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General Article

Psychologists often do not content themselves with 
claims about the mere existence of effects. Instead, they 
strive for an understanding of the underlying processes 
and potential boundary conditions. Although such mod-
els are frequently estimated with the help of structural 
equation models (SEM), the PROCESS macro (Hayes, 
2017) has been an extraordinarily popular tool for these 
purposes because it empowers users to run mediation 
and moderation analyses—and any combination of the 
two—with a large number of preprogrammed model 
templates in a familiar software environment.

Psychologists’ enthusiasm for models that allow them 
to unravel mediation, moderation, and their combination 
may sometimes lead them to overlook the many assump-
tions that are necessary to interpret results. Although it 
is clear that correlation does not equal causation, it is 
not immediately obvious how this translates to more 
complex models fitted to (mostly) observational data, in 
which not all causes of interest were experimentally 

manipulated. Analyses may result in seemingly sophis-
ticated conclusions that are ultimately unwarranted.1

With this article, we aim to provide a concise summary 
of the causal-inference problems of path models that 
incorporate mediation and moderation. “Causal infer-
ence” refers to any attempt to use empirical data to make 
conclusions about causal effects, and causal effects imply 
that a (hypothetical) intervention on one variable leads 
to a change in a different variable, for at least some 
people. We start with a so-called conditional-process 
model, which combines mediation and moderation, and 
work our way back to the underlying assumptions. We 
provide nontechnical explanations so that readers can 
develop an intuition for the intricacies of such path mod-
els. We then discuss matters of model selection—How 
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can we know that we got the model right?—and conclude 
with our vision for a different research process that 
results in better causal claims. Ultimately, as a field, we 
do indeed want to understand processes and boundary 
conditions. But a single study, let alone a single statistical 
analysis, can rarely provide a satisfying answer.

The Conditional-Process Model

Consider the conceptual diagram in Figure 1. It depicts 
a path model in which an independent variable has an 
effect on a dependent variable via a mediator and one 
of the mediation paths is moderated.2 For example, 
researchers may hypothesize that social support has an 
effect on task performance among athletes. Supposedly, 
this effect is partly mediated via self-efficacy: Social sup-
port leads athletes to believe in themselves, and this 
improves performance. But this mediation may apply 
only to highly stressed athletes. Among more relaxed 
athletes, social support may not be a salient source of 
self-efficacy. By convention, such conceptual diagrams 
usually imply linear relationships between the variables. 
We adapted this substantive illustration from Rees and 
Freeman (2009); it was also highlighted in Hayes (2017).

When we test such hypotheses with the help of path 
models applied to observational data, we are in the 
business of causal inference on the basis of observa-
tional data (for an introduction, see e.g., Rohrer, 2018). 
One may object that such path models are employed for 
other purposes, such as description or prediction. How-
ever, the models may be too complex to result in useful 
description (for a similar argument, see Foster, 2010b), 
and they are not complex and flexible enough to result 
in useful prediction (for an introduction to machine 
learning, see Westfall & Yarkoni, 2016). Furthermore, 
reviews of path models in different literatures from the 
social and behavioral sciences have concluded that 
causal inferences are made or implied routinely (e.g., 
Fiedler et al., 2018; Wood et al., 2008). And it only makes 
sense to talk about and interpret mediation from a causal 
perspective; from a strictly statistical perspective, the 
phenomenon is indistinguishable from confounding 
(MacKinnon et al., 2000).

In the field of psychology, causal inference on the 
basis of observational data is treated with some degree 
of suspicion because the field tends to emphasize ran-
domized experiments as the “gold standard.” There is 
indeed a lot that speaks in favor of experiments and 
other predominantly design-based approaches to causal 
inference (i.e., natural experiments; e.g., Dunning, 2012). 
However, once we have settled on a model such as the 
one depicted in Figure 1, or in general once we are 
interested in mediation, our approach will necessarily 
be more strongly model-based. We believe that to make 
the most of causal inference on the basis of observa-
tional data, it is best to take the bull by the horns while 
remaining transparent about the underlying assumptions 
rather than resorting to ambiguous language that 
obscures the goal of the analysis (Grosz et al., 2020). 
Indeed, explicit causal language may prompt readers to 
be more careful when they evaluate whether conclusions 
are appropriate (Alvarez-Vargas et al., 2020).

Under what conditions can we fit the model depicted 
in Figure 1 and successfully interpret the resulting coef-
ficients as causal effects? The central concern here is 
causal identification (Elwert, 2013), which refers to the 
possibility of computing accurate causal effects from 
observable data, and which is the focus of this article. 
However, we also address the second step of causal 
inference, actual statistical estimation. Causal identifica-
tion always rests on assumptions, and existing formal-
ized frameworks allow for precise articulation of the 
underlying assumptions (e.g., directed acyclic graphs, 
the Rubin causal model; for a helpful introduction, see 
Morgan & Winship, 2015). Here, we use a more informal 
approach—starting from a single arrow and moving on 
to more complex claims about mediation and modera-
tion. Many of the assumptions that go into the model 
are irrefutable; they cannot be disproved (let alone 
proved) by observable information (Manski, 2009). 
Throughout the article, we often focus on concerns 
regarding how conditional-process models are com-
monly implemented and interpreted in psychology. 
Although there is now a number of studies that have 
empirically investigated such practices (see Box 1), our 
assessment of what is common practice is at least partly 

Independent Variable
Social Support

Dependent Variable
Task Performance

Mediator
Self-Efficacy

Moderator
Stress

Fig. 1. A conceptual diagram of a conditional-process model in which a mediated path 
is affected by a moderator.
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formed according to our own reading of the literature 
and thus somewhat subjective.

