the effect of a model-based generative
loss when training with erroneous annotations (e.g. as present
in the HIM [41] dataset), and hence we believe both works
can be seen as complementary.

III. METHOD

The main idea of our approach is to explain a depth image
of a hand based on a generative hand model, cf. Fig. 2. Given
a depth image as input, we use a CNN-based encoder to
obtain a low-dimensional embedding of the depth image. Our
parametric model-based decoder is build upon a parametric
hand model that produces a volumetric representation of the
hand from a given code vector. Since the code vector from
the encoder initializes a parametric model, this enforces a
semantically meaningful code vector. By using a suitable
representation of the input depth image, we are able to
efficiently and analytically compute the overlap between the
“rendered” volumetric hand representation generated by the
decoder and the input depth image. To be more specific,
we approximate the surface of the hand with a collection of
3D Gaussians rigidly attached to a kinematic hand skeleton
model. The corresponding Gaussians in image space can be
obtained by projecting the 3D Gaussians using the camera
intrinsics. Moreover, the depth image is also represented
with image space Gaussians by quadtree-decomposing the
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Fig. 2: Framework Overview. During training, an encoder is used to regress a code vector that parameterizes the bone
lengths and pose in 3D. A model-based generative decoder “renders” the 3D volumetric Gaussian hand into Gaussians in
the image space. The original depth image is also summarized as Gaussians in image space through a Quadtree encoding.
The dissimilarity between the two sets of Gaussians provides an unsupervised generative loss for training the encoder.
Additionally, bone lengths and pose prior losses are used to regularize the encoding, and a partial supervision defined on a
subset of the keypoints helps to overcome bad local optima in the dissimiliarity loss.
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Fig. 3: Left: Our skeleton which comprises 20 bones and 15
articulating joints with varying degrees of freedom (DOF).
In total, there are 26 joint parameters, and 20 bone length
parameters. Right: Our volumetric Gaussian model.

image into regions of homogeneous depth and fitting an
image Gaussian to each region. The similarity between the
model and the image can then be described as the depth-
weighted overlap of all pairs of model and image Gaussians.
This overlap serves as generative model-based loss during
network training and ensures that the predicted hand faith-
fully represents the observed data. To enforce plausible poses
and bone lengths, we add additional prior losses to avoid
inter-penetrations of hand parts, violations of joint limits,
and unphysiological combinations of bone lengths. Lastly,
supervision for a small subset of keypoints is provided as
a way to mitigate the multiple minima present in the non-
convex energy. At test time, the so-trained encoder is able to
directly regress the hand pose and bone length parameters.

A. Hand Model

Kinematic Skeleton. Our kinematic skeleton parame-
terizes hand shape in terms of bone lengths, and pose as
articulation angles with respect to the joint axes. It comprises
20 bones with lengths b ∈ R20 and 26 degrees of freedom

(DOF) θ ∈ R26 (20 angles of articulation and 6 additional
DOF for global rotation and translation), see Fig. 3.

To ensure that the predicted bone length vector is plausi-
ble, b is parameterized by an affine model constructed using
20 PCA basis vectors, i.e.

b = bavg +Mpcaβ . (1)

Here, bavg ∈ R20 is the average bone length vector and
Mpca ∈ R20×20 are the linear PCA basis vectors of the
bone length variations scaled by their standard deviations.
By scaling the basis vectors, β follows an isotropic standard
normal distribution, and deviations along each basis are
penalized inversely to how much natural variation exists in
that direction. Both bavg and Mpca are obtained from bone
length vectors computed from 10,000 hand meshes sampled
from the linear PCA parameters of the MANO model [21].

The pose parameter vector θ controls the angles of articu-
lation with respect to the joint axes in the forward kinematics
chain, as well as the global translation and rotation of the
entire hand, where the latter is is parameterized using Euler
angles. Given the bone length parameters β and pose θ,
we can obtain the Nj joint positions by applying forward
kinematics F (θ, β) ∈ RNj×3.

Volumetric Gaussian Model. Similar to [27], [28], we
model the hand volume with a mixture of Nm 3D Gaussians,
i.e.

G3D(x) =

Nm∑
h=1

gµh(θ,β),σh
(x) , (2)

where g is an isotropic Gaussian with mean µh(θ, β) and
standard deviation σh. Each Gaussian is attached to a bone
on the kinematic skeleton and articulates with that bone.

