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1.1. Outline 
 

Language is a complex human capacity1–4 that allows us to acquire knowledge, 

share thoughts, convey feelings, and report experiences. According to current views of 

linguistics, its main components are phonology, morphology, syntax, semantics and 

pragmatics5. The first three of these components all relate to form: phonology entails 

the use of individual sound units, morphology the use of the smallest units of language 

that have meaning, and syntax the organisation of words into phrases or sentences. 

Semantics refers to the meaning of language, at both the single word and the word 

combination level. Finally, pragmatics integrates the skills mentioned above in order to 

use language in a social context. These five interrelated components all play a role in 

spoken language (listening and speaking) as well as literacy (reading and writing).  

Acquiring the components of language is not a simple task4,6 and is influenced by 

multiple biological, cognitive, psychosocial and environmental factors. Specifically, 

language acquisition involves a combination of neural commitment (commitment of 

neuronal networks to patterns that reflect natural language input), social skills, 

computational abilities, and pattern detection7. Together these processes enable us to 

recognise and, subsequently, produce speech sounds, combine them to make 

meaningful words, and create sentences, all within a conversational context4. Note that 

children who acquire sign language will pass through similar developmental stages, 

suggesting that comparable psychological, linguistic and neuronal mechanisms are 

involved8. In this thesis, I focused on spoken language development.  

Despite the complexity of the task, most children acquire language rapidly and 

effortlessly1–4. However, there exist large individual differences in language abilities 

during the first few years of life9, which are predictive of future language and literacy 

skills10–14, as well as academic achievement15. At least part of these individual differences 

can be explained by genetic factors. The main aim of the present thesis was to gain 

deeper knowledge about the genetic factors influencing language abilities during the 

first three years of life, including their roles in subsequent language, literacy and 

cognitive development, as well as genetic links between language and related traits with 

childhood-onset neurodevelopmental disorders. 

 

1.2. Language development in typically developing children 
 

Language development already starts in utero, though the first vocalisations can 

only be detected after birth12. To assess the language abilities of infants and toddlers, 

researchers often study lexical development with measures of expressive and receptive 

vocabulary1,2. These constructs relate to the ability to produce and understand language, 

respectively. In addition to building a lexicon, children also acquire more complex 
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linguistic constructions in their preschool years, including aspects of morphology and 

syntax16. 

Important processes during the first year of life that contribute to later spoken 

language development include auditory processing17 and word segmentation from a 

continuous speech stream18,19, which are both related to speech perception. The ability 

to process and discriminate rapid auditory signals starts to develop in utero and enables 

hearing children to discriminate linguistically-relevant contrasts in speech when they are 

around six months of age7,20. During the second half of the first-year, children become 

able to successfully identify words within utterances (word segmentation), another 

important skill for building a lexicon18. Indeed, between six and nine months of age 

children know the meanings of several common words, the start of their receptive 

vocabulary21 (Figure 1). 

 

Figure 1: Overview of spoken language development in typically developing children during the first two years of 

life. 

One of the first precursors of language production in typically developing children 

is canonical babbling22 and the use of gesture23 (Figure 1). Canonical babbling emerges 

from the age of four to six months1 and is followed by the production of the first spoken 

word between 10 and 15 months of age2, a few months later than infants understand 

the first words (Figure 1). With progressing development, the number of words 

produced increases, reaching ~50 words at 12-18 months of age. This is often trailed by 

a period of rapid growth of the lexicon around 16-22 months of age24 and a steady 

increase after that, resulting in an expressive vocabulary size of ~500 words at 30 

months25. In addition to an expanding vocabulary size, the complexity of language use 

increases during early development. Whereas the first words are usually spoken in 

isolation2, children start to produce two-word combinations from the age of 18 to 24 

months26,27 onwards, followed by the use of more complex grammatical structures26,27. 

The transition from the single-word to the two-word combination phase is also seen as 

the onset of grammar26,27. 
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When children are still limited in their verbal communication using words, they 

extend their communicative abilities via the use of gestures, starting between 8 and 12 

months of age28 (Figure 1). The use of gesture during the first few years of life is 

predictive for later language development29. For example, a meta-analysis of 25 studies 

and 734 children showed that a more frequent use of gesture at 9-24 months of age, 

especially declarative pointing, was related to a larger vocabulary at the same or later 

developmental timepoints (9-54 months)30. Declarative pointing is thought to be an 

intentional communication behaviour that a child uses to direct someone’s attention to 

an event or object in the world30. Assuming that such behaviour indicates that a child 

understands other’s intentions, the use of declarative pointing forms an early manifest 

of social understanding31, possibly reflecting joint attention30. Furthermore, children that 

use gesture-word combinations early on also tend to be the first ones producing two-

word combinations32.  

An important point to note about early language development is the existence of 

large individual differences9. These are apparent from infancy to early childhood and 

have been observed for different language aspects, including vocabulary size33, 

grammatical competence34,35 and pragmatic development36. Individual differences in 

vocabulary size exist within age windows, but children also differ in their developmental 

trajectory. For example, at 24 months of age, the number of words a child produces may 

vary between zero to over 600, with a median of ~300 words (Figure 2).  

Figure 2: Individual differences in expressive vocabulary. Cross-sectional MacArthur-Bates Communicative 

Development Inventory expressive vocabulary data (N=4,687) based on English-speaking children between 

16-30 months of age. Data were downloaded from the Wordbank31 on 22 May 2020. 
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After a period of rapid development during the first years of life, language abilities 

continue to advance more steadily during mid-childhood and early adolescence. A major 

developmental milestone during this period, which is crucially shaped by language 

proficiency, is the acquisition of literacy37. According to the “simple view of reading” 

theory, reading comprehension is the product of decoding (recognition of printed words) 

and oral language comprehension38. Thus, in order to learn to read, children need to be 

able to decode written text and comprehend oral language38. Early vocabulary has a 

central role in the development of both these abilities39. Decoding is substantially 

influenced by phonological awareness (i.e. the awareness of sound structures of 

speech)40, which develops during the preschool period and relates to vocabulary size41–

43. Listening comprehension (i.e. the understanding of spoken language) necessarily 

begins with vocabulary comprehension43.  

The proposed relationships between language skills during infancy and the 

acquisition of language and literacy abilities in childhood have been supported by studies 

of individual differences10–14. For example, vocabulary size at 16-24 months is predictive 

of vocabulary size, as well as performance on tests of phonological awareness, reading 

accuracy and reading comprehension assessed five years later44. Similarly, a larger 

expressive vocabulary at 24 months has been associated with larger vocabulary size and 

better decoding, word recognition, and passage comprehension skills assessed up to 

primary school10. Thus, individual differences in language skills during the preschool 

period are predictive of individual differences in language and literacy abilities later in 

life, suggesting shared underlying aetiologies. 

 

1.3. Language and literacy development in children diagnosed with 

a neurodevelopmental disorder 
 

Children with a neurodevelopmental disorder often suffer from impairments in 

various developmental domains, including language and cognition45,46. This includes 

disorders that are characterised by a primary deficit in speech and/or language abilities, 

such as developmental dyslexia (also known as reading disability) and specific language 

impairment (also known as developmental language disorder), although cohort sizes for 

neurobiological and genetic studies of such disorders are currently rather low. However, 

also children diagnosed with neurodevelopmental disorders that are characterised by 

different primary deficits, such as Attention-Deficit/Hyperactivity Disorder (ADHD) and 

Autism Spectrum Disorder (ASD), may show problems with language and 

communication46, and for those disorders there already are large sample sizes available 

for neurogenetic investigations. In this thesis, I studied genetic overlap of ADHD and ASD 

with language and literacy skills and, in extension, educational attainment and cognitive 

abilities. 

1 
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Attention-Deficit/Hyperactivity Disorder 
ADHD is a complex childhood-onset neurodevelopmental condition that affects 

about 5% of the general population47 and is characterised by hyperactive, inattentive 

and impulsive symptoms48. In addition to these symptoms, children diagnosed with 

ADHD often experience difficulties with mastering language and literacy skills49–51. For 

example, poor language skills at three years of age were found to be predictive of 

inattention and hyperactive symptoms two years later in life52. A small-scale 

observational study (N=21) suggested that language problems at the age of two years 

may predict an ADHD diagnosis in children aged between six and seven years53. Later on 

in life, ADHD has been linked to reading impairments, with up to 40% of the children 

diagnosed with ADHD also suffering from reading disability (also known as 

developmental dyslexia) and vice versa54. In addition, abilities related to syntax55,56, 

phonology55,56, writing57,58 and spelling59,60 might be impaired in children with ADHD. 

Thus, a variety of language and literacy skills that are acquired from infancy to 

adolescence may be impaired in children diagnosed with ADHD.  

 

Autism Spectrum Disorder 
ASD is a neurodevelopmental condition that affects about 1-1.5% of the general 

population61. It is a term for a group of pervasive disorders that are characterised by 

symptoms of repetitive and restrictive behaviour, as well as social and communication 

impairments62. Children with ASD may show communication and language difficulties 

already very early in life. Several studies reported evidence suggesting that problems 

related to joint attention and the use of gesture can be observed in children with ASD as 

young as 8 to 24 months of age63,64. Individuals at high risk for ASD, identified based on 

an Autistic Disorder diagnosis of an older full biological sibling, have been shown to have 

an impaired vocabulary growth compared to low-risk individuals65, and a substantial 

proportion of children diagnosed with ASD (~30%) has little or no spontanous spoken 

language by the time they reach school age66. However, the phenotypic spectrum of 

patients with ASD is highly heterogeneous, ranging from individuals with severe 

cognitive impairments to individuals with an above-average intelligence quotient and 

high academic functioning. These ‘high-functioning’ ASD patients often experience less 

severe deficits, particularly in the domain of language67. 

 

1.4. Language abilities: A multifactorial and complex aetiology 
 

Language abilities are multifactorial traits that are influenced by environmental 

and genetic factors, as well as their interplay. Environmental factors include, for 

example, the quantity and quality of language input a child receives in their 

environment68, both related to family socio-economic status69. Genetically, individual 
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differences in language skills are thought to be shaped by multiple genetic factors that 

form a polygenic architecture70 (Figure 3). A polygenic trait is influenced by many genetic 

variants that each account for a very small proportion of the trait variance, but together 

explain a substantial proportion. Genetic variants may affect a trait via an additive mode 

of action, via non-additive interaction (epistasis)71, and/or via interactions with the 

environment72. In this thesis, I focused on additive genetic variation, implying that the 

combined effect of multiple genetic variants equals the sum of their individual effects 

(Figure 3).  

 

The proportion of trait variance that can be attributed to genetic variance 

(differences in the genetic make-up between individuals) is defined as heritability. Twin 

studies estimate heritability based on phenotypic correlations in monozygotic and 

dizygotic twin pairs (twin-h2) and have suggested that between 10% and 25% of the 

variation in early expressive vocabulary is due to genetic factors when investigated 

within a community-based sample of children from the UK73,74. Similarly, a community-

based twin study in the US reported a twin-h2 of ~30% for variation in early receptive 

vocabulary75. Studies of population-based samples including unrelated individuals have 

furthermore shown that a substantial proportion of this genetic variance can be 

attributed to common genetic variation (minor allele frequency > 0.01), as tagged by bi-

allelic markers on commercial genotyping arrays76. The proportion of total genetic 

variance that can be explained by additive effects as captured by common genetic 

variants, typically single-nucleotide polymorphisms (SNPs), is known as SNP-heritability 

(SNP-h2).  

1 

Figure 3: Polygenic inheritance for vocabulary size. Polygenic inheritance for vocabulary size assuming three 
underlying genetic variants, resulting in 64 possible genotypes. (a) Table depiciting the number of risk alleles 
per possible genotype. Risk alleles are depicted with capitals and are associated with a smaller vocabulary 
size. Genotypes that result in a similar number of risk alleles have the same color. (b) Frequency plot of the 
risk allele distribution in the population based on (a).  
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The development of the genome-wide association study (GWAS) design has 

facilitated the hypothesis-free identification of SNPs that are associated with a trait77. 

Due to the small effect sizes for individual SNPs, and the need to make a stringent 

correction for multiple testing of millions of genetic variants, a GWAS requires several 

thousands of participants to have sufficient statistical power. To achieve such large 

sample sizes researchers often perform a meta-GWAS, a study design that includes a 

meta-analysis across multiple GWASs from individual cohorts. There is only one meta-

GWAS available for early language abilities to date, which focused on expressive 

vocabulary76.  

Recent research showed that more than half of the loci in the genome are 

associated with at least one trait78. The vast majority of these loci (~90%), however, is 

related to multiple traits (with associations often identified in different studies)78. This 

complex phenomenon where a gene or genetic variant is correlated with more than one 

trait is known as pleiotropy79. A quantitative parameter that is thought to capture 

pleiotropic effects and that assesses the genetic relationship between two traits at the 

polygenic level is genetic correlation. A related concept, so-called bivariate heritability, 

quantifies the amount of phenotypic covariance between two traits that can be 

attributed to shared genetic influences. For example, twin studies on reading deficits and 

ADHD reported evidence for bivariate heritabilities up to 95%80–82, suggesting a role for 

pleiotropy in the co-occurence of reading impairments and ADHD. However, both ADHD 

and reading abilities are also genetically related to educational attainment (EA)83–85, 

which could thus be a third common factor that plays a role in the reported pleiotropy 

between reading skills and ADHD. To disentangle such complex relationships among 

multiple genetically correlated traits sophisticated methodologies are required, as 

adjusting for heritable covariates may lead to biased findings, also known as collider 

bias86. 

 

1.5. Recent advances in the field of behaviour genetics 
 

The wide availability of high-throughput genotyping arrays, the advances in 

genomic methodologies such as GWASs, and the increase in data sharing during the last 

decade make it possible to carry out molecular genetic analyses of language 

development based on samples of unrelated individuals. Especially the development of 

GWASs and subsequent sharing of the relevant outputs, so-called GWAS summary 

statistics, represent a major advantage for the field of behaviour genetics. Researchers 

can now search for SNPs that are associated with a certain trait with sufficient statistical 

power, by combining data from several cohorts. This has resulted in the availability of 

very large datasets for disorders with well-defined diagnostic criteria such as ADHD85 and 

ASD61, as well as for broad cognition-related constructs such as general intelligence87 and 

1 
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EA88. However, the sample sizes of GWASs on developmental speech, language and/or 

reading disorders are currently still small, compared to GWAS efforts on ADHD85 and 

ASD61, and thus have, limited statistical power89. For example, the largest meta-GWAS 

on ADHD to date was based on 53,293 European individuals85, compared to 3,468 

individuals for a meta-GWAS on word reading, spelling, decoding skills, phoneme 

awareness, verbal short-term memory and naming speed in nine cohorts of European 

individuals with reading impairments and typically developing participants90.  

Recently developed methodologies in genetic epidemiology now allow the study 

of genetic links between traits and disorders based on phenotypes assessed in different 

cohorts91, using methods such as polygenic scoring92 and Linkage Disequilibrium SCore 

(LDSC) correlation93. However, in order for LDSC analyses to have sufficient statistical 

power, a minimal sample size of 5,000 individuals is recommended, limiting the 

possibilities to study genetic overlap early language abilities with developmental speech, 

language and/or reading disorders based on summary statistics. Finally, during the past 

few years, statistical methodologies have become available that allow for the study of 

genetic relationships between more than two traits, such as genetic-relationship-matrix 

structural equation modelling (GSEM)94, providing the opportunity to further elucidate 

the complex genetic architecture underlying language abilities during different 

developmental stages. 

Taken together, the broad availability of genome-wide genetic data together with 

methodological advances provide a great opportunity to study the complex genetic 

components underlying language abilities during development. In order to improve our 

understanding of the involved genetic mechanisms, we need to (i) assess genetic 

architectures underlying language and related abilities (i.e. literacy) in a developmental 

context, and (ii) disentangle the complex genetic mechanisms underlying the genetic 

overlap of language and related abilities with neurodevelopmental disorders. 

 

1.6. Aims of this thesis 
 

This thesis was focussed on the developmental genetic architecture underlying 

language development as captured by genome-wide variation on genotyping chips. 

Here, I investigated genetic mechanisms and variance compositions of vocabulary skills 

assessed from infancy to early childhood, and studied their genetic relationships with 

mid-childhood/early-adolescent language and literacy abilities. Using powerful proxy 

measures, such as mid-childhoood language and literacy skills, as well as educational 

attainment, I studied the complex mechanisms underlying genetic overlap with several 

neurodevelopmental disorders. To this end, I investigated population-based cohorts and 

community twin samples with genome-wide genotyping data, and phenotype 

information on language and literacy skills. I also analysed existing summary statistics of 
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powerful GWAS studies on general intelligence and EA, as well as neurodevelopmental 

disorders, such as ASD and ADHD. 

In chapter 2, I carried out a review of the literature on genetic factors underlying 

language development during infancy and early childhood. I provided an overview of 

heritability estimates for language abilities assessed before the age of four years based 

on both twin collections and samples of unrelated individuals. Next, I focused on the role 

of common genetic variation in early language abilities and described individual genetic 

variants that have previously been associated with vocabulary scores during infancy. I 

also discussed the role of genetic factors in the link between early vocabulary skills (0-4 

years) and subsequent language- and literacy-related abilities, assessed from mid-

childhood to early adolescence. Finally, I outlined current challenges for studying the 

genetic architecture underlying early language development. 

In chapter 3, I investigated multivariate genetic relationships between expressive 

and receptive vocabulary in three-year-old children and their later language and literacy 

skills, as assessed between 7 and 13 years of age in a large birth cohort, the Avon 

Longitudinal Study of Parents and Children (ALSPAC). Applying a structural equation 

modelling approach based on directly genotyped genome-wide data (GSEM), I 

investigated the developmental origins of genetic factors for a wide range of mid-

childhood/early-adolescent language and literacy abilities related to reading, spelling, 

phonemic awareness, listening comprehension, non-word repetition and verbal 

intelligence. 

In chapter 4, I examined the genetic architecture of expressive and receptive 

vocabulary across early developmental stages in detail (15-38 months). Subsequently, I 

assessed the emergence of genetic associations with mid-childhood reading, verbal and 

non-verbal intelligence (7-8 years). For this, I adopted a similar approach to that 

described in chapter 3 based on assessments from the ALSPAC cohort. This study design 

allowed me to (i) identify whether vocabulary size at different developmental timepoints 

during the first four years of life is affected by the same or different genetic factors, (ii) 

study to what extent expressive and receptive vocabulary share genetic sources, and (iii) 

determine which of the identified early genetic factors are important for literacy and/or 

cognition later on in life.  

In chapter 5, I performed a meta-analysis of GWASs on vocabulary size assessed 

during the first three years of life. This is the largest meta-GWAS available to date and 

extends a previous effort76 by containing a wider age range, a larger number of samples, 

and measures of both expressive and receptive vocabulary. In order to identify SNPs that 

are associated with vocabulary size, I performed meta-analyses across two 

developmental phases, an early phase (15-18 months) and a late phase (24-38 months), 

including data from seven independent population- and community-based cohorts. 

Finally, I augmented the statistical power of GWAS meta-analyses by implementing a 

multivariate analysis approach that combines data across developemental stages and 
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traits. Using the derived summary statistics, I investigated evidence for shared genetic 

factors between early vocabulary and, for example, cognition-related later life 

outcomes, infant and childhood antropometric traits, as well as several 

neurodevelopmental disorders.  

In chapter 6, I used a polygenic scoring approach to investigate the genetic 

associations between ADHD and thirteen language- and literacy-related skills assessed 

from mid-childhood to early adolescence. Using multivariable regression analyses, I 

examined whether shared genetic influences between ADHD and language and literacy 

skills were due to a third factor, genetically predicted EA. This approach allowed me to 

disentangle relationships between multiple genetically correlated traits while controlling 

for bias95. These analyses were carried out using genotype and mid-childhood/early-

adolescent language and literacy data from ALSPAC, as well as GWAS summary statistics 

for ADHD and EA using a multivariate analysis approach. 

In chapter 7, I examined genetic links between ADHD, ASD and EA in a 

multivariate context. This study included EA as a powerful genetic proxy measure for 

literacy. Applying multivariable regression analyses based on GWAS summary statistics, 

I gained insight into the complex pleiotropic mechanisms underlying the genetic overlap 

between ADHD, ASD and EA. More specifically, I (i) studied the genetic mechanisms 

underlying the discordant polygenic association pattern between EA, and both ASD and 

ADHD risk, (ii) characterised the risk variants that contributed most strongly to this 

polygenic association pattern, and (iii) assessed the specificity of the observed polygenic 

association pattern by studying genetic overlap for other psychiatric disorders.  

Finally, in chapter 8, I summarised and reviewed the main findings of chapters 3 

to 7. I discussed the contributions of my findings with respect to scientifc challenges as 

described in chapter 2 and outlined future research perspectives.  
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Abstract 
The genetic architecture underlying language abilities in infancy and early 

childhood is polygenic and genetically complex. Weak to modest heritability estimates 

for expressive language traits, including vocabulary and grammar, have been observed 

both in studies of twins and unrelated individuals. These findings suggest that the 

majority of genetic variance that contributes to individual differences in early expressive 

vocabulary can be attributed to common genetic variation, as captured by commercial 

genotyping chips. At the polygenic level, there is evidence for both developmental 

genetic stability and change during language and literacy development from infancy to 

early adolescence. At the level of single nucleotide polymorphisms, only few significant 

associations are known, but the limited evidence thus far is consistent with 

developmental specificity. In particular, a genetic variant robustly associated with early 

vocabulary size showed an attenuation of association effects with respect to language 

and literacy skills assessed in later childhood. Current challenges for studying the genetic 

architecture underlying early language development concern low statistical power, 

pleiotropy, population-based phenomena, and the narrow phenotype definition of early 

language in large-scale molecular analyses. 
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2.1. Aims of this chapter  
 

In this chapter, I provide an overview of studies estimating the heritability of 

language abilities during the first three years of life in community-based samples of twins 

and population-based samples of unrelated individuals. In addition, I describe evidence 

for genetic links between language and literacy abilities assessed during different 

developmental stages and discuss efforts aiming to identify single-nucleotide 

polymorphisms (SNPs) that contribute to variation in early language skills. Finally, I 

discuss current challenges for studying the genetic architecture underlying early 

language development. 

 

2.2. The heritability of language abilities in infancy and early 

childhood 
 

There is a large body of evidence, as reported by both twin and molecular studies, 

suggesting that variation in language abilities observed during the first three years of life 

is heritable1–5 (Table 1). Twin studies assess heritability indirectly, based on differences 

in phenotypic correlations between monozygotic and dizygotic twins6 (twin-h2), and 

have reported modest contributions of genetic factors to variation in language skills 

assessed between 14 and 36 months of age1–5. A study of expressive vocabulary in 5,733 

twin pairs from the UK estimated a twin-h2 of 20% for individual differences at 24 months 

of age1. This estimate is in line with those obtained by studying fewer individuals of the 

same sample2,3 (Table 1). At 36 months of age, 10%-14% of the variation in expressive 

vocabulary was attributable to genetic factors in these twins (N≥1,049 twin pairs)2. Using 

directly assessed genotype information from unrelated individuals, a recent meta-

analysis across genome-wide association studies (GWASs) reported highly consistent 

results, with SNP-h2 estimates of 13% and 14% for expressive vocabulary assessed at 15-

18 months (N=8,022) and 24-30 months of age (N=9,966), respectively1.  

In addition to expressive vocabulary, genetic influences underlying early 

grammatical skills2,3, a combination of expressive vocabulary and grammar4, as well as 

receptive language skills5 have been investigated in twin samples. Twin-h2 estimates for 

grammatical abilities were moderate and slightly higher than the heritability of 

expressive vocabulary measures2,3 (Table 1). For example, twin-h2 of sentence 

complexity in two-year-old toddlers was estimated at 39% based on 2,898 twin pairs 

from the UK3. Consistent estimates were obtained studying only same-sex twin pairs of 

the same sample, split by birth cohort2. A construct for expressive language that 

consisted of both vocabulary and grammar, created in the same UK sample, was 

modestly heritable, with 28% and 25% of the variance explained by additive genetic 

influences at 24 and 36 months of age4. Finally, a study of receptive verbal abilities in 
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378 twin pairs from the US reported a modest heritability at 14 months (twin-h2=28%), 

but no evidence for a substantial influence of genetic factors at 20 and 24 months of 

age5 (Table 1). Compared to early expressive language abilities, genetic studies on 

receptive language skills are scarce, resulting in limited knowledge about the underlying 

genetic factors.  

 
Table 1: Heritability estimates for language abilities during the first four years of life 

Non-comprehensive overview of heritability estimates for language abilities assessed during the first four years 

of life using parental and/or observer reports. Heritability estimates were derived based on samples of twins 

or unrelated individuals. The reported sample size (N) represents the total number of individuals included in 

each analysis. ǂ Analyses based on different subsets of the Twins Early Development Study. # Heritability 

estimates were derived for a split sample based on birth cohort (1994 or 1995). * Heritability estimates were 

derived by meta-analyses across samples. Abbreviations: BSID, Bayley Scale of Infant Development; CDI:WG, 

Communicative Development Inventories: Words and Gestures; CDI:WS, Communicative Development 

Inventories: Words and Sentences; LDS, Language Development Survey; MCDI, MacArthur Communicative 

Development Inventory; N-CDI-2A, Dutch translation of the CDI; SICD, Sequenced Inventory of Communication 

Development 

 

  

Language 
ability 

Sample 
collection 

Psychological 
instrument 

Age 
(months) 

Heritability 
estimate 

(SE) 

N 
(individuals) 

Reference 

Expressive 
vocabulary 

Twin pairsǂ MCDI10 24 

0.20 (0.01) 11,466 
St Pourcain et 
al. 20141 

0.25 (0.04) 5,796 
Dale et al. 
20003 

Twin pairsǂ 
(same sex) 

MCDI10 

24 
0.21 (0.03) 
0.17 (0.03) 

3,010 
2,098 Dionne et al. 

20032# 
36 

0.10 (0.03) 
0.14 (0.03) 

3,010 
2,098 

Unrelated 
individuals 

CDI:WG53,  
N-CDI-2A77 

15-18  0.13 (0.05) 8,022 
St Pourcain et 
al. 20141* CDI:WS54, 

MCDI10, LDS52 
24-30  0.14 (0.05) 9,966 

Expressive 
language 

Twin pairsǂ 
(same sex) 

Grammar and 
vocabulary 
(MCDI10) 

24 0.28 (0.08) 7,124 Hayiou-
Thomas et al. 
20124 

36 0.25 (0.03) 6,364 

Grammar 

Twin pairsǂ MCDI10 24 0.39 (0.07) 5,796 
Dale et al. 
20003 

Twin pairsǂ 
(same sex) 

MCDI10 

24 
0.42 (0.03) 
0.40 (0.09) 

3,010 
2,098 Dionne et al. 

20032# 
36 

0.34 (0.04) 
0.29 (0.09) 

3,010 
2,098 

Receptive 
language 

Twin pairs 
(same sex) 

Construct 
based on 
SICD78 and 
BSID79 

14 0.28 (0.17) 756 
Reznick et al. 
19975 

20 0.13 (0.16) 684 

24 0.18 (0.16) 591 
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2.3. Genetic links among language abilities in infancy and early 

childhood 
 

Developmental changes in language abilities may correspond to changes in the 

underlying genetic architecture. The same trait could be influenced by distinct genetic 

factors at different developmental stages and the trait variation explained by a certain 

genetic factor may vary during development7. There is evidence for both stability and 

change in the genetic factors that contribute to language abilities during early 

development1–3,8. Moderate genetic correlations among expressive vocabulary 

assessments between 15 and 36 months suggest developmental genetic stability1,2. For 

example, based on molecular research in 5,739 unrelated UK children, expressive 

vocabulary assessed at 15 months had a genetic correlation with scores at 24 months of 

0.691. Likewise, expressive vocabulary at 24 months shows weak to moderate genetic 

correlations with measurements 12 months later, with estimates ranging between 0.48 

and 0.68, as reported by research of up to 1,505 UK twin pairs2. Evidence for genetic 

stability was also observed for longitudinally assessed grammar skills, at 24 and 36 

months in the same twins, although genetic correlations were only weak (rg=0.33)2. 

However, 95%-confidence intervals overlapped with genetic correlations estimated for 

expressive vocabulary scores that were collected at the same time for the same 

individuals2, suggesting similar developmental genetic stability. Grammar and 

vocabulary skills may, furthermore, share underlying genetic mechanisms, as indicated 

by moderate to strong genetic correlations at 24 and 36 months of age (rg=0.61-0.89)2,3. 

At two-years of age, shared genetic influences accounted for up to 28% of the observed 

phenotypic covariance between grammar and vocabulary3. These findings support the 

hypothesis of genetic stability and the presence of shared genetic influences during early 

language development. However, imperfect genetic correlations between vocabulary 

and grammar also suggest some developmental heterogeneity. Indeed, a twin study of 

the same UK sample that modelled a latent factor underlying both early vocabulary and 

grammar skills estimated that 3%-28% of the total variation was explained by age-

specific additive genetic variance, while ~28% of the variation in expressive language 

skills at 24, 36 and 48 months of age could be accounted for by shared additive genetic 

influences8. However, detailed knowledge of the developmental genetic architecture 

underlying expressive and, especially receptive language skills, during the first few years 

of life is limited and solely based on twin research. 

 

2.4. Genetic loci associated with early language 
 

In 2014, the first meta-GWAS investigating language abilities during infancy was 

published1. This study aimed to identify SNPs related to individual differences in early 
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expressive vocabulary and included two developmental age-windows. For the first age-

window, spanning 15 to 18 months of age, data from two independent cohorts were 

meta-analysed, resulting in a total sample size of 8,889 individuals1. This meta-GWAS 

provided evidence for a genome-wide significant association of rs7642482, a SNP 

located near ROBO21 (see below). The minor allele G, which has an allele-frequency of 

0.19 in European (non-Finnish, due to linkage disequilibrium structure differences) 

individuals according to the GnomAD database9 (v2.1.1), was associated with lower 

expressive vocabulary1. Variation in the sequence of rs7642482 accounted for only 

0.34%-0.35% of the phenotypic variance in expressive vocabulary, consistent with the 

hypothesised polygenic architecture underlying language abilities, which implies the 

involvement of many genetic variants that each account for a very small proportion of 

trait variance.  

To explore whether rs7642482 was related to other linguistic skills than 

expressive vocabulary at 15-18 months, the authors studied associations with six 

additional language- and literacy-related traits1. These included the emergence of first 

single-word utterances (12 months), later expressive vocabulary (24-30 months), 

phonological memory (8 years), verbal intelligence (9 years), reading speed (10 years), 

and reading comprehension (10 years) (Figure 1). There was no evidence for association 

across all six language and literacy skills reported, apart from nominal evidence for 

association of rs7642482 with reading speed (β=-0.07(SE=0.03), P=0.009, Figure 1)1. 

Furthermore, 95%-confidence intervals of the estimated effect on expressive vocabulary 

at 15-18 months did not overlap with associations for the other language and literacy 

skills, except for first single-word utterances at 12 months (Figure 1). This suggests 

specificity to the early phase of language acquisition, reflecting a developmental period 

that is characterised by a slow accumulation of single words10,11.  

Since the publication of the meta-GWAS on early vocabulary in 2014, many large-

scale GWASs became publically available. To identify additional associations of 

rs7642482, I performed a screen across 2,986 publicly available GWASs, including basic 

association analyses performed within the UK Biobank sample12. There was little vidence 

for association of rs7642482 with any other trait at the phenome-wide level (P<1x10-5), 

adjusted for the number of traits studied. The strongest association was observed for 

treatment with senokot 7.5mg tablet, a constipation remedy, in 337,159 individuals from 

the UK Biobank (P=4x10-5)12. Although this association did not meet the multiple testing 

threshold, it may suggest an underlying pleiotropic effect of rs7642482. Previous studies 

have reported an association between ROBO2 mutations and vesicoureteral reflux13,14, 

a condition that is characterised by the backward flow of urine from the bladder into the 

ureters of the kidney, which has been linked to constipation15.  

2 



Literature review 

 
31 

rs7642482 is located within an intergenic region on the short arm of chromosome 

3 (3p12.3), about 19 kb 3’ of ROBO2 (OMIM: 602431). ROBO2 encodes Homo sapiens 

roundabout homologue 2 (Drosophila), an axon guidance receptor that binds to secreted 

SLIT ligands16,17. ROBO2 is highly expressed in the human central nervous system, across 

different brain regions, but also in other tissues, such as the lung, according to the 

Genotype-Tissue Expression project 18 (GTEx, v8). During the course of development, its 

expression peaks in the first trimester1. Robo receptors and SLIT ligands are highly 

conserved from fly to human17,19,20 and Genomic Evolutionary Rate Profiling21 scores 

indicated that also the sequence of rs7642482 is highly conserved, with values above 

three1. In both Drosophila and mice Robo2 cooperates with Robo1, encoded by its 

neighbouring gene ROBO1, in axon guidance during brain development17,22. Recently, a 

study showed that selective silencing of Robo1 and Robo2 expression in pre-cerebellar 

neurons in mice did not lead to migration anomalies, suggesting non-cell autonomous 

effects23.  

Although there was no evidence that rs7642482 related to protein-coding 

variation in ROBO2 in the initial publication1, analyses of gene expression and regulatory 

chromatin states indicated that variation at rs7642482 might be related to regulatory 

mechanisms in embryonic cell types1. However, no cis expression quantitative trait loci 

(eQTL) effects within ±1 Mb in postnatal derived cell types or adult brain tissue were 

reported for rs76424821. To further investigate potential eQTL effects of rs7642482, I 

carried out additional analyses based on the latest SNP-gene expression data sets as 

included in PhenoScanner24,25 (v2) and available via the Genotype-Tissue Expression 

2 

Figure 1: Associations of rs7642482 with language- and literacy-related skills. Associations of rs7642482 with 

language- and literacy-related skills as reported by St Pourcain et al1. Analysis for the emergence of first single-

word utterances (12m) was based on the Northern Finnish Birth Cohort 1966 sample and the effect size 

estimate was derived from the odds ratio. Effect size estimates for expressive vocabulary (15m-18m and 24m-

30m) were derived from the meta-analysis performed by St Pourcain et al1. Effect sizes for language- and 

literacy-related skills in mid-childhood were all based on association analyses performed within the Avon 

Longitudinal Sample of Parents and Children, as reported by St Pourcain et al1. * Evidence for association at the 

genome-wide significance level (P<5x10-8). Abbreviations: m, months; y, years 
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project18 (GTEx, v8). Studying association with gene expression across a variety of tissues, 

including multiple brain regions, did not provide evidence for eQTL effects, consistent 

with the initial report1. Finally, I did not find evidence for eQTL effects of rs7642482 in 

fetal human brain tissue (P≥0.09) based on gene expression in brain tissue derived from 

the second trimester of gestation (N=120)26. 