An arrow is an arrow is an arrow

One can determine the assumptions under which such 
a model successfully identifies the causal effects by con-
sidering every single arrow it contains. For example, let 
us start with the arrow pointing from the independent 
variable to the mediator, Social Support → Self-Efficacy. 
This single-headed arrow represents a causal effect of 
social support on self-efficacy. In general, a variable X 
has a causal effect on Y if a (hypothetical) intervention 
on X leads to a change in Y for at least one individual. 
Assuming linear effects, in psychology, we often try to 
estimate how a given change in X (e.g., an increase of 
1 scale point) would affect Y, on average. If we want to 
be able to quantify the causal effect of social support 
on self-efficacy and to put the correct number on this 
arrow, we need to rule out (a) confounding and (b) 
reverse causality.

Confounding. To rule out confounding, we need to 
ensure that any possible variable that causally affects both 
social support and self-efficacy is taken into account (see 
Fig. 2a for an example of one potential confounder: extra-
version). This can, for example, be done by including it as 
a covariate. To successfully control for confounding, it is 
important that the association with the covariate is mod-
eled appropriately (i.e., if the effect of the covariate is non-
linear, it needs to be modeled nonlinearly; see also Rohrer, 
2018), and it may be necessary to take into account mea-
surement error in the covariate (Westfall & Yarkoni, 2016). 
For example, imagine the following situation: More extra-
verted individuals receive more social support, and they 
tend to score higher on self-efficacy. Thus, if we do not 
adjust for extraversion, we will overestimate the effect of 
social support on self-efficacy. However, imagine our mea-
sure of extraversion was quite imprecise—for example, we 

may have just asked individuals to say whether they are 
extraverted (yes/no). If we adjust for this unreliable mea-
sure, there is still plenty of extraversion-associated variabil-
ity left. Among the people who say they are extraverted, 
there will still be some who are more extraverted than 
others and who thus score higher on both social support 
and self-efficacy. In this situation, statistical adjustment may 
end up insufficient and leave residual confounding that 
can lead us to still overestimate the actual effect of social 
support on self-efficacy.

Including all possible confounders seems like a daunt-
ing task, and in some scenarios, things can be simplified. 
For example, sometimes a single covariate can take care 
of multiple confounding variables (for an introduction 
on how to determine whether a set of covariates is suf-
ficient, see Rohrer, 2018); in longitudinal data or other-
wise nested data, fixed effects can account for a multitude 
of confounders, including unobserved ones (e.g., Imai 
& Kim, 2019; Rohrer & Murayama, 2021).

Reverse causality. Temporal order can sometimes rule 
out reverse causality. Tomorrow’s self-efficacy cannot have 
a causal effect on today’s social support. But note that 
temporal order cannot rule out confounding. If yesterday’s 
self-efficacy had a causal effect on today’s social support 
and an effect on tomorrow’s self-efficacy, this would result 
in a spurious association between today’s social support 
and tomorrow’s self-efficacy (i.e., yesterday’s self-efficacy 
is a confounder). In other cases, substantive knowledge 
may help rule out reverse causality, in particular if stable 
demographic variables are involved.

The value of randomized manipulation. One way to 
rule out both confounding and reverse causality is an 
experimental manipulation of the independent variable 
with subsequent measurement of any dependent variable. 
For example, we could randomly assign athletes to receive 
high or low social support before an event and then later 
measure their self-efficacy and their task performance. 

Common practices in the application of conditional-process models for causal inference in psychological 
research, or any field, are somewhat difficult to study empirically because we are limited to details disclosed 
in publications, which may not always diligently report the process by which such models have been 
generated. Such reporting can obscure relevant information, and in many cases, it is impossible to evaluate 
whether the researchers actually believe the assumptions that underlie their reported models.

The comprehensive database by Fossum and Montoya (2021) documents basic practices in moderated 
mediation models, such as the estimation procedure, sample size, model number according to Hayes’s (2017) 
typology, and number of variables, across a wide spectrum of research areas. The study by Götz et al. (2021) is 
concerned with practices in such mediation models that are questionable and contrasted the statistical power 
with the hypothesis confirmation rate in five leading psychology journals in 2018 and 2019. Likewise, Fiedler  
et al. (2018) observed that in a sample of articles published in 2015, only a minority of them with mediation 
analyses even present a priori theoretical arguments for the proposed causal chain in the first place.

Box 1. Conditional Process Models as Practiced in Psychology
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Figure 2b provides a graphical interpretation of such an 
intervention: Any path that points into the independent 
variable is deleted because randomly assigned social sup-
port is determined by chance (e.g., the flip of a coin) 
only.3 Such an experimental manipulation allows a causal 
interpretation of the total effect of the manipulation on 
any outcome; for example, we could make causal claims 
about how our social-support manipulation affects self-
efficacy or about how it affects task performance.

Unfortunately, being able to identify the total effect 
of one variable on another does not mean that we can 
automatically identify path-specific effects (for technical 
details on such effects, see Avin et al., 2005), such as 
indirect or direct effects. This leads us to problems of 
mediation analysis.