B. Depth Image Representation
The depth image is represented by a collection of 2D

image Gaussian and depth value pairs {(gµi,σi
(x), zi)}Ni

i=1.



Each Gaussian and depth value pair summarizes a roughly
homogeneous region with a single depth. To obtain these
regions, we use quadtree clustering to recursively divide the
image into sub-quadrants until the depth difference within
each region is below a threshold c (we used c = 20mm for
our experiments). The Gaussian gµi,σi

(x), is chosen so that
µi is the center and σi is half the side length of the region.
The associated depth value zi is then the average depth value
of the quadrant.

C. Model-based Decoder

To measure the quality of the predicted hand pose and
bone length parameters for a given input depth image, we
incorporate a decoder layer that “renders” the 3D model
representation to a 2.5D representation similar to the im-
age representation. The camera-facing surface of the h-th
3D Gaussian is approximated by a projected 2D Gaussian
gµp,σp

(x) = ΠK(gµh,σh
(x)) using the intrinsic camera

matrix K and an associated depth value zp. For details please
refer to the supplemental document.

D. Loss Layer

For training the network, the loss is decomposed into
an unsupervised dissimilarity term Edissim for measuring the
discrepancy between depth image and hand model, Ecollision
to prevent self intersection, Ebone for regularizing the bone
length parameters β, Elim for regularizing the joint angles θ,
and a supervised Ejoint term for explaining the provided joint
locations. The relative importance of each term is balanced
with scaling factors λ. With that, the total energy reads

E(θ, β) =λdissimEdissim(θ, β) + λcollisionEcollision(θ, β)+

λboneEbone(β) + λlimElim(θ) + λjointEjoint(θ, β) .
(3)

In the following we describe the individual energy terms.
1) Dissimilarity Measure: To measure the overall sim-

ilarity between two given (2D Gaussian, depth) tuples, we
weight the similarity Si,p between the two Gaussians by their
distance in depth values ∆(i, p). The pairwise similarity be-
tween image Gaussian gµi,σi

and projected model Gaussian
gµp,σp

is defined using the integral over the product of the
two functions. Since in our case the model Gaussian directly
depends on the hand pose vector θ and bone length vector
β, Si,p is a function of these parameters and is given by

Si,p(θ, β) =

∫
R2

gµi,σi(x)gµp(θ,β),σp
(x) dx . (4)

Since Si,p(θ, β) only measures the 2D overlap of the two
Gaussians, we weight it based on the depth difference

∆(i, p) =

{
0, if |zi − zp| ≥ 2σh

1− |zi−zp|2σh
, if |zi − zp| < 2σh

, (5)

where σh is the standard deviation of the unprojected
Gaussian gµh,σh

associated with gµp,σp
. This decreases the

similarity score between two tuples whenever the depth
values are far apart, and thereby forces the model to not

only match the area of the hand in the depth image, but also
the observed depth values.

The overall similarity Ssim is defined as the sum over
all possible pairings between the model and the image
Gaussians, and is given by

Ssim =

∑Ni

i=1

∑Nm

p=1 ∆(i, p)Si,p∑Ni

i=1

∑Ni

k=1 Si,k
, (6)

where the denominator is the self-similarity of the image
Gaussians used for normalization. We use Edissim = −Ssim
since minimizing the loss maximizes the similarity.

2) Collision Prior: To ensure that the surface represented
by the 1σ isosurface of the 3D Gaussians does not (self-
)interpenetrate, a repulsive term based on the 3D overlap of
the model Gaussians is used. Overloading the notation for
the Gaussian overlap Si,j (cf. Eq. (4)) to denote the similar-
ity between two different model Gaussian components, we
analogously define

Ecollision =

Nm∑
j=1

Nm∑
k=j+1

Sj,k , (7)

so that Gaussians of the model do not overlap in 3D.
3) Bone Length Prior: To keep the bone lengths β plau-

sible, we impose the loss

Ebone = ||β||22 , (8)

which penalizes the deviation of the predicted bone length
parameters from the mean parameter. With that, this term
helps to keep the predictions in the high probability region
of the normal distribution used in the PCA prior.