Previous studies of dyslexia and related traits provide additional support for 

potential roles of ROBO2 in language and communication processes. The 3p12-p13 

region has been linked to quantitative dyslexia traits27, speech-sound disorder traits and 

reading abilities28. Although no coding variants in ROBO2 have been reported to be 

associated with developmental dyslexia29, ROBO1 is considered as a candidate gene for 

this disorder, based initially on investigations of co-segregating alleles in a 

multigenerational family29,30. Common genetic variants located within ROBO1 have been 

associated with reading disability31 and non-word repetition32. However, the implicated 

genetic variants have failed to replicate in recent GWAS studies of dyslexia-related 

traits33 and no evidence was observed for a link between early expressive vocabulary and 

ROBO1 SNPs1. 

A meta-analysis of expressive vocabulary assessed between 24 and 30 months, 

based on 10,819 individuals, did not result in the identification of associated SNPs at the 

genome-wide significant level1. At time of writing, no GWAS on early receptive 

vocabulary or grammatical skills has been published. 

 

2.5. Genetic links with later language- and literacy-related abilities 
 

Compared to the heritability estimates reported for language abilities during the 

first three years of life (see section 2.1 and Table 1), the contribution of genetic 

influences to language and literacy skills assessed from mid-childhood to adolescence is 

larger, with twin-h2 estimates of 47%-72% estimated based on up to 7,179 UK twin 

pairs4,8. This increase in heritability during development has been reported for many 

cognitive skills34–36, and may involve different processes that are referred to as genetic 

innovation and amplification37. Innovation involves an increase in heritability due to 

previously unrelated genetic variation that becomes associated with a trait over time34, 

implying developmental genetic heterogeneity. In contrast, amplification refers to an 

increase in heritability due to the same genetic variation that explains more phenotypic 

variation over time34, consistent with genetic stability.  

A UK twin study examined this developmental paradigm by investigating genetic 

links between early expressive language (24-48 months) and skills related to vocabulary, 

semantics, syntax and pragmatics (7-12 years). They reported moderate genetic 

correlations (rg=0.46-0.54), which could explain only about a third of the phenotypic 

relationship between early and middle childhood language latent factors4. A similar 
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developmental pattern was observed in the same sample for early expressive language 

and mid-childhood reading abilities8. These findings suggested that processes of 

innovation, rather than amplification, may account for the observed increase in 

heritability for language and literacy abilities during the transition from early to middle 

childhood4. The developmental origins of these stable genetic factors are, however, little 

understood beyond latent factor twin analyses4,8. 

The meta-GWAS on early expressive vocabulary1 found little support for 

association of rs7642482 with language and literacy skills later in life, except for a 

nominal association with reading speed at 10 years of age1 (Figure 1). Despite several 

GWAS efforts aiming to identify SNPs related to language- and/or reading-related 

abilities assessed from childhood to adolescence33,38–43, evidence for association at the 

genome-wide significance level has so far only been reported for measures of rapid 

automatised naming33,43. In rapid automatised naming tasks participants are asked to 

name visually presented items as quickly and accurately as possible. This ability is related 

to reading performance, and rapid automatised naming skills in kindergarten are 

predictive of reading fluency throughout elementary school44. A genome-wide 

association screen analysing rapid automatised naming of letters in 2,563 individuals of 

European descent reported association with rs17663182 (P=4.7x10-9)33. This variant is 

located within the non-coding micro-RNA 924 host gene (MIR924HG) for which currently 

no regulatory role is known33. Multivariate analyses of rapid automatised naming across 

letters, objects and numbers in 1,331 Hispanic American and African-American youth 

identified an association with rs1555839 (P=2.2x10-8), located in an intergenic region 

near the long non-coding RNA ribosomal protein L7 pseudogene 34 (RPL7P34) that has 

an unknown function43. This latter association signal was also related to measures of 

word reading43. However, neither variant was among the top associated signals (P<1x10-

4) for early expressive vocabulary (15-18 months) or later expressive vocabulary (24-30 

months)1, suggesting that their effects on expressive vocabulary during early 

development are limited. Larger and more powerful samples are warranted to deepen 

the knowledge of genetic mechanisms underlying early language performance. 

 

2.6. Challenges for studying the genetic architecture underlying 

early language development 
 

Statistical power 
One of the major challenges for studying the genetic architecture underlying early 

language development concerns statistical power. This issue relates to both the low 

heritability of early language skills (Table 1) and the sample size of current large-scale 

efforts. Assuming SNP-h2 of 13% for expressive vocabulary, as observed in previous 

efforts1 (Table 1), individual-level genotype data from at least 6,900 unrelated individuals 
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is required for 80% study power to detect evidence for an underlying genetic variance 

component45. For methods that estimate heritability based on summary statistics, far 

larger sample sizes are needed, as these methods generally have larger standard errors 

than methods based on individual-level genotype data46,47. The summary statistics 

derived from the meta-GWAS on early expressive vocabulary1 are based on 8,889 and 

10,819 children for expressive vocabulary size at 15-18 months and 24-30 months, 

respectively. Still, their power to detect genetic association at the genome-wide 

significant level is only moderate, with 39% and 60% (assuming an additive model and 

an increaser allele frequency of 0.1 explaining 0.3% trait variation, with complete LD with 

marker and genetic risk variant)48.  

The application of multivariate methodologies is an approach to increase 

statistical power without the need to increase the absolute sample size47. There is a wide 

range of methods available aiming to combine GWAS summary statistics of correlated 

traits to improve the power of detecting SNP-trait associations (for review see e.g. 49,50). 

Among them, multi-trait analysis of GWAS (MTAG) has been introduced, a method that 

takes advantage of the genetic relationships among traits and provides a generalised 

estimate of inverse-variance-weighted meta-analysis by integrating GWAS summary 

statistics of different traits, while allowing for overlapping samples51. The increase in 

statistical power of multi-trait analyses compared to single-trait analyses can be 

interpreted in terms of increase in sample size for single-trait association studies. For 

example, analyses of three genetically correlated traits (rg~0.70), based on samples with 

overlapping individuals, resulted in an increase of up to 55% in the single-trait association 

sample size51. Considering the moderate genetic correlation patterns among language 

abilities during early development, including both vocabulary and grammar (see section 

2.2), multivariate analyses could be a relatively easy way to increase the statistical 

power. 

 

Assessing language abilties from infancy to early childhood 
Language abilities in large samples of young children, that can be used to study 

the role of common genetic variation, are often assessed using parental questionnaires 

such as the MacArthur Communicative Development Inventory (CDI)10 or Language 

Development Survey (LDS)52. The LDS was developed to identify language delays in 

children of 24 months and only evaluates expressive language52. CDI forms were 

developed to assess language acquisition in typically developing children10, with the 

MacArthur CDI:Words & Gestures53 (CDI-WG) being created for children between 8 and 

18 months, whereas the MacArthur CDI:Words & Sentences54 (CDI-WS) can be used to 

capture language development in children aged between 16 and 30 months. Although 

parental judgements might be associated with higher random error rates compared to 

direct assessments, affecting heritability estimations55, moderate to strong correlations 

between parental judgements and direct assessments of a child’s vocabulary suggest 
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that parent reports have sufficient instrument validity56,57. However, assessments of 

early language are often restricted to expressive vocabulary only. While CDI-WG includes 

an assessment of receptive vocabulary, both the CDI-WS and LDS do not. In general, 

parents are thought to be poorer at judging their child’s language comprehension 

compared to language production58, as assessing receptive language skills requires that 

parents notice their children’s non-verbal responses to words and is therefore deemed 

more subjective than assessing expressive language skills. Indeed, comparison of parent-

reported receptive vocabulary size in children between 12 and 24 months of age, using 

an adapted form of the CDI-WG measuring infant performance with a preferential 

looking task, showed that parents tend to underestimate their children’s receptive 

vocabulary59. Furthermore, the CDI-WS excluded the receptive scale as it was thought to 

be too complex for parents to accurately assess this at times of rapid vocabulary growth. 

However, a study of 25-month-old children showed that parents are able to reliably 

assess receptive vocabulary, with a correlation of 0.55 between parent report and child 

task performance, highlighting the feasibility of studies investigating early receptive 

language skills56. 

 

Potential sources of bias in genetic associations 
Estimations of genetic associations in population-based samples of unrelated 

individuals, both heritability and genetic correlations, may be biased due to violations of 

methodological assumptions60,61. This includes population phenomena such as dynastic 

effects, assortative mating and population stratification62,63. Dynastic effects imply that 

genetic variants have an influence on offspring phenotype due to their effects on 

parental phenotypes that shape children’s environment62. For example, if the number of 

books available in a household is influenced by genetic variants associated with 

increased education in the parents, a child that grows up in an environment that 

stimulates language development is also likely to inherit education-associated variants. 

In that case, a child’s language development is influenced by both genetic variants 

related to education as well as a stimulating environment, which is influenced by 

parental phenotype and consequently parental genetic variation. The latter is a specific 

form of gene-environment correlation and may result in inflated heritability and genetic 

correlation estimates62, especially for cognition- and socioeconomic-related traits62,63.  

Other population phenomena that may bias genetic associations include 

assortative mating and population stratification62. Assortative mating refers to mate 

selection based on phenotypic characteristics, resulting in non-random pairing of 

spouses. If there is a genetic component underlying these phenotypes, this results in an 

increased genetic similarity for spouses compared to the general population, leading to 

inflated heritability estimates64. Population stratification refers to the induction of 

associations between genotype and phenotype due to systematic differences in allele 

frequencies between populations arising from different ancestries. Studies of siblings or 
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families are robust to this effect and could be used to assess the influence of population 

stratification. However, as the phenotypic and genetic similarity among relatives is 

increased compared to unrelated individuals, such studies require even larger samples 

to achieve sufficient statistical power62. Currently, researchers adjust for population 

stratification using principal components, designed to capture ancestry-related genetic 

differences, thus, minimising bias62.  

 

Pleiotropy 
Genetic correlations are abundant across a variety of human traits65, including 

psychiatric disorders and brain phenotypes66 and reflect pleiotropic effects at the 

polygenic level. Pleiotropy may arise due to different underlying mechanisms (Figure 2) 

and can be defined at different genetic levels, including genetic variants or genes. 

Biological pleiotropy encompasses mechanisms where genetic variants have a direct 

biological influence on more than one phenotype (Figure 2a). Mediated pleiotropy refers 

to the indirect association between a genetic variant and a further phenotype that arises 

due to causal associations between the two phenotypes67 (Figure 2b), while spurious 

pleiotropy involves multiple sources of bias that cause a false association between a 

genetic variant or gene and multiple phenotypes67. For example, different causal risk 

variants in high LD could be located in different genes and affect different phenotypes, 

but will be, due to their LD structure, captured by the same GWAS marker (known as co-

localising variants)67 (Figure 2c). Furthermore, two phenotypes might be genetically 

related to each other due to a third common factor67 (Figure 2d). For example, twin 

studies on reading deficits and ADHD reported evidence for bivariate heritabilities up to 

95%68–70, suggesting a role for pleiotropy in the co-occurence of reading impairments 

and ADHD. However, both ADHD and reading abilities are also genetically related to 

educational attainment71–74, which could thus reflect shared genetic associations with a 

third common factor that genetically links reading skills to ADHD. Consequently, the 

identification of causal relationships between phenotypes using genetic analyses is 

challenging, especially as the assumptions of causal modelling approaches, such as 

Mendelian Randomization, are often not fulfilled75. Thus, I interpreted in this thesis 

relationships between phenotypes due to shared genetic variation as genetic 

associations only. However, even genetic correlation patterns between phenotypes can 

be complex, as genetic correlations describe the average pleiotropic effect across the 

genome47. Consequently, genetic correlation patters at the regional level may deviate 

from the average pattern, and strong positive and negative regional correlations have 

been observed even in the absence of genome-wide genetic correlations76. 

Understanding the complex genetic mechanisms underlying trait overlap may lead to a 

better understanding of shared biological mechanisms47.  
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Figure 2: Different mechanisms underlying pleiotropy between two phenotypes. (a) Biological pleiotropy, where 

the same genetic factor has a direct influence on two phenotypes. (b) Mediated pleiotropy reflects a causal 

relationship between two phenotypes. (c) Spurious pleiotropy is attributable to bias. For example, a single 

genetic marker tags two different genetic factors (in different genes) that each relate to a different phenotype 

through co-localisation. (d) Pleiotropy between two phenotypes due to a third common factor. Abbreviations: 

LD, linkage disequilibrium. 

 

2.7. Conclusions 
The heritability of expressive language abilities assessed from infancy to early 

childhood is low to moderate, indicating that genetic factors, including common 

variation, play a role in the observed individual differences during language acquisition 

processes. During the course of development, there is evidence for both developmental 

stability and heterogeneity in the genetic factors underlying language and literacy skills. 

However, knowledge of the composition of shared and specific genetic factors 

underlying language and literacy development is limited, beyond findings from latent 

factor twin analyses. Specifically, the role of receptive vocabulary and the emergence of 

genetic links between vocabulary skills assessed from infancy to early childhood and later 

language and literacy performance, has not yet been characterised based on genome-

wide information. Finally, low statistical power, the identification of pleiotropic 

mechanisms and bias through population phenomena are challenges that future studies 

will need to address.  
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Abstract 
Background: The heritability of language and literacy skills increases from early 

childhood to adolescence. The underlying mechanisms are little understood, and may 

involve (i) the amplification of genetic influences contributing to early language abilities 

and/or (ii) the emergence of novel genetic factors (innovation). Here, we investigate the 

developmental origins of genetic factors influencing mid-childhood/early-adolescent 

language and literacy. We evaluate evidence for the amplification of early-childhood 

genetic factors for vocabulary, in addition to genetic innovation processes. 

Methods: Expressive and receptive vocabulary scores at 38 months, thirteen 

language- and literacy-related abilities and non-verbal cognition (7-13 years) were 

assessed in unrelated children from the Avon Longitudinal Study of Parents and Children 

(ALSPAC, Nindividuals≤6,092). We investigated the multivariate genetic architecture 

underlying early-childhood expressive and receptive vocabulary, and each of 14 mid-

childhood/early-adolescent language, literacy or cognitive skills with trivariate structural 

equation (Cholesky) models as captured by genome-wide genetic relationship matrices. 

The individual path coefficients of the resulting structural models were finally meta-

analysed to evaluate evidence for overarching patterns. 

Results: We observed little support for the emergence of novel genetic sources 

for language, literacy or cognitive abilities during mid-childhood or early adolescence. 

Instead, genetic factors of early-childhood vocabulary, especially those unique to 

receptive skills, were amplified and represented the majority of genetic variance 

underlying many of these later complex skills (≤99%). The most predictive early genetic 

factor accounted for 29.4%(SE=12.9%) to 45.1%(SE=7.6%) of the phenotypic variation in 

verbal intelligence and literacy skills, but also for 25.7%(SE=6.4%) in performance 

intelligence, while explaining only a fraction of the phenotypic variation in receptive 

vocabulary (3.9%(SE=1.8%)). 

Conclusions: Genetic factors contributing to many complex skills during mid-

childhood and early adolescence, including literacy, verbal cognition and non-verbal 

cognition, originate developmentally in early childhood and are captured by receptive 

vocabulary. This suggests developmental genetic stability and overarching aetiological 

mechanisms. 

Keywords: ALSPAC, behavioural genetics, language and literacy development 

  

3 



Introduction 

 
45 

3.1. Introduction 
 

Individual differences in vocabulary during the preschool period are predictive of 

many later language- and literacy-related skills1–4, an important component of academic 

achievement5. For example, a latent factor consisting of expressive and receptive 

vocabulary size at 16-24 months predicted vocabulary size, as well as performance on 

tests of phonological awareness, reading accuracy and reading comprehension in 

children five years later3. Similarly, infants with a larger expressive vocabulary at 24 

months showed a larger vocabulary as well as better decoding, word recognition, and 

passage comprehension skills when assessed up to primary school4.  

Associations between infant vocabulary and language and literacy skills during 

later life may arise due to shared underlying aetiologies. According to the “simple view 

of reading” theory, reading comprehension is the product of printed word recognition 

(decoding) and oral language comprehension6. Early vocabulary is a central component 

of both these abilities7. Decoding is substantially based on phonological awareness (i.e. 

the awareness of sound structures of speech), which develops during the preschool 

period and has been shown to be related to vocabulary size7. Listening comprehension 

(i.e. the understanding of spoken language), particularly bottom-up processing, 

necessarily begins with vocabulary comprehension8. Spelling performance is also closely 

related to phonological awareness and other phonological abilities9. However, the 

biological processes that underlie these complex developmental interrelationships are 

only partially understood.  

Variation in expressive and receptive language skills, assessed during the first four 

years of life, is modestly heritable, while genetic influences on language and literacy skills 

assessed from mid-childhood to early adolescence are moderate to strong10–13. 

Specifically, longitudinal twin studies, assessing heritability indirectly, i.e. based on 

differences in phenotypic correlations between monozygotic and dizygotic twins (twin-

h2)14, have reported heritability estimates of 22%-28% for a combined language measure 

including expressive vocabulary at 2, 3 and 4 years of age11. A considerable part of this 

twin-h2 can be attributed to common genetic variation, as estimated from directly 

assessed genotype information in population-based samples of unrelated children. 

Single-nucleotide polymorphism (SNP)-h2 estimates range between 13% and 14% for 

expressive vocabulary at 15-18 and 24-30 months of age respectively12. In contrast, the 

heritability for language and literacy skills assessed from mid-childhood onwards is 

larger, with twin-h2 estimates from 47% to 72% 10,11 and SNP-h2 estimates from 32% to 

54%13. Twin-based genetic correlations, reflecting the extent to which genetic variation 

is shared between two traits, are moderate between early childhood and later 

developmental stages and imply some genetic stability10,11.  

The increase in heritability from early childhood to adolescence has been 

reported for many cognitive skills15,16, suggesting overarching aetiological mechanisms 
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that may involve processes of genetic innovation and amplification 17. Innovation refers 

to novel genetic factors emerging during development (i.e. previously unrelated genetic 

variation becomes associated with a trait over time). In contrast, amplification refers to 

genetic influences that are associated with a trait throughout development, explaining 

increasingly more variation with progressing age15. A meta-analysis of twin studies on 

cognitive abilities suggested that novel genetic influences predominate during the 

transition from early to middle childhood, supporting innovation15. From eight years of 

age onwards (mid-childhood), there was evidence for enhanced genetic stability with 

dominance of amplification processes15. A similar pattern of amplification and 

innovation processes was reported by twin studies examining genetic links between 

early language (including expressive vocabulary and syntax skills between 2-4 years of 

age) and both mid-childhood/adolescent language11 and reading abilities10, based on 

latent factor models. Thus, innovation and to a lesser degree amplification processes 

may account for the observed increase in heritability of language and literacy skills during 

the transition from early to mid-childhood. 

Beyond latent factor twin analyses10,11, the developmental origins of genetic 

variation contributing to child and adolescent language, literacy and cognition are little 

characterised. In particular, genetic relationships with early-childhood receptive 

vocabulary are unknown and the spectrum of interrelated later-life skills that are 

genetically related to early-childhood language abilities is only partially understood. 

Furthermore, evidence for amplification and innovation processes has not yet been 

established beyond twin research. Here, we use SNP information from directly 

genotyped markers and structural equation models to seek evidence for innovation 

and/or amplification processes during language and literacy development within a 

sample of unrelated children from the Avon Longitudinal Study of Parents And Children 

(ALSPAC, N≤6,092). Specifically, we study expressive and receptive vocabulary at 38 

months and a wide range of mid-childhood/early-adolescent language- and literacy-

related skills, including reading, spelling, phonemic awareness, listening comprehension, 

non-word repetition and verbal intelligence, as well as non-verbal intelligence (7-13 

years). 
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3.2. Methods 
 

Participants 
All participants were drawn from ALSPAC, a UK population-based longitudinal 

pregnancy-ascertained birth cohort (estimated birth date: 1991-1992, Appendix S1)18,19. 

The ALSPAC Ethics and Law Committee and the Local Research Ethics Committees 

provided ethical approval for the study. Consent for biological samples has been 

collected in accordance with the Human Tissue Act (2004). Informed consent for the use 

of data collected via questionnaires and clinics was obtained from participants following 

the recommendations of the ALSPAC Ethics and Law Committee at the time.  

ALSPAC participants were genotyped using the Illumina HumanHap550 quad chip 

genotyping platforms. Standard genomic quality control was performed using PLINK 

(v1.07)20 (Appendix S2). After quality control, 465,740 SNPs and ≤6,092 individuals with 

high quality genetic and phenotypic data remained.  

 

Measures 
Early-childhood vocabulary: Expressive and receptive vocabulary were assessed 

at 38 months using parent reports and age-specific defined word lists adapted from the 

MacArthur Communicative Development Inventory Words & Sentences (CDI)21. Parents 

were asked whether their child was able to (i) say, (ii) understand or (iii) both say and 

understand a word from a list of 123 words. Expressive vocabulary size reflects the 

number of words a child produces, regardless of whether they also understand these 

words and was defined as the sum of words a child (i) says and (iii) says and understands. 

Receptive vocabulary size reflects the number of words a child understands, regardless 

of whether children are able to produce these words and was defined as the sum of 

words a child (ii) understands and (iii) says and understands. CDI expressive vocabulary 

scores have high validity, showing correlations with direct assessments of over 0.7022,23. 

The correlation between parental and direct assessment of receptive vocabulary is 

0.5523. In total, 6,092 children had both early vocabulary and genome-wide genetic data 

available (Table 1).  

Mid-childhood/early-adolescent language- and literacy-related abilities: Thirteen 

language- and literacy-related abilities (LRAs) capturing reading, spelling, phonemic 

awareness, listening comprehension, non-word repetition and verbal intelligence were 

assessed from mid-childhood to early adolescence (7-13 year, N≤5,749) using both 

standardised and ALSPAC-specific instruments (Table 1, Appendix S3). Word reading 

accuracy and comprehension (age 7 years) was measured using the basic reading subtest 

of the Wechsler Objective Reading Dimensions (WORD) assessment. Word and non-

word reading accuracy scores were assessed using an ALSPAC-specific measure 

(Appendix S3), in addition to passage reading accuracy and speed with the revised Neale 

Analysis of Reading Ability (NARA II), all at age 9 years. Word and non-word reading 
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speed (age 13 years) were captured with the Test of Word Reading Efficiency (TOWRE). 

Spelling accuracy (age 7 and 9 years) was assessed with an ALSPAC-specific measure 

(Appendix S3). Phonemic awareness (age 7 years) was measured with the Auditory 

Analysis Test (AAT) and listening comprehension, non-word repetition and verbal 

intelligence quotient (VIQ) scores (all age 8 years) were assessed with a subset of the 

Wechsler Objective Language Dimensions (WOLD) test, an adaptation of the Children’s 

Test of Nonword Repetition (CNRep) and the Wechsler Intelligence Scale for Children 

(WISC-III) respectively. A detailed description of each instrument, including reliability, 

validity and references, is available in Table 1 and Appendix S3. 

Mid-childhood performance intelligence: We studied performance intelligence 

quotient (PIQ) scores (age 8 years), assessed using the WISC-III (Table 1, Appendix S3), 

as part of sensitivity analyses.  

Phenotype transformation: Early-childhood vocabulary and mid-childhood/early-

adolescent LRA and PIQ scores were rank-transformed to achieve normality and to allow 

for comparisons of genetic effects across different psychological instruments. All 

measures were residualised for sex, age (unless measures were derived using age-

specific norms) and the two most significant ancestry-informative principal components, 

calculated using EIGENSOFT (v6.1.4)24. In addition, vocabulary scores were residualised 

for age squared, as vocabulary develops rapidly during early childhood25. 

3 

Table 1: Language, literacy and cognitive abilities in ALSPAC children 

Measure  Mean Score (SE) 
Score 
range 

Mean Age (SE) 
in years  

N (%males) 

Expressive voc 38m (CDI) 113.33 (17.44) 0-123 3.21 (0.10) 6,092 (51.4) 

Receptive voc 38 m (CDI) 109.75 (23.75) 0-123 3.21 (0.10) 6,092 (51.4) 

Reading a/c 7 (WORD) 28.52 (9.25) 0-50 7.53 (0.31) 5,723 (50.9) 

Reading a 9 (NBO) 7.58 (2.42) 0-10 9.87 (0.32) 5,574 (49.6) 

Reading a 9 (NARA II) 104.27 (13.58) 69-131 9.88 (0.32) 5,048 (49.4) 

Reading s 9 (NARA II) 105.60 (12.47) 69-131 9.88 (0.32) 5,037 (49.3) 

Reading s 13 (TOWRE) 82.69 (10.26) 18-104 13.83 (0.20) 4,131 (48.5) 

NW reading a 9 (NBO) 5.25 (2.47) 0-10 9.87 (0.31) 5,569 (49.5) 

NW reading s 9 (TOWRE)  50.91 (9.34) 4-63 13.83 (0.20) 4,121 (48.4) 

Spelling a 7 (NB) 7.92 (4.39) 0-15 7.53 (0.31) 5,637 (50.5) 

Spelling a 9 (NB) 10.30 (3.42) 0-15 9.87 (0.31) 5,564 (49.5) 

PhonAware 7 (AAT) 20.29 (9.52) 0-40 7.53 (0.31) 5,749 (50.9) 

Listening c 8 (WOLD) 7.52 (1.97) 2-15 8.63 (0.30) 5,324 (50.1) 

NW repetition 8 (CNRep) 7.29 (2.50) 0-12 8.63 (0.30) 5,315 (50.1) 

VIQ 8 (WISC-III) 108.04 (16.74) 50-155 8.64 (0.31) 5,305 (49.9) 

PIQ 8 (WISC-III) 100.24 (16.95) 46-147 8.64 (0.31) 5,296 (49.9) 

Measures were assessed in unrelated ALSPAC participants with phenotypic and genotype information (genetic 

relationship<0.05). PIQ was assessed for sensitivity analyses only. Abbreviations: a, accuracy; AAT, Auditory 

Analysis Test; c, comprehension; CDI, Communicative Development Inventory (Toddler); CNRep, Children's 

Test of Nonword Repetition; m, months; NARA II, The Neale Analysis of Reading Ability- Second Revised British 

Edition; NB, ALSPAC-specific assessment developed by Nunes and Bryant; NBO, ALSPAC-specific assessment 

developed by Nunes, Bryant and Olson; NW, nonword; PhonAware, phonemic awareness; PIQ, performance 

intelligence quotient; s, speed; TOWRE, Test Of Word Reading Efficiency; VIQ, verbal intelligence quotient; voc, 

vocabulary; WISC-III, Wechsler Intelligence Scale for Children III; WOLD, Wechsler Objective Language 

Dimensions; WORD, Wechsler Objective Reading Dimension 
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Analyses 
Phenotypic correlations: Phenotypic correlations (rp) were calculated for 

untransformed and rank-transformed scores using Spearman rank-correlation and 

Pearson correlation coefficients respectively. Patterns were highly similar for 

untransformed and transformed scores (Figure S1).  

Genome-wide Complex Trait Analysis: SNP-h2 was estimated using Restricted 

Maximum Likelihood (REML) analyses as implemented in Genome-wide Complex Trait 

Analysis (GCTA, v1.26.0, https://cnsgenomics.com/software/gcta/) software26. This 

method examines unrelated individuals, pair by pair, and predicts phenotypic similarity 

by genetic similarity. Genetic interrelatedness between individuals is captured by a 

genetic-relationship matrix (GRM)26, i.e. a matrix with as many columns and rows as 

individuals. Here, the GRM matrix was created with PLINK (v1.9)20 using individuals with 

a genetic relationship <0.05 (Nindividuals≤6,092) and directly genotyped SNPs only 

(NSNPs=465,740). Genetic correlations (rg), reflecting the extent to which two measures 

are influenced by the same genetic factors, were estimated using bivariate REML within 

GCTA27 and the GRM as described above.  

Multivariate genetic analyses: To investigate the developmental origins of genetic 

factors influencing mid-childhood/early-adolescent language, literacy and cognition, we 

studied the genetic variance/co-variance structures of vocabulary at 38 months and 

thirteen mid-childhood/early-adolescent LRAs using Genetic-relationship-matrix 

Structural Equation Modelling (GSEM, https://gitlab.gwdg.de/beate.stpourcain/gsem)28. 

Multivariate trait variances were modelled using a saturated Cholesky decomposition 

model and maximum likelihood estimation (Appendix S4). The fitted path models are 

analogous to twin research methodologies. However, like GCTA, GSEM relies on GRMs 

to estimate genetic variance/co-variance structures between unrelated individuals 

(Appendix S4)28. GSEM models were fitted using all available observations for children 

across development (R:gsem library, version 0.1.5), allowing for missing data, similar to 

GCTA26. In addition, we estimated SNP-h2, genetic correlations, factorial co-heritability 

(the proportion of total genetic variance explained by a specific genetic factor) and 

bivariate heritability (the contribution of genetic factors to the observed phenotypic 

covariance between two measures) with GSEM (Appendices S5-S6). 

Due to computational constrains, it was not possible to include all measures of 

interest into one large structural equation model. Consequently, our data analysis 

strategy followed a two-step procedure: First, we fitted 13 trivariate Cholesky 

decomposition models, each consisting of expressive and receptive vocabulary at 38 

months and one of the 13 LRAs (in this order, termed “forward” GSEM, Figure S2a, S3a). 

Second, we carried out a meta-analysis of absolute GSEM path coefficients for these 13 

models across pre-defined domains including (i) reading-related measures, (ii) spelling-

related measures, and (iii) all LRA outcomes (Table S1), accounting for interrelatedness 
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between LRAs (R:metafor library, Rv3.2.0, http://www.metafor-

project.org/doku.php)(Appendix S7). As Cholesky decompositions are sensitive to the 

order of modelled traits, the order of the two vocabulary measures at 38 months was 

reversed within the 13 trivariate Cholesky decomposition models (termed “reverse” 

GSEM, Figure S4a, S5a) as part of sensitivity analyses. Finally, to compare LRA genetic 

covariance patterns with non-verbal cognitive abilities, we studied expressive and 

receptive vocabulary at 38 months together with PIQ at 8 years.  

Experiment-wide significance threshold: The effective number of phenotypes 

(N=9) was calculated based on phenotypic correlations among early-childhood 

vocabulary and LRAs using matrix Spectral Decomposition (matSpD, 

https://gump.qimr.edu.au/general/daleN/matSpD/)29. This corresponds to an 

experiment-wide significance threshold of 0.005 (0.05/9). 

 

3.3. Results 
 

Phenotypic and genetic descriptives  
Expressive and receptive vocabulary assessed at 38 months are modestly 

heritable as tagged by common genotyping information, with GCTA-SNP-h2 estimates of 

18% (GCTA-SNP-h2: 0.18(SE=0.06)) and 12% (GCTA-SNP-h2: 0.12(SE=0.06)) respectively 

(Figure 1a, Table S2). GCTA-SNP-h2 estimates for LRAs assessed during mid-childhood, 

including reading abilities (comprehension, accuracy and speed), spelling abilities 

(accuracy), phonemic awareness, listening comprehension, non-word repetition and 

VIQ, as well as early-adolescent reading speed, were moderate, reaching up to 54% 

(GCTA-SNP-h2:0.54(SE=0.07)) (Figure 1a, Table S2), as previously reported13.  

Consistent with phenotypic correlations between expressive and receptive 

vocabulary at 38 months (rp=0.63, Figure 1b), bivariate genetic correlations were strong 

(rg=0.86(SE=0.15), P=0.004, Figure 1c) and shared genetic influences accounted for ~20% 

of the phenotypic overlap (bivariate heritability: 0.19(SE=0.07)). Both vocabulary 

measures were also phenotypically correlated with language and literacy skills later in 

life (Figure 1b). Phenotypic correlations of LRAs with receptive vocabulary ranged 

between 0.14 and 0.26, and with expressive vocabulary between 0.12 and 0.18 (Figure 

1b). At the genetic level, receptive vocabulary was moderately to strongly linked with 

the entire spectrum of LRAs, with genetic correlations ranging from 0.58 (SE=0.21, 

P=0.001) to 0.95 (SE=0.23, P=1x10-8) (Figure 1c). In contrast, expressive vocabulary was 

genetically correlated with VIQ at 8 years only (rg=0.38(SE=0.14), P=0.003, Figure 1c).  
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Figure 1: SNP-heritability, phenotypic and genetic correlations. (a) SNP-heritability was estimated with GCTA 

software, based on directly genotyped SNPs. Bars represent standard errors. (b,c) Bivariate correlations among 

rank-transformed measures passing the experiment-wide significance threshold (P≤0.005) are shown and were 

estimated with (b) Pearson correlation coefficients at the phenotype level and (c) GCTA at the genetic level. 

Standard errors for genetic correlations are shown in brackets. Trait abbreviations are described in Table 1.  

 

Structural equation modelling  
Next, we modelled multivariate genetic variances between expressive and 

receptive vocabulary at 38 months and, in turn, each of the 13 mid-childhood/early-

adolescent LRAs using GSEM. Within each forward GSEM model, the estimated path 

coefficients link to shared and unique genetic variance components through structural 

equations (Appendix S4). SNP-h2 estimates were consistent between GCTA and GSEM 

(Table S2). 

Squared path coefficients for the first genetic factor (A1) fully reflect the genetic 

variance in expressive vocabulary at 38 months (a11) and genetic variance contributions 

to receptive vocabulary (a21) and later LRAs (a31, Figure S2a). The first two path 

coefficients (a11, a21) were nearly identical across all 13 models (Figure S2) and are here 

reported for the model including VIQ at 8 years (Figure 2a). The first genetic factor 

explained 17.7%(SE=5.7%) of the phenotypic variance in expressive vocabulary (path-

coefficient a11=-0.42(SE=0.06), P=4x10-10, Figure 2a-b), corresponding to the SNP-h2. It 

also accounted for 9.0%(SE=4.5%) of the phenotypic variance in receptive vocabulary 
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(path-coefficient a21=-0.30(SE=0.08), P=7x10-5, Figure 2a-b), capturing approximately 

two thirds of its total genetic variance (factorial co-heritability: 0.67(SE=0.17)). In 

addition, this early genetic factor explained 8.6%(SE=6.0%) of the phenotypic variance in 

VIQ at 8 years (path-coefficient a31=-0.29(SE=0.10), P=0.004, Figure 2a-b), but not other 

LRAs (Figure S2).  