Mediation: double trouble

Identification of the indirect effect. Claims about 
mediation, within the “causal chain” approach of path mod-
els that dominates psychology, are claims about the product 
of two causal effects. For example, the indirect effect of 
social support on task performance via self-efficacy (Social 
Support → Self-Efficacy → Task Performance) would be the 
causal effect of social support on self-efficacy combined 
with the causal effect of self-efficacy on task performance. 
Thus, we must be able to identify two causal effects to 

identify an indirect effect. If either of the two estimates is 
confounded, the estimate of the indirect effect will be con-
founded as well. In addition, we need to assume that both 
effects are linear and that the independent variable does 
not interact with the mediator (i.e., that the effect of social 
support does not change depending on the level of self-
efficacy)—unless we modify our model to account for such 
scenarios.

These are quite strong assumptions. Even in standard 
experimental designs, problems arise when the mediator 
has not been randomized (e.g., Bullock et al., 2010). For 
example, even if we were able to randomize social support, 
our estimate of the effect of self-efficacy on task perfor-
mance would still deviate from the actual causal effect 
unless we assumed that we controlled for all common 
causes of these two variables (i.e., no unmeasured con-
founding; for an example of a confounder, see Fig. 3a) and 
unless we assumed that there was no reverse causality.

Identification of the direct effect. Readers may recall 
that the total effect equals the sum of the indirect effect 
plus the direct effect, which is true under certain assump-
tions (if all causal effects are linear and do not vary between 
individuals). Could that help us identify the indirect effect? 
After all, we noted above that with the help of randomiza-
tion, we can identify the total effect of social support on 
task performance. If we additionally knew the direct effect, 

Social Support Task Performance

Self-EfficacyStress

Confounder
e.g., Extraversion

a

Social Support Task Performance

Self-EfficacyStress

Confounder
e.g., Extraversion

b

Intervention

Fig. 2. Modifications of the conditional-process model from Figure 1. (a) A confounder 
between independent variable and mediator will bias the estimated path. (b) If we can 
intervene on the independent variable, the confounder is no longer a problem and we can 
estimate the causal effects of the independent variable on other variables.



Advances in Methods and Practices in Psychological Science XX(X) 5

we could simply calculate the indirect effect as the differ-
ence between the two. The standard procedure for estimat-
ing the direct effect is statistical adjustment for the mediator, 
which is meant to “shut off” the indirect path and thus 
leave only the direct path. Unfortunately, this does not 
work here. The mediator (self-efficacy) is causally affected 
by social support and other factors; it is a “collider” in 
which the effects of multiple variables come together. If we 
statistically adjust for a collider variable, we introduce spu-
rious associations between its causes (Elwert & Winship, 
2014; for more explanation geared toward psychologists, 
see also Rohrer, 2018). For example, here, conditioning on 
self-efficacy may introduce a spurious association between 
social support and previous task performance (Fig. 3a).4 
Previous task performance affects current task perfor-
mance, and so we have actually introduced an additional 
spurious association: Social support is now confounded 
with previous task performance, which affects current 
task performance. Thus, we cannot give a causal inter-
pretation to the coefficient of the direct effect of social 
support on task performance. We may fix this issue by 
statistically adjusting for previous task performance and 
any other variable that affects both self-efficacy and task 
performance, which leads us back to the strong assumptions 

that we have successfully measured and adjusted for  
all common causes of the mediator and the dependent 
variable.

Improving mediation analysis. MacKinnon and Pirlott 
(2015) summarized some steps that researchers can take 
to increase the plausibility of mediation claims, such as 
different ways to adjust for confounders, and sensitivity 
analyses that probe to which extent estimates are robust 
to unobserved confounding (developed by Imai et  al., 
2010; VanderWeele, 2010). Modern causal mediation anal-
ysis (e.g., Imai et  al., 2010) has moved away from the 
simple causal chain method that is currently favored in 
psychology; MacKinnon et al. (2020) explained how the 
different methods are linked.

Even in the absence of confounders, mediation chains 
unfold over time, and trying to recover the longitudinal 
effects from cross-sectional data works only under very 
narrow conditions (Maxwell & Cole, 2007; Maxwell 
et al., 2011; O’Laughlin et al., 2018). Thus, in many sce-
narios, longitudinal data may be needed; these are gen-
erally helpful because they can address at least some 
concerns regarding unobserved confounders (Rohrer & 
Murayama, 2021). Another idea to improve mediation 

Social Support Task Performance 

Self-Efficacy Stress

Social Support Task Performance

Self-EfficacyStress

Confounder
e.g., Past PerformanceConditioning on Self-efficacy

Introduces a Spurious
Association Between Social

Support and Past Performance

Confounder
e.g., Neuroticism 

a

b

Fig. 3. More modifications of the conditional-process model. (a) A confounder between mediator 
and the dependent variable will bias the estimate of the indirect effect. Furthermore, statistical 
control for the mediator will induce a spurious association between the confounder and the 
independent variable (indicated by the dashed line), which will bias the estimate of the direct 
effect. (b) A moderator may be confounded and thus not the variable that actually causally 
interacts with the independent variable.
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claims involves chaining them together “piece by piece,” 
for example, by running multiple experiments. Combining 
such independent estimates still requires substantial 
assumptions (e.g., Imai et al., 2011, p. 770), although they 
may often be more defensible (Pirlott & MacKinnon, 2016; 
Strobl & Wunsch, 2018). At the same time, this of course 
presumes that the mediator can be manipulated in a tar-
geted manner, which may not always be the case, in 
particular if it is a psychological variable (Eronen, 2020).