4) Joint Limits: To keep joint articulations within me-
chanically and anatomically plausible limits, a joint limit
penalty is imposed using

Elim =
∑
θj∈θ


0, if θlj ≤ θj ≤ θhj
(θlj − θj)2, if θj < θlj
(θj − θhj )2, if θj > θhj

, (9)

where θlj and θhj are the lower and upper limits of θj , which
are defined based on anatomical studies of the hand [22].

5) Joint Location Supervision: We impose an additional
supervision loss Ejoint on a small subset of joint positions
J1, . . . , JNs

in order to help the optimizer converge to a
good minimum in the overall generative loss function. We
use a combination of 2D and 3D joint location supervisions
(depending on availability). If for a given joint with index j a
full 3D supervision is provided, the distance Φj between the
annotation Jj ∈ R3 and the model joint Fj is given by their
`2 distance. If only 2D supervision is provided, Φj is the
closest `2 distance between Fj and the ray Jj to which the
annotation is projected using the camera intrinsics. Hence,
Φj is defined as

Φj =

{
||Fj − 〈Fj , Jj〉Jj ||2 , if Jj ∈ R2

||Fj − Jj ||2 , if Jj ∈ R3
, (10)
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Fig. 4: Left: For comparisons against the state of the art, our
model is evaluated on a subset of NYU keypoints (Match-
11) due to mismatches to our skeleton. Right: For self-
comparison, we evaluate on 21 keypoints (All-21), 6 of
which have supervision (Lab-6), and 15 keypoints without
supervision (Unlab-15).

where Fj = F (θ, β)j is the j-th joint obtained from applying
forward kinematics with the model parameters.

Due to inaccuracies in the annotation, the ground truth
may conflict with the observed image. Hence, we modify
the joint loss to account for annotation uncertainty by intro-
ducing a “slack” radius s ∈ R+ that models the expected
uncertainty in millimeters. All predictions within this radius
of the ground truth will not be penalized. This allows
the encoder to be more robust to erroneous annotations.
Together, the joint loss for the subset of Ns joints Ejoint is
defined as

Ejoint =

Ns∑
j=1

{
0, if Φj ≤ s
(Φj − s)2, if Φj > s

. (11)

IV. EXPERIMENTS

We evaluate the impact of our generative model-based loss
on pose accuracy and bone length consistency when trained
with a reduced set of keypoints. Additionally, we show qual-
itative results of our predictions and the erroneous “ground
truth” on existing datasets to demonstrate the regularizing
effect of our loss against annotation errors.

A. Architecture and Training

We use Resnet-18 [9] pre-trained on ImageNet as our
encoder, as it is fast to use and refine, and achieves good ac-
curacy. The encoder is trained with the Adam optimizer [11],
using a learning rate of 10−5 and a batch size of 16. Our
pipeline runs in Caffe [10], where we implemented the
decoder and other losses as custom layers. During training,
a forward-backward pass with batch size 16 takes 89ms (for
comparison: ResNet-50 architecture takes 100ms). A forward
pass at test time takes only 5ms.

B. Datasets

We evaluate on two common benchmarks, the NYU Hand
Pose dataset [36] and the Hands in the Million Challenge
dataset (HIM) [42]. We additionally introduce our own
HANDID dataset for training to address the lack of hand
shape variation in the NYU training data.

NYU Hand Pose Dataset. The NYU Hand Pose
dataset [36] is collected using Microsoft Kinect sensors. It
contains 72,757 depth images from a single subject in the
training set, and 8,252 depth images from two subjects in
the test set.

Our HANDID Dataset. Since the NYU training data only
contains a single subject, we introduce additional training
data with more hand shape variations to enable our method
to learn this variation and hence adapt to different users at
test time. We captured a dataset of 3,601 frames (640 x 480)
from 7 subjects with the Intel SR300 sensor, which we call
HANDID. A total of 6 pixels that correspond to the fingertips
and wrist are annotated per frame. Occluded keypoints were
indicated as such. During training, a batch contains examples
from both HANDID and the NYU dataset with a mixing ratio
of 1 : 3.