Squared path coefficients for the second genetic factor (A2) reflect the unique 

genetic variance in receptive vocabulary at 38 months, independent of expressive 

vocabulary (a22, Figure S2a), as well as genetic variance contributions to later LRAs (a32, 

Figure S2a). Nearly identically across the 13 GSEM models, the second genetic factor 

described a further 4.5%(SE=2.0%) of the phenotypic variance in receptive vocabulary at 

38 months (path coefficient a22=-0.21(SE=0.05), P=4x10-6, Figure 2a-b). Thus, about a 

third of the genetic variance in receptive vocabulary is unique (factorial co-

heritability=0.33(SE=0.17)). Importantly, this small proportion of genetic variance was 

amplified and accounted for the majority of genetic influences in subsequent VIQ, 

reading and spelling abilities (path-coefficient a32, Figure 2, Figure S2-S3, Table S3). For 

example, this genetic factor accounted for 45.1%(SE=7.6%) of the phenotypic variance 

in VIQ at 8 years (path-coefficient a32=-0.67(SE=0.06), P<1x10-10, Figure 2a-b). Similarly, 

for literacy-related traits, the second genetic factor explained 38.2%(SE=6.0%) of the 

phenotypic variance in reading accuracy/comprehension at 7 years of age (path-

coefficient a32=-0.62(SE=0.05), P<1x10-10, Figure 2c-d), entailing nearly the entire SNP-h2 

of the measure (factorial co-heritability: 0.94(SE=0.08), Table S3). Comparable patterns 

were observed for reading accuracy at 9 years (assessed with NARA II), reading speed at 

9 years, reading and non-word reading speed at 13 years and spelling accuracy at 7 years, 

with ≥29.4% of phenotypic variation explained by genetic variance unique to receptive 

vocabulary (Figure S2-S3).  

Squared path coefficients for the third genetic factor (A3) account for unique 

genetic variance in the studied LRAs, independent of genetic factors contributing to 

expressive and/or receptive vocabulary at 38 months (a33, Figure S2a). We found little 

evidence for novel genetic LRA influences arising after early childhood (Figure 2, Figure 

S2).  

At the level of individual LRAs, forward GSEMs identified two highly related 

developmental association patterns. The first pattern, observed for VIQ only, includes 

shared genetic variation with both expressive (a31) and receptive (a32) vocabulary (Figure 

2a). The second pattern includes, primarily, an amplification of genetic influences for 

receptive vocabulary (a32) that relate to multiple literacy skills, including reading 

accuracy/comprehension at 7 years (Figure 2c), reading accuracy at 9 years (assessed 

with NARA II), reading speed at 9 years, reading and non-word reading speed at 13 years 

and spelling accuracy at 7 years (Figure S2d-i).  
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Figure 2: Path models and variance plots for early vocabulary and mid-childhood verbal intelligence or reading 

accuracy/comprehension. Trivariate Cholesky decomposition models (forward GSEM, GSEM software) were 

fitted based on all available observations for children across development (N≤6,092). (a,c) Path models 

(standardised path coefficients and standard errors) for expressive and receptive vocabulary at 38 months 

(CDI) and (a) VIQ assessed at 8 years (WISC-III) or (c) reading accuracy/comprehension at 7 years (WORD). Solid 

lines indicate path coefficients with P≤0.05, dashed lines indicate path coefficients  with P>0.05. (b,d) 

Standardised variance for models including (b) VIQ assessed at 8 years (WISC-III) and (d) reading 

accuracy/comprehension assessed at 7 years (WORD). # Path coefficient passing nominal significance (P≤0.05), 

but not the experiment-wide significance threshold (P≤0.005). Trait abbreviations are described in Table 1.  
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To evaluate overarching association patterns across mid-childhood/early-

adolescent language and literacy skills (Figure S1, S6), we meta-analysed absolute path 

coefficients across all 13 forward GSEM models (Table S1). This meta-analysis confirmed 

the amplification of genetic influences that are unique to receptive vocabulary at 38 

months (meta-path-coefficient a32=0.62(0.06), P<1x10-10, Figure 3, Table S4). In addition, 

we observed nominal evidence for an amplification of genetic influences that capture 

the entirety of expressive vocabulary at 38 months (meta-path-coefficient 

a31=0.20(SE=0.08), P=0.009, Figure 3, Table S4). Consistent with individual GSEM models, 

there was little meta-analytic evidence for novel genetic influences arising after early 

childhood (meta-path-coefficient a33=0.34(SE=0.29), P=0.24, Figure 3, Table S4). Meta-

analyses of reading measures (N=7) and spelling measures (N=2), showed that 

developmental genetic amplification patterns observed across all LRAs primarily, but not 

exclusively, involved reading-related abilities (Table S4). 

Cholesky decompositions are sensitive to the order of modelled traits, although 

SNP-h2 estimations remain unchanged. We therefore created 13 additional GSEM 

models, as part of sensitivity analyses, reversing the order of expressive and receptive 

vocabulary at 38 months (reverse GSEM models, with path coefficients as detailed in 

Figure S4a). Consistent with forward GSEM models, there was little evidence for novel 

LRA-related genetic factors emerging after early childhood (A3, Figure S4-S5). For 

reverse GSEM, the first genetic factor (A1), capturing the entire SNP-h2 of receptive 

vocabulary, accounted also for 11.8%(SE=5.5%) of the phenotypic variance in expressive 

vocabulary (Figure S4-S5, shown for the GSEM model including VIQ). A further 

5.9%(SE=3.0%) of the phenotypic variance in expressive vocabulary was explained by a 

second genetic factor (A2), capturing genetic influences that are independent of 

receptive and unique to expressive vocabulary. Early genetic factors accounted for 

phenotypic variation in VIQ, reading and spelling abilities, but also phonemic awareness 

and/or non-word repetition (Figure S4-S5).  

To identify the most predictive early genetic factors observed using either 

forward or reverse GSEM models, we studied factorial co-heritabilities and bivariate 

heritabilities. The largest contribution to the genetic variance of later LRAs was observed 

for genetic influences uniquely related to receptive vocabulary (A2, forward GSEM, 

Figure S2a), explaining up to 95%(SE=20%) in LRA SNP-h2, especially for reading and VIQ 

(Table S3). In comparison, shared receptive/expressive vocabulary-related genetic 

influences (A1, reverse GSEM, Figure S4a) explained only up to 73%(SE=20%) of LRA SNP-

h2 (Table S3), although derived 95% confidence intervals overlap. Consistently, genetic 

covariance between receptive vocabulary and later LRAs accounted for the majority of 

their phenotypic covariance, with bivariate heritability estimates of up to 

1.00(SE=0.22)(Figure 4, Table S5). In contrast, there was little evidence that genetic 

factors underlying expressive vocabulary, irrespective of its variance decomposition, 

substantially predicted variation in LRAs (Figure 4, Table S5), except for VIQ 
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(0.69(SE=0.24)). Thus, the majority of genetic variation in later LRAs can be attributed to 

a small proportion of genetic variance in early language that uniquely captures receptive 

vocabulary, and that has been amplified during development. 

Finally, we assessed whether the identified amplification patterns extend to non-

verbal cognition by studying GSEM models including PIQ at 8 years (Figure S7), as part of 

sensitivity analyses. Findings were largely similar to reading-related measures (Figure 2c-

d). Specifically, using forward GSEM, (i) genetic influences unique to receptive 

vocabulary (A2) explained 25.7%(SE=6.4%) of phenotypic variance in PIQ (path-

coefficient a32=-0.51(SE=0.06), P<1x10-10, Figure S7a-b; factorial co-heritability: 

0.99(SE=0.04), Table S3); and (ii) there was little support for PIQ specific genetic 

influences that arise during mid-childhood (A3, Figure S7a-b). However, evidence for the 

contribution of genetic factors to the phenotypic covariance between receptive 

vocabulary and PIQ did not pass the experiment-wide threshold (bivariate heritability: 

0.75(0.27), Figure 4, Table S5).  

3 

 
 

Figure 3: Meta-analyses of developmental structural models. Absolute path coefficients for 13 structural 

equation models (forward GSEM) corresponding to 13 LRAs in mid-childhood and early adolescence were 

meta-analysed, accounting for phenotypic interrelatedness. Detailed information, including estimates of effect 

heterogeneity, is shown in Table S4. # Path coefficient passing the nominal (P≤0.05), but not the experiment-

wide significance threshold (P≤0.005). Trait abbreviations are described in Table 1.  
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Figure 4: Bivariate heritability estimates. Bivariate heritability estimates (forward GSEM, GSEM software) reflect 

the proportion of the phenotypic covariance that is accounted for by the genetic covariance. Bivariate 

heritability estimates were truncated at one for reading a 9 (NARA II), reading s 9 (NARA II), reading s 13 

(TOWRE) and NW reading s 13 (TOWRE). PIQ at 8 years was assessed for sensitivity analyses only. Bars 

represent standard errors. * Estimates passing the experiment-wide significance threshold (P≤0.005). Trait 

abbreviations are described in Table 1. 

 

3.4. Discussion 
 

Multivariate genetic variance analyses in this study showed that genetic factors 

contributing to mid-childhood/early-adolescent LRAs, including reading and spelling 

skills, but also phonological awareness, non-word repetition, verbal and non-verbal 

cognitive functioning, can already be captured by early-childhood language. Early 

genetic influences, especially those uniquely related to receptive vocabulary, are 

amplified during development and fully account for genetic variation in later reading, 

verbal and non-verbal cognitive skills. Independent of model specification, there was 

little evidence for novel genetic influences emerging during mid-childhood and early 

adolescence that would suggest specificity in the genetic LRA composition. Thus, 

developmental processes underlying language and literacy skills may not fully adhere to 

a paradigm that exclusively predicts genetic innovation during the transition from early 

to middle childhood11,15.  

The identification of amplification processes is consistent with twin research 

reporting moderate genetic correlations between latent factors for early language 

(including expressive vocabulary and syntax skills) and both mid-childhood and/or 
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adolescent latent language11 and reading10. However, as genetic factors accounted only 

for about a third of the phenotypic correlations10,11, findings have been interpreted as 

evidence for genetic innovation11. In the present study, early vocabulary-related genetic 

factors, especially those related to receptive vocabulary, explained the majority of 

genetic variance (≤99% SNP-h2) for many later reading and cognitive skills. The difference 

in results, implicating amplification instead of innovation processes, might be due to two 

reasons. First, previous studies focused on early-childhood expressive language skills 

only. In the current study, however, the largest amplification was observed for a small 

proportion of genetic variance that is unique to early receptive and independent of early 

expressive vocabulary. Consistently, the majority of phenotypic covariance between 

early receptive vocabulary and later skills, especially literacy and cognition, was 

accounted for by shared genetic sources. In contrast, genetic influences in expressive 

vocabulary did not substantially contribute to the total genetic variance of later LRAs, 

despite some evidence for genetic interrelationships with VIQ. Thus, structural models 

omitting genetic factors influencing early receptive vocabulary may attribute 

developmental changes in the genetic architecture of mid-childhood/early-adolescent 

traits to genetic innovation processes. Note that VIQ findings were representative of 

many (less powerful) WISC-III subtests, including the WISC-III vocabulary subtest, 

showing similar association patterns (data not shown). Second, this study benefits from 

a direct estimation of genetic interrelationships between individuals, based on 

genotyping information28, enabling the detection of small changes in SNP-h2, compared 

to a more indirect assessment based on twin correlations. 

The similarity in developmental genetic changes predicting the genetic 

composition of mid-childhood/early-adolescent reading and cognitive skills, as observed 

by factorial co-heritability estimates, is consistent with overarching developmental 

patterns. According to the ‘generalist genes’ hypothesis, cognitive abilities are presumed 

to share genetic variance components30. Our results suggest that an early generalist 

genetic component may manifest with the emergence of receptive vocabulary by the 

age of three years. This shared genetic component may imply developmentally stable 

biological mechanisms, but could also reflect different regulations of the same genes 

over time, although the current findings do not allow us to infer specific biological 

pathways. 

At the same time, amplification processes predominate for genetic factors 

underlying early receptive vocabulary compared to genetic factors contributing to early 

expressive vocabulary, suggesting some degree of genetic specificity. Hence, the 

underlying genetic mechanisms may only partially adhere to the concept of ‘generalist 

genes’30, for the following reasons: Early language skills at the age of three, including 

vocabulary, comprehension and sentence construction have been linked to adolescent 

reading comprehension31. Notably, broadly defined early oral language, including 

receptive skills32, has been shown to affect word recognition33, while vocabulary 
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comprehension is also a precursor of listening comprehension8. Thus, receptive 

vocabulary skills might show wide-ranging links with both key predictors of reading 

comprehension, decoding and language comprehension, as proposed by the ‘simple 

view of reading’6. Consistently, a delay in both expressive and receptive vocabulary at 

the age of two, is much more likely to lead to problems with later literacy, compared to 

delays in expressive vocabulary alone34, and expressive and receptive vocabulary may be 

independently related to pre-reading skills35. Furthermore, variation in comprehension 

has been associated with non-linguistic cognitive measures, such as tool use and 

symbolic play, compared to expressive vocabulary36. Consequently, genetic variation for 

receptive vocabulary at 38 months may share genetic foundations with several key skills 

that are important for future reading, language and cognitive development, detectable 

as genetic amplification, and only partially overlap with cognitive mechanisms that are 

predicted by genetic factors influencing expressive vocabulary alone. Note that literacy 

abilities in this study primarily assessed accuracy and speed of reading and spelling, and 

that our findings may, thus, only partially apply to reading comprehension.  

Increased SNP-h2 estimates of language/literacy skills from mid-childhood to 

adolescence, compared to estimates of early-childhood language, may arise due to 

genotype-environment correlations, as children modify and select their environment in 

accordance with their genetic make-up37. Furthermore, the environmental variance may 

decrease with the start of schooling38. Finally, parent-reported vocabulary measures 

might be associated with higher random error rates (rendering them less reliable) than 

direct assessments of language and literacy skills using standardised psychological 

instruments, which consequently may affect the reliability of heritability estimations39. 

Thus, our findings do not preclude the emergence of novel genetic influences from mid-

childhood onwards. Parent-reported vocabulary measures in ALSPAC have sufficient 

power (80%) to detect SNP-h2 estimates of ≥0.15 (Appendix S8). However, compared to 

large-scale genome-wide studies of educational attainment40 or direct assessments of 

language and literacy measures, their predictive power is low. This advocates a need for 

improvement of instruments assessing early language skills, especially as moderate to 

strong correlations between parental judgements and direct assessments of a child’s 

vocabulary suggest sufficient instrument validity23,41. A further limitation of the current 

study is that the CDI Words & Sentences was developed for vocabulary assessment in 

children up to 30 months21, whereas ALSPAC children were assessed at 38 months of 

age, potentially leading to ceiling effects. Finally, the lack of independent cohorts with 

data on both early expressive and receptive vocabulary prevents a direct replication of 

our findings.  
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The strength of this work lies in the identification of amplification processes using 

longitudinal models, suggesting that the developmental origins of many later complex 

skills, especially those related to literacy and cognition, lie in early childhood. Thus, 

cheaply and easily administered parent-reported CDI questionnaires, which are widely 

used to assess children’s early language42, might be useful instruments to capture 

genetic variation in language, literacy and cognitive skills many years later in life.  

 

Key points 

 It is known that individual differences in preschool vocabulary predict later 

language and literacy skills and that this relationship involves genetic 

mechanisms. 

 We found evidence suggesting that genetic factors contributing to a wide 

range of mid-childhood/early-adolescent language- and literacy-related skills 

originate in early-childhood language 

 Early genetic influences, especially those uniquely related to receptive 

vocabulary, are amplified during development and account for the majority 

of genetic variance in later reading, verbal and non-verbal skills, while 

processes of genetic innovation during mid-childhood and adolescence were 

negligible. 

 Our findings highlight the predictive power of parental vocabulary reports to 

capture genetic variation in language, literacy and cognitive skills many years 

later in life.  
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Supplementary Materials 
 

Supplementary Methods 

 

Appendix S1: ALSPAC description 

14,541 pregnant women resident in Avon, UK with expected dates of delivery 1st 

April 1991 to 31st December 1992 were recruited by ALSPAC. Initially, 14,541 

pregnancies were enrolled for which the mother enrolled in the ALSPAC study and had 

either returned at least one questionnaire or attended a “Children in Focus” clinic by 

19/07/99. This comprised a total of 14,676 fetuses, resulting in 14,062 live births and 

13,988 children who were alive at the age of one year. 

An attempt was made to bolster the initial sample, when the oldest children were 

approximately 7 years of age, with eligible cases who had failed to join the study 

originally. Consequently, there are data available for more than 14,541 pregnancies (see 

above) when considering variables collected from the age of seven onwards (and 

potentially abstracted from obstetric notes). 

There are 913 pregnancies not in the initial sample (known as Phase I enrolment) 

that are currently represented on the built files and reflecting enrolment status at the 

age of 24. Of these new pregnancies, 452, 262 and 195 were recruited during Phases II, 

III and IV respectively. As a result, an additional 913 children are enrolled. The cohort 

profile paper1 describes the phases of enrolment in more detail. 

Thus, the total sample size for analyses using any data collected after the age of 

seven is 15,454 pregnancies, resulting in 15,589 fetuses. Of this total sample, 14,901 

children were alive at the age of one year. 

The Children in Focus (CiF) group, a 10% sample of the ALSPAC cohort, attended 

clinics at the University of Bristol at various time intervals between 4 to 61 months of 

age. The CiF group was randomly chosen from the last 6 months of ALSPAC births (1,432 

families attended at least one clinic). Mothers that had moved out of the area, were lost 

to follow-up, or those partaking in another study of infant development in Avon were 

excluded. 

Please note that the study website contains details of all the data that is available 

through a fully searchable data dictionary and variable search tool 

(http://www.bristol.ac.uk/alspac/researchers/our-data).  

 

Appendix S2: Genetic quality control 

ALSPAC participants were genotyped using the Illumina HumanHap550 quad chip 

genotyping platforms, and genotypes were called using the Illumina GenomeStudio 

software. Standard genomic quality control2 was performed at both the SNP and 

individual level using PLINK (v1.07)3. Individuals with a gender mismatch (comparing 
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reported gender with genetic gender), a large number of missing SNPs (>3%), non-

European ancestry and a genetic relationship >0.05 were excluded from the analyses. 

SNPs that had a low call rate (<99%), were rare (<1%) or deviated from Hardy-Weinberg 

equilibrium (P<5x10-7) were also excluded from the analysis. After quality control, 8,226 

children and 465,740 SNPs remained. Among those, 6,092 children had also early-

childhood vocabulary and/or mid-childhood/early-adolescent language and literacy 

information available. 

 

Appendix S3: Mid-childhood/early-adolescent ALSPAC measures 

Children were voluntarily brought to the clinic to be tested during a half-day visit. 

Tests were administered individually, by trained assessors, during 20-minute sessions. 

An extensive description of each assessment is available in the online ALSPAC 

documentation: http://www.bristol.ac.uk/alspac/researchers/access/.  

 

Reading accuracy and comprehension age 7 (WORD) 

To assess decoding and word reading both pictures and words were used, as part 

of the basic reading subtest of the Wechsler Objective Reading Dimensions (WORD)4. 

The WORD has high internal consistency and reliability, with coefficients above 0.9. Inter-

correlation with the word-reading test from the Differential Ability Scale5 was 0.82. In 

short, a series of four pictures, with for each picture four short, simple words underneath 

it, was shown to the child. Then, the child was asked to indicate, by pointing, the word 

that had the same beginning or ending sound as the picture. Next, a series of three 

pictures, again each with four words beneath it, starting with the same letter as the 

picture, were shown to the child. The child was asked to point to the word underneath 

each picture that correctly named the picture. Finally, the child was asked to read aloud 

a series of 48 unconnected words which increased in difficulty. If the child made six 

consecutive errors, the task was stopped. The reading accuracy and comprehension 

score was computed as the sum of items that the child read/responded correctly with a 

maximum score of 50.  

 

Reading accuracy age 9 (NBO) 

The child was asked to read aloud ten real words, selected from a larger selection 

of words as described by Nunes, Bryant and Olsen (NBO)6. The test-retest reliability of 

this assessment for word reading was 0.80 and a 0.85 correlation with the Schonell Word 

Reading Task7 was observed. A score indicating reading accuracy was computed as the 

sum of the number of items that the child read correctly.  
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Reading speed and reading accuracy age 9 (NARA II)  

The child was asked to read a passage from a booklet, following the revised Neale 

Analysis of Reading Ability (NARA II)8. The tester recorded both the time it took the child 

to read the passage, and also noted any errors made by the child. Alternate form 

reliability ranged from 0.84 to 0.92, depending on age at assessment, for accuracy and, 

between 0.50 and 0.83 for speed9. Measures of accuracy and speed correlated 0.95 and 

0.76 with the Schonell Graded Word Reading Test respectively7. The maximum test score 

was 400 and 100 for speed and accuracy, respectively. Both raw scores were 

standardised by age. 

 

Reading speed age 13 (TOWRE) 

The child had 45 seconds to read as many words as possible from a list of 104 

words, as included in the Test of Word Reading Efficiency (TOWRE)10, to assess sight 

word efficiency. The alternate form reliability for this test ranged between 0.86 and 0.97, 

depending on age and sub-task. Correlations with the Woodcock Reading Mastery Tests 

ranged from 0.89 to 0.94, depending on age and sub-task9. The tester marked words 

that a child skipped, or got wrong. A reading speed score was computed as the sum of 

the number of correct words a child finished on.  

 

Non-word reading accuracy age 9 (NBO) 

The child was asked to read aloud ten non-words, selected from a larger selection 

of non-words taken from research conducted by Nunes and colleagues6. The test-retest 

reliability of the non-word reading task was 0.73 and correlation with the Schonell Word 

Reading Task7 of 0.73 was observed. The tester emphasised to the child that the words 

ware made-up, and asked the child to read all the non-words in the way that they 

thought they should be read. A non-word reading accuracy score was computed as the 

sum of the number of items the child read correctly.  

 

Non-word reading speed age 13 (TOWRE) 

The child was asked to read as many non-words as possible out of a list of 63 

words within 45 seconds. Word lists were derived from the non-word part of the Test of 

Word Reading Efficiency (TOWRE)10 to assess decoding efficiency. The alternate form 

reliability was 0.94 and the test-retest reliability ranged between 0.82 and 0.979. 

Correlations with the Woodcock Reading Mastery Tests were high and ranged from 0.89 

to 0.919. The tester marked words that a child skipped, or got wrong. A non-word reading 

speed score is computed as the sum of the number of correct non-words a child finished 

on. 

 

  

3 



Developmental origins of genetic factors influencing language and literacy traits 

 

66 

Spelling accuracy age 7 (NB) 

The child was asked to write down the spelling for a series of 15 words, chosen 

specifically for this age group after piloting on several hundred children (Nunes and 

Bryant, ALSPAC-specific measure). The words were of different frequencies, included 

regular and irregular words, and increased in difficulty. For each word, the tester first 

read only the word to the child, then a specific sentence incorporating the word, and 

finally alone again. A spelling accuracy score is computed as the number of words spelt 

correctly. 

 

Spelling accuracy age 9 (NB) 

Spelling accuracy at age 9 was assessed in a similar manner to that at age 7 (see 

above). However, the series of 15 words that a child was asked to spell were adjusted to 

match the age group of 9. A spelling accuracy score is computed as the number of words 

spelt correctly. 

 

Phonemic awareness age 7 (AAT) 

The task consisted of two practice and 40 test items of increasing difficulty, 

according to the Auditory Analysis Test (AAT)11. This test had correlations from 0.53 to 

0.84 with the language arts subtests of Stanford Achievement Test11. Reliability of the 

AAT was not assessed in the initial task report11. However, test criteria of the commercial 

version of the AAT, TAAS12 have been assessed and revealed high internal consistency 

(0.78). Interrelations with other tests of phonemic awareness ranged between 0.11 and 

0.82 and suggest some construct validity13. For each item, the child was asked to first 

repeat the word and then produce it again but without part of the word (a phoneme or 

a number of phonemes). There were seven omission categories: 1) omission of a first 

syllable, 2) omission of a medial syllable, 3) omission of a final syllable, 4) omission of the 

initial consonant of a one-syllable word, 5) omission of the final consonant of a one-

syllable word, 6) omission of the first consonant of a medial consonant, and 7) omission 

of the consonant blend of a medial consonant. Words from similar categories were not 

clustered. A phonemic awareness score is computed as the sum of correct responses.  

 

Listening comprehension age 8 (WOLD) 

A picture was shown to the child and the tester read aloud a paragraph about the 

picture, following a subset of the Wechsler Objective Language Dimensions (WOLD)14 

test. Next, the child was asked to answer fifteen questions on what they heard. A 

listening comprehension score is calculated as the sum of the items that the child got 

correct. The listening comprehension subtest has test-retest reliabilities between 0.83 

and 0.88 in children aged six to eleven years15 and correlation with the Peabody Picture 

Vocabulary Test-III16 was 0.4417.  
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Non-word repetition age 8 (CNRep) 

The child was asked to listen to a series of 12 nonsense words, according to an 

adaptation of the Children’s Test of Nonword Repetition (CNRep)18. The test-retest 

reliability was 0.80 and correlations with the digit span test ranged between 0.45 and 

0.6718. The 12 nonsense words consisted of four nonsense words of three syllables, four 

nonsense words of four syllables, and four nonsense words of five syllables. All nonsense 

words were conforming to English rules for sound combinations. For each word, the child 

was asked to repeat the word after listening to it. The repetition attempt was scored as 

correct if there was no phonological deviation from the target form. A non-word 

repetition score was computed as the sum of the number of correct non-words.  

 

Verbal intelligence age 8 (WISC-III) 

A short form of the Wechsler Intelligence Scale for Children (WISC-III)19, including 

alternate items for all subtests except for the coding subtest, was administered. The 

WISC-III comprises ten subtests five of which are verbal subtests: information, 

similarities, arithmetic, vocabulary, comprehension, and can be used to construct a 

verbal intelligence score. Based on the items used in the alternate item form of the WISC-

III raw scores were calculated and the total age-scaled scores for the verbal scale were 

calculated using the look-up tables provided in the WISC-III manual, with a maximum VIQ 

score of 160. All scores were pro-rated. Test-retest correlations of the WISC-III verbal 

intelligence are high and ranged between 0.90 and 0.94, depending on the age at 

assessment and the duration of the test-retest interval20. The VIQ is also highly 

correlated with the Kaufman Brief Intelligence Test (0.79) and with the Standford-Binet 

IV (0.69)20. 

 

Performance intelligence age 8 (WISC-III) 

A short form of the Wechsler Intelligence Scale for Children (WISC-III)19, including 

alternate items for all subtests except for the coding subtest, was administered. The 

WISC-III contains five performance subtests: picture completion, coding, picture 

arrangement, block design and object assembly. Based on the items used in the alternate 

item form of the WISC-III raw scores were calculated and the total age-scaled scores for 

the performance scale were calculated using the look-up tables provided in the WISC-III 

manual, with a maximum PIQ score of 160. All scores were pro-rated. Test re-test 

correlations for the WISC-III performance intelligence are 0.8921. The correlation 

between PIQ assessed using WISC-III and the non-verbal score measured using the Otis-

Lennon School Ability Test was 0.5922.  
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Appendix S4: Structural equation modelling 

A Cholesky decomposition can be described as follows23: for a multivariate trait P 

with phenotypic measurements t, a latent genetic factor (A1) influences the first measure 

P1, but may also explain variance in the remaining measures (P2,...,Pt). Additionally, a 

second latent genetic factor (A2) influences the second measure (P2) and may explain 

variance, not yet captured by A1, in all other measures (P3,...,Pt). The final measure (Pt) is 

influenced by latent genetic factors (A1,...,At-1), but also a genetic factor At. This latter 

genetic factor does not explain variance within any of the previous measures (P1,...,Pt-

1)24. Genetic path coefficients were annotated with a. Here, the first number indicates 

the direction of the effect (the variable to which the arrow points) and the second the 

origin of the effect24.  

The expected phenotypic covariance matrix Σ  for Z-standardised traits, based 

on the factor model is  

(1) 

 

with a lower triangular matrix of genetic path coefficients Λ , a diagonal matrix of latent 

genetic factor variances Φ  (standardised to unit variance), such that Φ  is an identity 

matrix I25. The residual variance can be decomposed into latent residual factors, with a 

lower triangular matrix of residual path coefficients Γ and a diagonal matrix of latent 

residual factor variances Θ  (standardised to unit variance), such that Θ  is an identity 

matrix I. For example, a trivariate model consisting of three measures (P1 , P2 and P3), 

assuming three genetic factors (A1, A2 and A3) and three residual factors (E1, E2 and E3). 

The expected phenotypic covariance matrix for this trivariate model can be expressed as 

follows: 


















2

32313

23

2

212

1312

2

1

ppp

ppp

ppp







Σ           (2) 

with the relevant matrices  









































































100

010

001

,0

00

,

100

010

001

,0

00

333231

2221

11

333231

2221

11

ΘΓΦΛ

eee

ee

e

aaa

aa

a

(3) 

with phenotypic variances 
2

1p ,
2

2p and 
2

3p  and phenotypic covariances 
12p , 

13p  

and 
23p . 

The trivariate AE Cholesky decomposition of three standardised measures (see 

above), can be visualised using a path diagram (Figure S3a). The expected phenotypic 

variances and covariances can be expressed as follows:  

ΓΘΓ'ΛΦΛ'Σ 
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The variance of the latent genetic and residual factors has been standardised to unit 

variance and is not shown.  

Bivariate genetic correlations between phenotypes, measuring the extent to 

which two phenotypes 1 and 2 share genetic factors (ranging from -1 to 1), can be 

derived using estimated genetic variances and covariances26 according to:  

2

2

2

1

12

gg

g

gr



    (10) 

with genetic covariance 
12g between phenotypes 1 and 2 and the genetic variances 

2

1g  and 2

2g . 

 

Appendix S5: Factorial co-heritability  

A measure of factorial co-heritability was estimated to quantify the relative 

contribution of a genetic factor to the genetic variance of a phenotype, using the gsem 

package (R:gsem library, version 0.1.5). The factorial co-heritability fg
2 was derived as: 

    (11) 

where σ2
g_it is the genetic variance of the genetic factor i contributing to trait t and σ2

g_t 

the total genetic variance of trait t, all estimated from standardised path coefficients. 

Corresponding standard errors (SEs) were derived using the Delta method, and P-values 

approximated with a Wald test.  

 

Appendix S6: Bivariate heritability 

Bivariate heritability27 details the proportion of phenotypic covariance between 

two traits that is accounted for by the genetic covariance and was estimated using the 

gsem package (R:gsem library, version 0.1.5). The genetic covariance was estimated 

based on unstandardised path coefficients and the phenotypic covariance on observed 

rank-transformed measures. SEs were approximated by the SE of the genetic covariance 

divided by the phenotypic covariance (as the SE of the phenotypic covariance is small) 
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and P-values based on a Wald-test, assuming normality. Reported bivariate heritability 

estimates are based on forward GSEM models, and reverse GSEM models provided 

nearly identical results.  

 

Appendix S7: Meta-analysis across mid-childhood/early-adolescent language- and 

literacy-related abilities 

A meta-analysis of absolute GSEM path coefficients across pre-defined domains 

including (i) reading-related measures, (ii) spelling-related measures, and (iii) all LRA 

outcomes (Table S1) was carried out across forward GSEM models. Estimates were 

combined using random-effects meta-regression intercepts, accounting for 

interrelatedness between LRAs (R:metafor library, Rv3.2.0, http://www.metafor-

project.org/doku.php)28. For this, a variance/covariance matrix across measures was 

approximated by including the observed phenotypic correlation matrix, weighted by the 

standard errors of the path coefficients as estimated by GSEM, analogous to models 

accounting for correlated phylogenetic histories29. 