Compounding Complexities With 
Multiple Mediators

Here, we have focused on a model with a single media-
tor. Of course, it is plausible (if not self-evident) that in 
reality, any causal chain can be broken down into increas-
ingly fine steps (i.e., serial mediators), and any remaining 
“direct” effect is transmitted via other intermediary vari-
ables (i.e., parallel mediators). The mere existence of 
multiple mediators is not a problem per se—if the crucial 
assumption of mediation analysis, sequential ignorabil-
ity,5 is fulfilled, we can still identify a particular causal 
mechanism of interest (Imai et al., 2011). However, cer-
tain constellations with multiple mediators make it harder 
or impossible to achieve sequential ignorability.

The situation depicted in Figure 4 warrants special 
attention. Here, a second mediator (M2) affects the medi-
ator of interest (M1). If M2 was unobserved, it would be 
a confounder between both X and M1 and between M1 
and Y, which would make it impossible to identify the 
indirect effect via M1. However, if M2 is observed and 
if we assume that all effects are linear and the same for 
everyone, there is no problem: We can identify every 
single path in the model, and to get the indirect effects, 

we simply multiply the path coefficients. This breaks 
down if we leave behind the assumption that all effects 
are linear and the same for everyone. In this scenario, 
an interesting asymmetry arises: We can still identify the 
(average) causal mediation effect of M2 even if M1 was 
unobserved. However, we can no longer identify the 
causal mediation effect of M1 even if M2 is observed. 
That is because M2 is a posttreatment confounder, and 
the existence of such confounders violates sequential 
ignorability (see Note 5). The problem is explained in 
more detail in the appendix of Imai et al. (2011, Figure 
8). It highlights two aspects: First, strong (and potentially 
unrealistic) assumptions about functional form can 
greatly simplify causal identification; second, whether a 
second mediator is a problem depends on the specific 
constellation of mediators—here, M2 is a problem for 
M1, but M1 is not a problem for M2.

Everything in moderation: causal 
interaction versus effect heterogeneity

“Moderation” colloquially refers to a situation in which 
the effect of one variable on another variable “depends” 
on the level of a third variable, the moderator. For exam-
ple, social support may increase self-efficacy, but only 
among people who experience a lot of stress at home. 
From a causal-inference perspective, such moderation 
can refer to two different phenomena.

Causal interaction. An actual causal interaction would 
imply that a hypothetical intervention on the moderator 
would causally affect the magnitude of the effect of inter-
est (see e.g., VanderWeele, 2009). For example, if stress 
indeed causally interacts with social support, then an 
intervention on stress would change the effects of social 
support. Such a causal interaction is symmetrical: We may 
say that higher stress leads to a higher effect of social sup-
port on self-efficacy but also that higher social support 
leads to a higher effect of stress on self-efficacy. To cor-
rectly estimate such a causal interaction, we need to be 
able to properly identify the effect of the moderator. Ran-
domization is once again the most direct way to do this, 
but in case this is not feasible, covariates may be included 
to rule out confounders. For example, as depicted in Fig-
ure 3b, it may actually be neuroticism that causally inter-
acts with social support, not stress. To rule this out, we 
would need to statistically adjust for neuroticism. Here, it 
is important that we also include the interaction between 
any relevant covariate and the independent variable 
(Simonsohn, 2019; Yzerbyt et al., 2004)—note that this is 
unfortunately not standard practice and not the default in 
most software packages, so it needs to be done manually 
(e.g., by computing product variables and including them 
as covariates).

M2

M1

X Y

Fig. 4. A second mediator acts as a confounder between the first 
mediator and the outcome. If both effects are linear and homogeneous, 
we can still identify all indirect effects as long as both mediators are 
observed. However, if we relax the assumptions about functional 
form, we can identify only the causal mediation effect of the second 
mediator (M2).
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Heterogeneous effects that correlate with a third 
variable. However, one can also conceive of a type of 
“noncausal moderation” in which the causal effect is  
heterogeneous—it varies between individuals—and its 
magnitude simply correlates with a third variable (e.g., 
VanderWeele, 2009). Here, an intervention on the third 
variable would not necessarily result in a larger or smaller 
effect, and the situation can be asymmetrical: The third 
variable may correlate with the effect of X on Y, but X 
need not correlate with the effect of the third variable 
(which may, in fact, be zero). Such correlations between 
causal effects and third variables can be expected to 
change in magnitude, depending on which other covari-
ates are included in the model.

Nonetheless, such noncausal associations between 
causal effects and third variables may be of interest to 
researchers. For example, in a clinical setting, one may 
want to determine subgroups of patients for which a 
treatment works particularly well. Analyses may indicate 
that effects are particularly large among individuals with 
comorbid depression. Even if we do not know whether 
depression is indeed causally interacting with the treat-
ment or whether instead some confounding factor (e.g., 
socioeconomic status) causally affects the treatment 
effects, this information could still be helpful to guide 
treatment decisions. However, such a valid predictive 
interpretation may often lead to follow-up questions that 
require us to clarify the causal role of depression. For 
example, a clinical researcher may wonder why the treat-
ment works well among depressed individuals: Is the 
treatment particularly effective against cognitive patterns 
that are common in depressed patients? Or is it just that 

the treatment is particularly helpful for individuals who 
have a low income?

