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Abstract

The main result in this paper is a provably entropy stable shock capturing approach for the high order
entropy stable Discontinuous Galerkin Spectral Element Method (DGSEM) based on a hybrid blending
with a subcell low order variant. Since it is possible to rewrite a high order summation-by-parts (SBP)
operator into an equivalent conservative finite volume form, we were able to design a low order scheme
directly with the Legendre-Gauss-Lobatto (LGL) nodes that is compatible to the discrete entropy analysis
used for the proof of the entropy stable DGSEM. Furthermore, we present a hybrid low order/high order
discretisation where it is possible to seamlessly blend between the two approaches, while still being provably
entropy stable. With tensor products and careful design of the low order scheme on curved elements, we are
able to extend the approach to three spatial dimensions on unstructured curvilinear hexahedral meshes. We
validate our theoretical findings and demonstrate convergence order for smooth problems, conservation of the
primary quantities and discrete entropy stability for an arbitrary blending on curvilinear grids. In practical
simulations, we connect the blending factor to a local troubled element indicator that provides the control
of the amount of low order dissipation injected into the high order scheme. We modified an existing shock
indicator, which is based on the modal polynomial representation, to our provably stable hybrid scheme.
The aim is to reduce the impact of the parameters as good as possible. We describe our indicator in detail
and demonstrate its robustness in combination with the hybrid scheme, as it is possible to compute all the
different test cases without changing the indicator. The test cases include e.g. the double Mach reflection
setup, forward and backward facing steps with shock Mach numbers up to 100. The proposed approach is
relatively straight forward to implement in an existing entropy stable DGSEM code as only modifications
local to an element are necessary.

Keywords: Compressible Euler Equations, Discontinuous Galerkin spectral element method, Shock
Capturing, Entropy Stability, Computational Robustness

1. Introduction

The Discontinuous Galerkin (DG) methodology provides a straight forward strategy to construct high
order methods on unstructured grids for advection dominated problems, such as the compressible Euler and
the compressible Navier-Stokes equations. Based on a Galerkin type local finite element ansatz and a weak
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formulation of the underlying non-linear problem, ideas from the finite volume methodology are applied
via the so-called numerical fluxes to add stabilization for advection dominated flow problems. However,
due to e.g. variational crimes caused by the insufficient integration of the highly non-linear volume and
surface terms in the weak formulation and the finite dimensional approximation space, the DG scheme
may still suffer critical stability issues. We roughly distinguish two stability issues: (i) the variational
crimes or aliasing-driven instabilities that may cause crashes of the simulation especially in underresolved
vortical driven flow fields such as e.g. turbulence; (ii) the oscillations caused by Gibbs phenomena when
approximating very steep gradients or even discontinuities with high order polynomials.

Aliasing instabilities can be reasonably controlled by so-called polynomial de-aliasing (or ‘over-integration’
or ‘consistent integration’), e.g., [1, 2, 3, 4, 5], or by discrete entropy stable split formulations, e.g.,
[6, 7, 8, 9, 10, 11], or by a space-time ansatz in entropy variables with consistent integration, e.g., [12, 13].
Due to the positive properties of the split form based approach, e.g., [14], and the reduced computa-
tional complexity in comparison to a full space-time ansatz, the work presented in this paper is based
on discretely entropy stable collocation Discontinuous Galerkin Spectral Element Method (DGSEM) with
Legendre-Gauss-Lobatto (LGL) nodes. The method can be found in, e.g. [6, 10, 11].

Oscillations are typically much harder to control as they are not caused by ‘variational crimes’, but are
inherent in the ansatz and construction of the DG scheme with local polynomial approximations. Oscillations
are as critical as the aliasing issues because they may cause crashing of the simulation due to undershoots in
density and temperature, i.e. unphysical negative values may arise. It seems that such artificial oscillations
at steep gradients can only be addressed by direct interaction with the high order operator or the general
idea of the DG methodology. The task gets even more complicated, as we aim to retain the nice theoretical
properties of the discretely entropy stable DGSEM. In [12], artificial dissipation powered shock capturing
was designed for the space-time approach such that it is compatible with the entropy analysis. Shock
capturing based on artificial dissipation that is compatible with the discretely entropy stable split forms was
constructed in, e.g., [15, 16]. In the latter works, a troubled element indicator based on Persson and Peraire
[17] was adopted. While artificial dissipation works reasonably well in practice, some additional issues are
related to this approach: (i) by changing the character of the underlying partial differential equation, new
boundary conditions have to be specified and adjusted [18]; (ii) at strong shocks, the amount of artificial
dissipation may be high enough to negatively impact the explicit time step typically used for advection
dominated problems [19].

As a side node, a very interesting approach based on tailored subcell finite volumes (FV) in combination
with Legendre-Gauss (LG) powered collocation DGSEM was presented by Sonntag and Munz [20]. The idea
is to split the DG element in a subcell for each LG node. The authors choose to span the subcell around
the LG node and apply a standard second order total variation diminishing (TVD)-type reconstruction on
this subcell grid. As the local number of degrees of freedom (DOF) match between the two schemes, it is
straight forward to construct projection and reconstruction operators that connect the two approximation
spaces. Again, using a troubled element indicator, a hard switch was introduced: in case the DG element
is troubled, project the data and use subcell TVD FV in this element, otherwise keep using DGSEM. An
even more general idea based on subcell type shock capturing was recently introduced by Vilar [21].

As we aim to keep discrete entropy stability in our approach, we adopt, extend and modify the subcell idea
accordingly. First, we focus on the LGL nodes and the discretely entropy stable DGSEM as our high order
baseline scheme. Next, we show how to construct a robust low order subcell scheme, that is fully compatible
with the discrete entropy analysis, i.e. that is entropy stable for collocated entropy variables. We make
heavy use of the very important findings presented first in [22] for high order diagonal norm summation-by-
parts (SBP) operators, where it is proven that these operators can be equivalently represented as specific
subcell conservative finite volume approximations. Lastly, instead of implementing a hard switch, we will
show that it is possible to seamlessly blend the high order and low order variants local to each element with
a blending factor α in a way such that the hybrid scheme is still entropy stable for arbitrary values of α.

Thus, the key result of this paper is the first subcell based shock capturing technique for high order
DG that is discretely entropy stable. For clarity, we present the main ideas and derivations of the one
dimensional case in the next two sections of the paper. However, extension to the fully three dimensional
case on curvilinear hexahedral meshes is available and all associated proofs are collected in Appendix B.
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We invest substantial work in modifying and assessing a troubled element indicator inspired by Persson and
Peraire [17] and present detailed description in section 4. Here, our goal is to determine robust values of
the parameters as good as possible and demonstrate that the proposed choice of the described indicator is
very robust in combination with our shock capturing, as it is possible to compute all the different numerical
experiments without change. Besides presenting the numerical examples in the last part of the paper, we also
present numerical validations of our theoretical findings to demonstrate that the method is fully conservative
and discretely entropy stable for all blending factors. Conclusions are drawn in the final section.

2. The Hybrid Scheme

Although the paper focuses on the application to the compressible Euler Equations, the theory presented
in the following chapters is applicable to any hyperbolic conservation law for which a two point numerical
flux exists.

2.1. The High Order Scheme

The starting point is a high order LGL DGSEM in split form, see e.g. [6, 10]. We split the domain Ω
into elements with width ∆xi and use a local polynomial Lagrange ansatz with degree N . For this nodal
approach, the unknowns are the nodal values collected in a vector u. With collocation, we can directly
compute the nodal values of non-linear functions, such as e.g. the the nodal values of the flux f . The
standard strong form DGSEM, e.g., [23] of the generic conservation law

ut + f(u)x = 0, (1)

for an element i reads as
Jiu̇i +R

DG
i ∶= Jiu̇i +Df i +M

−1B(f∗
i
− f

i
) = 0. (2)

We call RDG the high order DGSEM residual operator, u̇ = ∂u/∂t is the temporal derivative, D is the
polynomial derivative matrix, M = diag(w0, . . . ,wN) is the mass matrix with the LGL quadrature weights
as entries on the diagonal. The surface evaluation matrix B = diag(−1,0, . . . ,0,1) and the Jacobian of the
local element mapping Ji = ∆xi/2. The numerical flux vector is

f∗
i
= (f∗(ui−1,N , ui,0),0, . . . ,0, f

∗
(ui,N , ui+1,0))

T , (3)

with the two point numerical interface flux

f∗ = f∗(uLeft, uRight). (4)

To obtain an entropy stable DGSEM, one of the necessary ingredients is to use an entropy stable two point
flux, e.g., as found the context on approximative Riemann solvers [24]. We focus on a single element, drop
the element index and introduce the element centric notation

uL ∶= u−1 = ui−1,N and uR ∶= uN+1 = ui+1,0 (5)

to describe the face states from the neighbour elements of the element i.
It was shown in [25] that the LGL DGSEM operators M and D form a SBP operator introduced in the

finite difference community, e.g., [26]. This is an important property, as in combination with the theoretical
findings of Fisher and Carpenter [22, page 10], it was possible to show [22, 6, 10] that many split form
DGSEM, including kinetic energy preserving and entropy conserving forms, can be rewritten in an element
local conservative flux differencing formula on a complementary grid (see Figure 1) with specific choices of
symmetric two point fluxes f∗S

Ju̇j + 2
N

∑
l=0

Djlf
∗S
(j,l) +

δjN

wN
(f∗(N,R) − fN) −

δj0

w0
(f∗(L,0) − f0) = 0, j ∈ {0, . . . ,N}. (6)
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It is possible to write the volume operator in a conservative flux difference form

2
N

∑
l=0

Djlf
∗S
(j,l) =

1

wj
(f̄j+1 − f̄j), (7)

with

f̄0 = f0,

f̄j =
N

∑
k=j

j−1

∑
l=0

2Qlkf
∗S
(l,k) j ∈ {1, . . . ,N},

f̄N+1 = fN ,

where Q ∶=MD is the high order differencing operator with the SBP property

Q +QT = B, (8)

which leads to the additional properties

N

∑
k=0

Qjk = 0, (9)

N

∑
j=0

Qjk = τk ∶= δkN − δk0 = Bkk, (10)

that we will use later in the proofs.
We can rewrite the FV like formulation (7) in matrix vector notation

Ju̇ +M−1 [∆f̄ +B(f∗ − f)] = 0, (11)

with the standard FV differencing matrix

∆ ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−1 1 0 . . . . . . 0
0 −1 1 0 . . . 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 . . . 0 −1 1 0
0 . . . . . . 0 −1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

∈ R(N+1)×(N+2). (12)