 

Appendix S8: Power analyses 

For this study, we selected early vocabulary measures (15-38 months) that had a 

sample size >6,000. This corresponds to at least 80% power to detect a SNP-h2 of 0.15 

(P>0.05)30. For LRAs assessed later in life (7-13 years), sample sizes were slightly lower 

and measures that had at least 80% power to detect a SNP-h2 of >0.20 (P>0.05)30 were 

selected, corresponding to a sample size of ~4,000. 
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Supplementary Tables 

Table S1: Meta-analysis domains of mid-childhood/early-adolescent language- and literacy-related abilities  

LRA 
Meta-analysis domains 

All LRAs Reading Spelling 

Reading a/c 7 (WORD)    

Reading a 9 (NBO)    

Reading a 9 (NARA II)    

Reading s 9 (NARA II)    

Reading s 13 (TOWRE)    

NW reading a 9 (NBO)    

NW reading s 13 (TOWRE)    

Spelling a 7 (NB)    

Spelling a 9 (NB)    

PhonAware 7 (AAT)    

Listening c 8 (WOLD)    

NW repetition (CNRep)    

VIQ 8 (WISC-III)    

Absolute path coefficients estimated using genetic-relationship-matrix structural equation (GSEM) models 

were meta-analysed, accounting for trait-interrelationships. Meta-analysis were carried out across all LRAs, 

and for reading-related abilities as well as spelling-related abilities.  indicates that a specific trait was included 

in a meta-analysis.  indicates that a specific trait was not included. Abbreviations: a, accuracy; AAT, Auditory 

Analysis Test; c, comprehension; CNRep, Children's Test of Nonword Repetition; LRAs, language- and literacy-

related abilities; NARA II, The Neale Analysis of Reading Ability- Second Revised British Edition; NB, ALSPAC-

specific assessment developed by Nunes and Bryant; NBO, ALSPAC-specific assessment developed by Nunes, 

Bryant and Olson; NW, nonword; PhonAware, phonemic awareness; s, speed; TOWRE, Test Of Word Reading 

Efficiency; VIQ, verbal intelligence quotient; WISC-III, Wechsler Intelligence Scale for Children III; WOLD, 

Wechsler Objective Language Dimensions; WORD, Wechsler Objective Reading Dimension 
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Table S2: SNP-heritability estimates  

Measure N GCTA-h2 (SE) GSEM-h2 (SE) 

Expressive voc 38m (CDI) 6,092 0.18(0.06) 0.18(0.06)* 

Receptive voc 38m (CDI) 6,092 0.12(0.06) 0.13(0.04)* 

Reading a/c 7 (WORD) 5,723 0.42(0.06) 0.41(0.06) 

Reading a 9 (NBO) 5,574 0.46(0.06) 0.46(0.06) 

Reading a 9 (NARA II) 5,048 0.50(0.07) 0.49(0.07) 

Reading s 9 (NARA II) 5,037 0.45(0.07) 0.43(0.07) 

Reading s 13 (TOWRE) 4,131 0.40(0.09) 0.41(0.09) 

NW reading a 9 (NBO) 5,569 0.32(0.06) 0.33(0.06) 

NW reading s 13 (TOWRE) 4,121 0.38(0.06) 0.38(0.09) 

Spelling a 7 (NB) 5,637 0.32(0.06) 0.33(0.06) 

Spelling a 9 (NB) 5,564 0.38(0.06) 0.38(0.07) 

PhonAware 7 (AAT) 5,749 0.39(0.06) 0.38(0.06) 

Listening c 8 (WOLD) 5,324 0.32(0.07) 0.30(0.07) 

NW repetition (CNRep) 5,315 0.32(0.07) 0.31(0.06) 

VIQ 8 (WISC-III) 5,305 0.54(0.07) 0.54(0.06) 

PIQ 8 (WISC-III) 5,296 0.26(0.07) 0.26(0.06) 

SNP-heritability estimates were estimated based on rank-transformed scores, directly genotyped SNPs and 

individuals with a genetic relationship of <0.05, using Restricted Maximum Likelihood (REML) analyses as 

implemented in genome-wide complex trait analysis (GCTA) software. SNP-heritability estimates based on 

forward Genetic-relationship-matrix Structural Equation modelling (GSEM) were extracted for comparison. PIQ 

at 8 years was assessed for sensitivity analyses only. * GSEM-h2 estimates as observed in the GSEM model with 

VIQ at 8 years. Abbreviations: a, accuracy; AAT, Auditory Analysis Test; c, comprehension; CDI, Communicative 

Development Inventory; CNRep, Children's Test of Nonword Repetition; GCTA, genome-wide complex trait 

analysis; GSEM, Genetic-relationship-matrix Structural Equation modelling; h2, heritability; m, months; NARA 

II, The Neale Analysis of Reading Ability- Second Revised British Edition; NB, ALSPAC-specific assessment 

developed by Nunes and Bryant; NBO, ALSPAC-specific assessment developed by Nunes, Bryant and Olson; 

NW, nonword; PhonAware, phonemic awareness; PIQ; performance intelligence quotient; s, speed; TOWRE, 

Test Of Word Reading Efficiency; VIQ, verbal intelligence quotient; voc, vocabulary; WISC-III, Wechsler 

Intelligence Scale for Children III; WOLD, Wechsler Objective Language Dimensions; WORD, Wechsler Objective 

Reading Dimension 
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Table S5: Bivariate heritability estimates 

Measure  

Expressive vocabulary 
38 months 

Receptive vocabulary  
38 months  

Bivariate 
heritability (SE) 

P 
Bivariate 

heritability (SE) 
P 

Reading a/c 7 (WORD) 0.39(0.25) 0.12 0.90(0.21) 2x10-5 

Reading a 9 (NBO) 0.54(0.26) 0.04 0.71(0.24) 0.003 

Reading a 9 (NARA II) 0.71(0.28) 0.01 1.00(0.22)# 9x10-7 

Reading s 9 (NARA II) 0.69(0.38) 0.07 1.00(0.27)# 8x10-10 

Reading s 13 (TOWRE) 0.59(0.38) 0.12 1.00(0.31)# 3x10-4 

NW reading a 9 (NBO) 0.40(0.28) 0.16 0.71(0.28) 0.01 

NW reading s 13 (TOWRE) 0.48(0.43) 0.26 1.00(0.34)* 8x10-4 

Spelling a 7 (NB) 0.59(0.35) 0.09 0.95(0.26) 3x10-4 

Spelling a 9 (NB) 0.62(0.31) 0.04 0.79(0.26) 0.002 

PhonAware 7 (AAT) 0.63(0.26) 0.02 0.92(0.24) 1x10-4 

Listening c 8 (WOLD) 0.49(0.39) 0.20 0.77(0.28) 0.006 

Non-word repetition 8 (CNRep) 0.53(0.23) 0.02 0.76(0.23) 0.001 

VIQ 8 (WISC-III) 0.69(0.24) 0.005 0.91(0.16) 3x10-8 

PIQ 8 (WISC-III) 0.24(0.45) 0.59 0.75(0.27) 0.006 

Bivariate heritability estimates, reflecting the proportion of the phenotypic covariance that is accounted for by 

the genetic covariance. SEs were approximated by the SE of the genetic covariance divided by the phenotypic 

covariance (as the SE of the phenotypic covariance is small) and P-values are based on a Wald-test, assuming 

normality. Estimates are based on forward GSEM models, and reverse GSEM models provided nearly identical 

results (data not shown). PIQ at 8 years was assessed for sensitivity analyses only. The experiment-wide 

threshold is P≤0.005. # Estimates were truncated at one. Abbreviations: a, accuracy; AAT, Auditory Analysis 

Test; c, comprehension; CNRep, Children's Test of Nonword Repetition; NARA II, The Neale Analysis of Reading 

Ability- Second Revised British Edition; NB, ALSPAC-specific assessment developed by Nunes and Bryant; NBO, 

ALSPAC-specific assessment developed by Nunes, Bryant and Olson; NW, nonword; PhonAware, phonemic 

awareness; PIQ; performance intelligence quotient; s, speed; TOWRE, Test Of Word Reading Efficiency; VIQ, 

verbal intelligence quotient; WISC-III, Wechsler Intelligence Scale for Children III; WOLD, Wechsler Objective 

Language Dimensions; WORD, Wechsler Objective Reading Dimension 
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Supplementary Figures 

Figure S1: Phenotypic correlations among early vocabulary and mid-childhood/early-adolescent abilities related 

to literacy, language and cognition. Phenotypic correlations among untransformed measures are represented 

in the lower triangle and were estimated with Spearman’s rank correlation coefficients. Phenotypic 

correlations among transformed measures are represented in the upper triangle and were estimated with 

Pearson correlation coefficients. Only correlation coefficients passing the experiment-wide significance 

threshold (P≤0.005) are shown. PIQ at 8 years was assessed for sensitivity analyses only. Abbreviations: a, 

accuracy; AAT, Auditory Analysis Test; c, comprehension; CDI, Communicative Development Inventory; CNRep, 

Children's Test of Nonword Repetition; m, months; NARA II, The Neale Analysis of Reading Ability- Second 

Revised British Edition; NB, ALSPAC-specific assessment developed by Nunes and Bryant; NBO, ALSPAC-specific 

assessment developed by Nunes, Bryant and Olson; NW, nonword; PhonAware, phonemic awareness; PIQ, 

performance intelligence quotient; s, speed; TOWRE, Test Of Word Reading Efficiency; VIQ, verbal intelligence 

quotient; voc, vocabulary; WISC-III, Wechsler Intelligence Scale for Children III; WOLD, Wechsler Objective 

Language Dimensions; WORD, Wechsler Objective Reading Dimension 
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Figure S2: Path models of early vocabulary and mid-childhood/early-adolescent literacy- and language-related 

abilities (forward GSEM). Cholesky decompositions were fitted using GSEM, according to forward GSEMs and 

based on all available observations for children across development (N≤6,092). (a) Schematic path model with 

path coefficient labels for a Cholesky decomposition model of vocabulary at 38 months, including expressive 

and receptive vocabulary (in that order), and one later LRA. (b-n) Path models of standardised path coefficients 

and corresponding standard errors for 13 forward GSEM models, one for each fitted LRA. Solid lines indicate 

path coefficients passing a P-value threshold of P≤0.05, dashed lines indicate non-significant path coefficients 

P>0.05. # Path coefficient passing nominal significance (P≤0.05), but not the experiment-wide significance 

threshold (P≤0.005). Abbreviations: a, accuracy; AAT, Auditory Analysis Test; c, comprehension; CDI, 

Communicative Development Inventory; CNRep, Children's Test of Nonword Repetition; Exp, expressive; LRA, 

language- and literacy-related ability; m, months; NARA II, The Neale Analysis of Reading Ability- Second 

Revised British Edition; NB, ALSPAC-specific assessment developed by Nunes and Bryant; NBO, ALSPAC-specific 

assessment developed by Nunes, Bryant and Olson; NW, nonword; PhonAware, phonemic awareness; Rec, 

receptive; s, speed; TOWRE, Test Of Word Reading Efficiency; VIQ, verbal intelligence quotient; voc, 

vocabulary; WISC-III, Wechsler Intelligence Scale for Children III; WOLD, Wechsler Objective Language 

Dimensions; WORD, Wechsler Objective Reading Dimension 
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Figure S3: Variance plots for path models of early vocabulary and mid-childhood/early-adolescent literacy- and 

language-related abilities (forward GSEM). Standardised variance explained by genetic and residual factors as 

derived by Cholesky decompositions using forward GSEM (Figure S3), based on all available observations for 

children across development (N≤6,092). (a) Variance plot with path coefficient labels for a Cholesky 

decomposition model of vocabulary at 38 months, including expressive and receptive vocabulary (in that 

order), and one later LRA. (b-n) Standardised variance explained by genetic and residual factors as modelled in 

13 forward GSEM models, one for each fitted LRA. Abbreviations: a, accuracy; AAT, Auditory Analysis Test; c, 

comprehension; CDI, Communicative Development Inventory; CNRep, Children's Test of Nonword Repetition; 

Exp, expressive; LRA, language- and literacy-related ability; m, months; NARA II, The Neale Analysis of Reading 

Ability- Second Revised British Edition; NB, ALSPAC-specific assessment developed by Nunes and Bryant; NBO, 

ALSPAC-specific assessment developed by Nunes, Bryant and Olson; NW, nonword; PhonAware, phonemic 

awareness; Rec, receptive; s, speed; TOWRE, Test Of Word Reading Efficiency; VIQ, verbal intelligence 

quotient; voc, vocabulary; WISC-III, Wechsler Intelligence Scale for Children III; WOLD, Wechsler Objective 

Language Dimensions; WORD, Wechsler Objective Reading Dimension 
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Figure S4: Path models of early vocabulary and mid-childhood/early-adolescent literacy- and language-related 

abilities (reverse GSEM). Cholesky decompositions were fitted using GSEM, according to reverse GSEMs and 

based on all available observations for children across development (N≤6,092). (a) Schematic path model with 

path coefficient labels for a Cholesky decomposition model of vocabulary at 38 months, including receptive 

and expressive vocabulary (in that order), and one later LRA. (b-n) Path models of standardised path 

coefficients and corresponding standard errors for 13 reverse GSEM models, one for each fitted LRA. Solid 

lines indicate path coefficients passing a P-value threshold of P≤0.05, dashed lines indicate non-significant path 

coefficients P>0.05. # Path coefficient passing nominal significance (P≤0.05), but not the experiment-wide 

significance threshold (P≤0.005). Abbreviations: a, accuracy; AAT, Auditory Analysis Test; c, comprehension; 

CDI, Communicative Development Inventory; CNRep, Children's Test of Nonword Repetition; Exp, expressive; 

LRA, language- and literacy-related ability; m, months; NARA II, The Neale Analysis of Reading Ability- Second 

Revised British Edition; NB, ALSPAC-specific assessment developed by Nunes and Bryant; NBO, ALSPAC-specific 

assessment developed by Nunes, Bryant and Olson; NW, nonword; PhonAware, phonemic awareness; Rec, 

receptive; s, speed; TOWRE, Test Of Word Reading Efficiency; VIQ, verbal intelligence quotient; voc, 

vocabulary; WISC-III, Wechsler Intelligence Scale for Children III; WOLD, Wechsler Objective Language 

Dimensions; WORD, Wechsler Objective Reading Dimension 
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Figure S5: Variance plots for path models of early vocabulary and mid-childhood/early-adolescent literacy- and 

language-related abilities (reverse GSEM). Standardised variance explained by genetic and residual factors as 

derived by Cholesky decompositions using reverse GSEM (Figure S5), based on all available observations for 

children across development (N≤6,092). (a) Variance plot with path coefficient labels for a Cholesky 

decomposition model of vocabulary at 38 months, including receptive and expressive vocabulary (in that 

order), and one later LRA. (b-n) Standardised variance explained by genetic and residual factors as modelled in 

13 reverse GSEM models, one for each fitted LRA. Abbreviations: a, accuracy; AAT, Auditory Analysis Test; c, 

comprehension; CDI, Communicative Development Inventory; CNRep, Children's Test of Nonword Repetition; 

Exp, expressive; LRA, language- and literacy-related ability; m, months; NARA II, The Neale Analysis of Reading 

Ability- Second Revised British Edition; NB, ALSPAC-specific assessment developed by Nunes and Bryant; NBO, 

ALSPAC-specific assessment developed by Nunes, Bryant and Olson; NW, nonword; PhonAware, phonemic 

awareness; Rec, receptive; s, speed; TOWRE, Test Of Word Reading Efficiency; VIQ, verbal intelligence 

quotient; voc, vocabulary; WISC-III, Wechsler Intelligence Scale for Children III; WOLD, Wechsler Objective 

Language Dimensions; WORD, Wechsler Objective Reading Dimension 
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Figure S6: Genetic correlations among early vocabulary and mid-childhood/early-adolescent abilities related to 

literacy, language and cognition. Genetic correlations were calculated based on rank-transformed scores using 

Restricted Maximum Likelihood (REML) analyses as implemented in genome-wide complex trait analysis 

(GCTA) software, based on directly genotyped SNPs and unrelated individuals (genetic relationship of <0.05). 

Only genetic correlations that passed the experiment-wide significance threshold (P≤0.005) are shown. 

Corresponding standard errors are provided between brackets. PIQ at 8 years was assessed for sensitivity 

analyses only. Abbreviations are shown in Figure S1. 
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Figure S7: Path model and variance plot for early vocabulary and mid-childhood performance intelligence. A 
Cholesky decomposition was fitted using GSEM, according to (a,b) forward GSEM and (c,d) reverse GSEM, 
based on all available observations for children across development (N≤6,092). (a) Path model of standardised 
path coefficients and corresponding standard errors for a Cholesky decomposition of vocabulary at 38 months, 
including expressive and receptive vocabulary (in that order), and performance intelligence scores at 8 years. 
Solid lines indicate path coefficients passing a P-value threshold of P≤0.05, dashed lines indicate non-significant 
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path coefficients (P>0.05). (b) Standardised variance explained by genetic and residual factors modelled in a. 
(c) Path model of standardised path coefficients and corresponding standard errors for a Cholesky 
decomposition of vocabulary at 38 months, including receptive and expressive vocabulary (in that order), and 
performance intelligence scores at 8 years. Solid lines indicate path coefficients passing a P-value threshold of 
P≤0.05, dashed lines indicate non-significant path coefficients (P>0.05). (d) Standardised variance explained by 
genetic and residual factors modelled in c. Abbreviations: CDI, Communicative Development Inventory; Exp, 
expressive; m, months; Rec, receptive; voc, vocabulary; PIQ, performance intelligence quotient; WISC-III, 
Wechsler Intelligence Scale for Children III 
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Abstract 
Individual differences in early-life vocabulary measures are heritable and 

associated with subsequent reading and cognitive abilities, although the underlying 

mechanisms are little understood. Here, we (i) investigate the developmental genetic 

architecture of expressive and receptive vocabulary in toddlerhood and (ii) assess origin 

and developmental stage of emerging genetic associations with mid-childhood verbal 

and non-verbal skills.  

Studying up to 6,524 unrelated children from the population-based Avon 

Longitudinal Study of Parents and Children (ALSPAC) cohort, we dissected the 

phenotypic variance of longitudinally assessed early-life vocabulary measures (15-38 

months) and later-life reading and cognitive skills (7-8 years) into genetic and residual 

components, by fitting multivariate structural equation models to genome-wide genetic-

relationship matrices.  

Our findings show that the genetic architecture of early-life vocabulary is 

dynamic, involving multiple distinct genetic factors. Two of them are developmentally 

stable and contribute to genetic variation in mid-childhood skills: Genetic links with later-

life verbal abilities (reading, verbal intelligence) emerged with expressive vocabulary at 

24 months. The underlying genetic factor explained 10.1% variation (path coefficient: 

0.32(SE=0.06)) in early language, but also 6.4% (path coefficient: 0.25(SE=0.12)) and 

17.9% (path coefficient: 0.42(SE=0.13)) variation in mid-childhood reading and verbal 

intelligence, respectively. An independent stable genetic factor was identified for 

receptive vocabulary at 38 months, explaining 2.1% (path coefficient: 0.15(SE=0.07)) 

phenotypic variation. This genetic factor was also linked to both verbal and non-verbal 

cognitive abilities in mid-childhood, accounting for 24.7% of the variation in non-verbal 

intelligence (path coefficient: 0.50(SE=0.08)), 33.0% in reading (path coefficient: 

0.57(SE=0.07)) and 36.1% in verbal intelligence (path coefficient: 0.60(0.10)), 

corresponding to the majority of genetic variance (≥66.4%). 

Thus, the genetic foundations of mid-childhood reading and cognition are 

diverse. They involve at least two independent genetic factors that emerge at different 

stages during early language development and may implicate differences in cognitive 

processes that are already detectable during toddlerhood. 
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4.1. Introduction 
 

The number of words produced and understood by children during the first few 

years of life is a rapidly changing developmental phenotype that is often used to assess 

the level of language acquisition1. One of the first precursors of expressive vocabulary 

(i.e. word production) in typically developing children is canonical babbling, which 

emerges around the age of four to six months2, followed by the spontaneous production 

of first words between 10 to 15 months of age3. With progressing development, the 

number of produced words increases, reaching a median of 40 words at 16 months1, 

often trailed by a period of rapid growth till the age of about 22 months4 and a steady 

increase after that. This results in the production of approximately 500 words at 30 

months5 and about 2,600 words at six years of age6. The development of receptive 

vocabulary (i.e. word comprehension) typically precedes expressive vocabulary in 

developing children7, with the understanding of the first few words emerging between 

6 to 9 months of age8. Thus, receptive vocabulary is often larger than expressive 

vocabulary in size7. For example, the number of words understood by infants at 16 

months of age has a median of 169 words, and is, thus, approximately 129 words larger 

compared to their expressive vocabulary at the same time1. This discrepancy increases 

during development, with a receptive vocabulary size of about 20,000 to 24,000 words 

at the age of six years, which is about six times larger than its expressive counterpart6. 

The rate of language acquisition, and thus vocabulary size, varies between 

children during early language development9,10. These large interindividual differences 

can partially be explained by genetic variation. Twin studies estimated that genetic 

influences could account for 17% to 25% of variation in expressive vocabulary at 24 

months11,12, 10% to 14% of variation in expressive vocabulary at 36 months11 and 28% of 

variation in receptive vocabulary at 14 months13. Studies using genotype data from 

unrelated children provided similar estimates, with single-nucleotide polymorphism 

heritability (SNP-h2) estimates of 13% to 14% for expressive vocabulary at 15 to 30 

months of age14 and 12% for receptive vocabulary at 38 months of age15. 

Despite some stable genetic contributions during early development, there is 

evidence for age-specific genetic influences on vocabulary skills. For example, measures 

of expressive vocabulary size assessed between 15 and 36 months were genetically only 

moderately correlated, with estimates ranging from 0.48 to 0.6911,14. Additionally, a 

considerable proportion (3% to 28%) of the total variation in early expressive language 

assessed at 24, 36 and 48 months could be explained by measure-specific additive 

genetic variance and not by a shared latent factor16. However, the field is still missing an 

in-depth characterisation of the genetic architecture underlying early-life vocabulary 

development that characterises age-specific genetic influences across infancy and 

toddlerhood starting from the first-word stage as well as differences between receptive 

and expressive language skills.  

4 



Multivariate genetic analyses of early-life vocabulary skills 

 

98 

Genetic links between early language processes (assessed from 24 to 48 months 

of age) and subsequent language- and literacy-related abilities (assessed from mid-

childhood to adolescence) have been reported by studies of both twins and unrelated 

individuals15–17. This research suggested that genetic variance in mid-

childhood/adolescent language, literacy and cognitive development can already be 

captured by genetic factors contributing to language skills in toddlerhood, i.e. before the 

age of four years. More specifically, genetic influences underlying receptive vocabulary 

at 38 months could capture, through amplification, the majority of genetic variation 

contributing to a wide spectrum of mid-childhood/early-adolescent literacy and (verbal) 

cognitive skills in a sample of unrelated individuals15. So far, however, our understanding 

of the developmental origin of these factors is incomplete. 

Here, we (i) examine stability and change in the developmental genetic 

architecture of language during the first three years of life and (ii) assess origin and 

developmental stage of emerging genetic associations with verbal and non-verbal 

abilities during mid-childhood. We model multivariate genetic architectures underlying 

these traits as directly captured by genome-wide information (based on genetic-

relationship-matrices, GRMs) for up to 6,524 unrelated youth from the UK Avon 

Longitudinal Study of Parents and Children (ALSPAC) birth cohort18,19. We apply GRM 

structural equation modelling (GSEM)20, analogous to twin research-modelling 

techniques, and dissect the phenotypic variation into additive genetic and residual 

variance structures.  

 

4.2. Results 
 

Analysis strategy 
A two-stage analysis strategy was followed: During the first stage of the analysis 

(Stage 1), we examine the multivariate genetic variance structure of expressive and 

receptive vocabulary from 15 to 38 months of age (Table 1). A structural equation model 

(SEM) only was fitted to vocabulary measures with at least nominal evidence for SNP-h2 

(P<0.05). During the second stage (Stage 2), we extend these models, and assess the 

emerging genetic links between early-life vocabulary (15 to 38 months) and reading, 

verbal intelligence quotient (VIQ) scores and performance (non-verbal) intelligence 

scores (PIQ) during mid-childhood (7 to 8 years of age, S1 Table). For all SEMs studied, 

we report path coefficients (the square root of individual factor variance contributions) 

and the corresponding percentage of explained phenotypic variance, in addition to total 

SNP-h2, genetic and residual correlations, factorial co-heritability (the proportion of total 

SNP-h2 explained by a specific genetic factor) and bivariate heritability (the contribution 

of genetic factors to the observed phenotypic correlation between two measures) (S3, 

S4, S5 Appendix). 
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Table 1. Early-life expressive and receptive vocabulary in ALSPAC 

Measure  
Psychological 
instrument 

Mean Score (SE) 
Mean Age 
(SE) 

N (%male) 
GCTA-SNP-h2 
(SE) 

Ex
p

re
ss

iv
e 

vo
ca

b
u

la
ry

 MacArthur CDIa 14.29(17.76) 1.28(0.08) 6,524(51.1) 0.11(0.05) 

MacArthur CDIb 64.21(35.11) 2.03(0.09) 6,014(51.7) 0.16(0.06) 

MacArthur CDIb 113.33(17.44) 3.21(0.10) 6,092(51.4) 0.18(0.06) 

R
ec

ep
ti

ve
 

vo
ca

b
u

la
ry

 MacArthur CDIa 75.85(31.78) 1.28(0.08) 6,524(51.1) 0.08(0.05) 

MacArthur CDIb 109.75(23.75) 3.21(0.10) 6,092(51.4) 0.12(0.06) 

Expressive vocabulary and receptive vocabulary were assessed between 15-38 months of age in independent 

children (genetic relationship<0.05). a Adapted form of the MacArthur CDI:Words & Gestures, consisting of 

134 words. b Adapted from of the MacArthur CDI:Words & Sentences, consisting of 123 words. Abbreviations: 

ALSPAC, Avon Longitudinal Study of Parents and Children; CDI, Communicative Development Inventory; GCTA, 

Genome-wide Complex Trait Analysis; h2, heritability; SNP, single-nucleotide polymorphism. 

 

Stage 1: The developmental genetic architecture of early-life vocabulary 

skills 
Univariate SNP-heritability estimates for early-life vocabulary measures: 

Measures of early-life language included expressive vocabulary at 15, 24 and 38 months 

and receptive vocabulary at 15 and 38 months (Table 1). They were assessed with 

parent-reported questionnaires and analysed as rank-transformed scores (see 

Methods). For comparison with multivariate models, we first estimated SNP-h2 using 

Genome-based Restricted Maximum Likelihood as implemented in Genome-wide 

Complex Trait Analysis (GCTA) software21. Common genetic variation accounted for a 

modest proportion of phenotypic variation in early-life vocabulary throughout, except 

for receptive vocabulary at 15 months, where SNP-h2 was consistent with zero (Table 1). 

GCTA-SNP-h2 estimates for expressive vocabulary at 15, 24 and 38 months were 

11%(SE=5%), 16%(SE=6%) and 18%(SE=6%), respectively. For receptive vocabulary at 15 

and 38 months, SNP-h2 was estimated at 8%(SE=5%) and 12%(SE=6%), respectively. 

Given little evidence for SNP-h2 for receptive vocabulary at 15 months (P>0.05; Table 1), 

we excluded this measure from further correlation and GSEM analyses to facilitate the 

convergence of the models. Note that it was not possible to include the receptive 

vocabulary score at 24 months due to discrepancies in the questionnaire coding scheme 

(see Methods). 

 

Bivariate phenotypic and genetic correlations among early-life vocabulary 

measures: Early-life vocabulary measures were phenotypically interrelated, although 

correlations decreased with increasing age windows (Fig 1a). The largest phenotypic 

correlation (rp) was estimated between expressive and receptive vocabulary at 38 
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months (rp=0.63). Bivariate genetic correlations (rg) among early-life vocabulary 

measures emerged from 24 months of age onwards (Figs 1b). Mirroring phenotypic 

relationships, the largest genetic correlation was observed between expressive and 

receptive vocabulary assessed at 38 months (GCTA-rg=0.86(SE=0.15), P=0.004).  

 

Multivariate genetic variance structures between early-life vocabulary measures: 

Using GSEM, we studied the multivariate genetic architecture underlying early 

vocabulary development, while allowing for both shared (i.e. across age and/or ability) 

and unique (i.e. age- and ability-specific) genetic influences. A multivariate SEM was 

fitted to expressive vocabulary at 15, 24 and 38 months as well as receptive vocabulary 

at 38 months (in this order), following a Cholesky decomposition. SNP-h2 estimates were 

nearly identical for all early-life vocabulary measures using univariate GCTA and 

multivariate GSEM approaches (Table S2). Estimated bivariate genetic correlations using 

GSEM were also highly consistent with GCTA findings (Figs 1b and 1c), with overlapping 

95%-confidence intervals (95%-CIs). GSEM-estimated residual correlations among 

vocabulary measures were modest to moderate (Fig 1d), suggesting further shared 

aetiological mechanisms not captured by common variation.  

Structural models of vocabulary measures assessed during the first three years of 

life revealed that the underlying genetic architecture is dynamic, with evidence for age-

specific genetic influences (Fig 2). The first genetic factor (A1) accounted for 

10.6%(SE=5.0%) of the phenotypic variation in expressive vocabulary at 15 months (Fig 

2, S3 Table), which can be estimated by squaring the corresponding estimated path 

coefficient, here a11 (path coefficient a11:0.33(SE=0.08), P=2x10-5). By structural model 

design, the phenotypic variance explained by a11 corresponds to the SNP-h2 of expressive 

vocabulary at 15 months (S2 and S3 Tables). Genetic factor A1 was also related to 

expressive vocabulary at 24 months (path coefficient a21:0.21(SE=0.10), P=0.04), 

explaining 4.6%(SE=4.4%) of the phenotypic variation and accounting for almost a third 

of the SNP-h2 (factorial co-heritability: 31.2%(SE=23.4%), S4 Table). However, there was 

little evidence for shared genetic influences between expressive vocabulary at 15 

months and either expressive or receptive vocabulary scores at 38 months (Fig 2, S3 

Table). This pattern of findings suggests that genetic influences underlying expressive 

vocabulary at 15 months play a decreasing role during the course of later vocabulary 

development, consistent with data from genetic correlation and bivariate heritability 

analyses (Figs 1b and 1c, S5 Table). 

Expressive vocabulary at 24 months loaded on a second genetic factor (A2), 

explaining an additional 10.1%(SE=4.0%) of the phenotypic variation (path-coefficient 

a22: 0.32(SE=0.06), P=4x10-7; Fig 2, S3 Table) and the majority of the SNP-h2 (factorial co-

heritability: 68.8%(SE=23.4%), S4 Table). This genetic factor was also shared with both 

expressive (path coefficient a32:0.27(SE=0.09), P=0.005) and receptive (path coefficient  
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a42:0.33(SE=0.08), P=4x10-5) vocabulary at 38 months, accounting for 7.1%(SE=5.0%) and 

11.0%(5.3%) of the phenotypic variation, respectively (Fig 2, S3 Table). For receptive 

vocabulary at 38 months, this genetic factor captured the majority of the SNP-h2 

(factorial co-heritability: 88.9%(SE=23.1%), Table S4), suggesting a largely shared genetic 

aetiology with expressive vocabulary at 24 months, as confirmed by their high genetic 

correlation (GSEM-rg=0.78(SE=0.19), Fig 1c). 

For receptive vocabulary at 38 months, this genetic factor captured the majority 

of the SNP-h2 (factorial co-heritability: 88.9%(SE=23.1%), Table S4), suggesting a largely 

shared genetic aetiology with expressive vocabulary at 24 months, as confirmed by their 

high genetic correlation (GSEM-rg=0.78(SE=0.19), Fig 1c). 

 

 

Fig 2. Structural model of early-life vocabulary scores (15 to 38 months). Genetic-relationship matrix structural 
equation modelling (GSEM) of early-life vocabulary scores (15, 24 and 38 months of age) based on all available 
observations for children across development (N≤6,524; Cholesky decomposition model). (a) Path diagram 
with standardised path coefficients and corresponding standard errors. Only paths with a path coefficient 
passing a P-value threshold of 0.05 are shown. Full information on path coefficients and their standard errors 
can be found in S3 Table. (b) Standardised variance explained by genetic and residual factors modelled in (a). 
* The proportion of phenotypic variance explained by genetic factor A4 in receptive vocabulary at 38 months 
is negligible. Abbreviations: CDI, Communicative Development Inventory; Exp, expressive; m, months of age; 
Rec, receptive; voc, vocabulary 

The third genetic factor (A3) was only related to expressive vocabulary at 38 

months (path coefficient a33:0.29(SE=0.08), P=0.001) and explained 8.2%(SE=4.9%) of 

the phenotypic variation (Fig 2, S3 Table), corresponding to nearly half of the SNP-h2 

(factorial co-heritability: 47.0%(SE=25.1%), S4 Table). This genetic factor was unrelated 

to receptive vocabulary at 38 months (path coefficient a43:0.12(SE=0.12), P=0.35). Thus, 

it is likely that the genetic correlation between expressive and receptive vocabulary at 
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38 months (GSEM-rg=0.82(SE=0.12, Fig 1c) is primarily driven by genetic variance shared 

with expressive vocabulary at 24 months.  

Finally, there was little support for the presence of a fourth genetic factor (A4) 

that would be exclusively related to receptive vocabulary at 38 months (Fig 2, S3 Table). 

However, according to findings from our previous work, such a factor is likely to account 

only for very little phenotypic variance in receptive vocabulary at 38 months15. 

Therefore, it may only become detectable once modelled together with other heritable 

traits sharing underlying genetic influences. 

 

Stage 2: Multivariate genetic variance structures between early-life 

vocabulary and mid-childhood reading, verbal and performance 

intelligence 

 

In a second step, we assessed the emergence of genetic links with mid-childhood 

reading accuracy/comprehension at 7 years, verbal intelligence quotient scores (VIQ) at 

8 years and performance intelligence quotient scores (PIQ) at 8 years (S1 Table) across 

the studied vocabulary measures during the first three years of life, using rank-

transformed measures. The selected measures of reading and verbal intelligence are 

representative of previously reported genetic association patterns between vocabulary 

at 38 months and a wide spectrum of language, literacy and cognitive abilities in 

ALSPAC15. We contrast these verbal abilities with a measure of non-verbal intelligence 

(PIQ) to evaluate differences in developmental association patterns with respect to 

early-life vocabulary. Thus, the model from the first step (Fig 2) was extended to include, 

in turn, each of the three mid-childhood skills, resulting in three further SEMs (with 

measures included in chronological order).  

At the phenotypic level, all early-life vocabulary measures showed low to modest 

correlations with both mid-childhood verbal and non-verbal skills (Fig 3a), with the 

largest phenotypic correlation between receptive vocabulary at 38 months and VIQ at 8 

years (rp=0.26). The selected mid-childhood skills, reading, VIQ and PIQ, were all 

moderately heritable, with GCTA-SNP-h2 estimates of 42%(SE=6%), 54%(SE=7%) and 

26%(SE=7%), respectively. These estimates largely corresponded to GSEM-SNP-h2 

estimates (S2 Table). Using GCTA, bivariate genetic correlations of mid-childhood skills 

with early-life vocabulary measures (Fig 3b) revealed moderate genetic correlations of 

VIQ with expressive vocabulary at 24 (GCTA-rg=0.41(SE=0.14),P=0.003) and 38 months 

(GCTA-rg=0.38(SE=0.14),P=0.003), but high genetic correlations of both verbal and non-

verbal skills with receptive vocabulary at 38 months (reading GCTA-rg=0.83(SE=0.25), 

P=9x10-6; VIQ GCTA-rg=0.95(SE=0.23), P=1x10-8; PIQ GCTA-rg=0.68(SE=0.28), P=0.004). 

GCTA and GSEM genetic correlation estimates were highly consistent, with overlapping 
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95%-CIs (Figs 3b and 3c). GSEM-estimated residual correlations between early-life and 

mid-childhood measures were low (Fig 3d). 

Using multivariate structural models, our results showed, first, that there is little 

evidence for genetic links between expressive vocabulary at 15 months (A1) and 

vocabulary, reading or cognition abilities after the age of 24 months (Fig 4, S6, S7, S8 

Tables). Second, the developmentally novel genetic factor emerging for expressive 

vocabulary at 24 months (A2), explained further genetic variance in receptive and 

expressive vocabulary at 38 months (as outlined above) and, importantly, mid-childhood 

verbal skills. Specifically, it was related to both reading accuracy/comprehension (path 

coefficient a52:0.25(SE=0.12), P=0.04) and VIQ (path coefficient a52=0.42(SE=0.13), 

P=0.001), and accounted for 6.4%(6.2%) and 17.9%(11.1%) of their phenotypic variation, 

respectively (Fig 4, S6 and S7 Tables). However, this genetic factor was not linked to PIQ 

at 8 years (path coefficient a52:-0.03(SE=0.12), P=0.78)(Fig 4e and 4f, S8 Table). These 

findings may reflect some genetic specificity for verbal skills (reading and VIQ), compared 

to non-verbal cognition, though the 95%-CIs for the identified path coefficients overlap 

(path coefficients a52-reading accuracy/comprehension: 95%-CI=0.01-0.49, a52-VIQ: 

95%-CI=0.17-0.68, a52-PIQ: 95%-CI=-0.26-0.20, derived assuming normality). Third, 

genetic influences identified for expressive vocabulary at 38 months (A3) were unrelated 

to receptive vocabulary assessed at the same age (as outlined above) and later mid-

childhood abilities (Fig 4, S6, S7, S8 Tables). Thus, the genetic correlation observed 

between expressive vocabulary at 38 months and mid-childhood VIQ (GSEM-

rg=0.35(SE=0.13), Fig 3c) is primarily driven by genetic variance shared with expressive 

vocabulary at 24 months. 