Presenting and interpreting a mere correlation between 
causal effects and a third variable takes some care to 
prevent findings from being misread as a causal interac-
tion. For example, a diagram such as Figure 1 should be 
avoided because the arrow that points away from the 
third variable begs to be interpreted as a causal interac-
tion. And even just the term “moderator” may be suffi-
cient to induce a causal interpretation because it is 
usually used to refer to causal interactions. Finally, both 
causal interactions and correlations between variables 
and effects can be quite challenging not only because of 
causal concerns but also because of additional statistical 
stumbling blocks (e.g., Rohrer & Arslan, 2021).

Finding the Right Model

As we described above, correctly estimating causal 
effects is challenging, and it always hinges on getting 
the model right (even in experiments). But how do we 
know that we have gotten the model right? Researchers 
may want to evaluate a particular model they have fitted 
to their data or decide between multiple alternative mod-
els. The latter may rarely happen in practice (e.g., Chan 
et al., 2020) and may often go wrong.

Comparing alternative models

In mediation analysis, researchers sometimes aim to 
compare alternative mediation hypotheses by switching 
the direction of arrows (see Fig. 5) and comparing the 

a

b

Self-Efficacy

Self-Efficacy

Social Support

Social Support Task Performance

Task Performance

Fig. 5. (a) Self-efficacy mediates the effect of social support on task performance. (b) 
The arrow from social support to self-efficacy has been reversed, so now social support 
mediates the effect of self-efficacy on task performance. Both models belong to the same 
equivalence class and are thus statistically indistinguishable.
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size and statistical significance of the estimated indirect 
effects. In particular, the model with the nonzero or 
larger indirect effect is thought to be supported by the 
data. Imagine the following scenario: After we run Model 
A, we find a large indirect effect of X on Y via M. After 
we run Model B, we find a smaller indirect effect of M 
via X on Y. The conclusion that Model A is correct 
because the indirect effect is larger, however, is flawed. 
Why would we presuppose the existence of a (large) 
indirect effect if mediation analysis is supposed to tell 
us whether there is an indirect effect? And the estimate 
of the indirect effect can be interpreted only if we 
assume that we got the model right to begin with. A 
misspecified model may detect a large indirect effect 
that is entirely spurious.

But if the magnitude of the estimated indirect effects 
is not informative, maybe at least we can compare the 
fit of the models to figure out which one is preferable. 
Unfortunately, reversing arrows results in models that 
are equally supported by the data at hand; they belong 
to the same equivalence class. This means that they 
share the same implied covariance matrix (Thoemmes, 
2015); they are observationally equivalent. On a substan-
tive level, these models may look quite different. For 
example, in Figure 5a, self-efficacy mediates the effects 
of social support on task performance (and social sup-
port confounds the association between self-efficacy and 
task performance). In Figure 5b, social support mediates 
the effects of self-efficacy on task performance (and 
self-efficacy confounds the association between social 
support and task performance). But no matter which 
model from the equivalence class we assume to be the 
actual data-generating process, we will always expect to 
observe the same empirical associations between the 
variables. This means that the empirical data alone can-
not possibly distinguish between these models, a prob-
lem that is well known in the literature on structural 
modeling (e.g., MacCallum et al., 1993).

Global model fit

Equivalence classes are also the reason why the evalu-
ation of model fit measures (e.g., the mean squared 
error, R2, strictly speaking a measure of predictive per-
formance, or, in a SEM context, χ2, root mean square 
error of approximation, comparative fit index) alone can 
never tell us whether our model is correct: Each model 
from an equivalence class will produce identical fit indi-
ces. However, considerations of model fit may at least 
enable us to discard certain models as implausible. If 
the model appropriately captures the underlying causal 
data-generating process, model fit will be good—thus, 
models with a bad fit cannot have generated the data. 
To actually apply this logic, we need to move analyses 
into a SEM context in which we can properly assess and 
compare model fit.

Local misfit

Although global assessments of model fit are most com-
mon in psychology, it may often be helpful to addition-
ally apply more local approaches that can tell us why a 
model does not fit well (Pearl et al., 2016, p. 50). If we 
assume that a certain causal model generated our data, 
we can derive testable implications. Testable implica-
tions are about the independence of pairs of variables—
casually speaking, the fewer arrows between variables, 
the more things we can test. Testable implications take 
the form of “adjusting for C, A and B are statistically 
independent”—if this is not the case in our empirical 
data, we can reject the assumed model, and we also 
know where it went wrong (e.g., we missed a factor that 
causes an association between A and B). The directed 
acyclic graph framework provides clear rules for how to 
derive all testable implications of a given model (Elwert, 
2013, pp. 252–254; Pearl et al., 2016, Chapter 2.5), and 
there is even software that automates the process (e.g., 
dagitty.net; see also Textor et al., 2011). In Box 2, we give 
a brief introduction on how to derive testable implications. 
Models from the same equivalence class share the same 
testable implications and thus firmly remain empirically 
indistinguishable. Furthermore, note that some process 
models do not have testable implications because they are 
saturated: The model has so many parameters that it can 
perfectly reproduce the empirically observed associations; 
in a SEM context, model fit would necessarily be perfect 
(with zero degrees of freedom)—the model thus cannot 
possibly fail, and no testable implications remain.