2.2. The Low Order Scheme

The goal is to find a low order scheme that is compatible to the discrete entropy analysis performed in
the next section for the split form DGSEM to show its entropy stability. The key is that for the discrete
analysis the discretisation is multiplied with a collocated nodal value of the entropy variables. Thus, we
decided to construct a low order scheme, to be precise, a FV type discretisation on a subcell grid that
directly uses the nodal LGL values of the high order DGSEM ansatz. We observe from representation (7)
that a natural associated subcell grid is spanned by the respective LGL weights wj as depicted in Figure 1.
As we need a direct correlation of the high order and the low order DOF for the discrete entropy analysis,
we directly use the LGL nodal values and interpret these as the respective subcell ’average’ values of the
low order FV method. Besides allowing to analyse both schemes’ discrete entropy evolution simultaneously,
the choice gives further advantages: (i) using compatible DOF and a compatible subcell grid, we are able
to show conservation of the hybrid scheme (note that conservation is not guaranteed, when reconstructing
the FV representation and blending both residual operators, see Appendix C); (ii) no additional memory is
needed to store the DOF of the low order scheme; (iii) we are able to construct the low order FV such that
the contribution at the element interfaces (not the subcell interfaces) is identical to the surface contribution
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Figure 1: Example of a 6th order DGSEM LGL element with FV subcells

of the high order DGSEM. Therefore, only the volume term contributions are blended, compare formulation
(20). The low order FV discretisation on the compatible subcell grid with the nodal DOF choice reads as

Ju̇j +
1

wj
(f∗(j,j+1) − f

∗
(j−1,j)) = 0, (13)

where the LGL DGSEM nodal value uj is interpreted as a mean value in the subcells j ∈ {0, . . . ,N} of the
element. At the internal interface between the subcells j and j + 1, the numerical flux approximation is
f∗(j,j+1) = f

∗(uj , uj+1). Again, it is possible to rewrite the scheme in matrix vector notation

Ju̇ +RFV
∶= Ju̇ +M−1∆fFV

= 0, (14)

where ∆ is the FV differencing operator defined in (12) and fFV
= (f∗(L,0), f

∗
(0,1), . . . , f

∗
(N−1,N), f

∗
(N,R))

T ∈

RN+2. We can mimic a structure of the low order discretisation analogous to the DGSEM structure by
introducing the fluxes

f̄FV
0 = f0,

f̄FV
j = fFV

j = f∗(j−1,j) j ∈ {1, . . . ,N},

f̄FV
N+1 = fN ,

to rewrite (14) as

Ju̇ +M−1
[∆f̄

FV
+B(f∗ − f)] = 0, (15)

which looks very similar to (11) and shows how to split the subcell FV operator into an element surface
contribution and a local volume contribution.

2.3. The Hybrid Scheme

As the low order discretisation directly uses and updates the DOF of the LGL nodal ansatz, it is possible
to directly blend the low order operator with the high order operator

R ∶= αRFV
+ (1 − α)RDG, (16)

where α ∈ [0,1] is a blending function that depends on the shock indicator discussed in detail in section 4.
Using the natural subcell forms (11) and (15) we get

Ju̇ +M−1
[∆(αf̄

FV
+ (1 − α)f̄) +B(f∗ − f)] = 0. (17)

By construction of the low order discretisation, the blending of the surface term recovers the original DGSEM
strong surface contribution. Thus, actual blending is only effective in the volume terms. Consequently, no
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change of data dependency and connectivity is introduced into the existing code framework and e.g. no
additional boundary conditions, or a different MPI communication has to be implemented.

Introducing the compact notation of the blended flux as

f̄α0 =f0,

f̄αj ∶=αf∗(j−1,j) + (1 − α)f̄j j ∈ {1, . . . ,N},

f̄αN+1 =fN ,

(18)

gives us the equivalent form of the hybrid scheme

Ju̇ +M−1 [∆f̄
α
+B(f∗ − f)] = 0. (19)

Alternatively, we can choose a pure flux differencing formulation to get

Ju̇ = −M−1 [∆f̄
α
+B(f∗ − f)]

=M−1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f∗(L,0) − f0 − f̄
α
1 + f̄α0

−f̄α2 + f̄α1
⋮

−f̄αN + f̄αN−1

fN − f∗(N,R) − f̄
α
N+1 + f̄

α
N

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=M−1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f∗(L,0) − f̄
α
1

f̄α1 − f̄α2
⋮

f̄αN−1 − f̄
α
N

f̄αN − f∗(N,R)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
(20)

3. Discrete Entropy Stability of the Hybrid Scheme

3.1. The Entropy Inequality

For a generic conservation law
ut + f(u)x = 0, (21)

we introduce a convex function, the entropy, η = η(u) and define the set of entropy variables v = v(u) = ∂η
∂u

.
The entropy and a corresponding flux function q = q(u) define an entropy pair (η(u), q(u)) if the chain
rule η′(u)f ′(u) = q′(u) holds. It follows [27] that for smooth solutions the entropy variables v contract the
conservation law to

∂η

∂t
+
∂q

∂x
= 0. (22)

But for discontinuous solutions we can only satisfy an entropy inequality in the distributional sense1

∂η

∂t
+
∂q

∂x
≤ 0. (23)

We define a numerical discretisation as entropy stable or entropy dissipative, if it is possible to prove a
discrete entropy inequality for the scheme.

3.2. Derivation of the Discrete Entropy Evolution

For the discrete entropy evolution analysis, we introduce the typical DG notation for an arithmetic
average and the jump difference of two values

{{⋅}}(j,m) ∶=
1

2
[(⋅)j + (⋅)m] , (24)

⟦⋅⟧(j,m) ∶= (⋅)m − (⋅)j . (25)

1[28, page 338], notations of variables adapted to match this paper notation
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We first look at the low order discretisation (13) and mimic the continuous entropy analysis and contract
the low order discretisation of the conservation laws with the discrete entropy variable, vj , which in this
particular case are the collocated nodal values at the corresponding LGL node j

vjJu̇j = −
1

wj
vj(f

∗
(j,j+1) − f

∗
(j−1,j)) (26)

= Jη̇j = −
1

wj
[(q∗(j,j+1) − q

∗
(j−1,j)) −

1

2
(r(j,j+1) + r(j−1,j))] , (27)

where we used continuity in time and the fact that the mass matrix is diagonal to contract the time
derivative of the entropy. We skipped the intermediate algebra and added the proof of the above entropy
balance equation in Appendix A.1. We define the discrete numerical entropy flux as

q∗(j,j+1) ∶= {{v}}(j,j+1)f
∗
(j,j+1) − {{ψ}}(j,j+1), (28)

the numerical entropy production term as

r(j,j+1) ∶= ⟦v⟧(j,j+1)f
∗
(j,j+1) − ⟦ψ⟧(j,j+1), (29)

with the entropy flux potential
ψ(v) ∶= vf(u(v)) − q(u(v)). (30)

We get the discrete total entropy evolution by applying the LGL quadrature rule for the element

N

∑
j=0

Jwj η̇j = −
N

∑
j=0

(q∗(j,j+1) − q
∗
(j−1,j)) −

1

2
(r(j,j+1) + r(j−1,j))

= −q∗(N,R) + q
∗
(L,0) +

1

2

N

∑
j=0

r(j,j+1) + r(j−1,j)

= −q∗(N,R) + q
∗
(L,0) +

1

2
r(N,R) +

1

2
r(L,0) +

N−1

∑
j=0

r(j,j+1).

(31)

We rewrote the discrete entropy evolution in this specific form to make it easier to compare with the high
order entropy evolution derived next.

We note that a proof for DGSEM on general curvilinear hexahedral element in three space dimensions
is available in, e.g., [29, 30, 11]. In this paper, we present an alternative proof that is more similar to the
approach used for the low order method. We multiply the split form DGSEM with collocated nodal values
of the entropy variables and apply the LGL quadrature to obtain the discrete entropy evolution of the high
order method as

N

∑
j=0

Jwj η̇j = −q
∗
(N,R) +

1

2
r(N,R) + q

∗
(L,0) +

1

2
r(L,0) +

N

∑
j,k=0

Qjkr(j,k). (32)

We skip the details of this proof and collect all the steps in Appendix A.2.
Finally, we consider the blended hybrid scheme and derive its discrete entropy evolution. Now, using the

careful construction presented above, everything fits together such that a common discrete entropy analysis
of the hybrid scheme (16) is feasible. Technically, again, we multiply the hybrid discretisation with the
collocated nodal values of the entropy variables and apply the LGL quadrature to derive the discrete total
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entropy balance

N

∑
j=0

Jwj η̇j =
N

∑
j=0

Jwjvj u̇j

= −
N

∑
j=0

wjvj(αR
FV
j + (1 − α)RDG

j )

= −
⎛

⎝
α
N

∑
j=0

wjvjR
FV
j + (1 − α)

N

∑
j=0

wjvjR
DG
j

⎞

⎠

= α
⎡
⎢
⎢
⎢
⎣
−q∗(N,R) + q

∗
(L,0) +

1

2
r(N,R) +

1

2
r(L,0) +

N−1

∑
j=0

rFV
(j,j+1)

⎤
⎥
⎥
⎥
⎦

+ (1 − α)

⎡
⎢
⎢
⎢
⎢
⎣

−q∗(N,R) +
1

2
r(N,R) + q

∗
(L,0) +

1

2
r(L,0) +

N

∑
j,k=0

Qjkr
DG
(j,k)

⎤
⎥
⎥
⎥
⎥
⎦

= −q∗(N,R) +
1

2
r(N,R) + q

∗
(L,0) +

1

2
r(L,0) + α

N−1

∑
j=0

rFV
(j,j+1) + (1 − α)

N

∑
j,k=0

Qjkr
DG
(j,k),

(33)

where we used (31) and (32) and assumed that both methods used the same numerical flux at the element
interface. This derivation shows that both entropy production terms, rFV and rDG, determine if the scheme
is entropy conservative or entropy stable.