Fourth, joint modelling of early-life vocabulary measures with mid-childhood 

abilities enabled the identification of a genetic factor that affects receptive vocabulary 

at 38 months (A4) and that is independent of early-life expressive vocabulary genetic 

factors (path coefficient a44:0.15(SE=0.07), P=0.04, Fig 4c). Although this genetic factor 

accounted for only a tiny proportion of the phenotypic variation in receptive vocabulary 

at 38 months 2.1%(SE=1.9%)), it explained 33.0%(SE=8.2%), 36.1%(SE=11.5%) and 

24.7%(SE=7.5%) of the phenotypic variation in reading accuracy/comprehension, VIQ 

and PIQ, respectively (path coefficients a54-reading 

accuracy/comprehension:0.57(SE=0.07), P<1x10-10; a54-VIQ: 0.60(0.10), P=3x10-10; a54-

PIQ: 0.50(0.08), P<1x10-10). The genetic variance explained by genetic factor A4 

corresponds to the majority of the estimated SNP-h2 for mid-childhood abilities, as 

indicated by factorial co-heritabilities (reading: 82.3%(SE=16.1%), VIQ: 

66.4%(SE=19.9%), PIQ: 91.8%(SE=15.1%), S9 Table). Finally, there was little evidence for 

novel genetic factors emerging during mid-childhood (A5, Fig 4), consistent with 

previous findings15. Thus, the fitted multivariate models for early-life vocabulary and 

mid-childhood skills were consistent with both the identified multivariate genetic  
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architecture of early-life vocabulary (Fig 2) and the previously reported amplification of 

genetic factors for vocabulary at 38 months15.  

The phenotypic covariance of mid-childhood reading, VIQ and PIQ with receptive 

vocabulary at 38 months (Fig 3a) was primarily due to genetic covariance, with bivariate 

heritability estimates of 0.87(SE=0.21), 0.88(SE=0.16) and 0.68(SE=0.27), respectively 

(S10 Table). This is consistent with little evidence for residual correlation between 

receptive vocabulary at 38 months and mid-childhood measures (Fig 3d). For verbal mid-

childhood skills, such as VIQ, evidence for bivariate heritability with early-life expressive 

vocabulary was already detectable at 24 months of age (bivariate heritability: 

0.54(SE=0.19)), as well as at 38 months of age (bivariate heritability: 0.60(SE=0.24)).  
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Fig 4. Structural models of early-life vocabulary and mid-childhood reading and cognition. Genetic-relationship 

matrix structural equation modelling (GSEM) of early-life vocabulary scores (15, 24 and 38 months of age) in 

combination with mid-childhood (a,b) reading accuracy/comprehension at 7 years, (c,d) VIQ scores at 8 years 

or (e,f) PIQ scores at 8 years, based on all available observations for children across development (N≤6,524). 

(a,c,e) Path diagrams with standardised path coefficients and corresponding standard errors including mid-

childhood (a) reading accuracy/comprehension, (c) VIQ and (e) PIQ outcomes. Only paths with a path 

coefficient passing a P-value threshold of 0.05 are shown. Full information on all path coefficients and their 

standard errors can be found in S6, S7, S8 Tables. (b,d,f) Standardised variance explained by genetic and 

residual factors as modelled in a,c,e for models including (b) reading accuracy/comprehension, (d) VIQ, and (f) 

PIQ. * The proportion of phenotypic variance explained by genetic factor A5 is negligible. Abbreviations: a, 

accuracy; c, comprehension; CDI, Communicative Development Inventory; Exp, expressive; m, months of age; 

Rec, receptive; PIQ, performance intelligence quotient; VIQ, verbal intelligence quotient; voc, vocabulary; 

WISC-III, Wechsler Intelligence Scale for Children III; WORD, Wechsler Objective Reading Dimension 
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4.3. Discussion 
 

This genome-wide longitudinal analysis of vocabulary size during the first three 

years of life assessed in unrelated children demonstrates that the genetic architecture 

underlying expressive and receptive vocabulary is dynamic, with evidence for both age- 

and ability-specific genetic influences. Genetic continuity was found for two 

independent early-life genetic factors, which contribute to the genetic variance of 

reading and cognitive skills in mid-childhood. One stable early-life genetic source of 

variation was related to expressive vocabulary and emerged at 24 months of age, 

accounting for between 6.4% and 17.9% of the phenotypic variation in mid-childhood 

abilities, especially verbal skills such as reading and VIQ. A second, independent and 

stable early-life genetic factor was identified for receptive vocabulary at 38 months and 

explained between 24.7% and 36.1% of the phenotypic variance in both mid-childhood 

verbal and non-verbal cognitive abilities, including PIQ, corresponding to the majority of 

SNP-h2 (≥66%). Given the modest SNP-h2 of early-life vocabulary scores, ranging from 

11% to 18%, this suggests not only genetic stability, but also an amplification of early 

genetic variance during the life-course that contributes to the markedly increased SNP-

h2 of later-life reading and cognition (27% to 54%). 

The identification of multiple independent genetic factors related to vocabulary 

during the first three years of life may reflect rapid changes in mastering behavioral and 

language skills. Genetic influences identified for expressive vocabulary at 15 months (A1) 

were also related to expressive vocabulary at 24 months, but were not linked to 

vocabulary, reading or cognition measures beyond this age. Thus, these early genetic 

influences might primarily affect the very first stages of language development that, 

once achieved, have little impact on subsequent verbal and cognitive development. A 

plausible candidate process for this is the acquisition of phonological skills to identify 

phonemes and sequences from speech and their storage for future production23. 

The stable independent genetic factor emerging for expressive vocabulary at 24 

months (A2) contributes to the genetic architectures underlying verbal processes 

throughout childhood, in contrast to genetic factor A1. Specifically, the genetic 

influences captured by A2 were related to both expressive and receptive vocabulary at 

38 months, as well as mid-childhood verbal abilities such as reading and VIQ, but not PIQ 

(although 95%-CIs of estimated genetic path coefficients overlap with those for PIQ). 

This genetic factor may reflect stages of language learning that take place after the 

production of words in isolation at the age of 10 to 15 months3. This includes, for 

example, an increasing vocabulary size as well as the use of more complex grammatical 

structures, marked by the emergence of two-word combinations around the age of 18 

to 24 months1,24. It has been shown that lexical and grammatical development share 

underlying acquisition mechanisms25 and measures of expressive vocabulary and 
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grammatical development at two and three years of age are both phenotypically and 

genetically correlated11.  

Expressive vocabulary at 38 months loaded on an additional independent genetic 

factor (A3) that was not related to receptive vocabulary at the same age, nor to any of 

the studied mid-childhood reading and IQ measures. This genetic factor may, thus, 

involve genetic associations with processes that affect expressive vocabulary at an early 

age, but do not play a role in later cognition. They may, for example, reflect social 

abilities, which are known to impact on vocabulary development and vice versa26. Note 

that expressive vocabulary at 38 months is nonetheless genetically related to mid-

childhood verbal processes due to shared genetic influences that were already 

detectable at 24 months (A2). 

The majority of SNP-h2 for mid-childhood reading, VIQ and also PIQ was 

accounted for by a genetic factor that emerged at 38 months of age for receptive 

vocabulary (A4), consistent with previous findings15. Although this stable genetic factor 

explained only a very small part of the phenotypic variance in receptive vocabulary 

(2.1%), it accounted from 66% to 92% of the phenotypic variation in later reading 

performance, verbal and non-verbal cognition, with very little residual contributions. 

Due to the wide spectrum of associated mid-childhood phenotypes that are linked with 

this genetic factor, including both later verbal and non-verbal cognitive abilities, it is 

possible that the genetically encoded biological processes are important for cognitive 

development in general. It merits noting that the genetic factor A4 was only detectable 

once modelled together with a mid-childhood skill sharing underlying genetic variance, 

probably due to the low proportion of phenotypic variation that it explained in early-life 

receptive vocabulary.  

Previous twin studies demonstrating genetic links between language use in early 

childhood and later language/literacy skills have been based on a latent factor approach 

jointly capturing genetic variance of expressive language skills between the ages of 2 and 

4 years16,17. Here, we used a sample of unrelated children with genome-wide genotyping 

data and distinguish language measures during the first three years of life based on both 

modality and age at assessment. We extend and refine the previous twin findings by 

showing that (i) early-life expressive vocabulary at 15 months of age is influenced by a 

genetic factor that is only shared across expressive vocabulary scores during infancy, and 

(ii) that there are at least two independent genetic factors during early life that are 

associated with mid-childhood reading and cognition. Genetic associations with mid-

childhood verbal cognitive processes arise as early as 24 months of age, whereas genetic 

influences that are relevant for mid-childhood general cognitive development emerge 

as early as 38 months of age for receptive vocabulary, and are independent of expressive 

vocabulary. This latter distinction is important as receptive vocabulary at 38 months also 

shares a genetic factor with expressive vocabulary at 24 months and subsequent reading 

and verbal intelligence. The diversity in genetic factors may implicate differences in 
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overarching cognitive processes that are already detectable during toddlerhood. This is 

important as genetic influences associated with early-life vocabulary could fully account 

for the SNP-h2 of mid-childhood reading, verbal and non-verbal intelligence. The 

presence of such genetic stability implicating verbal processes and general cognition 

from toddlerhood to, at least, mid-childhood may, furthermore, suggests shared 

biological underpinnings. Thus, joint genome-wide association study analyses across 

developmental stages may facilitate an increase in study power.  

In addition to the strengths of this study described above, this study benefits from 

modelling multivariate genetic variance structures in unrelated individuals directly, 

based on genome-wide information, using novel structural equation modelling 

techniques. It is, however, not possible to infer biological mechanisms underlying the 

identified genetic factor structures with the current methodology. We furthermore 

exploit the phenotypic richness of the ALSPAC cohort, including longitudinally assessed 

vocabulary measures during early development as well as reading and cognitive 

outcomes in mid-childhood. This study has also several limitations. Given the rapidly 

changing nature of early vocabulary size, increasingly larger and complex word lists are 

required to reliably assess vocabulary size at 24 and 38 months compared to 15 months 

of age. Thus, the observed differences in genetic factor structures during early life may 

reflect differences in CDI instruments, although this is unlikely to fully explain our 

findings, given substantial phenotypic correlations between expressive vocabulary 

scores at 15 and 24 months of age (rp=0.53). Furthermore, vocabulary assessments at 38 

months of age might be affected by ceiling effects, as the MacArthur CDI:Words & 

Sentences was developed for children up to 30 months5. This may have reduced 

phenotypic variation and, thus, power to detect genetic variance components at 38 

months. In addition, it has recently been shown that heritability and genetic relationships 

estimated in samples of unrelated individuals, especially for cognition-related traits27,28, 

might be inflated by indirect genetic effects, reflecting a type of gene-environment 

correlation29. The observed association patterns between early-life vocabulary and mid-

childhood reading and cognitive skills may therefore represent both shared genetic 

variance and indirect genetic effects. Future research using family-based data is 

warranted to assess the impact of indirect genetic effects on the reported association 

patterns. Finally, the sparcity of large data sets with longitudinal information on 

expressive and receptive vocabulary during infancy and toddlerhood, in addition to 

genome-wide data, currently prevents a direct replication of our findings in independent 

cohorts. 

Taken together, our findings reveal a dynamic genetic landscape underlying 

vocabulary during the first three years of life. We found evidence for genetic continuity 

of two independent early-life genetic factors that contribute to both verbal and general 

cognitive abilities in mid-childhood and manifest at different developmental stages 

during early-life language development. Thus, the genetic foundations for both mid- 
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childhood reading and cognition lie in toddlerhood, but are diverse, and may implicate 

aetiological differences in overarching cognitive processes that are detectable long 

before the age of schooling. 

 

4.4. Methods 
 

Sample description and trait selection 
Cohort information: Participants were born in 1991 or 1992 and included in 

ALSPAC, a UK population-based birth cohort (S1 Appendix)18,19. Ethical approval was 

provided by the ALSPAC Ethics and Law Committee and the Local Research Ethics 

Committees. Informed consent for questionnaire and clinical data was obtained from 

participants following recommendations of the ALSPAC Ethics and Law Committee at the 

time. Consent for biological samples was collected in accordance with the Human Tissue 

Act (2004).  

Genetic analyses: Genotyping and genotype calling was performed using the 

Illumina HumanHap550 quad chip and Illumina GenomeStudio software. Quality control 

of genetic data was applied using PLINK (v1.07)30 at both the SNP and individual level 

following standard procedures. Individuals were excluded in case of gender mismatch 

between reported and genetic sex information, >3% missing SNP information, non-

European ancestry, or interindividual relatedness (genomic relatedness>0.05). SNPs 

were excluded if they had a low call rate (<99%), were rare (<1%) and/or deviated from 

Hardy-Weinberg equilibrium (P<5x10-7). After quality control, 7,924 children and 

465,740 SNPs with high-quality genetic data remained.  

Early-life vocabulary measures: Expressive and receptive vocabulary was assessed 

at 15, 24 and 38 months of age using parental-reports (predominantly mother) of age-

specific defined word lists adapted from the MacArthur Communicative Development 

Inventory (CDI). At 15 months, expressive and receptive vocabulary were assessed with 

an abbreviated version of the MacArthur CDI:Words & Gestures (133 words, 8 to 16 

months of age)31. Scores were recorded as the number of words a child could “say and 

understand” (expressive vocabulary), and “understand” plus “say and understand” 

(receptive vocabulary), respectively. At 24 and 38 months of age, an abbreviated 

vocabulary list from the MacArthur CDI:Words & Sentences (123 words, 16-30 months 

of age)5 was used. At both ages, expressive vocabulary was ascertained as the total 

number of words a child could “say” plus “say and understand”. Receptive vocabulary at 

38 months was measured as the total number of words a child could “understand” plus 

“say and understand”. The receptive vocabulary score at 24 months was excluded due 

to discrepancies in the applied coding scheme (reflecting the total number of words a 

child could “understand” only, excluding words a child could “say and understand”), and 

recoded scores have not yet been released by ALSPAC.  

4 



Multivariate genetic analyses of early-life vocabulary skills 

 

112 

CDI expressive vocabulary scores have high reliability and validity, showing 

correlations with direct assessments of over 0.7032,33. Receptive vocabulary assessed 

using parental report correlated 0.55 with direct assessment33. In total, N≤6,524 children 

(Table 1) had vocabulary scores and genome-wide genetic data available for analyses.  

Mid-childhood measures: For the selection of mid-childhood measures, we build 

on our previous work identifying genetic links between vocabulary at 38 months and 

thirteen mid-childhood/adolescent literacy and cognitive measures15. As it is not 

possible, due to computational constrains, to study longitudinal genetic architectures of 

early-life vocabulary measures in combination with a wide spectrum of mid-childhood 

language, literacy and cognitive abilities, we selected three mid-childhood measures that 

are representative of previously observed developmental association patterns15 

(N≤5,296; S1 Table). The studied mid-childhood measures included reading 

accuracy/comprehension at 7 years, assessed using the Wechsler Objective Reading 

Dimensions (WORD)34, as well as both VIQ and PIQ assessed at 8 years using the 

Wechsler Intelligence Scale for Children (WISC-III)35. Detailed descriptions, including 

validity and reliability, of each measure are available in the Supporting Information (S2 

Appendix).  

Phenotype transformation: All early-life vocabulary and mid-childhood measures 

were adjusted for sex, age (except for VIQ and PIQ as they were derived using age-

specific norms), and the first two principal components (adjusting for subtle differences 

in ancestry36), and subsequently rank-transformed. In addition, early-life vocabulary 

measures were adjusted for age squared, as vocabulary develops rapidly during early 

childhood37. Phenotypic correlations between early-life vocabulary measures were 

estimated using untransformed (Spearman rank-correlation) and rank-transformed 

(Pearson correlation) scores respectively, and patterns were largely unaffected by trait 

transformation (S1 Fig). Phenotypic correlations between early-life vocabulary and mid-

childhood reading, VIQ and PIQ measures were estimated using rank-transformed 

(Pearson correlation) scores only. 

 

Genome-wide Complex Trait Analysis 
Total SNP-h2 was estimated using Genome-based restricted maximum likelihood 

(GREML) analyses38,39, as implemented in GCTA software21, based on a GRM including 

directly genotyped SNPs only (GCTA-SNP-h2). Measures with little evidence for GCTA-

SNP-h2 (P>0.05) were excluded from further analyses.  

Bivariate GREML39 was applied to estimate bivariate genetic correlations among 

early-life vocabulary measures and between early-life vocabulary and mid-childhood 

reading, VIQ and PIQ measures.  
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Multivariate genetic analyses 
To study the genetic architecture of vocabulary in a developmental context, we 

used Genetic-relationship-matrix Structural Equation Models (GSEMs)20. This is a 

multivariate structural equation modelling technique, which combines multivariate 

analysis methodologies established in twin research40,41 with estimates of genetic 

relationships between unrelated individuals, as captured by genome-wide genetic 

markers20 (S3 Appendix). Specifically, GSEMs dissect the phenotypic covariance structure 

into one or more additive genetic factors (A), capturing genetic variance tagged by 

common genotyped SNPs, as well as one or more residual factors (E) that resemble the 

residual variance, containing both untagged genetic variation and unique environmental 

influences (including measurement error). Here, multivariate GSEMs were fitted to the 

data through a Cholesky decomposition model, with the phenotypic variance 

decomposed into as many latent genetic and residuals factors as there are observed 

variables, without any restrictions on the structure42 (S3 Appendix). Structural models 

were based on all available observations across individuals and thus allow for missing 

data (saturated model; R:gsem library, version 0.1.5). Genetic relationships between 

individuals were assessed with GRMs, including directly genotyped SNPs only, as 

implemented in GCTA software21. 
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Supplementary Materials 
 

Supporting Methods 
 
S1 Appendix. ALSPAC description 

Pregnant women resident in Avon, UK with expected dates of delivery 1st April 

1991 to 31st December 1992 were invited to take part in the study. The initial number of 

pregnancies enrolled is 14,541 (for these at least one questionnaire has been returned 

or a “Children in Focus” clinic had been attended by 19/07/99). Of these initial 

pregnancies, there was a total of 14,676 foetuses, resulting in 14,062 live births and 

13,988 children who were alive at one year of age.  

When the oldest children were approximately seven years of age, an attempt was 

made to bolster the initial sample with eligible cases who had failed to join the study 

originally. As a result, when considering variables collected from the age of seven 

onwards (and potentially abstracted from obstetric notes) there are data available for 

more than the 14,541 pregnancies mentioned above. The number of new pregnancies 

not in the initial sample (known as Phase I enrolment) that are currently represented on 

the built files and reflecting enrolment status at the age of 24 is 913 (456, 262 and 195 

recruited during Phases II, III and IV respectively), resulting in an additional 913 children 

being enrolled. The phases of enrolment are described in more detail in the cohort 

profile paper and its update1,2. The total sample size for analyses using any data collected 

after the age of seven is therefore 14,545 pregnancies, resulting in 15,589 foetuses. Of 

these 14,901 were alive at one year of age. 

A 10% sample of the ALSPAC cohort, known as the Children in Focus (CiF) group, 

attended clinics at the University of Bristol at various time intervals between 4 to 61 

months of age. The CiF group were chosen at random from the last six months of ALSPAC 

births (1,432 families attended at least one clinic). Excluded were those mothers who 

had moved out of the area or were lost to follow-up, and those partaking in another 

study of infant development in Avon. 

Details of all available data is fully searchable through a data dictionary on the 

study website (http://www.bris.ac.uk/alspac/researchers/data-access/data-

dictionary/). 
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S2 Appendix. Mid-childhood ALSPAC measures 

 

Reading accuracy and comprehension age 7 (WORD) 

Decoding and word reading were assessed using the basic reading subtest of the 

Wechsler Objective Reading Dimensions (WORD)3, including both pictures and words. 

This test has reliability and internal consistency coefficients ≥0.9. Its validity is also high, 

with an inter-correlation of 0.82 with the word-reading test from the Differential Ability 

Scale4. In short, the child was shown a series of four pictures, and each picture had four 

short words underneath it. For each picture, the child was asked to point to the word 

underneath that had the same beginning or ending sound as the picture. This was 

followed by a series of three pictures that all had four words beneath them starting with 

the same letter as the picture. This time the child was asked to point to the word that 

correctly named the picture. Finally, the child was presented with a series of 48 

unconnected words, which increased in difficulty, and asked to read them aloud. The 

task was stopped if the child made six consecutive errors. A reading accuracy and 

comprehension score, that had a maximum score of 50, was computed as the sum of 

the number of items the child read/responded to correctly.  

 

Verbal intelligence age 8 (WISC-III) 

To assess verbal intelligence the child was assessed using a short form of the 

Wechsler Intelligence Scale for Children (WISC-III)5. The WISC-III comprises ten subtests 

and alternate items were administered for all subtests, but the coding subtest. The 

information, similarities, arithmetic, vocabulary, and comprehension subtests were used 

to create a score indicating verbal intelligence. The WISC-III verbal intelligence score has 

high test-retest correlations, ranging between 0.90 and 0.94, dependent on the age at 

assessment and the duration of the test-retest interval6. Correlations with the Kaufman 

Brief Intelligence Test and the Stanford-Binet IV suggest good construct validity, with 

estimates of 0.79 and 0.69 respectively6. After the calculation of raw scores based on the 

items used in the alternate item form of the WISC-III, total age-scaled scores for the 

verbal scale were calculated according to the look-up tables in the WISC-III manual. The 

maximum VIQ score is 160 and all scores were pro-rated.  

 

Performance intelligence age 8 (WISC-III) 

Performance intelligence was assessed using a short form of the Wechsler 

Intelligence Scale for Children (WISC-III)5, including alternate items for all subtests, with 

the exception of the coding subtest. The five performance subtests of the WISC-III were 

used to create a score indicating performance intelligence: picture completion, coding, 

picture arrangement, block design and object assembly. The WISC-III performance 

intelligence quotient (PIQ) score has a correlation of 0.59 with the non-verbal score 

measured using the Otis-Lennon School Ability Test was 0.597. It has high reliability, with 

4 



Supplementary Materials 

 

119 

test-retest correlations of 0.898. Raw PIQ scores were calculated based on the items used 

in the alternate item form of the WISC-III and had a maximum PIQ score of 160. Next, 

total age-scaled scores for the performance scale were calculated according to the look-

up tables in the WISC-III manual. All scores were pro-rated.  

 

S3 Appendix. Genetic-relatedness-matrix Structural equation modelling 

A Cholesky decomposition9 describes a multivariate trait P with phenotypic 

measurements t, resulting in a range of measures (P1,P2,...,Pt). The first measure (P1) can 

be influenced by a latent genetic factor (A1) that may also explain variance in the 

remaining measures (P2,...,Pt). The second measure (P2) can also be influenced by a 

second latent genetic factor (A2) that is independent of A1 and captures additional 

variation. As the first latent genetic factor, the second latent genetic factor may also 

capture variance in all other measures (P3,...,Pt). The final measure (Pt) can thus be 

influenced by latent genetic factors (A1,...,At-1), but also a latent genetic factor At. This 

latter genetic factor (At) is independent of previous latent genetic factors (A1,...,At-1) and 

does not explain variance within any of the previous measures (P1,...,Pt-1)10.  

Based on the factor model, the expected phenotypic covariance matrix Σ  for Z-

standardised traits is: 

(1) 

 

with a lower triangular matrix of genetic factor loadings Λ , a diagonal matrix of latent 

genetic factor variances Φ  (standardised to unit variance), a lower triangular matrix of 

residual factor loadings Γ and a diagonal matrix of latent residual factor variances Θ . 

Both Φ  and Θwere standardised to unit variance, such that they represent an identity 

matrix I 11.  

For example, for a Cholesky decomposition of three measures (P1, P2 and P3), 

assuming three latent genetic factors (A1, A2 and A3) and three residual factors (E1, E2 

and E3) this translates into the following expected phenotypic covariance matrix:  
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with genetic factor loadings a and residual factor loadings e.  

Factor loadings, also known as path coefficients, were annotated with a or e 

followed by two numbers to indicate the specific path. In this notation, the first number 

indicates the direction of effect (the measure to which the path goes) and the second 

number indicates the origin of the effect10. For example, a21 indicates the genetic factor 

loading for the path originating from A1 and affecting P2.  

A Cholesky decomposition of three standardised measures (see above), can be 

visualised using a path diagram (S2 Fig). The expected phenotypic variances and 

covariances can be expressed as follows:  

12
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The variance of the latent genetic and residual factors has been standardised to unit 

variance and is not shown.  

Bivariate genetic correlation estimates (ranging from -1 to 1) reflect the extent to 

which two measures share genetic factors and can be derived using estimated genetic 

variances and covariances12 according to:  

2
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1

12
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     (10) 

with genetic covariance 
12g between measures P1 and P2, and the genetic variances 

2

1g  and 
2

2g . 

 

S4 Appendix. Factorial co-heritability 

Factorial co-heritability was estimated to quantify the relative contribution of a 

genetic factor to the total genetic variance of a phenotype, using the gsem package 

(R:gsem library, version 0.1.5). We derived the factorial co-heritability (fg
2) according to: 

    (11) 

with the genetic variance of genetic factor i contributing to trait t σ2
g_it and the total 

genetic variance of trait t σ2
g_t. Estimates were derived using standardised path 
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coefficients, corresponding standard errors (SEs) using the Delta method, and P-values 

approximated with a Wald test.  

 

S5 Appendix. Bivariate heritability 

The proportion of phenotypic covariance between two traits that is accounted 

for by the genetic covariance was expressed as bivariate heritability13, as incorporated 

in the gsem package (R:gsem library, version 0.1.5). It was estimated based on 

unstandardised path coefficients and the phenotypic covariance estimated for rank-

transformed measures. Corresponding SEs were approximated by dividing the SE of the 

genetic covariance by the phenotypic covariance, based on the assumption that the SE 

of the phenotypic covariance is small. P-values were calculated using a Wald-test 

assuming normality.  

 

S6 Appendix. Websites  

GCTA: https://cnsgenomics.com/software/gcta/ 

GSEM: https://gitlab.gwdg.de/beate.stpourcain/gsem 
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Supporting Tables 
 
S1 Table. Mid-childhood measures in ALSPAC 

Measure 
Psychological 
instrument 

Mean Score (SE) Mean Age (SE) N (%males) 

Reading accuracy 
and comprehension 

WORD 28.52 (9.25) 7.53 (0.31) 5,723 (50.9) 

Verbal intelligencea WISC-III 108.04 (16.74) 8.64 (0.31) 5,305 (49.9) 

Performance 
intelligencea 

WISC-III 100.24(16.95) 8.64(0.31) 5,296 (49.9) 

To compare findings between verbal and non-verbal cognitive processes, mid-childhood performance 
intelligence was also studied. Skills were assessed using standardised instruments and studied in independent 
ALSPAC participants only (genetic relatedness<0.05). a. Scores were derived using age norms and adjusted for 
sex and principal components only before transformation (see Methods). Representative of previous findings14 
reading skills and verbal intelligence during mid-childhood (7-8 year) were selected from ALSPAC. 
Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; WISC-III, Wechsler Intelligence Scale 
for Children III; WORD, Wechsler Objective Reading Dimension 

 
S2 Table. SNP heritability estimates 

Measure N GCTA-h2(SE) GSEM-h2(SE) 

Expressive vocabulary 15m (CDI) 6,524 0.11(0.05) 0.11(0.05)b 

Receptive vocabulary 15m (CDI)a 6,524 0.08(0.05) NA 

Expressive vocabulary 24m (CDI) 6,014 0.16(0.06) 0.15(0.06)b 

Expressive vocabulary 38m (CDI) 6,092 0.18(0.06) 0.18(0.06)b 

Receptive vocabulary 38m (CDI) 6,092 0.12(0.06) 0.12(0.05)b 

Reading a/c 7 (WORD) 5,723 0.42(0.06) 0.41(0.06) 

VIQ 8 (WISC-III) 5,305 0.54(0.07) 0.54(0.06) 

PIQ 8 (WISC-III) 5,296 0.26(0.07) 0.27(0.06) 

SNP-heritability estimates were estimated based on rank-transformed scores, directly genotyped SNPs and 
individuals with a genetic relationship of <0.05 using Restricted Maximum Likelihood (REML) analyses as 
implemented in genome-wide complex trait analysis (GCTA) software. SNP-heritability estimates based on 
Genetic-relationship-matrix Structural Equation modelling (GSEM) were extracted for comparison. a. Due to 
limited evidence (P>0.05) for SNP-h2 of receptive vocabulary assessed at 15 months using GCTA, this trait was 
excluded from further analyses. b. GSEM-h2 estimates as observed in the GSEM model with reading 
accuracy/comprehension at 7 years. Abbreviations: a, accuracy; c, comprehension; CDI, Communicative 
Development Inventory; GCTA, genome-wide complex trait analysis; GSEM, Genetic-relationship-matrix 
Structural Equation modelling; h2, heritability; PIQ, verbal intelligence quotient; VIQ, verbal intelligence 
quotient; WISC-III, Wechsler Intelligence Scale for Children III; WORD, Wechsler Objective Reading Dimension 

  

4 



Supplementary Materials 

 

123 

S3 Table. Standardised path coefficients and variance explained for early-life vocabulary measures 

Path 
Standardised path coefficient Standardised variance explained (%) 

Estimate (SE) P Estimate (SE) 

a11 0.33(0.08) 2x10-5 10.6(5.0) 

a21 0.21(0.10) 0.04 4.6(4.4) 

a31 0.15(0.11) 0.18 2.2(3.3) 

a41 -3x10-3(0.11) 0.98 7x10-4(0.1) 

a22 0.32(0.06) 4x10-7 10.1(4.0) 

a32 0.27(0.09) 0.005 7.1(5.0) 

a42 0.33(0.08) 4x10-5 11.0(5.3) 

a33 0.29(0.08) 0.001 8.2(4.9) 

a43 0.12(0.12) 0.35 1.4(2.9) 

a44 1x10-4(0.24) 1.00 1x10-6(0.005) 

e11 0.95(0.03) <1x10-10 89.4(5.0) 

e21 0.49(0.04) <1x10-10 24.4(3.7) 

e31 0.22(0.04) 6x10-8 4.8(1.8) 

e41 0.23(0.04) 3x10-9 5.2(1.8) 

e22 -0.78(0.03) <1x10-10 60.9(4.0) 

e32 -0.33(0.04) <1x10-10 10.6(2.7) 

e34 -0.22(0.04) 3x10-8 4.9(1.8) 

e33 0.82(0.03) <1x10-10 67.0(4.4) 

e43 0.47(0.04) <1x10-10 22.3(3.3) 

e44 0.74(0.02) <1x10-10 55.3(2.9) 

Genetic-relationship matrix structural equation modelling (GSEM) of early-life vocabulary scores (15, 24 and 

38 months of age) based on all available observations for children across development (N≤6,524;  Cholesky 

decomposition model). A visual representation is provided in Fig 2. 