To emphasize that it is significantly easier to obtain just the
fingertips and wrist keypoints, we asked 5 users to annotate
all 21 keypoints for a set of 10 depth images. We observed
that additional keypoints take longer to annotate (each joint
annotation takes 1.4 times longer) and are less consistent
across users (with average distance to mean of 10.4 pixels
vs 7.3 pixels). In total, the full annotation of 21 joints for 10
images requires 21.2 minutes, while our subset only needs
4.7 minutes.

Hands in the Million Challenge (HIM) Dataset. We
evaluated our method on the Hands in the Million Challenge
(HIM) dataset [42], where we discovered a systematic error
in the “ground truth” annotations. Although the 2D projec-
tion of the keypoints into the image plane looks plausible, the
3D keypoint locations do not match the anatomical locations
of hand joints (see Fig. 6). To quantitatively show this, we
use the minimum-distance-to-point-cloud (MDPC) per joint
to approximately quantify how well the joint predictions
agree with the observed depth image. The NYU annotations
and the erroneous HIM annotations have median MDPCs
of 9.10mm (avg 10.99mm) and 21.54mm (avg 23.98mm),
respectively. By assuming that the physical joint is located
roughly at the center of the finger, the HIM annotations
would imply an implausible finger thickness of ≈43mm,
while the NYU annotations estimates a more reasonable
thickness of ≈18mm. We hypothesize that there is a system-
atic pose-dependent error in corresponding the 3D magnetic
sensor positions to the depth camera coordinate (see Fig. 4 of
the Supplementary Document). Using our generative model-
based loss, we are able to obtain predictions that are signifi-
cantly more consistent with the observed depth images. The
detailed experiment is presented in Section IV-D.

Pre-processing. Similar to established procedures [1],
[18], we first localize the hand by using the ground truth
joint locations and crop the image to a fixed-size cube with
300mm side length. Once localized, the image is re-cropped
using the same cube, but centered at the average depth.
We then scale it to 128 x 128 with a scaled depth range
between [−1, 1]. During training, in-image-plane translations
and rotations, as well as depth augmentations, are applied.
This pre-processing step is used for all datasets.
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(a) Ablation Study: All components of our
method need to work together to resolve
ambiguities from the reduced keypoint su-
pervision (all keypoints (All-21) evaluated).

0 10 20 30 40 50 60 70 80
Maximum allowed distance to GT (mm)

0

10

20

30

40

50

60

70

80

90

100

Fr
ac

tio
n 

of
 fr

am
es

 w
ith

in
 d

ist
an

ce
 (%

)

Baek et al. (CVPR 2018)
DeepPrior++ (ICCVW17)
3DCNN (CVPR 2017)
Malik et al. (3DV 2017)
Zhou et al. (IJCAI 2016)
Full
Full+HIM

(b) Comparison to state of the art: Our
method (Full) outperforms competing hy-
brid methods, even with less supervision.
This is further improved by incorporating the
HIM dataset, which is not possible without
the dissimilarity loss.

30 40 50 60 70 80
Maximum allowed distance to GT (mm)

0

10

20

30

40

50

60

70

80

90

100

Fr
ac

tio
n 

of
 fr

am
es

 w
ith

in
 d

ist
an

ce
 (%

)

HIM
HIM w/o Dissim

(c) Cross Benchmark Test: We evaluate our
method on the NYU dataset after training
only on the HIM dataset. Without the dis-
similarity loss, the mismatch in annotation
results in worse generalization.

Fig. 5: Quantitative evaluation on the NYU dataset (in percentage of frames with maximum joint error below a threshold).

Method Unlab-15 Lab-6 All-21
Full 16.13 20.72 17.45
w/o Dissim. 19.06 21.47 19.75
w/o Prior 18.53 22.03 19.53
w/o HANDID 17.01 23.20 18.78
w/o Collision 16.80 22.20 18.34
w/o Lim. 18.72 22.24 19.73

(a) Ablation study with keypoints (see Fig. 4) of
the NYU dataset [36]. Dissimilarity loss, and the
pose and shape priors help resolve ambiguities for
unlabeled keypoints. The HANDID dataset helps on
labeled keypoints by allowing adaptions to unseen
users.

Method Match-11
Full 18.50
Full+HIM w/o Dissim. 20.01
Full+HIM 17.73
Zhou et al. [43] 19.21
Malik et al. [13] 18.35
Baek et al. [1] 14.71
DeepPrior++ [19] 13.10
3DCNN [6] 15.09

(b) Comparison to state of the art meth-
ods: kinematic model-based (top, middle)
enforces kinematic consistency and direct
joint position regression (bottom) do not.