3.3. Discrete Entropy Conservation and Stability of the Hybrid Scheme

The discrete entropy evolution of the low order FV type discretisation leads us to the definition of an
Entropy Conservative (EC) numerical flux function f∗ = f∗EC. If the numerical flux function brings entropy
production at each interface to zero, i.e.

r(j,j+1) = ⟦v⟧(j,j+1)f
∗EC
(j,j+1) − ⟦ψ⟧(j,j+1) = 0, (34)

the resulting low order FV scheme is virtually (entropy) dissipation free. Analogously, an Entropy Stable
(ES) numerical flux function f∗ = f∗ES that guarantees entropy dissipation at each interface satisfies

r(j,j+1) = ⟦v⟧(j,j+1)f
∗ES
(j,j+1) − ⟦ψ⟧(j,j+1) ≤ 0. (35)

By carefully choosing the numerical fluxes in our hybrid scheme, it is possible to discretely satisfy
either entropy conservation or entropy stability. As an intermediate hybrid scheme, we choose all occurring
numerical fluxes as an EC flux and directly get that the hybrid scheme is by construction virtually dissipation
free and conserves the total discrete entropy. We will apply this intermediate scheme later to demonstrate
our theoretical findings in numerical experiments. Our goal however is to construct a provably entropy
stable discretisation. First, we choose an EC numerical flux in the DG volume terms

N

∑
j=0

Jwj η̇j = −q
∗
(N,R) +

1

2
r(N,R) + q

∗
(L,0) +

1

2
r(L,0) + α

N−1

∑
j=0

rFV
(j,j+1), (36)

which means that in the pure high order configuration, the scheme only dissipates through the DG element
interfaces. Next, we choose an ES numerical flux in the volume parts of the low order FV scheme, as we on
purpose want to add guaranteed entropy dissipation

N

∑
j=0

Jwj η̇j ≤ −q
∗
(N,R) +

1

2
r(N,R) + q

∗
(L,0) +

1

2
r(L,0), (37)
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when activating and blending the low order scheme, i.e. for values α > 0. This additional volume type
dissipation should act as a mechanism to control oscillations e.g. at shock fronts. Lastly, we choose an ES
numerical flux at the element interfaces, to add a small amount of dissipation

N

∑
j=0

Jwj η̇j ≤ −q
∗
(N,R) + q

∗
(L,0), (38)

even in a pure high order configuration, i.e. α = 0, which is desirable for automatic de-aliasing [14].
In summary, for all non-negative blending factors α ≥ 0, the novel hybrid discretisation is provably entropy

stable. While these derivations are for the one dimensional case, it is possible to extend this analysis to the
three dimensional case on curvilinear hexahedral elements. As the proof is very technical and algebraically
involved, details are collected in Appendix B. It is furthermore interesting to note that all the derivations
and constructions directly carry over to general diagonal norm SBP operators, such as e.g. SBP finite
difference schemes. Instead of using the LGL weights to define the subcell grid, the analogue is to use the
diagonal entries of the corresponding SBP norm matrix to define the low order subcell grid.

4. The Blending Function for Shock Capturing

4.1. Finding the Troubled Element

In order to estimate the amount of underresolution, we follow ideas presented in Persson and Peraire
[17] and compare the ’modal energy’ of the highest polynomial modes to the overall modal energy of the
quantity. To clearly separate the contributions, we transform our troubled element indicator quantity from
a (collocated) nodal representation to a hierarchical modal representation with Legendre polynomials. We
define the modal energy of a 1D polynomial as

⟨ε, ε⟩L2 = ⟨
N

∑
j=0

mjL̃j ,
N

∑
j=0

mjL̃j⟩L2 =
N

∑
i,j=0

mimj⟨L̃i, L̃j⟩L2 =
N

∑
j=0

m2
j , (39)

where {mj}
N
j=0 are the modal coefficients. We compute for each DG element how much energy is contained

in the highest modes relative to the total energy of the polynomial as following

E = max
⎛

⎝

m2
N

∑
N
j=0m

2
j

,
m2
N−1

∑
N−1
j=0 m2

j

⎞

⎠
, (40)

where we used the highest and second highest mode to avoid odd/even effects when approximating element
local functions. In the numerical results section, we will focus on the compressible Euler equations as an
example. The indicator variable used to estimate the missing resolution for the compressible Euler equation
is the product of the collocated density and collocated pressure, ε = ρp. This product reacts to jumps in
both density and pressure and is thus a very robust choice, as both quantities, density and pressure need to
retain positivity throughout the simulation.

The next step is to decide if the value of the highest mode energy is critical or not, i.e. if there is a shock
in the element or not. We define a threshold value T = T(N), that is used to decide if a shock is detected.
Motivated by the discussion in Persson and Peraire [17] on the expected decay proportional to ∝ 1/N4 we
propose the ansatz

T(N) = a ⋅ 10−c(N+1) 14 . (41)

With the insight from many different numerical experiments, the parameters a and c are predetermined as

T(N) = 0.5 ⋅ 10−1.8(N+1) 14 (42)

and since then never adjusted or changed. All below presented numerical results use this decision threshold.
It is however clear, that there is no proof and claim for optimality and that there might be alternative forms
of the threshold function that could give an improvement.
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4.2. The Blending Function α

For each element, the highest mode energy indicator E ∈ [0,1] and the threshold T are computed. These
values need to be translated into a blending value α ∈ [0, αmax], where 0 ≤ αmax ≤ 1 defines the maximum
amount of low order discretisation that can be blended to the high order DGSEM.

In a first step, we define the blending function α ∈ [0,1], with

α =
1

1 + exp(−sT (E −T))
, (43)

as a smooth mapping. The sharpness factor s was chosen so that the low order FV scheme gets the blending
weight with α = 0.0001 ≈ 0 for a highest energy indicator E = 0, i.e.

0.0001 = α(E = 0) =
1

1 + exp(−sT (0 −T))
=

1

1 + exp(s)
, (44)

and hence

⇒ s = ln(
1 − 0.0001

0.0001
) ≈ 9.21024. (45)

For computational efficiency, we can adjust the cases close to pure low order or high order configurations,
by clipping of the values of α as

α̃ ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, if α < αmin

α, if αmin ≤ α ≤ 1 − αmin

1, if 1 − αmin < α

, (46)

with αmin = 0.001. The choice αmax = 1 seems natural, as it corresponds to pure first order FV. Although
this offers a very robust scheme, we also assessed the accuracy of this approach in many investigations and
observed that we can substantially improve the numerical results by first clipping of the value of alpha

α = min(α̃, αmax), (47)

with the value αmax = 0.5 for polynomial order N = 4 chosen in this work and used for all test cases presented
below. Furthermore, accuracy could be improved by diffusing the element wise values of α by a single sweep
of

αfinal
= max

E
{α,0.5αE}, (48)

where E denotes all elements sharing a face.

5. The Numerical Setup for the Compressible Euler Equations

For numerical validation and assessment, we consider the compressible Euler equations. For brevity, we
discuss the equations in one spatial dimension as

∂

∂t

⎛
⎜
⎝

ρ
ρux
ρE

⎞
⎟
⎠
+
∂

∂x

⎛
⎜
⎝

ρux
ρu2

x + p
ux(ρE + p)

⎞
⎟
⎠
= 0, (49)

where ρ is the density of the fluid, ux its velocity, E its specific total energy and p the pressure. The system
is closed with the perfect gas assumption

p = (ρ(E −
u2
x

2
))(γ − 1), (50)

where γ is the specific heat capacity ratio.
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We consider the entropy pair

η = −
ρs

γ − 1
, q = −

ρuxs

γ − 1
, (51)

where s is the thermodynamic entropy given by

s = ln(p) − ln(ργ) + const. = −(γ − 1) ln(ρ) − ln(β) + const. (52)

and the inverse temperature β = 1/2RT . The corresponding entropy variables are

v = (
γ − s

γ − 1
− βu2

x,2βux,−2β)
T

. (53)

There are several EC numerical flux functions available. In this work, we use the one presented by
Chandrashekar [31, page 11], which reads in one dimension as

f∗EC
(j,k) =

⎛
⎜
⎝

ρln{{ux}}
ρln{{ux}}

2 + p̂

ρln{{ux}}ĥ

⎞
⎟
⎠
, (54)

where the logarithmic average of a positive quantity is defined as

(⋅)
ln
= (⋅)

ln
(j,k) ∶=

(⋅)k − (⋅)j

(ln ⋅)k − (ln ⋅)j
, (55)

and

p̂ ∶=
{{ρ}}

2{{β}}
, ĥ ∶=

1

2βln(γ − 1)
−

1

2
{{u2

x}} +
p̂

ρln
+ {{ux}}

2. (56)

A three dimensional version can be found, e.g., in [10, page 12]. Adding an explicit dissipation term that is
guaranteed entropy dissipative [31] gives an ES numerical flux

f∗ES
(j,k) =

⎛
⎜
⎝

ρln{{ux}}
ρln{{ux}}

2 + p̂

ρln{{ux}}ĥ

⎞
⎟
⎠
−
λmax

2

⎛
⎜
⎜
⎝

⟦ρ⟧
⟦ρux⟧

( 1
2βln(γ−1) +

1
2
(ux)j(ux)k)⟦ρ⟧ + {{ρ}}{{ux}}⟦ux⟧ +

{{ρ}}
2(γ−1)⟦ 1

β ⟧

⎞
⎟
⎟
⎠

, (57)

with λmax ∶= max{∣(ux)j ∣ + cj , ∣(ux)k ∣ + ck} is the maximum eigenvalue of the two states and c is the speed
of sound with ρc2 = γp.

So far, only the semi discrete spatial discretisation is described. In the numerical experiments, we
integrate the resulting system of coupled ordinary differential equations in time with a fourth-order accurate
explicit five stage Runge-Kutta method by Carpenter and Kennedy [32, page 13]. The explicit time step
restriction is estimated as

∆t = CFL
∆xmin

λmax

1

(N + 1)2
, (58)

where ∆x is the typical element size, λmax is the maximal wave speed and CFL = 1.
The scheme is implemented in the three dimensional curvilinear DLR inhouse turbomachinery code

TRACE 9.3.106 [33] and in FLUXO [34], which implements the DGSEM for general advection-diffusion
equations. TRACE is a three dimensional code framework, hence all the two dimensional computations
presented below are done in three dimensions, with only one element layer in the third dimension. The
global explicit time step is pre-computed and fixed for the whole simulation. All the computations use a
polynomial degree of N = 4, as this is the polynomial degree we envision for our future applications with
the turbulent compressible Navier-Stokes equations. All boundary conditions are imposed weakly using a
Riemann solver, see e.g. [35].
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6. Numerical Validation

6.1. Experimental Order of Convergence

The goal of this numerical test is to ensure that the full spatial convergence order is recovered for
smooth problems, as the shock capturing mechanism should not trigger in this case. We consider the smooth
isentropic vortex convection problem with the basic setup from [36]. However, instead of a Cartesian straight
sided mesh, we consider a fully periodic curved mesh as depicted in Figure 2. To generate the curved domain,

Figure 2: Initial condition of the vortex transport. All boundaries are fully periodic. Resolution of 8 elements per space
direction with degree N = 4 gives a total of 1600 DOF. The vortex advects through the domain at constant speed and after
one period reaches this initial position again.

we map a unit square Ω = [0,1]2 with the transformation

X(ξ, η) = (
ξLx −AxLy sin(2πη)
ηLy +AyLx sin(2πξ)

) (59)

to distort a square of [0, Lx] × [0, Ly] with sines of amplitudes Ax,Ay. We choose Lx = Ly = 0.1 and
Ax = Ay = 0.1. The parameters are chosen, so that we get a smooth mesh deformation and the initial vortex
gets well resolved in the domain. All boundaries are set to periodic. A vortex with radius Rv = 0.005 is
initialized in the curved domain in the location (xv, yv) = (Lx/2, Ly/2). The specific heat ratio γ = 1.4 and
the gas constant Rgas = 287.15. The free stream state is defined by the Mach number M0 = 0.5, temperature

T0 = 300, pressure p0 = 105, velocity u0 =M0

√
γRgasT0, and density ρ0 =

p0
RgasT0

. The initial vortex is given

by

ux(x, y) =u0 (1 − β
y − yv
Rv

e
−r2

2 ) ,

uy(x, y) =u0β
x − xv
Rv

e
−r2

2 ,

T (x, y) =T0 −
(u0β)

2

2Cp
e−r

2

,

ρ(x, y) =ρ0 (
T

T0
)

1
γ−1

,

p(x, y) =ρ(x, y)RgasT (x, y),

(60)
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where Cp = Rgasγ/(γ − 1) is the heat capacity at constant pressure and r =
√

(x − xv)2 + (y − yv)2/Rv is the
relative vortex radius and β = 0.2 is the vortex strength. We simulate the propagation for one time period
tp = Lx/u0 and compare the result with the initial condition for the mesh resolutions 8,16,32,64,128 in each
direction and the polynomial degree N = 4. The discrete norms are defined as

∥f∥Lp(Ω) ∶= (
∫Ω ∣f(x, y)∣pdxdy

∫Ω 1 dxdy
)

1
p

(61)

for p ∈ {1,2} and
∥f∥L∞(Ω) ∶= sup

x∈Ω
∣f(x)∣. (62)

We collect the results in Table 1 and get the expected convergence behaviour of approximately N + 1 = 5. It
is worth pointing out that the shock capturing is not triggered in any of the configurations.