 

S4 Table. Factorial co-heritability for early-life vocabulary measures 

Path 
Factorial co-heritability (%) 

Estimate (SE) P 

a11 100.0 (0.0) <1x10-10 

a21 31.2 (23.4) 0.18 

a31 12.7 (18.1) 0.48 

a41 0.005 (0.5) 0.99 

a22 68.8 (23.4) 0.003 

a32 40.3 (25.6) 0.12 

a42 88.9 (23.1) 1x10-4 

a33 47.0 (25.1) 0.06 

a43 11.1 (23.0) 0.63 

a44 8x10-6(0.04) 1.00 

Factorial co-heritability reflects the proportion of total SNP-h2 estimated for a trait explained by a specific 
genetic factor. SEs were derived using the Delta method and P-values based on a Wald-test assuming normality 
(Supporting Methods). For example, the factorial co-heritability of a42 was estimated as a42*a42 / (a41*a41 + 

a42*a42 + a43*a43 + a44*a44) and implies that genetic factor A2 explains 88.9%(SE=23.1%) of the total SNP-h2 
estimated for receptive vocabulary at 38 months (see Fig 2).  
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S5 Table. Bivariate heritability for early-life vocabulary measures 
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Expressive voc 15m (CDI)   

Expressive voc 24m (CDI) 
0.13 

(0.08) 
 

Expressive voc 38m (CDI) 
0.20 

(0.16) 
0.25* 
(0.09) 

 

Receptive voc 38m (CDI) 
-0.004 
(0.17) 

0.28* 
(0.11) 

0.19* 
(0.07) 

 

Bivariate heritability reflects the proportion of the phenotypic covariance between two traits that is accounted 

for by the genetic covariance. Standard errors (SEs) are shown in brackets and were approximated by the SE 

of the genetic covariance divided by the phenotypic covariance (as the SE of the phenotypic covariance is 

small). P-values are based on a Wald-test, assuming normality. * Bivariate heritability estimates passing a 

significance threshold of P<0.05. Abbreviations: CDI, communicative development inventory; m, months; voc, 

vocabulary 
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S6 Table. Standardised path coefficients and variance explained for early-life vocabulary and mid-childhood 

reading accuracy/comprehension 

Path 
Standardised path coefficient 

Standardised variance explained 
(%) 

Estimate (SE) P Estimate (SE) 

a11 0.33(0.08) 3x10-5 10.6(5.1) 

a21 0.22(0.10) 0.04 4.7(4.5) 

a31 0.15(0.11) 0.19 2.1(3.3) 

a41 0.01(0.11) 0.93 0.01(0.2) 

a51 -0.08(0.12) 0.50 0.7(2.1) 

a22 0.32(0.06) 1x10-6 10.0(4.1) 

a32 0.26(0.10) 0.01 7.0(5.1) 

a42 0.30(0.09) 3x10-4 9.3(5.2) 

a52 0.25(0.12) 0.04 6.4(6.2) 

a33 0.29(0.09) 0.001 8.1(4.9) 

a43 0.13(0.11) 0.24 1.7(3.0) 

a53 0.02(0.16) 0.93 0.02(0.5) 

a44 0.15(0.06) 0.02 2.1(1.9) 

a54 0.57(0.07) <1x10-10 33.0(8.2) 

a55 -3x10-4(0.58) 1.00 9x10-6(0.03) 

e11 0.95(0.03) <1x10-10 89.4(5.1) 

e21 0.49(0.04) <1x10-10 24.4(3.8) 

e31 0.22(0.04) 5x10-8 4.8(1.8) 

e41 0.22(0.04) 2x10-9 5.0(1.7) 

e51 0.15(0.04) 2x10-4 2.3(1.2) 

e22 -0.28(0.03) <1x10-10 61.0(4.1) 

e32 -0.33(0.04) <1x10-10 10.6(2.7) 

e42 -0.23(0.04) 4x10-9 5.3(1.8) 

e52 -0.11(0.04) 0.01 1.2(1.0) 

e33 -0.82(0.03) <1x10-10 67.2(4.4) 

e43 -0.47(0.03 <1x10-10 22.1(3.1) 

e53 -0.06(0.04) 0.18 0.3(0.5) 

e44 0.74(0.02) <1x10-10 54.4(2.3) 

e54 -0.07(0.04) 0.08 0.5(0.5) 

e55 0.75(0.04) <1x10-10 55.5(5.6) 

Genetic-relationship matrix structural equation modelling (GSEM) of early-life vocabulary scores (15, 24 and 

38 months of age) in combination with mid-childhood reading accuracy/comprehension at 7 years, based on 

all available observations for children across development (N≤6,524). A visual representation is provided in 

Figs 4a and 4b.  
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S7 Table. Standardised path coefficients and variance explained for early-life vocabulary and mid-childhood 
verbal intelligence 

Path 
Standardised path coefficient Standardised variance explained (%) 

Estimate (SE) P Estimate (SE) 

a11 -0.33(0.08) 2x10-5 10.8(5.0) 

a21 -0.22(0.10) 0.03 4.8(4.6) 

a31 -0.15(0.11) 0.18 2.2(3.3) 

a41 -0.01(0.10) 0.39 0.02(0.3) 

a51 0.05(0.13) 0.70 0.2(1.2) 

a22 0.32(0.07) 1x10-6 10.1(4.1) 

a32 0.26(0.10) 0.008 6.6(5.0) 

a42 0.31(0.09) 3x10-4 9.7(5.3) 

a52 0.42(0.13) 0.001 17.9(11.1) 

a33 -0.29(0.08) 4x10-4 8.5(4.8) 

a43 -0.14(0.11) 0.22 1.9(3.1) 

a53 -0.02(0.19) 0.91 0.1(0.8) 

a44 0.15(0.07) 0.04 2.2(2.1) 

a54 0.60(0.10) 3x10-10 36.1(11.5) 

a55 4x10-4(0.56) 1.00 2x10-5(0.1) 

e11 -0.94(0.03) <1x10-10 89.2(5.0) 

e21 -0.49(0.04) <1x10-10 24.2(3.8) 

e31 -0.22(0.04) 6x10-8 4.8(1.8) 

e41 -0.22(0.04) 2x10-9 4.9(1.6) 

e51 -0.11(0.04) 0.01 1.3(1.0) 

e22 0.78(0.03) <1x10-10 60.8(4.1) 

e32 0.33(0.04) <1x10-10 10.8(2.7) 

e42 0.23(0.04) 6x10-9 5.1(1.8) 

e52 0.08(0.05) 0.08 0.7(0.8) 

e33 0.82(0.03) <1x10-10 67.1(4.4) 

e43 0.47(0.03) <1x10-10 21.9(3.1) 

e53 0.03(0.05) 0.45 0.1(0.3) 

e44 -0.74(0.02) <1x10-10 54.2(2.3) 

e54 0.02(0.04) 0.59 0.05(0.2) 

e55 -0.66(0.05) <1x10-10 43.6(6.0) 

Genetic-relationship matrix structural equation modelling (GSEM) of early-life vocabulary scores (15, 24 and 

38 months of age) in combination with mid-childhood verbal intelligence scores at 8 years, based on all 

available observations for children across development (N≤6,524). A visual representation is provided in Figs 

4c and 4d.   
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S8 Table. Standardised path coefficients and variance explained for early-life vocabulary and mid-childhood 
performance intelligence 

Path 
Standardised path coefficient Standardised variance explained (%) 

Estimate (SE) P Estimate (SE) 

a11 -0.33(0.08) 2x10-5 10.8(5.1) 

a21 -0.21(0.10) 0.04 4.6(4.4) 

a31 -0.15(0.11) 0.18 2.2(3.3) 

a41 -0.004(0.11) 0.97 0.001(0.1) 

a51 0.12(0.13) 0.36 1.4(3.0) 

a22 -0.32(0.06) 2x10-7 10.5(4.0) 

a32 -0.25(0.09) 0.01 6.5(4.7) 

a42 -0.29(0.08) 4x10-4 8.6(4.8) 

a52 -0.03(0.12) 0.78 0.1(0.8) 

a33 0.29(0.08) 3x10-4 8.6(4.7) 

a43 0.15(0.10) 0.14 2.2(3.1) 

a53 0.09(0.14) 0.55 0.7(2.4) 

a44 0.16(0.07) 0.02 2.5(2.1) 

a54 0.50(0.08) <1x10-10 24.7(7.5) 

a55 0.01(0.45) 0.99 0.003(0.4) 

e11 -0.94(0.03) <1x10-10 89.2(5.1) 

e21 -0.49(0.04) <1x10-10 24.4(3.8) 

e31 -0.22(0.04) 7x10-8 4.8(1.8) 

e41 -0.23(0.04) 2x10-9 5.1(1.7) 

e51 -0.09(0.04) 0.04 0.8(0.8) 

e22 0.78(0.03) <1x10-10 60.5(4.0) 

e32 0.33(0.04) <1x10-10 10.9(2.7) 

e42 0.23(0.04) 3x10-9 5.5(1.8) 

e52 0.12(0.05) 0.01 1.5(1.2) 

e33 -0.82(0.03) <1x10-10 67.0(4.4) 

e43 -0.47(0.03) <1x10-10 21.9(3.1) 

e53 -0.03(0.05) 0.52 0.1(0.3) 

e44 0.74(0.02) <1x10-10 54.1(2.6) 

e54 -0.01(0.04) 0.82 0.01(0.1) 

e55 0.84(0.04) <1x10-10 70.6(6.4) 

Genetic-relationship matrix structural equation modelling (GSEM) of early-life vocabulary scores (15, 24 and 

38 months of age) in combination with mid-childhood performance intelligence scores at 8 years, based on all 

available observations for children across development (N≤6,524). A visual representation is provided in F igs 

4e and 4f. 
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Supporting Figures 

S1 Fig: Phenotypic correlations among early-life vocabulary measures. Phenotypic correlations among 

untransformed (lower triangle) and rank-transformed (upper triangle) measures with sufficient evidence for 

SNP-h2 (P>0.05) were estimated with Spearman’s rank and Pearson correlation coefficients respectively. All 

phenotypic correlation coefficients passed the significance threshold of P<0.05. Abbreviations: CDI, 

Communicative Development Inventory; m, months; voc, vocabulary
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S2 Fig: Path diagram for a trivariate trait. The variance/covariance structure of multivariate trait consisting of 

three standardised measures P1, P2 and P3 can be described using a Cholesky decomposition consisting of 

three genetic factors (A1, A2 and A3) and three residual factors (E1, E2 and E3), shown here with genetic and 

residual factor loadings (path coefficients). The observed phenotypic measures are represented by squares, 

while all latent genetic and residual factors are represented by a circle. Single headed arrows ('paths') denote 

causal relationships between variables and are shown for genetic factor loadings (a) and residual factor 

loadings (e). Note that the variance of latent variables is constrained to unit variance, this is omitted from the 

diagrams to improve clarity. 
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Abstract 
Expressive and receptive vocabulary are widely used measures to assess language 

development in young children and have a complex underlying genetic architecture. 

Here, I conduct a meta- genome-wide association study (meta-GWAS) of expressive and 

receptive vocabulary between the ages of 15 and 38 months, the largest such study to 

date based on 37,913 observations and 17,298 individuals, within the Early Genetics and 

Life Course Epidemiology (EAGLE) Consortium. Meta-analyses were performed for early-

phase expressive vocabulary (15-18 months, N=8,799), late-phase expressive vocabulary 

(24-38 months, N=16,615), and late-phase receptive vocabulary (24-38 months, 

N=6,291), as well as a combination thereof. These analyses involved children of 

European descent across seven independent population-based or community-based 

cohorts. There was no evidence for single-nucleotide polymorphism (SNP)-vocabulary 

associations at the genome-wide significance threshold adjusted for the number of 

independent traits studied (P≤1.79x10-8). The strongest association was observed for 

early-phase expressive vocabulary and rs9854781 (P=4x10-8), a SNP located in an 

intergenic region at chr3p12.3 near ROBO2. This variant is in high linkage disequilibrium 

(LD) with rs764282 (LD-r2=0.78), a genome-wide significant signal in a previous GWAS 

investigating samples that largely overlap with those in the current study. Multi-trait 

analysis of genome-wide association (MTAG) across genetically correlated vocabulary 

traits increased the statistical power, equivalent to analysing 26,206 individuals, but did 

not identify evidence for single variant genetic associations (P≤5x10-8). Single-trait GWAS 

summary statistics captured low SNP-heritability (SNP-h2) for both early-phase (SNP-

h2=0.12(SE=0.05)) and late-phase (SNP-h2=0.09(SE=0.03)) expressive vocabulary, while 

SNP-h2 based on summary statistics for late-phase receptive vocabulary was consistent 

with zero (SNP-h2=0.07(SE=0.08)), possibly due to low power. Genetic correlation 

analyses provided evidence for positive genetic links of late-phase expressive vocabulary 

with mid-childhood to early-adulthood reading ability (rg=0.58(SE=0.19), P=0.003), adult 

educational attainment (rg=0.23(SE=0.06), P=5x10-4), and intelligence across the lifespan 

(rg=0.25(SE=0.08), P=3x10-4). Thus, genetic factors contributing to later-life cognition can 

already be partially tagged by measures of expressive vocabulary collected at the age of 

two years. 
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5.1. Introduction 
 

Language development in infants and toddlers is often studied with measures of 

expressive and receptive vocabulary1,2. These constructs relate to the ability of infants 

to produce and understand language, respectively, and can be relatively easily (albeit 

indirectly) assessed through parental reports. The first spoken words, representing one 

of the milestones in language development, typically emerge between the ages of 10 to 

15 months2. Once children reach a vocabulary size of ~50 words at an age of 12 to 18 

months, there is often a period of rapid vocabulary growth around 16 to 22 months of 

age3, resulting in an expressive vocabulary size between 100 and 600 words at ~24 

months4. Around this age, children typically start to use word combinations for the first 

time, marking another milestone in language development: the onset of grammar5,6. 

Receptive vocabulary precedes expressive vocabulary during early development with an 

emergence already at the age of six to nine months7. Consequently, the number of words 

understood is usually larger than the number of words produced, with median values of 

169 and 40 words for receptive and expressive vocabulary size at the age of 16 months, 

respectively5.  

Children within the same population show large individual differences in early 

vocabulary development, which are known to be modestly heritable8–11. Twin heritability 

(twin-h2) estimates based on different subsets of a large community-based sample from 

the UK, including up to 11,466 individuals, range between 10% and 25% for expressive 

vocabulary assessed at 24 and 36 months of age8–10. Similar estimates were observed in 

studies of large samples of unrelated individuals8. Meta-analyses of single-nucleotide 

polymorphism heritability (SNP-h2) estimates across community- and population-based 

samples from the UK, the Netherlands and Australia reported SNP-h2 estimates of 13% 

and 14% for expressive vocabulary assessed at 15-18 months (N=8,022) and 24-30 

months (N=9,966)8, respectively. Receptive vocabulary at 14 months of age was also 

shown to be modestly heritable, assessed in 378 twin pairs from the US, with 28% of the 

phenotypic variation being accounted for by genetic influences12.  

During the course of infancy to early childhood, there is evidence for both stability 

and change in the genetic factors underlying expressive vocabulary. Genetic correlations 

for measures of expressive vocabulary between 15 and 36 months of age, assessed in 

UK samples of both unrelated children and twins, ranged from 0.48 to 0.688,9, suggesting 

moderate genetic stability. In addition, twin research on a different subset of the same 

UK twin sample, applying latent factor structural equation models, reported that 28%, 

3% and 20% of the variance in expressive language skills at 24, 36 and 48 months of age 

could be attributed to age-specific genetic influences, respectively13. Age-specific 

genetic influences may also exist at the SNP level, supported by a previous meta- 

genome-wide association study (meta-GWAS) on expressive vocabulary across English 

and Dutch speaking community- and population-based cohorts, analysing up to 10,819 
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individuals8. The reported genome-wide association signal for expressive vocabulary at 

rs7642482, a single-nucleotide polymorphism (SNP) located near ROBO2, was 

detectable in children aged 15-18 months, but attenuated in toddlers aged 24-30 

months of age8, with non-overlapping 95%-confidence intervals. 

Individual differences in early language skills are predictive of later-life outcomes, 

such as reading proficiency14–16, suggesting shared genetic factors. At the level of 

individual SNPs, rs7642482 was found to be associated with mid-childhood reading 

speed at the nominal level (P<0.05), while no such relationships were seen with mid-

childhood phonological memory, verbal intelligence or reading comprehension8. At the 

polygenic level, there is evidence for a moderate genetic correlation (rg=0.36) between 

a latent factor of early expressive language (2, 3 and 4 years) and a latent factor of mid-

childhood reading (7, 9 and 10 years), based on studying a community-based cohort of 

UK twins13. Similarly, using GWAS data, moderate to strong genetic links were also 

reported between reading abilities (7-13 years) and receptive vocabulary (38 months), 

with genetic correlations ranging from 0.58 to 0.92 in a sample of up to 6,092 unrelated 

children from the UK (chapter 3)17.  

Genetic influences underlying early vocabulary may also overlap with genetic 

factors that are involved in childhood-onset neurodevelopmental disorders, such as 

Attention-Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD). 

Children with ADHD often experience difficulties with mastering language and literacy 

skills18–20 and poor language skills in ADHD children at the age of three years of age were 

found to be predictive of inattention and hyperactive symptoms two years later in life21. 

For children diagnosed with ASD the phenotypic spectrum is wider, including both 

children who have little or no spontanous spoken language by the time they reach school 

age22 as well as ‘high-functioning’ individuals who often experience little problems in the 

language domain23. Although little is known about genetic links between vocabulary 

assessed during the first three years of life and genetic risk for ADHD or ASD, there is 

evidence for genetic overlap between ADHD and mid-childhood/early-adolescent 

language- and literacy-related abilities, primarily related to reading24–27, as shown by 

twin and molecular studies in unrelated individuals (see also chapter 6). Finally, language 

development might be biologically coupled to anthroprometric growth. For example, 

birth weight and length are important predictors of developmental milestones during 

the first few years of life28–30. Low birth weight in particular has been associated with 

impairments in both expressive and receptive language skills from infancy to late-

childhood28,29. In addition, measures of head circumference are used to monitor brain 

development31 and are highly correlated with brain volume assessed using MRI in infancy 

and childhood32,33. 

The goal of this study is to gain further knowledge of the genetic factors that are 

associated with early vocabulary development by performing a meta-GWAS for 

expressive and receptive vocabulary assessed between 15 to 38 months of age. The  
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current study extends a previous GWAS effort8, by (i) increasing the total number of 

children studied by ~50%, (ii) using a high-density genomic imputation reference panel 

from the Haplotype Reference Consortium34 (HRC), thereby allowing for a more detailed 

study of lower frequency genetic variants within the allele frequency range of 0.5%-1%, 

and (iii) including receptive vocabulary, in addition to expressive vocabulary scores. Here, 

I aim to identify novel SNPs contributing to variation in expressive and receptive 

vocabulary, while allowing for age- and ability-specific effects through a stratified design. 

In addition, I apply a multivariate analysis approach across vocabulary measures to 

maximise the statistical power to detect SNP-vocabulary associations. Follow-up 

analyses based on the derived GWAS summary statistics include gene-based genome-

wide association, gene-set and gene-property analyses. Finally, I study genetic links of 

early vocabulary with several cognition-related later-life outcomes, anthropometric 

traits reflecting growth and childhood-onset neurodevelopmental disorders.  

 

5.2. Methods 
 

Phenotype selection and study design 
Cohorts with information on quantitative vocabulary scores during the first three 

years of life and genome-wide genotypes were invited to participate in the current meta-

GWAS, which was conducted within the framework of the he Early Genetics and Life 

Course Epidemiology (EAGLE) consortium35 (https://www.eagle-

consortium.org/working-groups/behaviour-and-cognition/early-language/). Vocabulary 

scores were assessed between 15 and 38 months of age and analysed as part of two 

developmental stages to allow for age-specific genetic influences, an early phase (15-18 

months) and a late phase (24-38 months). The early phase reflects a developmental 

period during which children produce their first words, usually in isolation2, whereas 

during the late phase children start to use word combinations and more complex 

grammatical structures5,6. Scores for receptive vocabulary were included for the late 

phase (24-38 months) only, as parents tend to underestimate receptive vocabulary in 

children below the age of two years in comparison to a direct assessment of child 

receptive language using a preferential looking task36. Furthermore, there was little 

evidence for SNP-h2 of receptive vocabulary assessed at 15 months based on analyses of 

individual-level genotype data from the Avon Longitudinal Study of Parents And Children 

(ALSPAC) cohort, although this does not prevent to existence of individual SNP signals 

(chapter 4). The reliability and validity for parental assessments of expressive vocabulary 

is generally high, showing correlations with direct assessments of over 0.7037,38.  

Up to seven population-based or community-based studies participated in the 

analyses, of which two had longitudinal vocabulary assessments (Table 1). Observations 

for early-phase expressive vocabulary and late-phase receptive vocabulary did not 
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include longitudinal assessments of the same individuals and were thus independent, 

whereas late-phase expressive vocabulary analysis included vocabulary assessments of 

the same children within ALSPAC at two different ages (24 months and 38 months, Table 

1). The number of individuals and observations included in each meta-GWAS are shown 

in Figure 1. Ethical approval was obtained by the local research ethics committee for 

each participating study, and all parents and/or legal guardians provided written 

informed consent.  

Vocabulary scores were ascertained by parental report using age-specific word 

lists that were adapted from the MacArthur Communicative Development Inventory 

(CDI)10,39–43 or the Language Development Survey (LDS)44 (Table 1). The CDIs were 

originally developed to assess language and communication development in young 

children42, whereas the LDS aims to identify children with language delays44. During the 

early phase (15-18 months), expressive vocabulary was assessed using an abbreviated 

 
Table 1: Overview of participating cohorts 

Cohort Trait 
Psychological 

Instrument 

Raw trait score 

(SD) 

Age (SD)  

in months 

N individuals 

(males) 

ALSPAC 

Early-phase EV 

MacArthur 

CDI:Words & 

Gestures 

14.34 17.84) 15.42(0.98) 6,741(3,445) 

Late-phase EV 

MacArthur 

CDI:Words & 

Sentences 

64.10(35.20) 24.39(1.02) 6,208(3,197) 

113.28(17.5) 38.48(1.19) 6,291(3,226) 

Late-phase RV 

MacArthur 

CDI:Words & 

Sentences 

109.66(23.78) 38.48(1.19) 6,291(3,226) 

BIS Late-phase EV MCDI:UKSF 78.31(20.08) 29.62(1.92) 383(210) 

COPSAC Late-phase EV 

MacArthur 

CDI:Words & 

Sentences 

253.00(158.12) 24.18(0.28) 487(256) 

GenR 
Early-phase EV N-CDI-2A 17.51(17.05) 18.36(0.96) 2,058(1,054) 

Late-phase EV LDS 245.86(53.67) 31.32(2.04) 1,825(937) 

LSAC Late-phase EV MCDI 56.95(23.60) 33.51(2.51) 1,134(558) 

Raine Late-phase EV LDS 185.60(83.44) 25.52(1.74) 980(504) 

TEDS Late-phase EV MCDI 48.66(24.79) 24.48(1.20) 5,515(2,665) 

Expressive and receptive vocabulary were assessed between 15-38 months of age using parental 

questionnaires in seven independent cohorts, resulting in a total of 37,913 observations from 17,298 

individuals. Per cohort, psychological instrument, mean raw trait score and age, with corresponding standard 

errors, as well as sample size are reported. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and 

Children; BIS, Barwon Infant Study; CDI, Communicative Development Inventory; COPSAC, Copenhagen 

Prospective Studies on Asthma in Childhood; EV, expressive vocabulary; GenR, Generation Rotterdam; LDS; 

Language Development Survey; LSAC, Longitudinal Study of Australian Children; MCDI, MacArthur 

Communicative Development Inventory; Raine, the Western Australian Pregnancy Cohort; RV, receptive 

vocabulary; TEDS, Twins Early Development Study; UKSF, UK short form. 
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form of the MacArthur CDI:Words & Gestures39 in the ALSPAC cohort (N=6,741). Early-

phase expressive vocabulary was defined by this instrument as the total number of 

words a child could “say and understand” (in contrast to “understand” only), and thus 

jointly represents expressive and receptive vocabulary. Within Generation Rotterdam 

(GenR, N=2,058), expressive vocabulary was assessed at ~18 months of age using a Dutch 

adaptation of the short-form version of the MacArthur CDI (N-CDI-2A)40. This form 

included the response “say” in addition to “say and understand”, so early-phase 

expressive vocabulary was defined as the number of words that fell into either of these 

categories.  

During the late phase (24-38 months), expressive vocabulary was assessed with 

an abbreviated version of the MacArthur CDI:Words & Sentences42 in ALSPAC (24 

months: N=6,208; 38 months: N=6,291), the corresponding Danish adaptation43 in 

Copenhagen Prospective Studies on Asthma in Childhood (COPSAC, N=487), and using 

the LDS44 in GenR (N=1,825) and the Western Australian Pregnancy Cohort (Raine, 

N=980). Adapted forms of the MacArthur CDI10,45 (MCDI) were used to assess expressive 

vocabulary in the Barwon Infant Study (BIS, N=383), the Longitudinal Study of Australian 

Children (LSAC, N=1,134), and the Twins Early Development Study (TEDS, N=5,515). For 

CDI vocabulary assessments10,42,43,45, expressive vocabulary was defined as the number 

of words a child “says” or “says and understands”. For LDS vocabulary assessments44, 

expressive vocabulary was defined as the total number of words spontaneously 

produced by a child from a given list of words. The LDS and CDI have high concurrent 

validity, with a correlation of 0.95 on total vocabulary scores46. Late-phase receptive 

vocabulary scores were only available in ALSPAC at 38 months (N=6,291, Table 1) and 

assessed using an abbreviated form of the MacArthur CDI:Words & Sentences42. The 

receptive vocabulary score was calculated as the number of words a child could 

understand, regardless of whether they also produced the word, encoded as 

“understand” plus “say and understand”. 

Vocabulary scores were primarily assessed in English (ALSPAC, BIS, LSAC, Raine 

and TEDS), but also included Danish (COPSAC, Danish adaptation of the MacArthur 

CDI:Words & Sentences43) and Dutch (GenR, N-CDI-2A40) CDI versions. Research has 

shown that children follow similar patterns of language acquisition across different 

languages47 and that CDI vocabulary assessments are comparable across different 

cultures, including English, Dutch and Danish48.  

The current study extends a previous meta-GWAS that focused on expressive 

vocabulary during early development, based on 8,889 and 10,819 individuals for early- 

and late-phase expressive vocabulary respectively8. I extended the age range for the late 

phase from 30 to 38 months of age, based on strong genetic correlations between 

vocabulary measures assessed at 24 and 38 months in the ALSPAC sample (Table S1) and 

augmented the late phase to measures of receptive vocabulary. In addition, I applied 

MTAG to allow for repetitive assessments of the same children at different ages and 
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analysed imputed genotyping information based on the HRC r1.1. reference panel34 for 

all participating cohorts (see “Genotyping and imputation”). Compared to the previous 

meta-GWAS effort8, three additional population-based cohorts (BIS, COPSAC and LSAC) 

participated in the late-phase expressive vocabulary analyses (Ntotal=2,004; Table 1). 

Furthermore, observations of expressive vocabulary at 38 months within ALSPAC 

children were included (N=6,291) and the sample size for TEDS was increased by 3,788 

children due to the inclusion of related individuals. Together, this lead to a boost in 

statistical power that corresponded to analysing 19,926 individuals for late-phase 

expressive vocabulary, about double the sample size available in the previous meta-

GWAS effort8.  

 

Genotyping and imputation 
Genotyping within each cohort was conducted using high-density SNP arrays 

(Table 2). Quality control parameters for autosomal markers included individual call rate, 

SNP call rate, minor allele frequency, and deviations from Hardy-Weinberg equilibrium 

and are reported for each cohort in Table 2. In total, between 440,476 and 608,517 high-

quality autosomal genotyped markers were subsequently imputed against a HRC r1.1 

reference panel34 using either the Sanger imputation server (EAGLE249 v2.0.5 and 

PBWT50 software, https://imputation.sanger.ac.uk/) or the Michigan imputation server51 

(Minimac 3 and Shapeit v2.r790, https://imputationserver.sph.umich.edu/) (Table 2). X 

chromosomal markers were not included in the current study, as genotype probabilities 

derived from the Sanger imputation server for males were mis-interpreted by SNPTEST 

GWAS analysis software. This resulted in incorrect association analyses for X 

chromosomal markers in males, due to artificial heterozygote instead of haploid 

genotype readings. 

 

Independent number of vocabulary measures 
The number of independent vocabulary measures assessed in this study was 

estimated using Matrix Spectral Decomposition (matSpD)52,53. As the polygenic signal 

captured by GWAS summary statistics for late-phase receptive vocabulary was too low 

(SNP-h2 Z-score < 1.5) to yield reliable results with Linkage Disequilibrium Score (LDSC)54, 

it was not possible to estimate the number of independent traits based on genetic 

correlations derived from single-trait meta-analyses summary statistics (stage I). Instead, 

bivariate genetic correlations were estimated between four early vocabulary measures 

from the ALSPAC sample (expressive vocabulary at 15, 24 and 38 months, as well as 

receptive vocabulary at 38 months) using individual-level genotype data and bivariate 

Genome-based Restricted Maximum Likelihood (GREML) analyses55, a powerful 

approach based on individual-level genotype data56,57, as implemented in Genome-wide 

Complex Trait Analysis (GCTA) software58. A genetic relationship matrix (GRM)58 was 
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created with PLINK59 using individuals with a genetic relationship <0.05 (Nindividuals≤6,092) 

and directly genotyped SNPs only (NSNPs=465,740). Based on the resulting genetic 

correlation matrix (Table S1), matSpD estimated 2.79 independent effective vocabulary 

traits. SNP-h2 estimates for ALSPAC vocabulary traits had overlapping 95%-confidence 

intervals with LDSC-based SNP-h2 for early-phase expressive vocabulary, late-phase 

expressive vocabulary and late-phase receptive vocabulary (see “SNP-heritability 

estimations”). 

 

Single variant association analysis 
Within each cohort, vocabulary scores were adjusted for age, sex, age2 and their 

interaction effects, as well as ancestry-informative principal components (that differed 

by cohort) and other study-specific covariates defined by the local GWAS analyst. 

Adjusted scores were then rank-transformed to achieve normality and to allow for 

comparisons of genetic effects across different psychological instruments. SNP-

vocabulary associations were estimated within each cohort using a linear regression of 

rank-transformed residuals on posterior genotype probability using SNPTEST60, 

Proabel61, and GEMMA62 software (Table 2), assuming an additive genetic model, except 

for the LSAC cohort. For LSAC, a linear regression of rank-transformed residualised 

vocabulary scores on bestguess genotypes was performed with PLINK 1.963, using 

imputed markers (INFO>0.3) due to data availability (Table 2). GWAS analyses of twin 

samples were performed using GEMMA62 following a linear mixed-model approach. This 

method accounts for relatedness among individuals using a GRM derived from high-

quality directly genotyped markers. To capture strong relatedness, GRM off-diagonal 

elements with values <0.05 were set to zero64,65.  

Prior to the meta-analyses, GWAS summary statistics from all cohorts underwent 

extensive quality control using the EasyQC R package66. Variants that had a low (i) 

imputation quality (INFO<0.6 for SNPTEST, PLINK and GEMMA association analyses and 

INFO<0.5 for Proabel association analyses), (ii) minor allele count (MAC≤10), or (iii) effect 

allele frequency (EAF≤0.005 or EAF≥0.995) were excluded. In addition, marker names 

were harmonised and alleles were aligned against HRC r1.1 reference data. Variants with 

missing or mismatching alleles were dropped, as well as all insertions/deletions, 

duplicate SNPs and multi-allelic SNPs. Finally, variants with an EAF that deviated >0.2 

from the frequency in the HRC r1.1. reference data were excluded.  

Within an initial step, single-trait meta-analyses were performed for early-phase 

expressive vocabulary, late-phase expressive vocabulary and late-phase receptive 

vocabulary (stage I, Figure 1). For early-phase expressive vocabulary and late-phase 

receptive vocabulary all observations were independent and fixed-effect meta-analyses 

were carried out, as implemented in METAL software67. This approach includes a meta-

analysis across effect size estimates reported by each individual study, weighted by the 

inverse of the corresponding standard error67. Late-phase expressive vocabulary scores 

5 



Genome-wide association meta-analysis of early-life vocabulary size 

 

142 

included longitudinal assessments of the same ALSPAC children at 24 and 38 months 

(Table 1). Consequently, fixed-effect meta-analyses were first carried out excluding 

ALSPAC expressive vocabulary at 38 months to ensure independence of GWAS summary 

statistics. The derived METAL output was then jointly analysed with the GWAS results for 

ALSPAC expressive vocabulary at 38 months using multi-trait analysis of genome-wide 

association (MTAG)68, allowing for sample overlap, resulting in combined genome-wide 

association summary statistics for all late-phase expressive vocabulary observations. 

MTAG exploits genetic relationships among traits and provides a generalised inverse-

variance-weighted meta-analysis estimate by integrating GWAS summary statistics 

across different traits, while allowing for overlapping samples68. In order to increase the 

statistical power to detect single SNP associations, I conducted a multi-trait  

meta-analysis across all studied vocabulary traits using MTAG68 (stage II, Figure 1). 

Analyses were carried out using late-phase expressive vocabulary, the most powerful 

measure, as outcome. Thus, in addition to three single-trait meta-analyses as part of 

stage I, I also carried out a multi-trait vocabulary analysis in stage II (Figure 1). 

MTAG results derived based on low powered traits (mean χ2 statistic < 1.02), such 

as ALSPAC expressive vocabulary at 38 months and late-phase receptive vocabulary, 

could lead to biased MTAG estimates and an increased FDR rate68. Therefore, sensitivity 

analyses were conducted for both MTAG analyses based on the less powerful fixed-

effect meta-analyses for late-phase expressive vocabulary excluding ALSPAC expressive 

vocabulary at 38 months.  

Association analyses were applied with genomic control69 for variant discovery 

and without genomic control for follow-up analyses, including LDSC regression and 

correlation analyses that contain a more accurate and powerful correction factor than 

genomic control70. The sample size and the number of high-quality SNPs included in each 

meta-analysis can be found in Figure 1.  

 

Locus discovery and annotation 
Genome-wide associations were identified from GWAS summary statistic data 

using Functional Mapping and Annotation of genetic associations71 software (FUMA, 

v1.3.6). First, the study-wide GWAS P-value threshold for SNP-vocabulary associations 

was defined at 1.79x10-8. This threshold reflects the genome-wide significance threshold 

of 5x10-8 adjusted for 2.79 independent vocabulary measures analysed in this study, 

which was estimated based on genetic correlations among vocabulary measures in the 

ALSPAC sample. Next, independent SNPs were identified based on LD-r2≤0.6 using the 

1000 Genomes Phase 3 European reference panel (release 20130502). For SNP signals 

passing the genome-wide significance threshold without adjustment for the number of 

independent traits studied (P<5x10-8), allele frequencies were derived from the GnomAD 

database72 v2.1.1. based on European (non-Finnish) control samples. To investigate 

whether vocabulary associated SNPs have pleiotropic effects, I performed a screen 
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across 2,986 publically available GWASs as included in Phenoscanner73,74 (v2). For this, 

the significance threshold was determined at P<1x10-5, reflecting a correction for the 

number of traits included in the screen (0.05/2,986).  

Next, I mapped independent genome-wide SNP signals to genes using two 

different approaches, as implemented within FUMA71 (v1.3.6). Firstly, genetic variants 

were mapped to genes using positional mapping, based on a maximum physical distance 

of 10kb from the SNP to the gene (hg19). Secondly, SNPs were mapped to genes using 

eQTL mapping. A SNP was mapped to a gene if it mapped within 1Mb of the gene and 

was known to influence the gene’s expression. For these analyses, eQTL information on 

blood (Blood eQTL browser75 and BIOS QTL browser76) and 13 brain tissues (GTEx v877) 

were used. The false discovery rate (FDR) for SNP-gene expression associations was 

defined at 0.05.  

 

Gene-based genome-wide association studies 
As part of follow-up analyses, gene-based GWASs were conducted with MAGMA 

according to a SNP-wide mean model78, as implemented within FUMA software71 

(v1.3.6a). SNPs were mapped to genes using positional mapping based on the 1000 

Genomes Phase 3 European reference panel (release 20130502) and a 0kb window, 

consistent with default MAGMA settings. In total, SNPs were mapped to 18,828-18,896 

protein coding genes, adjusted for the estimated number of analysed traits, 

corresponding to an adjusted genome-wide gene-based significance threshold of 

9.48× 10−7 (0.05/18,896 genes/2.79 independent vocabulary measures). Gene-based 

GWAS results subsequently served as input for gene-set and gene-property analyses (see 

next section).  
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Figure 1: Meta-analysis study design. Vocabulary scores were assessed between 15-38 months of age and 

divided into an early phase (15-18 months) and late phase (24-38 months) to allow for age-specific genetic 

influences. Scores for receptive vocabulary were only included in the late-phase due to the low validity of 

parental reports in very young children. In total, three single-trait meta-analyses were conducted as part of 

stage I: early-phase expressive vocabulary, late-phase expressive vocabulary and late-phase receptive 

vocabulary. For each stage the participating cohorts, psychological instruments, total number of observations 

and individuals, as well as the total number of high-quality SNPs are provided. In order to increase statistical 

power, multi-trait analysis across early-phase expressive vocabulary, late-phase expressive vocabulary and 

late-phase receptive vocabulary was performed as part of stage II using multi-trait analysis of genome-wide 

association. # Estimated sample size based on the increase in mean χ2 statistic using multi-trait analysis of 

genome-wide association. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BIS, 

Barwon Infant Study; CDI, Communicative Development Inventory; COPSAC, Copenhagen Prospective Studies 

on Asthma in Childhood; GenR, Generation Rotterdam; LDS; Language Development Survey; LSAC, Longitudinal 

Study of Australian Children; MA, meta-analysis; Raine, the Western Australian Pregnancy Cohort; TEDS, Twins 

Early Development Study. 

  

5 



Methods 

 
147 

Gene-set and gene-property analyses 
To gain insight into the biological mechanisms tagged by common genetic 

variation related to early vocabulary development, MAGMA-based gene-set analyses78 

were performed, as implemented within FUMA software71 (v1.3.6a). This competitive 

test was conditioned on gene size, gene density, and the inverse of the mean minor allele 

count in the gene78. Association was investigated with up to 10,286 gene-sets and GO 

terms that were derived from MsigDB79 v6.2 and contained between 10 and 200 genes 

to avoid bias related to gene-set size80. The multiple-testing-adjusted threshold was 

defined at P<1.74× 10−6 (0.05/10,286 gene-sets/2.79 independent vocabulary 

measures).  

In addition to gene-set analyses, MAGMA78 gene-property analyses were 

performed in FUMA71 (v1.3.6a) to assess whether common genetic variation related to 

vocabulary was enriched for expression in certain tissues and/or developmental periods. 

For this, gene expression data from 30 broad tissue types and 54 specific tissues derived 

from the GTEx v8 RNA-sequencing database77, as well as gene expression data for 29 

different age groupings and 11 developmental stages from the BrainSpan81 were 

obtained. The multiple-testing-adjusted threshold was P<1.45x10-4, accounting for the 

total number of gene expression data sets and independent vocabulary measures 

(0.05/124/2.79). 