Method S1 S2
Ground Truth 1.00 1.00
Full+HIM 0.70 0.80
Full 0.63 0.70
w/o Dissim. 0.57 0.59
w/o Prior 0.52 0.42
w/o HANDID. 0.55 0.54
w/o Collision 0.62 0.68
w/o Lim. 0.6 0.42

(c) F1 score of k-means clustering
of bone lengths vectors for the two
subjects in the test set.

TABLE I: Evaluations on NYU. (a-b) Comparisons of 3D mean per-joint error (in mm). (c) Evaluation of bone lengths
learning.

Model Mismatch. Due to different joint locations in
the NYU hand model and ours, only 11 of the commonly
evaluated keypoints have a rough equivalence to our model
(Fig. 4, left). Hence, we compare our predictions with the
state-of-the-art predictions on this subset (Match-11). To
better demonstrate that our method can infer the positions
of unsupervised keypoints, we evaluate our algorithm for
self comparison on an expanded set of 21 NYU keypoints
(All-21) which roughly correspond to anatomical joints of
our kinematic skeleton (Fig. 4, right). The results are further
broken down for the 6 supervised keypoints (Lab-6) and the
15 unsupervised keypoints (Unlab-15).

C. Ablation Studies

For the ablation study, we perform quantitative evaluations
on the NYU dataset.

Keypoint Accuracy. Removing components from our full
method (Full) reduces accuracy. See Table Ia for the average
per-joint error in millimeters, and Fig. 5a for the percentage
of correct frames curve.

Bone Lengths. For bone length evaluation, we cannot
directly compare the ground-truth bone lengths to our pre-
dicted bone lengths due to the mismatch in model definitions

(cf. Fig. 4, left). Instead, we treat the 20 bone lengths of the
hand as a 20-dimensional vector and use k-means clustering
with k = 2 to separate the bone length vectors of the two
subjects in the test set of the NYU dataset. In Table Ic, we
show the F1 scores (defined as 2·precision·recall

precision+recall ) of the two
clusters. k-means is meaningful for this task as clustering
bone lengths of the annotations (Ground Truth) results in
perfect F1 scores for both subjects. Note that poses with
high self-occlusion result in depth images with very little
information to help disambiguate hand shapes. Thus, one
cannot expect methods that perform per-frame estimation to
attain a perfect F1 score from the given supervision.

Discussion. Given the reduced supervision, it is am-
biguous whether the loss is minimized by deforming the
bone lengths or updating the hand pose. Consequently, the
method without bone length prior can arbitrarily distort the
bone lengths as long as the fingertips are correctly estimated
(w/o Prior, see Table Ia). This results in a significant
drop in accuracy for keypoints without direct supervision
(Unlab-15). Correspondingly, k-means clustering fails to find
consistent clusters for the two subjects.

However, the bone length prior alone is not enough to



Visualization of Annotation Errors
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Fig. 6: Annotation Errors in HIM: Both the “ground truth” (Blue) and our predictions (Green) are consistent with the input
in the camera view. However, as can be seen from the side view, the “ground truth” is erroneous and our prediction is more
consistent. State-of-the-art (SotA) method [39] (black) learns to replicate the systematic error. This result is representative
of the test set.

resolve the ambiguity in hand shape. A similar drop in
accuracy on unsupervised keypoints (Unlab-15) occurs when
the dissimilarity loss is removed (w/o Dissim., see Table Ia).
This is because statistically plausible bone lengths can still
vary wildly to accommodate the fingertip annotations, with-
out being constrained to explain the image. Pose priors in
the form of joint limits (w/o Lim.) and collision prior (w/o
Collision) additionally constrain the articulations, which
improve the keypoint accuracy.

Due to the NYU training data containing only one hand
shape, it is sufficient for the method to consistently regress
this particular set of bone lengths when HANDID is not
present (w/o HANDID, see Table Ia). As a result, the
method cannot learn to discriminate between hand shapes
of different users, leading to F1 scores that are close to
random. Hence, for the unseen hand shape in the test set,
the method cannot minimize the joint loss (see Eq. (10))
of the supervised keypoints, which leads to greatly reduced
accuracy on supervised keypoints (Lab-6). This mode of
failure can be accounted for if hand shape variations are
present in the training data. The result of this can be seen in
our full method (Full, see Table Ia).