(a) ρ

L∞ L1 L2

# Elements Error EOC Error EOC Error EOC

8 1.51 ⋅ 10−3 8.35 ⋅ 10−5 1.80 ⋅ 10−4

16 2.05 ⋅ 10−4 2.89 5.07 ⋅ 10−6 4.04 1.80 ⋅ 10−5 3.32
32 8.86 ⋅ 10−6 4.53 1.31 ⋅ 10−7 5.28 5.35 ⋅ 10−7 5.07
64 3.16 ⋅ 10−7 4.81 3.90 ⋅ 10−9 5.07 2.05 ⋅ 10−8 4.70
128 1.16 ⋅ 10−8 4.77 1.33 ⋅ 10−10 4.87 7.08 ⋅ 10−10 4.86

(b) ρux

L∞ L1 L2

# Elements Error EOC Error EOC Error EOC

8 6.51 ⋅ 1000 1.61 ⋅ 10−1 4.60 ⋅ 10−1

16 5.66 ⋅ 10−1 3.52 9.06 ⋅ 10−3 4.15 3.43 ⋅ 10−2 3.75
32 1.41 ⋅ 10−2 5.33 1.28 ⋅ 10−4 6.15 7.52 ⋅ 10−4 5.51
64 8.33 ⋅ 10−4 4.08 5.61 ⋅ 10−6 4.51 3.47 ⋅ 10−5 4.44
128 3.61 ⋅ 10−5 4.53 2.09 ⋅ 10−7 4.74 1.31 ⋅ 10−6 4.73

(c) ρuy

L∞ L1 L2

# Elements Error EOC Error EOC Error EOC

8 5.38 ⋅ 1000 2.01 ⋅ 10−1 5.43 ⋅ 10−1

16 3.97 ⋅ 10−1 3.76 7.53 ⋅ 10−3 4.74 2.80 ⋅ 10−2 4.28
32 1.43 ⋅ 10−2 4.80 1.22 ⋅ 10−4 5.95 7.29 ⋅ 10−4 5.26
64 7.81 ⋅ 10−4 4.19 5.48 ⋅ 10−6 4.47 3.41 ⋅ 10−5 4.42
128 3.96 ⋅ 10−5 4.30 2.05 ⋅ 10−7 4.74 1.28 ⋅ 10−6 4.73

(d) ρE

L∞ L1 L2

# Elements Error EOC Error EOC Error EOC

8 8.12 ⋅ 1002 3.89 ⋅ 1001 9.63 ⋅ 1001

16 1.34 ⋅ 1002 2.60 2.37 ⋅ 1000 4.04 8.83 ⋅ 1000 3.45
32 4.02 ⋅ 1000 5.06 4.66 ⋅ 10−2 5.66 2.16 ⋅ 10−1 5.35
64 1.85 ⋅ 10−1 4.44 1.50 ⋅ 10−3 4.96 8.42 ⋅ 10−3 4.68
128 7.30 ⋅ 10−3 4.66 5.00 ⋅ 10−5 4.90 2.74 ⋅ 10−4 4.94

Table 1: Convergence results for the isentropic vortex convection test. Errors and EOC for all four conservative quantities are
shown. Error is calculated after one convection period. With the polynomial degree N = 4, the expected convergence rate of
N + 1 = 5 reasonably well obtained. In none of the cases is the shock capturing mechanism activated.

6.2. Conservation of the Primary Quantities Mass, Momentum and Energy

The goal of this subsection is to demonstrate that the proposed hybrid scheme is fully conservative as
stated in equation (20). To assess the conservation, we consider a circular blast wave problem in the periodic
and curvilinear domain from the previous subsection 6.1 scaled to the domain size ±1.5. At time equal to
zero, a mass and energy peak is initialized in the centre of the domain

ρ(x, y) = ρ0 +
mejecta

2πσ2
ejecta

e
− 1

2
x2+y2

σ2
ejecta , ux(x, y) = uy(x, y) = 0, p(x, y) =

p0

γ − 1
+

Eblast

2πσ2
blast

e
− 1

2
x2+y2

σ2
blast ,

with the parameters ρ0 = 1, mejecta = 0.5, σejecta = 3 ⋅ 10−2, p0 = 10−5, Eblast = 1, σblast = 2 ⋅ 10−2, and γ = 1.4.
The simulation end time is tmax = 8 to allow for complex interactions of shock waves and multiple triggering
of the shock capturing mechanism. The numerical results are collected in Table 2 where the maximum
deviation of the total mass, momentum and energy throughout the simulation is listed. Visualisation of the
flow fields and the blending factor α is shown in Figure 3.

6.3. Entropy Conservation and Stability

The goal of this subsection is to evaluate the theoretical findings from section 3.3 by investigating if
the hybrid method with the EC numerical fluxes is indeed discretely entropy conservative and if the hybrid
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ρ ρux ρuy ρE

9.99 ⋅ 10−15 7.25 ⋅ 10−16 7.56 ⋅ 10−16 1.26 ⋅ 10−15

Table 2: For any conservative quantity u we show max
t∈T

{∣ ∫Ω u(t)dV − ∫Ω u(0)dV ∣}, where T = {8 ⋅ i
4210

∣i ∈ {1, . . . ,4210}} is the

set of time samples.

(a) Density, t = 1.2 (b) Alpha and mesh lines, t = 1.2

(c) Density, t = 8 (d) Alpha and mesh lines, t = 8

Figure 3: Blast wave on curvilinear domain with 40 × 40 elements (40k DOF). The contour plots illustrate the density
distribution and the values of the blending factor α at different times t. For all primary quantities, conservation up to machine
precision errors are observed throughout the simulation test.
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scheme with the ES numerical fluxes is guaranteed entropy stable. We compute the global change of the
discrete entropy change in three spatial dimensions as

η̇Ω ∶= ∫
Ω
η̇dV ≈ ∑

Elements(Ω)

N

∑
i,j,k=0

Jijkwijkη̇ijk = ∑
Elements(Ω)

−
N

∑
i,j,k=0

wijkvijkRijk, (63)

where R is the residual operator of the blended method (see (19) in 1D or (B.79) in 3D). The entropy
variables v for the Euler equations were defined in (53).

We use a 3D heavily warped mesh adapted from [37]. We start with the cube Ω = [0,3]3 and apply the
transformation

X(ξ, η, ζ) = (x, y, z) ∶ Ω→ f(Ω) (64)

such that

y = η +
1

8
Ly cos(

3

2
π

2ξ −Lx
Lx

) cos(
π

2

2η −Ly

Ly
) cos(

π

2

2ζ −Lz
Lz

) , (65)

x = ξ +
1

8
Lx cos(

π

2

2ξ −Lx
Lx

) cos(2π
2y −Ly

Ly
) cos(

π

2

2ζ −Lz
Lz

) , (66)

z = ζ +
1

8
Lz cos(

π

2

2x −Lx
Lx

) cos(π
2y −Ly

Ly
) cos(

π

2

2ζ −Lz
Lz

) , (67)

where Lx = Ly = Lz = 3. The mesh, which can be seen in Figure 4, was generated with the HOPR package
[38]. All boundaries are set to periodic.

We first test that the scheme fulfils free stream preservation (FSP), because, as is shown in Appendix
B.5, this property is necessary to ensure entropy conservation and stability. The blending function is selected
randomly in each element of the domain and the initial condition is set to a uniform flow,

ρ = p = ux = 1, uy = uz = 0. (68)

Table 3 shows the mean rate of change, in the L2 norm, of all conservative quantities for the uniform
flow (or free stream) condition when using the entropy conservative (EC) and entropy stable (ES) surface
numerical fluxes. As expected, the rate of change of the conservative variables is near machine precision.
The same results are obtained for the EC and ES fluxes since, in the absence of jumps in the solution, the
dissipation term is equal to zero.

∥ρt∥L2 ∥(ρux)t∥L2 ∥(ρuy)t∥L2 ∥(ρuz)t∥L2 ∥(ρE)t∥L2

f∗EC 4.38 ⋅ 10−13 8.75 ⋅ 10−13 3.71 ⋅ 10−13 4.06 ⋅ 10−13 1.75 ⋅ 10−12

f∗ES 4.38 ⋅ 10−13 8.75 ⋅ 10−13 3.71 ⋅ 10−13 4.06 ⋅ 10−13 1.75 ⋅ 10−12

Table 3: Mean rate of change of the conservative variables for the uniform flow

Now, to test entropy conservation/stability, instead of the strong blast wave from section 6.2, we initialize
a weaker shock wave (Mach 1.2) in the domain. This is necessary, because testing entropy conservation can
only achieved by disabling stabilizing dissipation terms. The post shock states (r =≤ 0.5) are computed by
the normal shock wave equations [39],

ρ =

⎧⎪⎪
⎨
⎪⎪⎩

≈ 1.3416, if r ≤ 0.5

1, if r > 0.5
, ur =

⎧⎪⎪
⎨
⎪⎪⎩

≈ 0.3615, if r ≤ 0.5

0, if r > 0.5
, p =

⎧⎪⎪
⎨
⎪⎪⎩

≈ 1.5133, if r ≤ 0.5

1, if r > 0.5,
,

where r = x− (1.5,1.5,1.5)T , r = ∥r∥2 is the distance to the center of the blast, and ur = ∥u∥2 = u ⋅r/r is the
radial velocity. For this test we had to lower the CFL number to 0.3.
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(a) Density (b) Alpha and mesh lines

Figure 4: Mach 1.2 shock wave on heavily warped mesh with 10 elements in each direction (125k DOF) at t = 0.4. The
images illustrate the entropy conservation test. Without dissipation terms and for such a warped mesh the simulation is visibly
numerically distorted.