Model equivalence when mediation  
is moderated

Earlier, we stated that switching the direction of arrows 
in mediation models results in observationally equiva-
lent models. But does that also apply to moderated 
mediation? To find out, we can draw a moderated medi-
ation model, apply the rules described in Box 2 to 
derive testable implications, then switch some arrows, 
and check whether the testable implications have 
changed. If models have different testable implications, 
they are no longer observationally equivalent, and 
empirical data may lead us to reject some but not all 
possible moderated mediation models. Of course, 
whether a moderated mediation model that cannot be 
rejected by the data actually depicts a plausible causal 
net still depends on additional assumptions (e.g., the 
absence of unobserved confounders discussed above). 
In Figure 6, we demonstrate what this exercise of 
repeatedly deriving testable implications would look 
like for a scenario in which a moderator affects only 
one mediation path and in which any correlation 
between the moderator and the respective independent 
variable is due to an unobserved common cause.6 We 
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can see that once the moderator is added, only some 
models remain observationally equivalent.

Conclusion: Rethinking the Research 
Process

Running a conditional-process analysis may be a matter of 
a few clicks, but as we have described above, interpreting 
the output requires strong assumptions. We need to rule 
out reverse causality and unobserved confounding (both 
of which may frequently be highly plausible in psychology) 
and additionally make assumptions about the functional 

forms of effects (about which we tend to know little). If 
assumptions are violated, the estimated coefficients end 
up being a mix of spurious and causal associations that 
can hardly be interpreted. Naturally, we may not be moti-
vated to, or even be motivated not to, consider whether 
assumptions are violated when the output of the process 
analysis (seemingly) supports a particular cause-and-effect 
narrative—one that has been suggested before in the lit-
erature, one that demonstrates the effectiveness of an 
elaborate intervention, or simply one that we hold dear.

These issues have been highlighted before (e.g., 
Antonakis et al., 2010; Bullock et al., 2010; Chan et al., 

To derive testable implications, we can break up a causal graph into three elementary causal structures (Elwert, 
2013) that do (or do not) transmit associations between variables.

Chains: A → B → C. This chain transmits a causal association between A and C. If we control for the third variable 
(B, the mediator), the chain ceases to transmit an association. Considering this chain in isolation, this means that 
conditional on B, A and C are independent, which we can write as A ⊥ C | B.

Forks: A ← C → B. This fork transmits a noncausal association between A and B. If we control for the third 
variable (C, the confounder), the fork ceases to transmit an association: A ⊥ B | C.

Inverted fork: A → C ← B. This inverted fork does not transmit an association between A and B, A ⊥ B. 
However, if we control for the third variable (C, the collider), then the inverted fork transmits a noncausal 
association between A and B.

We can break up all paths in Figure 3a into these elementary structures to arrive at the testable implications of 
the model. Note that here, we will assume that the graph fully represents the assumed model, which is generally 
not the case for such conceptual graphs (more on that below).

Some variables should not be associated in the overall data:

Past Performance ⊥ Social Support

Past Performance ⊥ Stress

Social Support ⊥ Stress.

Furthermore, task performance and stress should not be associated when we control for past performance, self-
efficacy, and social support:

Task Performance ⊥ Stress | Past Performance, Self-Efficacy, Social Support.

However, if we specify this particular model in PROCESS and most other software, per default, variables that 
jointly cause another variable are allowed to correlate (unless one of them causes the other). This means that  
in many conceptual graphs, there are a number of bidirectional arrows that are not depicted (Hayes, 2017,  
p. 22) and that reduce the number of testable implications. As a result, many of the models implemented in the 
PROCESS macro are observationally equivalent. According to our analysis (see https://osf.io/69kgc/), of the 58 
models included in the current version, 86% are equivalent to at least one other model. Overall, the 58 models 
belong to only 17 different equivalence classes.

If we include these additional arrows and once again deduce all testable implications for our central example, 
we are left with only one of them:

Task Performance ⊥ Stress | Past Performance, Self-Efficacy, Social Support.

What if we find that task performance and stress are still correlated after adjusting for past performance,  
self-efficacy, and social support? We may reject the underlying substantive model or modify it. For example, it is 
possible that conditional independence is violated only because of measurement error in past performance,  
self-efficacy, or social support, which could be explicitly incorporated into the graph (Kuroki & Pearl, 2014).

Box 2. Spotlight on Testable Implications

https://osf.io/69kgc/
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2020; Fiedler et al., 2011; Kline, 2015; Shaver, 2005; Thoemmes, 
2015) and have been discussed in great detail in a large 
number of methods articles. Yet implementations of mod-
eration and mediation models are often reported with little 
awareness, let alone critical reflection of the underlying 
assumptions. We may thus be confronted with normative 
methods that are suboptimal but favored by the publica-
tion process (Smaldino & McElreath, 2016). Such methods 
can be quite persistent, in particular if there is little inter-
disciplinary exchange (Smaldino & O’Connor, 2020). This 
unfortunate situation can occur without any ill intention 
on the part of researchers, and we do not mean to imply 
that researchers who use these models are bad at their job 
or (even worse) do not care about the truthfulness of their 
claims—they are simply implementing practices that they 
have been taught and that often result in interesting-
sounding empirical claims.