D. Comparison to the State of the Art (SotA)
Although state-of-the-art methods obtain mean per-joint

errors lower than 10mm (e.g. [6], [39]) on the HIM dataset,
we emphasize that this is against the erroneous “ground
truth”. We train our method using a “slack” radius of 25
mm to account for the error and show better fitting pose
predictions than even the “ground truth” (see Fig. 6 and Fig.
4 of Supplemental Material for more qualitative evaluation).

For a more fair quantitative evaluation, we instead use
minimum-distance-to-point-cloud (MDPC) to approximate
how well the predictions fit the input. On the HIM test set
of [39] comprising of 95,540 images, our method achieves
median MDPCs of 11.74mm (avg 13.87mm), while [39]
achieves 21.97mm (avg 24.16mm). Our predictions better
match the NYU annotations with median MDPCs of 9.10
mm (avg 10.99 mm). This suggests that our method better
fits the observed input while most state-of-the-art methods
learn to replicate the errors in the training data.

We further show that the dissimilarity loss helps to over-
come annotation errors by testing the method trained on HIM
data on the NYU data (See Fig. 5c). Without the dissimilarity
loss, the method performs significantly worse.

On the NYU dataset (see Table Ib and Fig. 5b), our method
outperforms the other kinematic model-based methods of
Zhou et al. [43] and Malik et al. [13] while requiring less
keypoint annotations. Although methods that directly predict
3D joint positions perform better [1], [6], [19], we emphasize
that these methods without a model-based generative loss are
liable to learning the annotation errors as shown.

We compare our method to Dibra et al. [4] and Wan
et al. [37]. Although we were unable to obtain their pre-
dictions on the subset of Match-11 keypoints, we note that
Dibra et al. [4] have a similar “uncorrected” percentage of
correct frames curve on all 14 keypoints to Zhou et al. [43],
which we greatly outperform, and we achieve similar perfor-
mance to Wan et al. [37]’s method with single view training.

While their methods do not require any annotation, our
method additionally solves the more ambiguous and harder
problem of adapting to the hand shapes of the user during
test time, while their methods can only fit to the average
hand shape of the training data or to preset bone lengths.

E. Adaptation to a New Domain

Despite the aforementioned annotation errors, the HIM
dataset contains a large variety of views, poses, and hand
shapes that could be used to supplement the NYU training
data to help improve generalization. We show that our
method can still benefit from data with erroneous annotations
(see Table Ib and Fig. 5b). We trained our method by mixing
the NYU, HIM, and HANDID datasets in a single batch
with a ratio of 3:3:2. When HIM data is used without the
dissimilarity loss (Full + HIM w/o Dissim.), the annotation
errors cause the overall performance to degrade. With our
dissimilarity loss enabled (Full + HIM), the self-supervision
ignores the annotation errors and improves the results.

V. LIMITATIONS & DISCUSSION

Although our method outperforms other kinematic model-
based methods, even with less annotations, there is still a



gap to recent learning-based methods that regress 3D joint
positions. However, these methods
• are not explicitly penalized for producing anatomically

implausible shapes due to the lack of an underlying
kinematic hand model, and

• are prone to overfit to errors in the training annotations,
as well as to errors in the annotation collection method.

Additionally, for poses with heavy self-occlusions, the
monocular depth data is not sufficient to resolve ambiguities
with the reduced annotation set used by our method. Extra
supervision, such as from temporal consistency, or from
multi-view constraints (as done in [37]), is needed to estimate
the pose and shape in these cases.

VI. CONCLUSION

We have shown that a generative model-based loss can
reduce the amount of supervision needed to learn both the
pose and shape of hands. This greatly reduces the amount
of annotations needed to adapt a method to data obtained
in a new domain. Furthermore, we show that the generative
model-based loss helps to regularize against annotation er-
rors, for example on the HIM dataset, while existing methods
overfit to these errors. This demonstrates the importance of
ensuring that the model predictions explain not only the
annotations but also the image itself.
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