Figure 4 illustrates the density and the blending coefficient at t = 0.4 on a section cut of the heavily
warped 3D mesh.

Table 4 shows the maximum deviation from the initial condition for all the conservative quantities when
using the entropy conservative (EC) and the entropy stable (ES) surface numerical fluxes. This deviation is
computed for any quantity ui as

deviation(ui) = max
t∈T

{∣∫
Ω
ui(t)dV − ∫

Ω
ui(0)dV ∣} , (69)

where T is the set of time samples. The computation is conservative except for numerical noise.

ρ ρux ρuy ρuz ρE

f∗EC 6.64 ⋅ 10−13 7.65 ⋅ 10−15 7.22 ⋅ 10−15 1.03 ⋅ 10−14 6.11 ⋅ 10−13

f∗ES 6.61 ⋅ 10−13 8.32 ⋅ 10−15 8.49 ⋅ 10−15 8.98 ⋅ 10−15 6.25 ⋅ 10−13

Table 4: Maximum deviation from the initial condition for all conservative variables

Finally, Table 5 shows the maximum and minimum net entropy production in the domain for all time
steps. The RHS operator with EC fluxes only (left column) is entropy conservative at every Runge Kutta
step of the computation (T is the set of time samples for each Runge Kutta step). The entropy stable
formulation (right column), using EC fluxes in the DG volume integral and and ES fluxes at surfaces and
FV volume integral, is entropy stable on the whole domain.
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f∗EC f∗ES

mint∈T η̇Ω −5.19 ⋅ 10−16 −7.81 ⋅ 10−1

maxt∈T η̇Ω 1.88 ⋅ 10−16 −4.99 ⋅ 10−3

Table 5: Entropy conservation and stability test

7. Numerical Applications

In this section we present four typical benchmark applications with strong shocks. We use the same
setup of our troubled element indicator and the blending function α for all the test cases on a sequence of
coarse, medium and fine grids. Besides visual inspection of the numerical simulation results, we also depict
the distribution of the blending factor to assess if the shock capturing mechanism is only triggered where
expected (and desired).

7.1. Shu Osher Shock

A common benchmark for schemes regarding their ability to preserve physical oscillations across shocks
is the 1D Shu-Osher shock test [40, Example 8]. A Mach 3 shock is initialized at x = −4 in the domain
[−5,5]. Additionally the downstream state is distorted by a sine wave, which acts as physical oscillations.
The simulation runs until t = 1.8. The left boundary is set as supersonic inflow the right boundary is set as
outflow.

ρ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

≈ 3.857, if x < −4

1 + 0.2 sin(5x), if x ≥ 4
, ux(x) =

⎧⎪⎪
⎨
⎪⎪⎩

≈ 2.629, if x < −4

0, if x ≥ 4
, p(x) =

⎧⎪⎪
⎨
⎪⎪⎩

≈ 10.333, if x < −4

1, if x ≥ 4
.

In Figure 5 we can see the results of the computation for different resolutions (320,640 and 1280 DOF).
The method converges towards the reference solution. The shock capturing mechanism mainly triggers at
the main shock. Minor shocks in the post shock region are not continuously detected. Here we see that the
parameters of the shock detector are calibrated to provide stability in the presence of strong shocks.

7.2. Shock Diffraction on a Backward Facing Step

Originally this test case was used as a benchmark to compare shock capturing schemes [43] and was
further analysed in [44] and [45]. We want to observe if the scheme can handle the corner, where the density
can get very close to zero. To increase the stress on our proposed discretisation, we chose to increase the
Mach number of the shock from the original 1.5 to the higher value of 100 and adapt the domain so that
the shock wave propagation is in focus at the final time.

The Mach 100 shock travels through a channel of resting gas and hits at t = 0 a backward facing step
Ω = [0,2]2 / ([0,0.5]× [0,1]) at its corner (0.5,1). The post shock states get computed by the normal shock
wave equations [39]

ρ(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

≈ 5.9970, if x ≤ 0.5

1, if x > 0.5
, ux(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

≈ 98.5914, if x ≤ 0.5

0, if x > 0.5
,

p(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

11666.5, if x ≤ 0.5

1, if x > 0.5
, uy(x, y) = 0.

The left boundary is set as supersonic inflow and the right boundary as supersonic outflow. All other
boundaries are reflecting walls. The numerical results are depicted in Figure 6, where the density contours
and the distribution of the blending factors α is plotted for three different simulations with coarse, medium
and fine resolution.
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(a) Density on 64 elements (320 DOF) zoomed onto the post
shock oscillations

(b) Density and α on 64 elements (320 DOF)

(c) Density on 128 elements (640 DOF) zoomed onto the post
shock oscillations

(d) Density and α on 128 elements (640 DOF)

(e) Density on 256 elements (1280 DOF) zoomed onto the post
shock oscillations

(f) Density and α on 256 elements (1280 DOF)

Figure 5: The Shu Osher shock zoomed in the critical post shock region (Left column). Density and α are shown at t = 1.8
for three different resolutions with the polynomial degree N = 4. As a reference we plotted a simulation using 2048 DOF in
the slightly smaller domain [−4.5,4.5] with the PPM [41] computed with the code FLASH [42]. The strong main shock is
continuously detected in contrast to the minor post shocks.
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Figure 6: Mach 100 shock wave diffraction over a backward facing step at simulation time t = 0.01. Density ρ in the left part
and blending factor α with mesh lines in the right part. Corresponding total resolutions in DOF for polynomial degree N = 4
is: 35k (top), 140k (mid), 560k (bottom). 19



7.3. Supersonic Flow over Forward Facing Step

In this case, the classic forward facing step channel [46] is considered. The tunnel with step gets initialised
with a uniform supersonic flow. The flow dynamics generate several phenomena like a strong bow shock,
shock reflections and a Kelvin-Helmholtz instability. The idea is to use this test case to investigate the ability
of a shock capturing scheme to distinguish between steep gradients, like the vortices of the Kelvin-Helmholtz
instability, and shocks, which occur in various forms. The domain Ω = ([0,3]× [0,1]) / ([0.6,3]× [0.2,1]) is
initialized with

ρ(x, y) = 1.4, p(x, y) = 1, ux(x, y) = 3, uy(x, y) = 0. (70)

The left boundary is set as supersonic inflow and the right one as supersonic outflow. All other boundaries
are reflecting walls. A known problem of this test case is that the step corner is a singularity for the velocity,
since in the friction-less case the walls do not force velocity to be equal to 0, see Woodward and Colella [46].
We account for this behaviour and refine the mesh around the corner to reduce strong numerical artefacts.

We can observe in Figure 7, that the blending factor behaves very well and robustly detects the shocks,
while keeping the contact discontinuities at minimum dissipation. At the finest grid resolution, the Kelvin-
Helmholtz instability in the top of the channel gets triggered. Some numerical errors at the corner singularity
still occur and propagate into the domain, causing a very thin artificial boundary layer. This layer hits the
shock standing orthogonal on the lower wall at x ≈ 1.45 and results in a small vortical driven boundary layer
further downstream.

Figure 7: Forward facing step at t = 3. Density ρ in the left and shock indicator α with mesh lines in the right column. Standard
element size ∆xmax is 4 times the element size ∆xmin around the corner. Resolutions with polynomial degree N = 4 in DOF
is: 6.9k (top), 27.6k (mid), 110.4k (bottom).

7.4. Double Mach Reflection

This is another common test case, which is discussed in detail in [46] and [47]. The general setup and
result are depicted in Figure 8. A Mach 10 shock hits a wedge of angle φ = π/6 at t = 0. The domain is
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Figure 8: Double Mach Reflection problem: Density contours in the whole domain at simulation time t = 0.2 with an equivalent
Cartesian mesh resolution ∆x = 1/96 (1.8432 M DOF).

rotated to allow for a simple Cartesian mesh setup on a rectangular domain Ω = ([0,4]× [0,2]), see e.g. [47]
for a discussion. The initial conditions are given by

ρ(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

8, if x ≤ g(y,0)

1.4, if x > g(y,0)
, ux(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

7.144709581221619, if x ≤ g(y,0)

0, if x > g(y,0)
,

p(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

116.5, if x ≤ g(y,0)

1, if x > g(y,0)
, uy(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

−4.125, if x ≤ g(y,0)

0, if x > g(y,0)
,

where g(y, t) = y tan(φ) + 1/6 + 10/ cos(φ)t is the analytical shock position. The wedge boundary {(x,0)∣x ∈
[1/6,4]} is a reflecting wall. All other boundaries are set as the analytical solution of the shock motion.

The numerical results plotted in Figure 9 confirm that again the blending factor α tracks the shock
dynamics quite well. Only some minor non zero blending values are assigned to elements in the vortex roll
up region caused by the steep gradients.

7.5. Inviscid Bow Shock Upstream of a Blunt Body

We follow the description of the test case proposed by the high order computational fluid dynamics
workshop [36]. The aim of this subsection is to simulate a shock problem on a curvilinear grid. The left
boundary is described as a circle with origin (3.85,0) and radius 5.9. The blunt body consists of a front of
length 1 and two quarter circles of radius 0.5. The domain is initialized with

ρ(x, y) = 1.4, p(x, y) = 1, ux(x, y) = 4, uy(x, y) = 0. (71)

The left boundary is set as supersonic inflow. The boundary on the body is a reflecting wall and the right
boundaries are supersonic outflows. The numerical results are plotted in Figure 10 and show again that the
method works nicely without adjusting the shock capturing mechanism.
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Figure 9: Simulation result of the Double Mach Reflection problem at t = 0.2 zoomed in the critical region of the rolled up
vortex and the shock triple points. Density ρ in the left, vertical momentum ρv in the middle and blending factor α in the
right column. Resolutions with degree N = 4 in DOF per unit square is: 14.4k (top), 57.6k (mid), 230.4k (bottom).