 

SNP-heritability estimations 
To estimate SNP-h2 for early vocabulary measures as captured by GWAS summary 

statistics, I applied LDSC regression analyses70. LDSC regression estimates the proportion 

of phenotypic variance tagged by SNPs on genotyping arrays, by regressing genome-wide 

χ2-statistics on the amount of genetic variation captured by each SNP70. The intercept of 

this regression minus one is an estimator of the mean contribution of confounding bias 

to the inflation in the mean χ2-statistic, which is a more powerful and accurate correction 

compared to genomic control70.  

For comparison, SNP-h2 was also estimated for early vocabulary measures 

available in the ALSPAC sample using GREML58, a powerful approach based on individual-

level genotype data56,57. This methodology is implemented within GCTA software58 and 

was applied using the same GRM as included in bivariate GREML analyses to estimate 

the independent number of traits analysed (see “Independent number of vocabulary 

measures”).  

 

LD Score genetic correlations 
To estimate bivariate genetic correlations (rg) based on summary statistics, I 

applied unconstrained LDSC correlation82 analyses that allowed for sample overlap. This 

involves a regression of the product of test statistics on LD-score, reflecting the sum of 
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LD-r2 for a specific SNP measured with all other SNPs70, and captures the extent of shared 

genetic influences between phenotypes assessed in different samples82. The intercept 

of this regression captures potential sample overlap and shared population stratification, 

resulting in unbiased genetic correlation estimates82. I applied LDSC correlation analyses 

to vocabulary summary statistics only with SNP-h2 of Z-score > 1.5 to exclude low-

powered summary statistics54. First, I assessed genetic overlap between early-phase and 

late-phase receptive vocabulary. Second, I estimated genetic correlations of vocabulary 

measures with respect to multiple cognition-related later-life outcomes, infancy and 

childhood anthropometric traits, as well as childhood-onset neurodevelopmental 

disorders. Cognition-related later-life outcomes included reading performance (8-22 

years, N=13,027, Supplementary Information), childhood intelligence83 (6-18 years, 

N=12,441), intelligence84 (5-98 years, N=279,930), and EA85 (>30 years, N=766,345). For 

anthropometric traits, I studied birth length86 (N=28,459), birth weight87 (N=286,879), 

infant head circumference88 (6-30 months, N=10,768) and childhood head 

circumference89 (6-9 years, N=10,600). Finally, I investigated genetic overlap between 

early vocabulary and childhood-onset neurodevelopmental disorders, such as ADHD90 

(N=53,293; Ncases=19,099) and ASD91 (N=46,350; Ncases=18,381). ADHD and ASD summary 

statistics were obtained from the largest GWASs on European individuals available to 

date90,91, as well as data reflecting ADHD symptoms in children92 (<13 years, N=17,666).  

All analyses were performed with LDSC software70,82 and based on the set of well-

imputed HapMap3 SNPs and a European reference panel of LD scores82. The multiple-

testing threshold for LDSC bivariate genetic correlations was defined at (P≤0.005), 

reflecting a correction for 8.85 independent vocabulary, cognition-related later-life, 

anthropometric and childhood-onset neurodevelopmental disorder measures, 

estimated using matSpD52,53 and LDSC bivariate genetic correlations (Table S3) 

(0.05/8.85).

 

5.3. Results 
 

Single-trait and multi-trait genome-wide association analyses 
Single-trait genome-wide association analyses were performed for early-phase 

expressive vocabulary (15-18 months, N=8,799), late-phase expressive vocabulary (24-

38 months, N=16,615) and late-phase receptive vocabulary (24-38 months, N=6,291) 

(Figure 1). Applying this study design allowed me to distinguish between the production 

of words in isolation2 (early phase), followed by the use of word combinations and more 

complex grammatical structures5,6 (late phase), as well as between word production and 

word understanding. In total, I studied up to 37,913 observations from 17,298 children 

of European origin, collected within seven population-based and community-based 
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cohorts (Table 1), and between seven and nine million imputed or genotyped SNPs 

(Figure 1). 

Across the three single-trait meta-GWASs, there was no evidence for SNP 

association with vocabulary size at the multiple-testing-adjusted genome-wide 

significance level (P<1.79x10-8, Figure 2a-c). For early-phase expressive vocabulary, a 

single GWAS signal (rs9854781) at chr3p12.3 passed the genome-wide significance 

threshold (P<5x10-8, Figure 2a). The T-allele at rs9854781 was associated with an 

increase of 0.10 standard deviation units in rank-transformed expressive vocabulary 

scores at 15-18 months of age (β=0.10(SE=0.02), P=4x10-8; Table 3). This SNP resides 

within an intergenic region of the short arm of chromosome 3, ~20 kb downstream of 

the 3’ end of ROBO2. rs9854781 is in high LD with rs764282 (LD-r2=0.78), a known signal 

for early-phase expressive vocabulary based on a previous meta-GWAS consisting of 

largely overlapping samples, but an older imputation reference panel8. Beyond 

vocabulary, no phenotypic associations could be identified for rs9854781 passing the 

multiple-testing corrected threshold of P<1x10-5 when performing a screen of 2,986 

traits from publicly available GWASs. To functionally characterise the identified genetic 

variant, I performed eQTL mapping based on SNP-gene expression associations from 

both blood and brain tissues as implemented in FUMA software. This analysis did not 

yield evidence for eQTL effects of rs9854781 on ROBO2 or other protein-coding genes 

located within 1Mb of rs9854781 (P>0.05, data not shown).  

Both expressive vocabulary traits had low SNP-h2, with common genetic variants 

explaining a small proportion of the phenotypic variation in early-phase (LDSC SNP-

h2=0.12, SE=0.05, Table 4) and late-phase expressive vocabulary (LDSC SNP-h2=0.09, 

SE=0.03, Table 3). The heritability of late-phase receptive vocabulary could not be 

reliably estimated (LDSC SNP-h2=0.07, SE=0.08, Table 4) and late-phase receptive 

vocabulary summary statistics captured too little polygenic signal to warrant LDSC 

genetic correlation analyses (SNP-h2 Z-score < 1.5)54. A GREML-based analysis of SNP-h2, 

based on largely the same individuals as included in the GWAS but using individual-level 

genotype data, provided evidence for low SNP-h2 of late-phase receptive vocabulary 

(SNP-h2=0.12, SE=0.06, Table S2). Consequently, genetic correlation analyses including 

late-phase receptive vocabulary were performed with bivariate GREML55 using direct 

genotypes instead of summary-statistic-based LDSC analyses, given their larger 

power56,57. 

Genetic correlations among the three early vocabulary single-trait meta-analyses 

were high, suggesting similarity in underlying genetic architectures. The genetic 

correlation between early- and late-phase expressive vocabulary was 0.74 (SE=0.21, 

P=4x10-4), as estimated using LDSC. GREML-based genetic correlations of late-phase 

receptive vocabulary with both available measures of late-phase expressive vocabulary 

in ALSPAC were 0.85(SE=0.25, P=0.004) and 0.86 (SE=0.15, P=0.004) (Table S1). 

Consequently, to maximise power for variant discovery, I combined the three single-trait  
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meta-analyses as part of a stage II multi-trait meta-analysis (Figure 1). Multi-trait 

vocabulary MTAG analysis increased both sample size and SNP-h2 Z-score (estimated-

N=26,206, SNP-h2 Z-score=4.73, Table 4). Despite this power increase, MTAG analysis did 

not identify further SNP associations passing the unadjusted genome-wide significance 

level (Figure 2d).  

To confirm the reliability of MTAG estimates, MTAG association results for late-

phase expressive vocabulary (stage I) and multi-trait vocabulary (stage II) were compared 

with output derived from fixed-effect meta-analysis for late-phase expressive vocabulary 

excluding ALSPAC at 38 months. Across shared SNP signals (N=7,343,861) MTAG beta 

coefficients and standard errors correlated >0.78 and >0.97 with corresponding 

estimates derived from the fixed-effect meta-analysis. For highly associated SNPs 

(P<5x10-6, N=37), correlations increased to >0.99 for both beta coefficients and 

corresponding standard errors. This demonstrates the robustness of MTAG estimates, 

despite high estimated maximum FDRs (late-phase expressive vocabulary: 

maxFDR=0.42; multi-trait vocabulary: maxFDR=0.36). 

 
Table 4: SNP-heritability of vocabulary measures based on summary statistics 

As part of stage I, single-trait meta-analyses were carried out for early-phase expressive vocabulary, late-phase 
expressive vocabulary and late-phase receptive vocabulary. Stage II consisted of multi-trait vocabulary meta- 
analysis, retrieved by combining data from stage I. Detailed information for each meta-GWAS is provided in 
Figure 1. SNP-heritability, the intercept of the regression slope, lambda GC and mean χ2 were estimated with 
LDSC regression analysis. SNP-h2 Z-scores were calculated by dividing SNP-h2 by its standard error. ǂ Estimated 
sample size based on the increase in mean χ2 statistic using multi-trait analysis of genome-wide association. 
Abbreviations: EV, expressive vocabulary; GWAS, genome-wide association study; RV, receptive vocabulary. 

 

Gene-based genome-wide association analyses 
Gene-based analyses have increased statistical power to detect associations with 

a trait of interest compared to GWASs at the SNP level, due to the combination of effects 

from multiple SNPs and the reduced multiple testing burden93. Here, I studied gene-

based associations with vocabulary using three single-trait (stage I) and one multi-trait 

(stage II) meta-analysis summary statistics using MAGMA78. However, no gene-level 

associations passed the significance threshold adjusted for both the number of genes 

and independent vocabulary measures tested (P<9.48× 10−7, Figure 3).  

 
  

meta-

GWAS 
Trait SNP-h2 (SE) 

SNP-h2 

Z-score 

Lambda 

GC 

Mean 

χ2 
Intercept(SE) N 

Stage I 

Early-phase EV 0.12 (0.05) 2.31 1.03 1.03 1.01 (0.01) 8,799 

Late phase EV 0.09 (0.03) 3.44 1.04 1.03 1.00 (0.01) 19,296ǂ 

Late phase RV 0.07 (0.08) 0.90 1.01 1.01 1.00 (0.01) 6,291 

Stage II Multi-trait 0.12 (0.03) 4.73 1.03 1.04 1.00 (0.01) 26,206ǂ 5 
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Table 5: MAGMA gene-set and gene-property analyses 

Analysis type 

meta-GWAS 

Stage I Stage II 

Early-phase EV Late-phase EV Late-phase RV Multi-trait 

Gene-set 
10,286  
gene-sets 

P≥5x10-5 P≥2x10-5 P≥8x10-6 P≥4x10-6 

Gene-property 

GTEx v8  
30 broad 
tissue types 

P≥0.09 P≥0.05 P≥0.04 P≥0.04 

GTEx v8  
54 specific 
tissue types 

P≥0.14 P≥0.13 P≥0.02 P≥0.04 

BrainSpan 
29 ages 

P≥0.06 P≥4x10-4 P≥0.12 P≥0.01 

BrainSpan 11 
developmental 
periods 

P≥0.07 P≥0.11 P≥0.12 P≥0.22 

MAGMA78 gene-set and gene-property analyses were performed in FUMA71 (v1.3.6a). Association with 10,286 

gene-sets containing between 10 and 200 genes was tested and the significance threshold adjusted for 

multiple-testing was determined at P≤1.75x10-6, correcting for both the number of gene-sets tested and the 

estimated number of independent traits studied. Gene-property analyses were based on gene expression data 

from 30 broad tissue types and 54 specific tissue types from the GTEx v8 RNA sequencing database77. In 

addition, gene expression data from 29 different age groupings and 11 developmental stages from the 

BrainSpan database81 were utilised. The lowest P-value obtained for each association analyses is reported. 

Gene-property analyses were considered significant if they passed a multiple-testing-adjusted P-value 

threshold of 1.45x10-4 

 

Gene-set and gene-property analyses 
To identify putative biological pathways contributing to the polygenic 

architecture of early vocabulary, I studied association with 10,286 gene-sets, using 

MAGMA gene-set analyses78 based on stage I and stage II vocabulary summary statistics. 

These analyses did not provide evidence for association at the multiple-testing-adjusted 

significance threshold of 1.74x10-6 (Table 5). The strongest association was observed 

using summary statistics from the most powerful multi-trait analysis for a gene-set 

consisting of 25 genes that are related to the aggregation, arrangement and bonding of 

a set of components to form an excitatory synapse (GO:1904861, β=0.81(SE=0.18), 

P=4x10-6). Finally, MAGMA78 gene-property analyses did not reveal evidence for an 

association of tissue- and/or age-specific gene expression patterns with early vocabulary 

measures studied (Table 5). A study of partitioned heritability according to functional 

category94 was not feasible due to low power of the derived GWAS summary statistics. 

According to power calculations included in the original method description94, sample 

sizes and SNP-h2 estimates for vocabulary traits (Table 4) correspond to less than 20% 

power.  
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LD Score genetic correlations  
Finally, I investigated genetic links between early vocabulary and multiple 

cognition-related later-life outcomes, as well as infancy and childhood anthropometric 

traits and childhood-onset neurodevelopmental disorders. Analyses were conducted 

using single-trait GWAS summary statistics for both early- and late-phase expressive 

vocabulary as well as multi-trait vocabulary GWAS summary statistics. Late-phase 

receptive vocabulary summary statistics captured too little polygenic signal to be 

included in LDSC genetic correlation analyses (Table 4),as described above. For late-

phase expressive vocabulary, but not early-phase expressive vocabulary I identified 

weak-to-moderate positive genetic links with cognition-related later-life outcomes, 

including reading, intelligence and EA that passed the multiple-testing-adjusted 

threshold (P<0.005, Figure 4). Genetic correlations of late-phase expressive vocabulary 

with intelligence across the lifespan (rg=0.25(SE=0.08), P=3x10-4) and adulthood EA 

(rg=0.23(SE=0.06), P=5x10-4) were weak. The genetic overlap of late-phase expressive 

vocabulary with mid-childhood to adolescence reading ability was moderate 

(rg=0.58(SE=0.19), P=0.003) and 95%-confidence intervals overlapped with respective 

genetic correlation estimates for intelligence and EA (Figure 4). Studying genetic links 

based on multi-trait vocabulary summary statistics suggested overlap with intelligence 

(rg=0.14(SE=0.05), P=0.006) and reading (rg=0.35(SE=0.16), P=0.03) at the nominal level. 

I also observed evidence for positive genetic correlations of ADHD with early-phase 

expressive vocabulary (rg=0.39(SE=0.14), P=0.006) and multi-trait vocabulary 

(rg=0.18(SE=0.08), P=0.02) at the nominal level. However, there was little support for 

genetic overlap between vocabulary and the studied childhood-onset 

neurodevelopmental disorders or infant and childhood anthropometric traits at the 

study-wide threshold (Figure 4).  
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Figure 4: Genetic correlations of vocabulary with cognition-related later-life outcomes, infant and childhood 

anthropometric traits and childhood-onset neurodevelopmental disorders. Genetic correlations (rg) were 

estimated using summary statistics and unconstrained LD score correlation (LDSC)82. Bars represent 95%-

confidence intervals. Detailed information for each analysis stage is provided in Figure 1. Late-phase receptive 

vocabulary was not included in LDSC genetic correlation analyses due to its low inherent power (SNP-h2 Z-

score=0.90, Table 4). ** Estimate passing the multiple-testing adjusted P-value threshold of 0.005. * Estimate 

passing the nominal P-value threshold of 0.05. Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; 

ASD, Autism Spectrum Disorder; EA, educational attainment; EV, expressive vocabulary  

 

5.4. Discussion 
 

In this study, I conducted a meta-GWAS of expressive and receptive vocabulary 

size during infancy and early childhood. I confirmed the low SNP-h2 for both early-phase 

expressive vocabulary and late-phase expressive vocabulary, as estimated by earlier 

studies8, while SNP-h2 for late-phase receptive vocabulary based on summary statistics 

was consistent with zero, possibly due to low power. Genetic correlation analyses 

suggested shared genetic influences underlying early expressive vocabulary across 

different developmental phases as well as across expressive and receptive vocabulary 

traits. In addition, expressive vocabulary size in toddlerhood showed weak-to-moderate 

polygenic links with cognition-related outcomes during later life, such as adult 

educational attainment and intelligence across the lifespan. These findings imply that 

part of the genetic influences related to later-life cognition and educational attainment 

can already be captured by genetic factors influencing expressive vocabulary at the age 

of two and three years. I did not observe evidence for single variant associations at the 

genome-wide significant threshold adjusted for testing of multiple phenotypes 

(P<1.79x10-8). However, association of rs9854781 with early-phase expressive 

vocabulary was observed at the unadjusted genome-wide level (P<5x10-8), confirming a 

previous GWAS signal8. 
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The high genetic correlations across different developmental stages for 

expressive vocabulary suggested genetic stability, consistent with previous findings using 

both samples of twins and unrelated individuals8,9,13. With respect to cognition-related 

later life outcomes, the current findings support a role for genetic influences related to 

late-phase expressive vocabulary (24-38 months). Genetic correlation analyses provided 

evidence for weak-to-moderate positive genetic links between late-phase expressive 

vocabulary and subsequent reading ability, intelligence and educational attainment. 

These findings support the outcomes of observational studies reporting the predictive 

value of early language abilities for both accuracy and comprehension aspects of reading 

up to five years later95, as well as academic achievement96. Interestingly, the current 

results imply that polygenic variation contributing to expressive vocabulary during 

toddlerhood, i.e. at an age where IQ tests cannot be administered yet, tag a subset of 

the genetic variation that is related to intelligence in later life. However, the estimated 

genetic correlations between expressive vocabulary and later cognition-related traits 

were only weak to modest, and thus the predictive power of late-phase expressive 

vocabulary measures is low. In contrast, genetic correlations between mid-

childhood/early-adolescent literacy- and language-related skills and EA are considerably 

larger, with estimates ranging between 0.57 and 0.8927 (chapter 6). In my analyses of 

common genetic variation, I did not find strong evidence for genetic links of early 

vocabulary with ASD or ADHD, or with the infant and childhood anthropometric traits 

investigated.  

There is little currently known about genetic factors contributing to variation in 

receptive vocabulary. Scarce information on late-phase receptive vocabulary most likely 

reflects the absence of a receptive vocabulary scale in frequently used psychological 

instruments to assess early language development, such as the LDS44 and CDI-WS42. In 

general, parents are thought to be poorer at judging their child’s language 

comprehension compared to language production97, as assessing receptive language 

skills requires that parents notice their children’s non-verbal responses to words and is 

therefore deemed more subjective than assessing expressive language skills. A study of 

25-month-old children, however, showed that parents are able to assess receptive 

vocabulary, with a correlation of 0.55 between parent report and child task 

performance, highlighting the feasibility of studies investigating early receptive language 

skills38. Indeed, genetic correlation analyses using GREML55, a more powerful approach 

when individual-level genotype is available than LDSC56,57, confirmed the utility of 

receptive vocabulary scores in toddlers, with strong genetic correlations between late-

phase expressive and receptive vocabulary measures.  

At the single variant level, a genome-wide significant association signal with early-

phase expressive vocabulary (P=4x10-8) was identified on chr3p12.3 at rs9854781, 

although it did not pass the corrected threshold for testing multiple phenotypes 

(P<1.79x10-8). This association signal is consistent with findings from a previous meta-
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GWAS effort (rs7642482) studying early-phase expressive vocabulary with genotypes 

from nearly identical samples derived from an earlier imputation reference panel8. 

rs9854781 is in high LD with rs7642482 (LD-r2=0.78) and is located only 976 base pairs 

downstream of rs7642482. Both SNPs are located within an intergenic region near 

ROBO2, encoding Homo sapiens roundabout homologue 2 (Drosophila), which is an axon 

guidance receptor that binds to secreted SLIT ligands98,99. However, my follow-up in silico 

analyses, including eQTL mapping, did not uncover evidence supporting a functional role 

of rs9854781 on the expression of ROBO2 or other protein-coding genes.  

Despite an increase in statistical power for the detection of SNPs associated with 

vocabulary compared to the previous meta-GWAS effort8, there was no evidence for 

association of SNPs with late-phase expressive vocabulary, late-phase-receptive 

vocabulary or multi-trait vocabulary (P<5x10-8). The most powerful analyses (multi-trait 

vocabulary, stage II) had 99% power to detect association with a genetic variant 

explaining 0.3% of the trait variance (assuming an additive model and an increaser allele 

frequency of 0.1, with complete LD with marker and genetic risk variant)100. However, 

power to detect variants with smaller contributions to the trait variance is still only 

modest (e.g. 37% power to detect a genetic variant explaining 0.1% of the trait 

variance)100. Thus, the power of this study is still too low to identify genetic variants with 

very small effects on vocabulary development. Nonetheless, the derived summary 

statistics for early-phase expressive vocabulary, late-phase expressive vocabulary and 

multi-trait vocabulary captured sufficient polygenic signal (SNP-h2 Z-score > 1.5)54 to 

study genetic links with each other and with other complex heritable traits, using LDSC 

correlation.  

This study has several strengths and limitations. Its strengths include maximising 

the statistical power to detect SNP-vocabulary associations by the application of MTAG 

analysis for genetically correlated traits. However, MTAG results derived based on low 

powered traits (mean χ2 statistic < 1.02) could lead to biased MTAG estimates and an 

increased FDR rate68. Sensitivity analyses suggested that this scenario is unlikely and 

showed the validity of results. Beta coefficients and standard errors derived from MTAG 

analyses were strongly correlated with results from a fixed-effect meta-analysis for late-

phase expressive vocabulary, despite the inclusion of some vocabulary data with a mean 

χ2 statistic < 1.02 and maximum FDR rates of 0.42 and 0.36 for late-phase expressive 

vocabulary and multi-trait vocabulary, respectively. Residual errors between high- and 

low-powered studies are uncorrelated with each other and are thus unlikely to bias 

genetic links with later-life cognition-related abilities as reported in this study, even in 

the presence of inflated MTAG estimates. Another cautionary note related to our 

findings is that genetic links between samples of unrelated individuals reflect both direct 

and indirect genetic effects. The latter include environmental effects that are created 

based on parental genotypes and that will in turn influence offspring development101. A 

study comparing within- and between-family polygenic scoring prediction showed that 
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indirect effects may especially contribute to polygenic predictions of cognition-related 

traits102. Thus, the reported genetic links between late-phase expressive vocabulary and 

subsequent cognition-related traits may not only represent shared genetic variance, but 

also genotype-environment correlation.  

The study described in this chapter represents analyses based on an intermediate 

freeze of the EAGLE early vocabulary meta-analysis, incorporating cohort data available 

at the time of writing. Future efforts will benefit from further increasing the sample size 

to boost statistical power, which may result in identification of more genome-wide 

significant associations, as observed for example for EA85,103,104. Furthermore, statistical 

power could be increased by applying MTAG analyses beyond early vocabulary 

measures. Such approaches could, for example, include reading ability, a trait that can 

be assessed later during development and was shown to be genetically correlated with 

late-phase expressive vocabulary. In addition, researchers should consider to include 

other aspects of early language development than vocabulary size in multi-trait analyses. 

This could include grammatical abilities, for which moderate-to-strong genetic 

correlations with vocabulary assessments at two and three years of age have been 

reported based on analyses of a UK twin sample9,10. Although broadening the definition 

of early language skills may increase the power to detect genetic factors underlying 

shared developmental processes, it may limit the identification of vocabulary-specific 

genetic influences. Finally, increased verbal abilities of girls compared to boys at 24 

months105 suggests an indirect or direct influence of sex chromosomes.  

In summary, this study provided evidence for a contribution (albeit low) of 

common genetic variation to early- and late-phase expressive vocabulary scores. Genetic 

correlation analyses suggest a shared genetic aetiology both across early vocabulary 

measures and between late-phase expressive vocabulary and later-life cognition-related 

skills, such as reading and intelligence. Despite increased power of this meta-GWAS 

study compared to a previous effort8, the statistical power to identify single variants with 

small effects on early vocabulary development is still low. 
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Supplementary Materials 
 

Supplementary Methods 

 
Genome-wide association summary statistics on reading  

GWAS summary statistics on reading (N=13,027) were derived by conducting a 

fixed-effect meta-analysis of reading abilities as assessed in the Avon Longitudinal Study 

of Parents and Children1,2 (ALSPAC, N=4,247), the 1958 Birth Cohort3 (1958BC, N=4,638) 

and Philadelphia Neurodevelopmental Cohort4,5 (PNC, N=4,142). Within ALSPAC, word 

reading speed was assessed at 13 years using the Test of Word Reading Efficiency6 

(TOWRE). Within the PNC, reading accuracy was assessed in participants between 8 and 

22 years of age using the reading items of the Wide Range Achievement Test7 and within 

the 1958BC, reading comprehension was assessed at 11 years of age using a study-

specific reading comprehension test designed to parallel the Watts-Vernon test of 

reading ability. Here, the child was required to choose from a selection of five words the 

word that appropriately completed the sentence. There were 35 questions in total and 

the reliability coefficient of this test is 0.82. Reading scores were adjusted for sex, age, 

age2, the first two principal components and study-specific covariates such as batch, if 

applicable. For each cohort, genome-wide genotyping data were imputed against the 

HRC r1.1 reference panel8 and association tests were performed using SNPTEST9 (version 

2.5.2). Finally, a fixed-effect meta-analysis across all three cohorts was performed using 

METAL10 (N=13,027).  
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Supplementary Tables 

Table S1: Bivariate genetic correlations among ALSPAC vocabulary traits  
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Expressive vocabulary 15m (CDI) 1 

Expressive vocabulary 24m (CDI) 
0.57 

(0.23) 
1 

Expressive vocabulary 38m (CDI) 
0.39 

(0.27) 

0.74 

(0.16) 
1 

Receptive vocabulary 38m (CDI) 
-0.01 

(0.36) 

0.85 

(0.25) 

0.86 

(0.15) 
1 

Bivariate genetic correlations among vocabulary traits assessed within the Avon Longitudinal Study of Parents 

and Children study were assessed using a genetic-relationship-matrix of unrelated individuals (genetic 

relatedness < 0.05) estimated based on directly genotyped markers, as implemented within GCTA11. 

Corresponding standard errors are shown in brackets. Abbreviations: CDI, Communicative Development 

Inventory; m, months. 

 
Table S2: SNP heritability estimates for ALSPAC vocabulary measures based on individual-level genotype data 

ALSPAC vocabulary measure SNP-h2(SE) SNP-h2 Z-score N 

Expressive vocabulary 15m (CDI) 0.11(0.05) 3.14 6,524 

Expressive vocabulary 24m (CDI) 0.16(0.06) 2.77 6,014 

Expressive vocabulary 38m (CDI) 0.18(0.06) 2.06 6,092 

Receptive vocabulary 38m (CDI) 0.12(0.06) 2.01 6,092 

SNP-heritability estimates were estimated based on rank-transformed scores, directly genotyped SNPs and 
individuals with a genetic relationship of <0.05 using Genome-based Restricted Maximum Likelihood (GREML) 
analyses as implemented in genome-wide complex trait analysis (GCTA) software. SNP-h2 Z-scores were 
calculated by dividing SNP-h2 by its standard error. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents 
and Children; CDI, Communicative Development Inventory; GCTA, genome-wide complex trait analysis; m, 
months. 

  

5 



Genome-wide association meta-analysis of early-life vocabulary size 

 

170 

Table S3: Genetic correlations among traits included in LDSC correlation analyses 

Genetic correlations were estimated with unconstrained LD-score correlation analyses12. Standard errors are 

provided within brackets. Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism 

Spectrum Disorder; EA, educational attainment; EV, expressive vocabulary 
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Abstract 
Interpreting polygenic overlap between ADHD and both literacy- and language-

related impairments is challenging as genetic associations might be influenced by 

indirectly shared genetic factors. Here, we investigate genetic overlap between 

polygenic ADHD risk and multiple literacy- and language-related abilities (LRAs), as 

assessed in UK children (N≤5,919), accounting for genetically predictable educational 

attainment (EA). Genome-wide summary statistics on clinical ADHD and years of 

schooling were obtained from large consortia (N≤326,041). Our findings show that 

ADHD-polygenic scores (ADHD-PGS) were inversely associated with LRAs in ALSPAC, 

most consistently with reading-related abilities, and explained ≤1.6% phenotypic 

variation. These polygenic links were then dissected into both ADHD effects shared with 

and independent of EA, using multivariable regressions (MVR). Conditional on EA, 

polygenic ADHD risk remained associated with multiple reading and/or spelling abilities, 

phonemic awareness and verbal intelligence, but not listening comprehension and non-

word repetition. Using conservative ADHD-instruments (P-threshold<5x10-8), this 

corresponded, for example, to a 0.35 SD decrease in pooled reading performance per 

log-odds in ADHD-liability (P=9.2x10-5). Using subthreshold ADHD-instruments (P-

threshold<0.0015), these effects became smaller, with a 0.03 SD decrease per log-odds 

in ADHD risk (P=1.4x10-6), although the predictive accuracy increased. However, 

polygenic ADHD-effects shared with EA were of equal strength and at least equal 

magnitude compared to those independent of EA, for all LRAs studied, and detectable 

using subthreshold instruments. Thus, ADHD-related polygenic links with LRAs are to a 

large extent due to shared genetic effects with EA, although there is evidence for an 

ADHD-specific association profile, independent of EA, that primarily involves literacy-

related impairments. 
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6.1. Introduction 
 

Children with Attention-Deficit/Hyperactivity Disorder (ADHD) often experience 

difficulties mastering literacy- and language-related abilities (LRAs)1–3. It has been 

estimated that up to 40% of children diagnosed with clinical ADHD also suffer from 

reading disability (RD, also known as developmental dyslexia) and vice versa4. The 

spectrum of affected LRAs in ADHD may, however, also include writing5,6, spelling7,8, 

syntactic9,10 and phonological9,10 abilities. Both clinical ADHD and RD are complex 

childhood-onset neurodevelopmental conditions that affect about 5% and 7% of the 

general population respectively11,12. ADHD is characterised by hyperactive, inattentive 

and impulsive symptoms13, whereas decoding and/or reading comprehension deficits 

are prominent in individuals with RD14. 

To interpret the comorbidity of ADHD and RD, a multiple-deficit model including 

shared underlying aetiologies has been proposed, involving both genetic and 

environmental influences15. This model is supported by twin studies suggesting that the 

co-occurrence of ADHD symptoms and reading deficits is, to a large extent, attributable 

to shared genetic influences16–18. Further twin research suggests that the genetic 

covariance between reading difficulties and ADHD is largely independent of genetic 

factors shared with IQ19, although it is not known whether these findings extend to a 

wider spectrum of LRAs, beyond reading abilities. Furthermore, the interpretation of 

polygenic ADHD-LRA overlap using markers on genotyping arrays is more challenging. 

There is strong evidence that genetically predicted educational attainment (EA)20 shares 

genetic variability with both ADHD21 and reading abilities22,23. Genetically predicted EA is 

a genetic proxy of cognitive abilities, but also socioeconomic status20 including, for 

example, associations with maternal smoking during pregnancy, parental smoking, 

household income or watching television24. Thus, observed genetic associations 

between ADHD and reading abilities may solely reflect shared genetic variation with EA, 

but not any other, more specific neuro-cognitive mechanisms. In other words, polygenic 

associations might be inflated or even induced25 by genetically predictable traits that are 

related to both, ADHD and reading abilities (or other LRAs).  

Here, we (a) study polygenic links between clinical ADHD and a wide range of 

population-ascertained literacy- and language-related measures as captured 

by common variation, (b) evaluate to what extent such links reflect a shared genetic basis 

with EA and (c) assess whether there is support for shared genetic factors between 

clinical ADHD and LRAs conditional on genetically predicted EA.  

Studied ADHD polygenic scores (ADHD-PGS) are based on ADHD genome-wide 

association study (GWAS) summary statistics from two large independent ADHD 

samples, the Psychiatric Genomics Consortium (PGC) and the Danish Lundbeck 

Foundation Initiative for Integrative Psychiatric Research (iPSYCH), and a combination 

thereof. Associations between ADHD-PGS and a wide spectrum of population-based 
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literacy- and language-related measures related to reading, spelling, phonemic 

awareness, listening comprehension, non-word repetition and verbal intelligence skills, 

are examined in a sample of children from the UK Avon Longitudinal Study of Parents 

and Children (ALSPAC). Applying multivariable regression (MVR) techniques, analogous 

to Mendelian Randomization (MR) approaches26, we report here disentangled 

associations between polygenic ADHD risk and LRA measures and estimate effects 

independent of and shared with genetically predicted years of schooling, using summary 

statistics from the Social Science Genetic Association Consortium (SSGAC). 

6.2. Methods and Materials 
 

Literacy- and language-related abilities in the general population 
LRAs were assessed in children and adolescents from ALSPAC, a UK population-

based longitudinal pregnancy-ascertained birth cohort (estimated birth date: 1991-

1992, Supplementary Information)27,28. Ethical approval was obtained from the ALSPAC 

Law-and-Ethics Committee (IRB00003312) and the Local Research-Ethics Committees. 

Written informed consent was obtained from a parent or individual with parental 

responsibility and assent (and for older children consent) was obtained from the child 

participants. 

Phenotype information: Thirteen measures capturing LRAs related to reading, 

spelling, phonemic awareness, listening comprehension, non-word repetition and verbal 

intelligence scores were assessed in 7 to 13 year-old ALSPAC participants (N≤5,919, Table 

1) using both standardised and ALSPAC-specific instruments. Detailed descriptions of all 

LRA measures are available in Table 1 and the Supplementary Information. 

All LRA scores were rank-transformed to allow for comparisons of genetic effects 

across different psychological instruments with different distributions (Supplementary 

Information). Phenotypic correlations, using Pearson-correlation coefficients, were 

comparable for untransformed and rank-transformed scores (Table S1). To account for 

multiple testing, we estimated the effective number of phenotypes studied using Matrix 

Spectral Decomposition29 (MatSpD), revealing seven independent measures 

(experiment-wide error rate of 0.007).  

For sensitivity analysis, we excluded 188 children with an ADHD diagnosis at age 

7, based on the Development and Wellbeing Assessment (DAWBA)30 (Supplementary 

Information).  