We believe that to improve practices, some funda-
mental rethinking of what we consider a publishable 
scientific contribution may be necessary. Currently, 
researchers may feel pressured to do “everything” in a 
single article—summarize and synthesize the existing 
literature, suggest a new theory or at least modify an 
existing one, hypothesize moderation and/or mediation, 
and provide (preferably positive) empirical evidence 
through statistical analyses that they run themselves, 
maybe even across multiple studies they conducted 
themselves. It is perhaps unsurprising that they end up 
cutting corners when it comes to causal inference—a 

hard topic, for which psychologists often receive little 
training—and rely on out-of-the-box statistical models.

Here is an alternative vision of what the research 
process could look like. An empirical investigation starts 
with conceptual considerations. Which causal effect is 
of interest in the first place, and why? Would its pres-
ence—or its absence—inform our theories, or does it 
have practical relevance? Can we spell out the theoretical 
estimand in precise terms (Lundberg et al., 2021)? What 
assumptions are we willing to make? These questions 
neatly tie in with recent calls for more rigorous theory 
(Muthukrishna & Henrich, 2019) and more formal model-
ing (Guest & Martin, 2021; Smaldino, 2017) but also with 
concerns about the utility of psychological research in 
times of crisis (Lewis, 2020). Such conceptual consider-
ations may warrant their own publication, which allows 
others to build on them but also reduces the pressure 
to immediately skip to empirical data.

During this first stage, we may realize that we are not 
(yet) at the point in the research process at which we 
should try to estimate causal effects. For example, we may 
notice that open-ended exploration, description (Rozin, 
2001), or prediction (Yarkoni & Westfall, 2017) are more 
suitable endeavors for the matter at hand or that more 
basic questions about measurement need to be settled first 
(Scheel et al., 2021). All of these types of investigations, 
if conducted rigorously, are relevant scientific contribu-
tions in their own right—researchers should not feel pres-
sured to disguise them as hypothesis-testing confirmatory 
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M

X Y

Z

M

X Y

Z

M

X Y

Z

M

X Y

Z

M

X Y

Z

Implication: Y⊥ Z | X, M Implication: Y ⊥ Z | X  

Implication: Y ⊥ Z  Implication: Y ⊥ Z | M 

Fig. 6. Testable implications of different moderated mediation models. Z (causally) moderates the path between 
X and M no matter in which direction it points. Here, we use the directed acyclic graph notation in which 
all variables that jointly affect a node are allowed to interact. Bidirectional arrows are used as a shorthand 
for unobserved common causes. Models that share shaded boxes share all testable implications and are thus 
observationally equivalent.
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studies that make some (explicit or implicit; Grosz et al., 
2020) causal claim.

But if we finally get to the step of causal effect estima-
tion, we should fully dedicate ourselves to the task. We 
need to clearly define the effects of interest and venture 
to find a suitable identification strategy (for an accessible 
introduction to the steps of causal inference, see Foster, 
2010a). Which identification strategy works will strongly 
hinge on the assumptions that we are willing to make. 
Here, we might realize that a (field) experiment is the 
best way forward; or maybe we can find a suitable natural 
experiment (for a great introduction, see Dunning, 2012), 
such as a genetically informative study (e.g., Briley et al., 
2018); or maybe we will indeed settle for a fully model-
based approach that rests on often stronger assumptions 
about the underlying causal net. Of course, our decision 
will be partly constrained by concerns of feasibility (e.g., 
the funding available), and causal inference is not a 
monolithic endeavor—diverse perspectives and different 
strands of evidence produced by myriad methods can 
contribute (Krieger & Smith, 2016). However, this is not 
a justification for selling a design as more convincing 
than it is or for hiding assumptions.

No single empirical study can rule out all alternative 
explanations; any empirical study (including a random-
ized experiment) will make a multitude of assumptions, 
including unrealistic ones. For example, philosopher of 
science Angela Potochnik (2017) went so far as to say 
that assumptions, made without regard for whether they 
are true, are central to science. The most crucial of these 
assumptions should be listed transparently. By this, we 
do not mean the type of boilerplate often tacked onto 
articles with process models (e.g., “future experimental 
studies should . . . ”; see also Chan et al., 2020). Instead, 
authors should list the actual specific assumptions under 
which their central estimate of the causal effects can be 
interpreted: “This estimate corresponds to the causal 
effect of X on Y under the assumption that, apart from 
A, B, and C, there are no common causes between the 
two of them”; or, for example, in a longitudinal study: 
“Results provide evidence for a causal effect of X on Y 
under the assumption that there are no time-varying 
confounding factors.”

Such assumptions may often appear unrealistic, but 
they can be supplemented with statements about the 
degree to which conclusions are sensitive to violations 
of these assumptions. For example, alternative models 
with alternative sets of assumptions may be reported, 
and quantitative methods can be used to estimate to 
what extent conclusions are sensitive to unobserved 
confounding (e.g., Blackwell, 2014; Imai et  al., 2010; 
Oster, 2019; VanderWeele, 2010).

Reviewers may feel tempted to judge articles more 
harshly when assumptions are spelled out rather than 
hidden away.7 Thus, our vision includes another critical 

change to the current practice that may be even more 
radical than authors explicating their assumptions: that 
reviewers are sufficiently well trained in causal inference 
to understand that a lack of explicit assumptions points 
to assumptions that the researchers are not aware of. 
There is no free lunch in causal inference.