Figure 10: Simulation results of a bow shock in front of a blunt body at simulation time t = 10. Pressure p is plotted as well as
the blending factor α for three different mesh resolutions. Resolutions with degree N = 4 in DOF is Left pair: 2.4k, Mid pair:
9.6k, Right pair: 38.4k.
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8. Conclusions

In this work, we present the first subcell based shock capturing for DG that is provably entropy stable.
The main idea is to use a hybrid scheme: A careful blending of a low order and a high order discretisation
based on the same LGL node distribution allows to perform a common discrete entropy analysis. These
theoretical results are available for hexahedral curvilinear meshes and for general diagonal norm SBP op-
erators. In combination with a troubled element indicator, we use the hybrid framework to introduce a
shock capturing mechanism with the idea to add the low order discretisation (dissipation) in case a shock is
detected in the element. The choice of the troubled element indicator and the blending function α is robust
in the sense that we were able to compute all the different test cases without adjusting the settings. Besides
the desirable robustness, the numerical simulations with the novel scheme gave very accurate results and
ongoing research is focused on the extension to shock turbulence applications.
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Appendix A. Proofs

Appendix A.1. Entropy Balance Law of First Order 1D Finite Volume

Proof of (27). For a single interface (j, j + 1) holds

vjf
∗
(j,j+1) − ψj = (vj −

1

2
vj+1 +

1

2
vj+1)f

∗
(j,j+1) − (ψj −

1

2
ψj+1 +

1

2
ψj+1) (A.1)

=
1

2
(vj+1 + vj)f

∗
(j,j+1) −

1

2
(ψj+1 + ψj) (A.2)

−
1

2
(vj+1 − vj)f

∗
(j,j+1) +

1

2
(ψj+1 − ψj) (A.3)

= {{v}}(j,j+1)f
∗
(j,j+1) − {{ψ}}(j,j+1) (A.4)

−
1

2
⟦v⟧(j,j+1)f

∗
(j,j+1) +

1

2
⟦ψ⟧(j,j+1) (A.5)

= q∗(j,j+1) −
1

2
r(j,j+1) (A.6)

and

vj+1f
∗
(j,j+1) − ψj+1 = (vj+1 −

1

2
vj +

1

2
vj)f

∗
(j,j+1) − (ψj+1 −

1

2
ψj +

1

2
ψj) (A.7)

=
1

2
(vj+1 + vj)f

∗
(j,j+1) −

1

2
(ψj+1 + ψj) (A.8)

+
1

2
(vj+1 − vj)f

∗
(j,j+1) −

1

2
(ψj+1 − ψj) (A.9)

= {{v}}(j,j+1)f
∗
(j,j+1) − {{ψ}}(j,j+1) (A.10)

+
1

2
⟦v⟧(j,j+1)f

∗
(j,j+1) −

1

2
⟦ψ⟧(j,j+1) (A.11)

= q∗(j,j+1) +
1

2
r(j,j+1) (A.12)
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and therefore

vj(f
∗
(j,j+1) − f

∗
(j−1,j)) (A.13)

=vjf
∗
(j,j+1) − ψj − vjf

∗
(j−1,j) + ψj (A.14)

=(q∗(j,j+1) − q
∗
(j−1,j)) −

1

2
(r(j,j+1) + r(j−1,j)), (A.15)

see also [48, page 19].

Appendix A.2. Entropy Balance Law of the 1D DGSEM Split Form

Proof of (32) (see also [49, page 14] and [29, 30]). Performing the product v ⋅ (6) and integrating over
the element with the collocation LGL quadrature leads to

N

∑
j=0

wjJη̇j =
N

∑
j=0

wjvjJu̇j (A.16)

= −
N

∑
j=0

vjwj
N

∑
k=0

2Djkf
∗S
(j,k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
volume integral

−
N

∑
j=0

vjwj [
δjN

wN
(f∗(N,R) − fN) −

δj0

w0
(f∗(L,0) − f0)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
surface integral

(A.17)

= −q∗(N,R) +
1

2
r(N,R) + q

∗
(L,0) +

1

2
r(L,0) +

N

∑
j,k=0

Qjkr(j,k). (A.18)
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The volume integral:

N

∑
j=0

vjwj
N

∑
k=0

2Djkf
∗S
(j,k) =

N

∑
j=0

vj
N

∑
k=0

2Qjkf
∗S
(j,k) (A.19)

(SBP property) =
N

∑
j=0

vj
N

∑
k=0

(Bjk −Qkj +Qjk)f
∗S
(j,k) (A.20)

(def. of B & consistent flux) =
N

∑
j=0

τjvjfj +
N

∑
j,k=0

vj(−Qkj +Qjk)f
∗S
(j,k) (A.21)

(symm. flux & re-index) =
N

∑
j=0

τjvjfj +
N

∑
j,k=0

Qjk(vj − vk)f
∗S
(j,k) (A.22)

(definition of r) =
N

∑
j=0

τjvjfj +
N

∑
j,k=0

Qjk(ψj − ψk − r(j,k)) (A.23)

=
N

∑
j=0

τjvjfj +
N

∑
j=0

ψj
N

∑
k=0

Qjk

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=0

−
N

∑
k=0

ψk
N

∑
j=0

Qjk

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
=τk

−
N

∑
j,k=0

Qjkr(j,k) (A.24)

=
N

∑
j=0

τjvjfj −
N

∑
k=0

τkψk −
N

∑
j,k=0

Qjkr(j,k) (A.25)

(rename sum index) =
N

∑
j=0

τjvjfj −
N

∑
j=0

τjψj −
N

∑
j,k=0

Qjkr(j,k) (A.26)

=
N

∑
j=0

τj(vjfj − ψj) −
N

∑
j,k=0

Qjkr(j,k) (A.27)

(defintion of τ) =vNfN − ψN − (v0f0 − ψ0) −
N

∑
j,k=0

Qjkr(j,k) (A.28)

The surface integral:

N

∑
j=0

vjwj [
δjN

wN
(f∗(N,R) − fN) −

δj0

w0
(f∗(L,0) − f0)] (A.29)

= vNwN
1

wN
(f∗(N,R) − fN) − v0w0

1

w0
(f∗(L,0) − f0) (A.30)

= vN(f∗(N,R) − fN) − v0(f
∗
(L,0) − f0) (A.31)

Adding (A.31) and (A.28) leads to

vNfN − ψN − (v0f0 − ψ0) −
N

∑
j,k=0

Qjkr(j,k) + vN(f∗(N,R) − fN) − v0(f
∗
(L,0) − f0) (A.32)

=(vNf
∗
(N,R) − ψN) − (v0f

∗
(L,0) − ψ0) −

N

∑
j,k=0

Qjkr(j,k) (A.33)

=q∗(N,R) −
1

2
r(N,R) − q

∗
(L,0) −

1

2
r(L,0) −

N

∑
j,k=0

Qjkr(j,k), (A.34)

using (A.6) and (A.12).
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Appendix B. Entropy Stability on 3D Curved Elements

We start with the scalar conservation law in 3 space dimensions.

u̇ +∇ ⋅ f(u) = 0, (B.1)

where
u ∶ R3

×R→ R, u = u(x, t), (B.2)

u̇ ∶=
∂u

∂t
, (B.3)

∇ = (
∂

∂x1
,
∂

∂x2
,
∂

∂x3
)

T

, (B.4)

f ∶ R→ R3, u↦ (f1
(u), f2

(u), f3
(u))T . (B.5)

Appendix B.1. Mapping the Equation

Assume we have a mapping x(ξ1, ξ2, ξ3) ∶ [0,1]3 → R3 that describes a single element C of the mesh.
The covariant basis vectors are defined as

ai =
∂x

∂ξi
, i ∈ {1,2,3} (B.6)

and the (volume weighted) contravariant vectors are

Jai = aj × ak, (i, j, k) cyclic, (B.7)

where
J = ai ⋅ (aj × ak), (i, j, k) cyclic, (B.8)

is the Jacobian of the transformation. Define the transformation matrix

M ∶=
⎛
⎜
⎝

Ja1
1 Ja2

1 Ja3
1

Ja1
2 Ja2

2 Ja3
2

Ja1
3 Ja2

3 Ja3
3

⎞
⎟
⎠
. (B.9)

Then the transformation of a gradient is

∇ ⋅ f =
1

J
∇ξ ⋅ (M

Tf). (B.10)

We define
f̃ ∶=MTf (B.11)

and get the conservation law in reference space

Ju̇ +∇ξ ⋅ f̃(u) = 0, (B.12)
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Appendix B.2. Entropy Balance Law of the 3D DGSEM Split Form

Note: In the 3D tensor product context the spatial approximations are written with triple indices, e.g.
u(x, t) ≈ ∑

N
i,j,k=0 uijk(t)lijk(x). These will be written as subscript. Indices regarding the direction (in physical

or reference space) will be written as superscript, like in foreshadowed in (B.5). To readers not familiar with
these notations or multi dimension tensor product methods, [10, Appendix B] is recommended.

The DGSEM split form approximation in 3D reads

Jijku̇ijkwijk + (∇ξ ⋅ f̃(u))ijk = 0, (B.13)

with

1

wijk
(∇ξ ⋅ f̃(u))ijk ≈2

N

∑
m=0

Dimf̃
1∗S
(i,m)jk +

1

wi
(δiN [f̃1∗

(N,R)jk − f̃
1
Njk] − δi0 [f̃1∗

(L,0)jk − f̃
1
0jk])

+2
N

∑
m=0

Djmf̃
2∗S
i(j,m)k +

1

wj
(δjN [f̃2∗

i(N,R)k − f̃
2
iNk] − δj0 [f̃2∗

i(L,0)k − f̃
2
i0k])

+2
N

∑
m=0

Dkmf̃
3∗S
ij(k,m) +

1

wk
(δkN [f̃3∗

ij(N,R) − f̃
3
ijN ] − δk0 [f̃3∗

ij(L,0) − f̃
3
ij0]) ,

(B.14)

where the curvilinear symmetric two-point volume flux (in ξ1-direction) is defined as

f̃1∗S
(i,m)jk ∶= f

∗S
(uijk, umjk) ⋅ {{Ja

1
}}(i,m)jk. (B.15)

Analogue definitions for the f̃2∗S
i(j,m)k and f̃3∗S

ij(k.m) hold. The average and difference (in first direction) are
defined as

{{⋅}}(i,m)jk ∶=
1

2
[(⋅)ijk + (⋅)mjk] , (B.16)

⟦⋅⟧(i,m)jk ∶= (⋅)mjk − (⋅)ijk. (B.17)

Note: Numerical fluxes with an index that exceeds the polynomial approximation ansatz ({0, . . . ,N}) like
L ∶= −1 or R ∶= N + 1 are interpreted as the opposing state of the Riemann problem, similar to (5).

q̃1∗
(i,m)jk ∶= {{v}}(i,m)jkf̃

1∗
(i,m)jk − {{Ja1

}}(i,m)jk ⋅ {{ψ}}(i,m)jk (B.18)

is the numerical entropy flux in {{Ja1}} direction,

r̃1
(i,m)jk ∶= ⟦v⟧(i,m)jkf̃

1∗
(i,m)jk − {{Ja1

}}(i,m)jk ⋅ ⟦ψ⟧(i,m)jk (B.19)

is the numerical entropy production term in {{Ja1}} direction,

ψ = vf(u(v)) − q(u(v)) (B.20)

is the entropy flux potential and v is the entropy variable. Analogue definitions for the {{Ja2}} and {{Ja3}}

directions hold.
To determine the entropy balance law, the mesh has to be watertight, which means that the geometry is

continuous across all element faces, and the metric identities [29, 30, 10, 50] hold. We calculate the integral
in ξ1 direction of the fluxes in ξ1 direction first:
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N

∑
i=0

vijkwi
N

∑
m=0

2Dimf̃
1∗S
(i,m)jk =

N

∑
i=0

vijk
N

∑
m=0

2Qimf̃
1∗S
(i,m)jk (B.21)

(SBP property) =
N

∑
i=0

vijk
N

∑
m=0

(Bim −Qmi +Qim)f̃1∗S
(i,m)jk (B.22)

(def. of B & consistent flux) =
N

∑
i=0

τivijkf̃
1
ijk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶(a)

+
N

∑
i,m=0

vijk(−Qmi +Qim)f̃1∗S
(i,m)jk (B.23)

(symm. flux & re-index) =(a) +
N

∑
i,m=0

Qim(vijk − vmjk)f̃
1∗S
(i,m)jk (B.24)

(definition of r̃1) =(a) +
N

∑
i,m=0

Qim({{Ja1
}}(i,m)jk ⋅ (ψijk −ψmjk) − r̃

1
(i,m)jk) (B.25)

(splitting the sum) =(a) +
N

∑
i=0

1

2
(Ja1

)ijk ⋅ψijk

N

∑
m=0

Qim

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+
N

∑
i,m=0

1

2
(Ja1

)mjk ⋅ψijkQim (B.26)

−
N

∑
m=0

1

2
(Ja1

)mjk ⋅ψmjk

N

∑
i=0

Qim

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=τm

−
N

∑
i,m=0

1

2
(Ja1

)ijk ⋅ψmjkQim −
N

∑
i,m=0

Qimr̃
1
(i,m)jk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶(b)

(B.27)

=(a) −
N

∑
m=0

τm
1

2
(Ja1

)mjk ⋅ψmjk +
N

∑
i,m=0

1

2
(Ja1

)mjk ⋅ψijk(Qim −Qmi) + (b)

(B.28)

(SBP property) =(a) −
N

∑
m=0

τm
1

2
(Ja1

)mjk ⋅ψmjk (B.29)

+
N

∑
i,m=0

(Ja1
)mjk ⋅ψijkQim

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶(c)

−
N

∑
i,m=0

1

2
(Ja1

)mjk ⋅ψijkBim + (b) (B.30)

(Definition of B) =(a) −
N

∑
m=0

τm(Ja1
)mjk ⋅ψmjk + (c) + (b) (B.31)

(rename sum index) =(a) −
N

∑
i=0

τi(Ja
1
)ijk ⋅ψijk + (c) + (b) (B.32)

=
N

∑
i=0

τi(vijkf̃
1
ijk − (Ja1

)ijk ⋅ψijk) + (c) + (b). (B.33)

The surface integral:

N

∑
i=0

vijkwi [
δiN
wN

(f̃1∗
(N,R)jk − f̃

1
Njk) −

δi0
w0

(f̃1∗
(L,0)jk − f̃

1
0jk)] (B.34)

= vNjk(f̃
1∗
(N,R)jk − f̃

1
Njk) − v0jk(f̃

1∗
(L,0)jk − f̃

1
0jk). (B.35)
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Volume and surface integrals added:

N

∑
i=0

τi(vijkf̃
1
ijk − (Ja1

)ijk ⋅ψijk) + (c) + (b) + vNjk(f̃
1∗
(N,R)jk − f̃

1
Njk) − v0jk(f̃

1∗
(L,0)jk − f̃

1
0jk)

(B.36)

=vNjkf̃
1∗
(N,R)jk − (Ja1

)Njk ⋅ψNjk − (v0jkf̃
1∗
(L,0)jk − (Ja1

)0jk ⋅ψ0jk) + (c) + (b) (B.37)

(watertight mesh) =vNjkf̃
1∗
(N,R)jk − {{Ja1

}}(N,R)jk ⋅ψNjk − (v0jkf̃
1∗
(L,0)jk − {{Ja1

}}(L,0)jk ⋅ψ0jk) + (c) + (b)

(B.38)

=q̃1∗
(N,R)jk −

1

2
r̃1
(N,R)jk − q̃

1∗
(L,0)jk −

1

2
r̃1
(L,0)jk + (c) + (b), (B.39)

using (B.18) and (B.19). In the last step, we added and subtracted half left and right neighbour values to
the boundary values of v and ψ. Integrating over the ξ2 and ξ3 directions and adding the other two flux
directions leads to

N

∑
i,j,k=0

wijkJijkη̇ijk = −
N

∑
j,k=0

wjk [q̃
1∗
(N,R)jk − q̃

1∗
(L,0)jk −

1

2
(r̃1
(N,R)jk + r̃

1
(L,0)jk)]

−
N

∑
i,k=0

wik [q̃
2∗
i(N,R)k − q̃

2∗
i(L,0)k −

1

2
(r̃2
i(N,R)k + r̃

2
i(L,0)k)]

−
N

∑
i,j=0

wij [q̃
3∗
ij(N,R) − q̃

3∗
ij(L,0) −

1

2
(r̃3
ij(N,R) + r̃

3
ij(L,0))]

+
N

∑
i,j,k,m=0

wijk[Dimr̃
1
(i,m)jk +Djmr̃

2
i(j,m)k +Dkmr̃

3
ij(k,m)]

−
N

∑
i,j,k,m=0

wijkψijk ⋅ [Dim(Ja1
)mjk +Djm(Ja2

)imk +Dkm(Ja3
)ijm].

(B.40)

The last term can be rewritten component wise

N

∑
i,j,k,m=0

wijkψijk ⋅ [Dim(Ja1
)mjk +Djm(Ja2

)imk +Dkm(Ja3
)ijm] (B.41)

=
N

∑
i,j,k=0

wijk
3

∑
d=1

ψdijk

N

∑
m=0

[Dim(Ja1
d)mjk +Djm(Ja2

d)imk +Dkm(Ja3
d)ijm], (B.42)

which is equal zero as long the discrete metric identities

N

∑
m=0

[Dim(Ja1
d)mjk +Djm(Ja2

d)imk +Dkm(Ja3
d)ijm] = (

3

∑
l=1

∂

∂ξl
IN(Jald))

ijk

, (B.43)

for d ∈ {1,2,3} and i, j, k ∈ {0, . . . ,N} hold. For example, they can be computed from a discrete curl, see
[50].

Appendix B.3. 3D Curvilinear FV Subcell Formulation

Next we construct the integral formulation of the conservation law for the subcell Cijk, which is of size
wijk ∶= wiwjwk, as

∫
Cijk

Ju̇ dV + ∫
Cijk

∇ξ ⋅ f̃ dV = 0. (B.44)

We evaluate the time derivative integral with a rectangle quadrature rule at the LGL point ξijk.

Jijku̇ijkwijk + ∫
Cijk

∇ξ ⋅ f̃ dV = 0. (B.45)
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With this rule we have exactly the same left hand side of the equation as in the DG formulation (B.13).
Next we apply the gauss theorem to the spatial derivative integral to obtain

Jijku̇ijkwijk + ∫
∂Cijk

f̃ ⋅ ñdA = 0, (B.46)

where ñ is the reference normal vector on the subcell surface. Now evaluate this surface integral and
approximate the flux as first order reconstruction numerical fluxes, i.e.

1

wijk
∫
∂Cijk

f̃ ⋅ ñdA =
1

wi
[f̃1∗
(i,i+1)jk − f̃

1∗
(i−1,i)jk]

+
1

wj
[f̃2∗
i(j,j+1)k − f̃

2∗
i(j−1,j)k]

+
1

wk
[f̃3∗
ij(k,k+1) − f̃

3∗
ij(k−1,k)] .

(B.47)

We describe a numerical flux in ξ1 direction (others analogue) as

f̃1∗
(i,m)jk ∶= ∥n∥f∗ (uijk, umjk;

n

∥n∥
) =

3

∑
d=1

ndf∗ (uijk, umjk;ed) , (B.48)

where n is the corresponding scaled normal vector on the subcell face, ed are the unit vectors in cartesian
space and f∗(uL, uR;n) is a general numerical flux approximation of a Riemann problem described with
the two states uL, uR and a normal direction n. Note: In some literature this normal vector is not explicitly
written. Depending on the context, the Riemann problem is then understood as 1D (“rotating the state”) or
assuming tensor product formulation and fluxes are described as f, g and h for the ξ1, ξ2 and ξ3 direction
respectively.

Appendix B.4. Metric Terms of the 3D FV Subcells

To compute the normal vector for the FV method on the curvilinear subcells we take the DG split form
volume integral formulation as the basement. The contribution of the ξ1 direction for the node ijk reads

1

wi
( ˜̄f(i,i+1)jk − ˜̄f(i−1,i)jk) = 2

N

∑
m=0

Dimf̃
1∗S
(i,m)jk, (B.49)

in high order flux difference (left) and split form (right) formulations. Equivalently we get

˜̄f(i,i+1)jk = ˜̄f(i−1,i)jk + 2wi
N

∑
m=0

Dimf̃
1∗S
(i,m)jk. (B.50)

Next substitute this recursive formulation by an explicit one

˜̄f(i,i+1)jk = ˜̄f(L,0)jk + 2
i

∑
l=0

wl
N

∑
m=0

Dlmf̃
1∗S
(l,m)jk. (B.51)

Since f̃1∗S
(l,m)jk = f

∗S
(l,m)jk ⋅ {{Ja

1}}(l,m)jk and ˜̄f(L,0)jk = f
∗
(L,0)jk ⋅ (Ja

1)0jk we can extract the metric terms to
get

˜̄f(i,i+1)jk =∶ f̄ (i,i+1)jk ⋅n(i,i+1)jk = f
∗
(L,0)jk ⋅ (Ja

1
)0jk + 2

i

∑
l=0

wl
N

∑
m=0

Dlmf
∗S
(l,m)jk ⋅ {{Ja

1
}}(l,m)jk, (B.52)
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where n(i,i+1)jk is the normal vector of the subcell interface (i, i + 1)jk we are looking for. We want our
scheme to fulfill FSP, so assuming a constant flux leads to an explicit formula for the normal vectors of the
subcell interfaces

n(i,i+1)jk = (Ja1
)0jk + 2

i

∑
l=0

wl
N

∑
m=0

Dlm{{Ja1
}}(l,m)jk

= (Ja1
)0jk + 2

i

∑
l=0

N

∑
m=0

Qlm{{Ja1
}}(l,m)jk

= (Ja1
)0jk +

i

∑
l=0

N

∑
m=0

Qlm(Ja1
)mjk.

(B.53)

Note that the scaled normal vectors at the boundaries are consistent to the DG metric n(L,0)jk = (Ja1)0jk

and n(N,R)jk = (Ja1)Njk.