With conditional-process models, the list of assump-
tions will be rather long—scrutinizing or even testing all 
of them will be too big a task for a single article. Luckily, 
we need not tackle this task alone. If assumptions are 
taken seriously, this provides an opening for other 
researchers to join in. Transparent assumptions can be 
openly discussed in the community and examined in 
further studies to corroborate or question the robustness 
of claims. Such criticism and probing of other people’s 
work—be it conceptual or empirical—is once again a 
scientific contribution in its own right and should be 
valued accordingly. Eventually, our collective under-
standing of the phenomenon may grow to a point at 
which we are comfortable making strong and specific 
assumptions. At this point, we may be able to do a 
conditional-process analysis and have confidence in the 
resulting estimates.

It is possible that such a rigorous approach to causal 
inference might lead to the “disappearance” or at least 
shrinkage of effects that were previously deemed impor-
tant; indeed, there is evidence that more rigorous designs 
lead to smaller causal effect estimates in the medical and 
social sciences (Branwen, 2019, maintains a list of stud-
ies on the topic). However, this pattern may partly be 
attributable to publication bias, and in principle, biases 
can also hide true causal effects or lead to their under-
estimation. Thus, it is an open question how less casual 
causal inference would affect our understanding of 
psychology.

Our vision is one in which psychological research is 
inherently transparent and collaborative, collectively 
striving toward greater robustness and culmination of 
knowledge. It is aligned with recent pushes toward 
greater transparency and rigor (e.g., Vazire, 2018), 
toward separating authorship from contributorship 
(Holcombe, 2019), and toward increased distributed col-
laboration (Moshontz et al., 2018). It may be an ambi-
tious vision, but it is one in which any single research 
article can afford to be less ambitious in its scope. 
Instead of making sweeping complex causal claims, let 
us focus on getting one piece of the puzzle right at a 
time. Research is, after all, a process.
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Notes

1. These concerns are only made worse if, additionally, research-
ers search for and report only coefficients that reach the thresh-
old for statistical significance (Götz et al., 2021). However, here 
we will not discuss such questionable research practices, prefer-
ring instead to focus on causal inference problems.
2. We will apply this standard mediation terminology throughout 
the article even if the independent variable was not experimen-
tally manipulated (and might thus not be independent after all). 
Furthermore, we use conceptual diagrams in which an interac-
tion is represented by an arrow pointing onto an arrow, which 
is quite common for literature that relies on process models. 
Other common types of diagrams do not include this type of 
arrow. For example, in SEM diagrams, the interaction is often 
represented by including the multiplicative interaction term as a 
variable in its own right. In directed acyclic graphs (for an intro-
duction for psychologists, see e.g., Rohrer, 2018), variables that 
jointly cause another one may interact in any conceivable way; 
no additional arrows are included. However, several proposals 
have been made in the literature to enhance directed acyclic 
graphs by something similar to the “arrow pointing onto arrow” 
notation (Nilsson et al., 2021; Weinberg, 2007).
3. This presumes that researchers will use the randomly assigned 
social-support condition as an independent variable in subse-
quent analyses. When studies instead use a subsequent measure 
of the construct of interest (e.g., a manipulation check) as an 
independent variable, we no longer have an experiment, but a 
surrogate experiment (Bareinboim & Pearl, 2012).

4. To illustrate the case, let us assume that social support and 
past performance are unrelated in the overall population and 
that both have positive (additive, linear) effects on self-efficacy. 
If we now look at people with high self-efficacy, there will be 
a mix of different “types” of people. (a) Some will have high 
self-efficacy thanks to both solid social support and good past 
performance, and others will have (b) high self-efficacy thanks 
to outstanding social support (despite mediocre performance) or  
(3c) high self-efficacy thanks to outstanding performance (despite 
lacking social support). However, people with both low social 
support and bad past performance will be rare in this group, 
and their self-efficacy tends to be low. Thus, across the group of 
people with high self-efficacy, there may arise a spurious nega-
tive association between social support and past performance. 
The same logic applies to people low in self-efficacy, where we 
once again observe the same (spurious) negative association. 
Hence, conditional on self-efficacy, past performance and social 
support are negatively correlated.
5. Casually speaking, sequential ignorability means that there is 
no confounding between the treatment and the outcome, and 
no confounding between the mediator and the outcome (con-
ditional on the rest of the model). More technically speaking, 
“ignorability” refers to a situation in which a variable is inde-
pendent of the potential outcomes of an individual; put another 
way, if a variable is ignorable, it is not confounded with the 
outcome. For sequential ignorability, first, given pretreatment 
covariates, treatment assignment needs to be ignorable. And 
then second, again given pretreatment covariates and observed 
treatment status, the mediator needs to be ignorable.
6. As stated in Box 2, most software packages allow variables 
that jointly cause another variable to correlate. Depending on 
which causal net we assume to underlie these correlations, 
testable implications may change. In the scenarios depicted in 
Figure 6, the assumption that the correlation reflects an effect of 
the moderator on the respective independent variable does not 
change testable implications. However, if we assume that the 
respective independent variable affects the moderator, the test-
able implications for the two scenarios in the lower shaded box 
change; left: Y ⊥ Z|X, right: Y ⊥ Z|M.
7. According to Pearl and Bareinboim (2014), assumptions are 
“self-destructive in their honesty.” Such a “curse of transparency” 
can also occur in other situations in which researchers aim for 
honesty. For example, a preregistration may alert reviewers to 
discrepancies that would have gone unnoticed otherwise; open 
code may invite critical scrutiny in which reviewers would have 
simply assumed that no errors occurred.
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