Appendix B.5. Entropy Balance Law of the 3D FV Subcells

Multiplying (B.47) with the entropy variable vijk leads to the entropy balance law

Jijkη̇ijk = −
1

wi
[q̃1∗
(i,i+1)jk − q̃

1∗
(i−1,i)jk −

1

2
(r̃1
(i,i+1)jk + r̃

1
(i−1,i)jk)]

−
1

wj
[q̃2∗
i(j,j+1)k − q̃

2∗
i(j−1,j)k −

1

2
(r̃2
i(j,j+1)k + r̃

2
i(j−1,j)k)]

−
1

wk
[q̃3∗
ij(k,k+1) − q̃

3∗
ij(k−1,k) −

1

2
(r̃3
ij(k,k+1) + r̃

3
ij(k−1,k))] ,

(B.54)

where
q̃1∗
(i,i+1)jk ∶= {{v}}(i,i+1)jkf̃

1∗
(i,i+1)jk −n(i,i+1)jk ⋅ {{ψ}}(i,i+1)jk (B.55)

is the numerical entropy flux in n(i,i+1)jk direction,

r̃1
(i,i+1)jk ∶= ⟦v⟧(i,i+1)jkf̃

1∗
(i,i+1)jk −n(i,i+1)jk ⋅ ⟦ψ⟧(i,i+1)jk (B.56)

is the numerical entropy production term in n(i,i+1)jk direction and

ψ = vf(u(v)) − q(u(v)) (B.57)

is the entropy flux potential. Analogue definitions for the ni(j,j+1)k and nij(k,k+1) directions hold.
Proof: For a right flux holds

vijkf̃
1∗
(i,i+1)jk −n(i,i+1)jk ⋅ψijk = (vijk −

1

2
v(i+1)jk +

1

2
v(i+1)jk)f̃

1∗
(i,i+1)jk (B.58)

−n(i,i+1)jk ⋅ [ψijk −
1

2
ψ(i+1)jk +

1

2
ψ(i+1)jk] (B.59)

=
1

2
(v(i+1)jk + vijk)f̃

1∗
(i,i+1)jk −

1

2
n(i,i+1)jk ⋅ [ψ(i+1)jk +ψijk] (B.60)

−
1

2
(v(i+1)jk − vijk)f̃

1∗
(i,i+1)jk +

1

2
n(i,i+1)jk ⋅ [ψ(i+1)jk −ψijk] (B.61)

= {{v}}(i,i+1)jkf̃
1∗
(i,i+1)jk −n(i,i+1)jk ⋅ {{ψ}}(i,i+1)jk (B.62)

−
1

2
⟦v⟧(i,i+1)jkf̃

1∗
(i,i+1)jk +

1

2
n(i,i+1)jk ⋅ ⟦ψ⟧(i,i+1)jk (B.63)

= q̃1∗
(i,i+1)jk −

1

2
r̃1
(i,i+1)jk (B.64)
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and for a left flux

v(i+1)jkf̃
1∗
(i,i+1)jk −n(i,i+1)jk ⋅ψ(i+1)jk = (v(i+1)jk −

1

2
vijk +

1

2
vijk)f̃

1∗
(i,i+1)jk (B.65)

−n(i,i+1)jk ⋅ [ψ(i+1)jk −
1

2
ψijk +

1

2
ψijk] (B.66)

=
1

2
(v(i+1)jk + vijk)f̃

1∗
(i,i+1)jk −

1

2
n(i,i+1)jk ⋅ [ψ(i+1)jk +ψijk] (B.67)

+
1

2
(v(i+1)jk − vijk)f̃

1∗
(i,i+1)jk −

1

2
n(i,i+1)jk ⋅ [ψ(i+1)jk −ψijk] (B.68)

= {{v}}(i,i+1)jkf̃
1∗
(i,i+1)jk −n(i,i+1)jk ⋅ {{ψ}}(i,i+1)jk (B.69)

+
1

2
⟦v⟧(i,i+1)jkf̃

1∗
(i,i+1)jk −

1

2
n(i,i+1)jk ⋅ ⟦ψ⟧(i,i+1)jk (B.70)

= q̃1∗
(i,i+1)jk +

1

2
r̃1
(i,i+1)jk. (B.71)

This results in the 1D balance law

1

wi
[vijk(f̃

1∗
(i,i+1)jk − f̃

1∗
(i−1,i)jk)]

=
1

wi
[vijkf̃

1∗
(i,i+1)jk −n(i,i+1)jk ⋅ψijk − vijkf̃

1∗
(i−1,i)jk +n(i−1,i)jk ⋅ψijk +n(i,i+1)jk ⋅ψijk −n(i−1,i)jk ⋅ψijk]

=
1

wi
[(q̃1∗
(i,i+1)jk − q̃

1∗
(i−1,i)jk) −

1

2
(r̃1
(i,i+1)jk + r̃

1
(i−1,i)jk) +ψijk ⋅ (n(i,i+1)jk −n(i−1,i)jk)].

(B.72)

We can insert the definition for the subcell normal vector (B.53) into the surplus part of (B.72) to obtain

ψijk

wi
⋅ [n(i,i+1)jk −n(i−1,i)jk] =

ψijk

wi
⋅ [(Ja1

)0jk +
i

∑
l=0

N

∑
m=0

Qlm(Ja1
)mjk − (Ja1

)0jk −
i−1

∑
l=0

N

∑
m=0

Qlm(Ja1
)mjk]

(B.73)

=
ψijk

wi
⋅
N

∑
m=0

Qim(Ja1
)mjk (B.74)

=ψijk ⋅
N

∑
m=0

Dim(Ja1
)mjk (B.75)

Following this procedure for all three directions and summing up the previously computed term leads again
to equation (B.43)

ψijk ⋅
N

∑
m=0

Dim(Ja1
)mjk +Djm(Ja2

)imk +Dkm(Ja3
)ijm = 0, (B.76)

if the metric identities hold. Note: Replacing ψijk in (B.73) and following with a constant flux shows
explicitly that these metric terms provide FSP. So in summary, if summing up all three directions of the 1D
balance law (B.72) we get the 3D entropy balance law for the subcells (B.54).

For the complete element integrated entropy we get

N

∑
i,j,k=0

wijkJijkη̇ijk = −
N

∑
j,k=0

wjk [q̃
1∗
(N,R)jk − q̃

1∗
(L,0)jk −

1

2
(r̃1
(N,R)jk + r̃

1
(L,0)jk) −

N−1

∑
i=0

r̃1
(i,i+1)jk]

−
N

∑
i,k=0

wik
⎡
⎢
⎢
⎢
⎣
q̃2∗
i(N,R)k − q̃

2∗
i(L,0)k −

1

2
(r̃2
i(N,R)k + r̃

2
i(L,0)k) −

N−1

∑
j=0

r̃2
i(j,j+1)k

⎤
⎥
⎥
⎥
⎦

−
N

∑
i,j=0

wij [q̃
3∗
ij(N,R) − q̃

3∗
ij(L,0) −

1

2
(r̃3
ij(N,R) + r̃

3
ij(L,0)) −

N−1

∑
k=0

r̃3
ij(k,k+1)] .

(B.77)
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We can separate the inner entropy production terms when reindexing sums to get form that splits surface
and volume terms

N

∑
i,j,k=0

wijkJijkη̇ijk = −
N

∑
j,k=0

wjk [q̃
1∗
(N,R)jk − q̃

1∗
(L,0)jk −

1

2
(r̃1
(N,R)jk + r̃

1
(L,0)jk)]

−
N

∑
i,k=0

wik [q̃
2∗
i(N,R)k − q̃

2∗
i(L,0)k −

1

2
(r̃2
i(N,R)k + r̃

2
i(L,0)k)]

−
N

∑
i,j=0

wij [q̃
3∗
ij(N,R) − q̃

3∗
ij(L,0) −

1

2
(r̃3
ij(N,R) + r̃

3
ij(L,0))]

+
⎛

⎝

N

∑
j,k=0

wjk
N−1

∑
i=0

r̃1
(i,i+1)jk + r̃

2
j(i,i+1)k + r̃

3
jk(i,i+1)

⎞

⎠
.

(B.78)

Appendix B.6. Entropy Balance Law of the Hybrid Scheme

The combined approximation ansatz for a single LGL-node/subcell reads

−Jijku̇ijk = α(
1

wi
[f̃1∗
(i,i+1)jk − f̃

1∗
(i−1,i)jk]

+
1

wj
[f̃2∗
i(j,j+1)k − f̃

2∗
i(j−1,j)k]

+
1

wk
[f̃3∗
ij(k,k+1) − f̃

3∗
ij(k−1,k)])

+(1 − α)[2
N

∑
m=0

Dimf̃
1∗S
(i,m)jk +

1

wi
(δiN [f̃1∗

(N,R)jk − f̃
1
Njk] − δi0 [f̃1∗

(L,0)jk − f̃
1
0jk])

+2
N

∑
m=0

Djmf̃
2∗S
i(j,m)k +

1

wj
(δjN [f̃2∗

i(N,R)k − f̃
2
ipk] − δj0 [f̃2∗

i(L,0)k − f̃
2
i0k])

+2
N

∑
m=0

Dkmf̃
3∗S
ij(k,m) +

1

wk
(δkp [f̃

3∗
ij(N,R) − f̃

3
ijN ] − δk0 [f̃3∗

ij(L,0) − f̃
3
ij0])].

(B.79)

N

∑
i,j,k=0

wijkJijkη̇ijk = −
N

∑
j,k=0

wjk [q̃
1∗
(N,R)jk − q̃

1∗
(L,0)jk −

1

2
(r̃1
(N,R)jk + r̃

1
(L,0)jk)]

−
N

∑
i,k=0

wik [q̃
2∗
i(N,R)k − q̃

2∗
i(L,0)k −

1

2
(r̃2
i(N,R)k + r̃

2
i(L,0)k)]

−
N

∑
i,j=0

wij [q̃
3∗
ij(N,R) − q̃

3∗
ij(L,0) −

1

2
(r̃3
ij(N,R) + r̃

3
ij(L,0))]

+(1 − α)
N

∑
i,j,k,m=0

wijk[Dimr̃
1
(i,m)jk +Djmr̃

2
i(j,m)k +Dkmr̃

3
ij(k,m)]

+α
⎛

⎝

N

∑
j,k=0

wjk
N−1

∑
i=0

r̃1
(i,i+1)jk + r̃

2
j(i,i+1)k + r̃

3
jk(i,i+1)

⎞

⎠
.

(B.80)

Analogue to the 1D case, we can now choose EC and ES fluxes to wipe out unwanted entropy production
terms r̃.
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Appendix C. Some short Notes on other possible FV Representations

In contradiction to the natural subcell approach (15), the values could be chosen as integrals of the DG
polynomial for an arbitrary sub grid,

uFV
j = ∫

xrj

xlj

uDG
(ξ)dξ, (C.1)

j ∈ {0, . . . , n}, n ∈ N. Define this transformation as T , i.e.

uFV
= TuDG. (C.2)

It would be desirable to define some operator similar to (16), like

R(uDG
) ∶= αT −1RFV

(TuDG
) + (1 − α)RDG

(uDG
), (C.3)

but although the construction of the FV values for the conservative variables happens in a conservative
way, the blended residual operator is not in a conservative form, without investing further effort on T −1.
Therefore we discard this general FV subcell partitioning approach and focus the research on the natural
subcells.
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