Genetic analyses: ALSPAC participants were genotyped using the Illumina 

HumanHap550 quad chip genotyping platforms, and genotypes were called using the 

Illumina GenomeStudio software. Genotyping, imputation and genome-wide association 

analysis details are described in the Supplementary Information and Table 2.  
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Table 1: Literacy- and language-related abilities in the Avon Longitudinal Study of Parents and Children  

LRA (psychological 

instrument) 
Mean Score (SE) Mean Age (SE) N (%males) LRA combinations 

Reading accuracy and 

comprehension (WORD69), 

words 

28.44 (9.24) 7.53 (0.31) 5,891 (50.6) 
---------R

ead
in

g---------- 

---------------------------A
ll LR

A
s----------------------- 

Reading accuracy (ALSPAC 

specific: NBO70), words 
7.55 (2.44) 9.87 (0.32) 5,738 (49.3) 

Reading speedǂ (NARA II71), 

passages 
105.50 (12.47) 9.88 (0.32) 5,189 (49.1) 

Reading accuracyǂ (NARA 

II71), passages 
104.11 (13.62) 9.88 (0.32) 5,201 (49.1) 

Reading speed (TOWRE72), 

words 
82.58 (10.28) 13.83 (0.20) 4,247 (48.4) 

Non-word reading accuracy 

(ALSPAC specific: NBO70) 
5.24 (2.48) 9.87 (0.32) 5,731 (49.2) 

Non-word reading speed 

(TOWRE72) 
50.82 (9.38) 13.83 (0.20) 4,237 (48.3) 

Spelling accuracy (ALSPAC 

specific: NB) 
7.89 (4.39) 7.53 (0.31) 5,800 (50.2) 

Sp
ellin

g
 Spelling accuracy (ALSPAC 

specific: NB) 
10.27 (3.43) 9.87 (0.32) 5,728 (49.2) 

Phonemic awareness (AAT73) 20.23 (9.51) 7.53 (0.31) 5,919 (50.6)  

Listening comprehension 

(WOLD74) 
7.50 (1.96) 8.63 (0.30) 5,473 (49.9) 

 

Non-word repetition 

(CNRep75) 
7.26 (2.51) 8.63 (0.30) 5,464 (49.9) 

 

Verbal intelligenceǂ (WISC-

III76) 
107.85 (16.74) 8.64 (0.31) 5,456 (49.7) 

  

Thirteen LRAs capturing aspects related to reading, spelling, phonemic awareness, listening comprehension, 

non-word repetition and verbal intelligence were assessed in 7 to 13 year-old ALSPAC participants using both 

standardised and ALSPAC-specific instruments (Supplementary Information). ǂ Scores were derived using age 

norms and adjusted for sex and principal components only before transformation. Abbreviations: LRAs, 

literacy- and language-related abilities; WORD, Wechsler Objective Reading Dimension; ALSPAC, Avon 

Longitudinal study of Parents and Children; NBO, ALSPAC-specific assessment developed by Nunes, Bryant and 

Olson; NARA II, The Neale Analysis of Reading Ability- Second Revised British Edition; TOWRE, Test Of Word 

Reading Efficiency; NB, ALSPAC-specific assessment developed by Nunes and Bryant; AAT, Auditory Analysis 

Test; WOLD, Wechsler Objective Language Dimensions; CNRep, Children's Test of Nonword Repetition; WISC-

III, Wechsler Intelligence Scale for Children III. 

6 



Disentangling polygenic associations between ADHD, EA, literacy and language 

 

178 

Clinical ADHD summary statistics 

Psychiatric Genomics Consortium (PGC). GWAS summary statistics were obtained 

from a mega-analysis of clinical ADHD31, conducted by the PGC (4,163 cases and 12,040 

controls/pseudo-controls) (Table 2, Supplementary Information, 

www.med.unc.edu/pgc/).  

The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH). 

An independent set of ADHD GWAS summary statistics were accessed through the 

Danish iPSYCH project32 (14,584 ADHD cases, 22,492 controls) (Table 2, Supplementary 

Information), using samples from the Danish Neonatal Screening Biobank hosted by 

Statens Serum Institute21,33.  

Combined PGC and iPSYCH ADHD sample (PGC+iPSYCH). To maximise power, we 

also analysed meta-GWAS summary statistics from an ADHD sample containing both PGC 

and iPSYCH participants21 (20,183 cases, 35,191 controls/pseudo-controls) (Table 2, 

www.med.unc.edu/pgc/) and its European-only subset (PGC+iPSYCH(EUR), 19,099 

cases, 34,194 controls/pseudo-controls) (Table 2, www.med.unc.edu/pgc/).  

Detailed sample descriptions are available in Table 2 and the Supplementary 

Information. 

 

Educational attainment summary statistics 
GWAS summary statistics for EA20 (discovery and replication sample combined, 

excluding ALSPAC and 23andMe samples, N=326,041) were obtained from the SSGAC 

consortium. EA was assessed as years of schooling20. A detailed sample description is 

available in Table 2 and the Supplementary Information. 

 

Genome-wide complex trait analysis 
SNP-h2 and genetic correlations (rg) between LRAs were estimated using 

Restricted Maximum Likelihood (REML) analyses34,35 as implemented in Genome-wide 

Complex Trait Analysis (GCTA) software36, including individuals with a genetic 

relationship <0.0534. For this study, we selected only LRAs with evidence for SNP-h2 and 

sample size N>4,000 (Table S2).  

 

Linkage Disequilibrium Score regression and correlation 
Linkage Disequilibrium Score (LDSC) regression37 was used to distinguish 

confounding biases from polygenic influences by examining the LDSC regression 

intercept. Unconstrained LD-score correlation38 analysis was applied to estimate rg 

(Supplementary Information).  
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Table 2: Sample description 

Phenotype Sample Source Ethnicity 
Imputation 
reference 
panel 

N 

LRAs ALSPAC 
General 
population 

White 
European 

HRC r1.1 ≤ 5,891 

ADHD 

PGC Clinical sample 
Predominantly 
white 
European 

HapMap 
phase 3 

16,203 
(Ncases=4,163) 

iPSYCH  Clinical sample 
White 
European 

1000 
Genomes 
phase 3 

37,076 
(Ncases=14,584) 

PGC+iPSYCH (EUR) Clinical sample 
White 
European 

1000 
Genomes 
phase 3 

53,293 
(Ncases=19,099) 

PGC+iPSYCH Clinical sample 
Predominantly 
white 
European 

1000 
Genomes 
phase 3 

55,374 
(Ncases=20,183) 

EA SSGAC 
Predominantly 
general 
population 

White 
European 

1000 
Genomes 
phase 3a 

326,041 

Note that there is no overlap between LRA, ADHD and EA samples. a - Predominantly 1000 Genomes phase 
320. Abbreviations: LRAs, literacy- and language-related abilities; ADHD, Attention-Deficit/Hyperactivity 
Disorder; EA, educational attainment; ALSPAC, Avon Longitudinal study of Parents and Children; PGC, 
Psychiatric Genomics Consortium; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric 
Research; EUR, European ancestry; SSGAC, Social Science Genetic Consortium; HRC, The Haplotype Reference 
Consortium 

 

Polygenic scoring analyses 
ADHD-PGS39,40 were created in ALSPAC using the independent PGC and iPSYCH 

GWAS summary statistics, and, to maximise power, also for GWAS summary statistics 

from the combined PGC+iPSYCH sample (Supplementary Information). ADHD-PGS have 

been previously linked to ADHD symptoms in ALSPAC participants41. Rank-transformed 

LRAs were regressed on Z-standardised ADHD-PGS (aligned to measure risk-increasing 

alleles) using ordinary least square (OLS) regression (R:stats library, Rv3.2.0). The 

proportion of phenotypic variance explained is reported as OLS-regression-R2. Beta-

coefficients (β) for ADHD-PGS quantify here the change in standard deviation (SD) units 

of LRA performance per one SD increase in ADHD-PGS.  

 

Multivariable regression analysis  
To study the genetic association between ADHD and LRAs conditional on genetic 

influences shared with EA, we applied MVR. This technique is analogous to MR 

methodologies26 and controls for collider bias42 through the use of GWAS summary 

statistics. Technically, it involves the regression of regression estimates from 

independent samples on each other26 (Supplementary Information). Within this study 

we use MVR without inferring causality due to violations of classical MR assumptions26 

(see below).  
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Genetic variant selection: To disentangle ADHD-LRA associations, we selected 

two sets of instruments from the most powerful ADHD GWAS summary statistics 

(PGC+iPSYCH). The first set contained genome-wide significant variants (P<5x10-8, 

conservative). The second set included variants passing a more lenient P-value threshold 

(P<0.0015, subthreshold) to increase power, consistent with current guidelines for the 

selection of genetic instruments in MR (F-statistic<10)43. All sets included independent 

(PLINK44 clumping: LD-r2<0.25, ±500 kb), well imputed (INFO45>0.8) and common 

(EAF>0.01) variants. This resulted in 15 conservative and 2,689<NSNPs≤2,692 

subthreshold ADHD-instruments (Table S8).  

Estimation of ADHD effects: We extracted regression estimates for selected 

ADHD-instruments (conservative and subthreshold) from ADHD (PGC+iPSYCH), EA 

(SSGAC) and 13 LRA (ALSPAC) GWAS summary statistics. Analysing each set of variants 

independently, regression estimates for individual LRA measures (β) were regressed on 

both ADHD (β as lnOR) and EA regression estimates (β) using an OLS regression 

framework (R:stats library, Rv3.2.0). Outcomes were 1) a MVR regression estimate 

quantifying the change in SD units of LRA performance per log odds increase in ADHD 

risk conditional on years of schooling (ADHD effect independent of EA), and 2) a MVR 

regression estimate quantifying the change in SD units of LRA performance per year of 

schooling as captured by ADHD instruments (ADHD effect shared with EA). Latter MVR 

regression estimates capture here shared genetic effects between ADHD, EA and LRAs, 

including 1) genetic confounding (i.e. genetically predictable EA influences both ADHD 

and LRAs), 2) mediation (i.e. genetically predictable ADHD influences LRA indirectly 

through EA) and 3) biological pleiotropy (i.e. ADHD risk variants affect ADHD and EA 

through independent biological pathways). As ADHD risk and EA are inversely genetically 

related with each other21, they were reported to quantify change per missing year of 

schooling. To compare the magnitude of both MVR estimates, we also conducted 

analyses using fully standardised EA, ADHD and LRA regression estimates 

(Supplementary Information). 

Finally, MVR regression estimates were meta-analysed and contrasted across 

reading-related, spelling-related and all LRA measures (excluding the composite 

measure verbal intelligence) (Table 1) using random-effects meta-regression, accounting 

for phenotypic correlations between LRAs (R:metafor library46, Rv3.2.0; Supplementary 

Information).  

Sensitivity analyses: As the directionality of the relationship between ADHD, EA 

and LRAs cannot be inferred in this study, we also examined the genetic association 

between EA and LRAs, conditional on ADHD, using MVR. Two sets of EA instruments 

(conservative and subthreshold, Table S8) were selected from EA (SSGAC) GWAS 

summary statistics, analogous to the selection of ADHD instruments, and MVR was 

conducted as described above. Note that we did not create LRA instrument sets, as 

GWAS summary statistics of LRAs were underpowered. 
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Attrition analysis  
We carried out an attrition analysis in ALSPAC studying the genetic association 

between LRA-missingness and polygenic ADHD risk, using both polygenic scoring 

analyses and MVR (Supplementary Information).  

 

6.3. Results 
 

Genetic architecture of literacy- and language-related abilities and 

clinical ADHD  
Phenotypic variation in literacy- and language-related measures (Table 1), 

including reading abilities (comprehension, accuracy and speed) assessed in 

words/passages and non-words, spelling abilities (accuracy), phonemic awareness, 

listening comprehension, non-word repetition and verbal intelligence scores, can be 

tagged by common variants, with SNP-h2 estimates between 0.32 (SE=0.07, non-word 

repetition age 8) and 0.54 (SE=0.07, verbal intelligence age 8) (Table S2; GCTA- and LDSC-

based estimations). Importantly, all LRAs are phenotypically (Table S1) and genetically 

(Table S3) moderately to strongly interrelated. The observed LDSC-based evidence for 

genetic liability of clinical ADHD within the PGC (LDSC-h2=0.08(SE=0.03)), iPSYCH (LDSC-

h2=0.26(SE=0.02)) and PGC+iPSYCH samples (Table S4) is consistent with previous 

reports 21.  

 

Association between ADHD polygenic risk scores and literacy- and 

language-related abilities  
We observed robust evidence for an inverse genetic association between ADHD-

PGS and reading accuracy/comprehension age 7 (PGC: OLS-R²=0.1%, P=4.6x10-3; iPSYCH: 

OLS-R²=1.0%, P<1x10-10), reading accuracy age 9 (PGC: OLS-R²=0.1%, P=5.7x10-3; iPSYCH: 

OLS-R²=1.2%, P<1x10-10 ), and spelling accuracy age 9 (PGC: OLS-R²=0.2%, P=1.5x10-3; 

iPSYCH: OLS-R²=0.8%, P<1x10-10) using independent ADHD discovery samples (Figure 1, 

Table S5). The strongest evidence for association was observed when ADHD discovery 

samples were combined (PGC+iPSYCH; Figure 1), including those of European ancestry 

only (PGC+iPSYCH(EUR)), with genetic trait-disorder overlap present for all LRAs studied 

(Table S5). For example, ADHD-PGS explain 1.49% phenotypic variation in reading 

accuracy age 9, translating into a genetic covariance of -0.11(95%-CI: -0.14;-0.09) 

(Supplementary Information). Polygenic scoring results are presented for a P-value 

threshold of 0.1, but other thresholds provided similar results (data not shown). Results 

were not affected by the exclusion of children with an ADHD diagnosis in ALSPAC (Table 

S6).  
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Figure 1: Phenotypic variance in literacy- and language-related abilities explained by polygenic ADHD risk.  

(a) Schematic representation of polygenic scoring analyses. ADHD polygenic scores were created in ALSPAC 

using PGC, iPSYCH and PGC+iPSYCH GWAS summary statistics. Rank-transformed LRAs were regressed on Z-

standardised ADHD-PGS using ordinary least square regression. (b) Phenotypic variance in literacy- and 

language-related abilities explained by polygenic ADHD risk. * Evidence for association between LRAs and 

polygenic ADHD risk as observed in PGC ADHD, iPSYCH ADHD and PGC+iPSYCH ADHD samples. Note that all 

LRAs were associated with polygenic ADHD risk in iPSYCH ADHD and PGC+iPSYCH ADHD passing the 

experiment-wide error rate (P<0.007). Abbreviations: a, accuracy; c, comprehension; s, speed; WORD, 

Wechsler Objective Reading Dimension; NBO, Nunes, Bryant and Olson (ALSPAC specific instrument); NARA II, 

The Neale Analysis of Reading Ability- Second Revised British Edition; TOWRE, Test Of Word Reading Efficiency; 

NW, non-word; NB, Nunes and Bryant (ALSPAC specific instrument); PhonAware, phonemic awareness; AAT, 

Auditory Analysis Test; WOLD, Wechsler Objective Language Dimensions; CNRep, Children’s Test of Nonword 

Repetition; VIQ, verbal intelligence quotient; WISC-III, Wechsler Intelligence Scale for Children III; PGC, 

Psychiatric Genomics Consortium; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric 

Research; ADHD, Attention-Deficit/Hyperactivity Disorder. 

  

6 



Results 

 
183 

Shared genetic liability between ADHD and LRA with EA 
There was strong evidence for a moderate negative genetic correlation (rg=-

0.53(SE=0.03), P<1x10-10) between genetically predicted ADHD, as captured by the 

largest ADHD discovery sample (PGC+iPSYCH), and EA (LDSC-h2=0.11(SE=0.004)), 

consistent with previous findings21. Likewise, LRAs were moderately to highly positively 

correlated with EA (e.g. reading speed age 13 rg=0.80(SE=0.22), P=3.0x10-4; Table S7), as 

previously reported22,23. Additionally, two independent variants reached genome-wide 

significance for both ADHD21 and EA20, consistent with biological pleiotropy (i.e. single 

genetic loci influencing multiple traits)47. These findings indicate complex, potentially 

reciprocal cross-trait relationships (Figure 2a) and violate MR causal modelling 

assumptions26. Consequently, ADHD instruments are not valid MR instruments as they 

are not independent of EA. 

 

Multivariable regression analyses  
To disentangle the genetic overlap of polygenic ADHD risk with literacy- and 

language-related measures into ADHD genetic effects independent of and shared with 

EA, we applied MVR26 using ADHD instruments based on the most powerful ADHD 

discovery sample (PGC+iPSYCH) (Figure 2b).  

Using conservative ADHD instruments (Table S8), non-word reading accuracy at 

age 9 and pooled reading-related abilities were associated with polygenic ADHD risk, 

conditional on EA (Table 3). The latter translates into, for example, a decrease of 0.35 SD 

in pooled reading performance per log-odds increase in ADHD risk (βADHD=-

0.35(SE=0.09), P=9.2x10-5, Phet=0.19), an effect that was considerably stronger than for 

other LRAs (Pmod=0.011, Table S10).  

Using subthreshold ADHD instruments (Table S8), polygenic ADHD effects on LRA 

performance, conditional on EA, were detectable for all reading- and spelling-related 

measures, phonemic awareness and verbal intelligence, but not other LRAs such as 

listening comprehension and non-word repetition (Table 3). Evidence was strongest for 

pooled reading and spelling abilities (Table 3, minimum P=1.1x10-8). However, 

observable effects were smaller in magnitude compared to those captured by 

conservative ADHD instruments with, for example, a 0.03 SD decrease in pooled reading 

performance per log-odds increase in ADHD risk (βADHD=-0.03(SE=0.01), P=1.4x10-6, Table 

3). Comparing ADHD-specific effects on both reading and spelling with ADHD-specific 

effects on all other LRAs provided evidence for effect differences (Pmod= 0.016), with 

stronger ADHD effects on literacy-related abilities, in particular spelling (Table S10).  

Polygenic ADHD effects that are shared with EA were identified for all LRAs 

studied using subthreshold, but not conservative ADHD instruments (Table 3). This 

translates into, for example, a further 0.50 SD units decrease in pooled reading 

performance per missing school year (βEA=-0.50(SE=0.09), P=4.9x10-8, Table 3). Thus, the 
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observed association between polygenic ADHD risk and listening comprehension and 

non-word repetition is fully attributable to genetic effects shared with EA (Table 3). 

Contrary to ADHD-specific effects, ADHD effects shared with EA showed no evidence for 

effect differences between literacy-related versus other LRAs (P=0.31). Conducting MVR 

with fully standardised estimates showed that ADHD effects shared with EA were as large 

as or even larger compared to ADHD-specific effects (Figure 2c, Table S9). 

Using an analogous approach, we disentangled the genetic overlap between 

polygenic EA and LRAs into genetic EA effects independent of and shared with ADHD, 

based on EA instruments (Figure S1). There was strong evidence for EA effects shared 

with ADHD using subthreshold, but not conservative EA instruments (Table S11). The 

magnitude of ADHD genetic effects shared with EA, captured by ADHD genetic 

instruments, compared to the magnitude of EA genetic effects shared with ADHD, 

captured by EA instruments, was largely consistent with each other in fully standardised 

analyses (Table S9 and S11).  

There was little evidence supporting the inclusion of regression intercepts in MVR 

that would imply additional genetic effect variation in LRAs estimates, not yet captured 

by either ADHD or EA effect estimates, based on the selected instruments. Therefore, all 

MVRs were performed using constrained intercepts26. 

 

6.4. Discussion 
 

This study identified strong and replicated evidence for an inverse association 

between polygenic ADHD risk and multiple population-based LRAs using a polygenic 

scoring approach. However, these associations involve shared genetic variation with 

genetically predictable EA. Accurate modelling of polygenic links using MVR techniques, 

conditional on EA, revealed an ADHD-specific association profile that primarily involves 

literacy-related impairments. Once shared genetic effects with EA were accounted for, 

polygenic ADHD risk was most strongly inversely associated with reading and/or spelling 

abilities, in addition to phonemic awareness and verbal intelligence, but not listening 

comprehension and non-word repetition abilities. Importantly, genetic overlap between 

polygenic ADHD risk and all of the LRAs studied was inflated by genetic effects shared 

with EA. 

Using independent ADHD discovery samples, these findings show that genetic 

overlap between ADHD and literacy-related impairments observed in twin and family 

studies16–18 can be extended to genetic associations, as captured by common variation 

in general population samples. The identified association profile suggests that not only 

reading-related abilities (including both word and nonword reading skills), but also 

phonological and spelling-related abilities share genetic aetiology with ADHD. These 

interrelated LRAs may, as hypothesised for RD, arise from a phonological 
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impairment48,49, which affects decoding and reading skills50, but also spelling abilities51. 

However, reading abilities can, once developed, also shape phonological skills52.  

In addition, this study suggests that genetic associations between polygenic 

ADHD and LRAs reflect, at least partially, shared genetic influences with genetically 

predictable EA and that, equally likely, genetic associations between polygenic EA and 

LRAs share genetic influences with ADHD. The magnitude of these shared effects, 

modelled with different MVR approaches, was comparable with each other. This is 

consistent with reciprocal genetic influences between EA and ADHD (Figure 2a) and 

supports an intergenerational multiple-deficit model proposed for reading disability15,53. 

Children growing up in disadvantaged environments, genetically predictable through 

polygenic EA scores54, might be more vulnerable to psychiatric illness including ADHD55 

that affects, in turn, their LRAs. In addition, adolescents with ADHD might be more likely 

to leave school at an earlier age, with lower LRA performance and EA, and pass on an 

increased genetic load to their own children56.  

Here, we demonstrate that disentangling multivariate genetic interrelationships 

between ADHD, EA and LRAs using MVR can aid the interpretation of genetic overlap, 

while controlling for collider bias42. However, using MVR, the detection of these 

polygenic associations was strongly governed by the choice of genetic variants. 

Conservative ADHD instruments identified large ADHD-specific effects on reading as a 

domain and little evidence for genetic effects that are shared with EA, although they had 

limited power57. They comprised 15 independent SNPs only, including variation within 

FOXP2, a gene that has been implicated in childhood apraxia of speech and expressive 

and receptive language impairments (http://omim.org/entry/602081)58. On the other 

hand, subthreshold instruments, including thousands of variants, tagged ADHD-specific 

polygenic links with LRAs (conditional on EA) with smaller effects, but with higher 

predictive accuracy. However, these instruments also captured shared genetic effects 

with EA, affecting polygenic links between ADHD and all of the LRAs studied. These 

shared genetic influences were of equal strength and at least equal magnitude compared 

to ADHD-LRA associations independent of EA. Contrary, a previous twin study showed 

that the genetic covariance between ADHD and reading difficulties was largely 

independent of genetic effects shared with IQ19, suggesting that our findings may also 

reflect socio-economic influences. Thus, in order to improve reading and, more 

generally, literacy-related deficits in children with ADHD, there is potentially a need for 

further intervention programmes targeting EA-independent underlying neurocognitive 

deficits, beyond general training programmes aiming at schooling outcomes59. 

In general, our findings are consistent with an omnigenic60 model of complex trait 

architectures, compatible with a general factor model of psychopathology61, including 

ADHD62. The omnigenic model construes that only the largest-effect variants will reflect 

ADHD specificity, and may thus tag the most trait-specific associations between ADHD 

and reading, independent of EA. The majority of variants, however, will capture 
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pleiotropic (omnigenic) influences pointing to highly interconnected neural networks60 

that give rise to genetic confounding. Consequently, the majority of subthreshold 

variants, captured by both ADHD and EA subthreshold variants, are likely to represent 

highly powerful cross-trait genetic predictors that may enhance and induce genetic 

overlap.  

Finally, the methodological framework within this work has not only relevance for 

studies investigating polygenic links between ADHD and LRAs, but for many studies 

examining multivariate trait interrelationships that involve shared genetic effects with a 

genetically predictable confounder. Specifically, our findings suggest that lower variant 

selection thresholds can introduce genetic variance sharing that is unspecific and needs 

to be accounted for before identified associations can be interpreted in terms of 

underlying mechanisms, including shared genetic aetiologies. This is especially important 

as current guidelines for studying polygenic links with allelic scores recommend 

aggregating genetic variants across less stringent significance thresholds to maximise 

genetic association between discovery and target samples63,64.  

This study has several limitations. Firstly, ALSPAC, as other cohort studies, suffers 

from attrition65,66. Sensitivity analyses showed that this is unlikely to bias our findings 

based on conservative instruments. However, links identified using subthreshold ADHD 

variants, might have been underestimated given that individuals with a genetic 

predisposition to ADHD (but also smoking initiation, higher body mass index, 

neuroticism, schizophrenia and depression) are more likely to drop out66. Secondly, the 

strength of the genetic overlap between polygenic ADHD risk and LRAs may vary 

according to ADHD symptom domain levels, implicating especially inattentiveness67, as 

well as the nature of the literacy- or language-related ability involved (as we observed 

evidence for effect heterogeneity when combining all LRAs). It is conceivable that also 

other verbal abilities, not investigated in this study, such as grammar, expressive 

vocabulary or pragmatic skills, may genetically overlap with ADHD. Furthermore, we only 

studied the extent to which shared genetic variance with EA affects the genetic 

association between ADHD and LRAs. However, we found little evidence for the presence 

of additional unaccounted for genetic influences using these instruments, i.e. effects 

that are not yet captured by either genetically predicted ADHD or EA. Finally, the power 

of available LRA GWAS summary statistics is still too low to generate genetic instruments 

supporting reverse models. Larger and more detailed clinical and population-based 

samples, as well as extensive multivariate variance analyses of the spectrum of LRAs (that 

are currently computationally expensive68) will help to further characterise the overlap 

between ADHD and literacy- and language-related cognitive processes.  
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Conclusion 
Polygenic associations of clinical ADHD and a range of LRAs are to a large extent 

attributable to genetic effects that are also shared with EA, especially when investigated 

with genetic variants typically selected for polygenic scoring approaches. Adjusting for 

these unspecific genetic effects reveals an ADHD-specific association profile that 

primarily involves literacy-related impairments.  
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Supplementary Materials 
 

Supplementary methods & analyses 

 
ALSPAC description 

ALSPAC recruited 14541 pregnant women resident in Avon, UK with expected 

dates of delivery 1st April 1991 to 31st December 1992. 14,541 is the initial number of 

pregnancies for which the mother enrolled in the ALSPAC study and had either returned 

at least one questionnaire or attended a “Children in Focus” clinic by 19/07/99. Of these 

initial pregnancies, there were a total of 14,676 fetuses, resulting in 14,062 live births 

and 13,988 children who were alive at 1 year of age. 

When the oldest children were approximately 7 years of age, an attempt was 

made to bolster the initial sample with eligible cases who had failed to join the study 

originally. As a result, when considering variables collected from the age of seven 

onwards (and potentially abstracted from obstetric notes) there are data available for 

more than the 14,541 pregnancies mentioned above. 

The number of new pregnancies not in the initial sample (known as Phase I 

enrolment) that are currently represented on the built files and reflecting enrolment 

status at the age of 18 is 706 (452 and 254 recruited during Phases II and III respectively), 

resulting in an additional 713 children being enrolled. The phases of enrolment are 

described in more detail in the cohort profile paper1.  

The total sample size for analyses using any data collected after the age of seven 

is therefore 15,247 pregnancies, resulting in 15,458 fetuses. Of this total sample of 

15,458 fetuses, 14,775 were livebirths and 14,701 were alive at 1 year of age. 

A 10% sample of the ALSPAC cohort, known as the Children in Focus (CiF) group, 

attended clinics at the University of Bristol at various time intervals between 4 to 61 

months of age. The CiF group were chosen at random from the last 6 months of ALSPAC 

births (1,432 families attended at least one clinic). Excluded were those mothers who 

had moved out of the area or were lost to follow-up, and those partaking in another 

study of infant development in Avon. 

The study website contains details of all the data that is available through a fully 

searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-

access/data-dictionary/). 
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Literacy- and language-related measures in ALSPAC 
 
Reading accuracy and comprehension age 7 (WORD) 

Pictures and words were used to assess decoding and word reading. The child 

was shown a series of four pictures. Each picture had four short, simple words 

underneath it. The child was asked to point to the word which had the same beginning 

or ending sound as the picture. This was then followed by a series of three pictures, each 

with four words beneath, each starting with the same letter as the picture. The child was 

asked to point to the word that correctly named the picture. Basic reading was assessed 

using the basic reading subtest of the Wechsler Objective Reading Dimensions (WORD)2. 

In short, the child was asked to read aloud a series of 48 unconnected words which 

increased in difficulty. The task was stopped after the child made six consecutive errors. 

The reading accuracy and comprehension score was computed as the sum of the number 

of items that the child read/responded to correctly.  

 

Reading accuracy age 9 (NBO) 

Reading accuracy was assessed by asking the child to read out ten real words 

selected from a larger selection of words as described by Nunes, Bryant and Olsen 

(NBO)3. The test - retest reliability of word reading was 0.80. The correlation with the 

Schonell Word Reading Task4 was 0.85. The reading accuracy score was computed as the 

sum of the number of items that the child read correctly. 

 

Reading speed and reading accuracy age 9 (NARA II)  

Children's reading skills were assessed with the revised Neale Analysis of Reading 

Ability (NARA II)5. The child was asked to read a passage from a booklet. The tester 

recorded the time it took the child to read the passage, and noted any errors made by 

the child. All scores were standardised by age. 

 

Reading speed age 13 (TOWRE) 

The Test of Word Reading Efficiency (TOWRE)6 contains a word part to assess 

sight word efficiency. The child had 45 seconds to read as many words as possible. Words 

that a child skipped, or got wrong were marked by the tester. The reading speed score 

was computed as the sum of the number of correct words a child finished on. 

 

Spelling accuracy age 7 (NB) 

Spelling accuracy was assessed by asking a child to spell a series of 15 words. The 

words were chosen specifically for this age group after piloting on several hundred 

children (Nunes and Bryant, ALSPAC-specific measure). The words included regular and 

irregular words of differing frequencies, and were put in an order of increasing difficulty. 

For each word, the tester first read the word out alone to the child, then within a specific 
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sentence incorporating the word, and finally alone again. The child was asked to write 

down the spelling. The spelling accuracy score is computed as the number of words spelt 

correctly. 

 

Spelling accuracy age 9 (NB) 

The format to assess spelling accuracy at age 9 was similar to that at age 7. 

However, the series of 15 words that a child was asked to spell were adjusted to match 

the age group of 9. The spelling accuracy score is computed as the number of words 

spelt correctly. 

 

Non-word reading accuracy age 9 (NBO) 

This was assessed by asking the child to read out loud ten non-words, selected 

from a larger selection of non-words taken from research conducted by Nunes and 

colleagues3. The test - retest reliability of the non-word reading task was 0.73. The 

correlation with the Schonell Word Reading Task4 was 0.73. The tester emphasised to 

the child that the words ware made-up, and asked the child to read all the non-words in 

the way that they thought they should be read. The decoding accuracy score was 

computed as the sum of the number of items the child read correctly.  

 

Non-word reading speed age 13 (TOWRE) 

The Test of Word Reading Efficiency (TOWRE)6 contains a non-word part to assess 

decoding efficiency. The child had 45 seconds to read as many non-words as possible. 

Words that a child skipped, or got wrong were marked by the tester. The decoding speed 

score is computed as the sum of the number of correct non-words a child finished on. 

 

Phonemic awareness age 7 (AAT) 

Phonemic awareness was assessed using the Auditory Analysis Test (AAT)7. The 

task contained two practice and 40 test items of increasing difficulty. For each item, the 

child was first asked to repeat the word, and then produce it again but with part of the 

word (a phoneme or a number of phonemes) removed. There were seven omission 

categories included: omission of a first, medial or final syllable, omission of the initial, 

omission of the final consonant of a one syllable word, and omission of the first 

consonant or consonant blend of a medial consonant. The words from different 

categories were mixed. The phonemic awareness score is computed as the sum of 

correct responses.  

 

Listening comprehension age 8 (WOLD) 

A subset of the Wechsler Objective Language Dimensions (WOLD)8 test was used 

to assess listening comprehension. The tester read out loud a paragraph about a picture, 

shown to the child. After that, the child answers ten questions on what they have heard. 
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The listening comprehension scores were calculated as the sum of the items that the 

child got correct. 

 

Non-word repetition age 8 (CNRep) 

An adaptation of the Children’s Test of Nonword Repetition (CNRep)9 was used 

to assess phonological working memory. The test comprised twelve nonsense words, 

four each of 3, 4 and 5 syllables. The words were conforming to English rules for sound 

combinations. The child was asked to listen to each word and repeat each item. If there 

was no phonological deviation from the target form, the repetition attempt was scored 

as correct. The non-word repetition score was computed as the sum of the number of 

correct non-words.  

 

Verbal intelligence age 8 (WISC-III) 

The Wechsler Intelligence Scale for Children (WISC-III)10 was used to assess 

cognitive function. A short form of the measure was employed where alternate items 

were used for all subtests, with the exception of the coding subtest. The WISC-III 

comprises ten subtests five of which are verbal subtests: information, similarities, 

arithmetic, vocabulary, comprehension, and can be used to construct a verbal 

intelligence score. Raw scores were calculated according to the items used in the 

alternate item form of the WISC. The total age-scaled scores for the verbal scale were 

calculated using the look-up tables provided in the WISC manual. All scores were pro-

rated.  

 

ALSPAC trait transformation 

LRAs were residualised for sex, age and the two most significant ancestry-

informative principal components11, and then rank-transformed unless they were 

derived using age-specific norms. These scores were adjusted for sex and principal 

components only before transformation. 

 

ADHD cases within ALSPAC 

The Development and Wellbeing Assessment (DAWBA) was used to assess 

psychological disorders. It is a validated instrument combining structured and semi-

structured questions related to DSM and ICD diagnostic criteria12. DAWBA was collected 

through questionnaires posted to parents and teachers, and responses were reviewed 

by trained clinical raters who assigned diagnoses according to the DSM-IV13. Information 

from both parents and teachers were combined to assign a diagnosis (similar to a clinical 

setting).  
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ALSPAC genome-wide analyses 

Standard genomic quality control including gender mismatch, heterozygosity, 

individual missingness, insufficient sample replication, population stratification, minor 

allele frequency (MAF), SNP call rate, Hardy-Weinberg equilibrium14, and cryptic 

relatedness was performed using PLINK15 (v1.07). After quality control 8 981 children 

and 465,740 SNPs were imputed to a HRC r1.1 reference panel16 using the Sanger impu-

tation server (EAGLE217 v2.0.5 and PBWT18 software, https://imputation.sanger.ac.uk/). 

Genome-wide association analysis summary statistics for all literacy- and language-

related measures were generated by regressing rank-transformed residuals on posterior 

genotype probabilities, assuming an additive genetic model, as implemented in SNPTEST 

(version 2.5.2) software19 (without genomic control-based correction20). 

 

Clinical ADHD summary statistics 

 

Psychiatric Genomics Consortium (PGC) 

ADHD cases (age 5 to 17 years) met diagnostic criteria for either clinical ADHD or 

hyperkinetic disorder (Diagnostic and Statistical Manual of Mental Disorders (DSM-III13, 

DSM-IV13, DSM-IV-TR13) or the International Classification of Diseases (ICD-1021). 

The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) 

ADHD cases were diagnosed according to ICD-1021, and identified using the 

Danish Psychiatric Central Research Register22. Controls were randomly selected from 

the same nationwide birth cohort and did not have a diagnosis of ADHD (F90.0) or 

moderate-severe mental retardation (F71-F79)23,24. Genotyping was performed using 

the Illumina Infinium PsychArray BeadChip and genotypes were imputed to a 1000 

Genomes template25 (Phase3, release 02-05-2013). Genotyping, quality control, 

imputation and genetic association analysis were carried out using the Ricopili pipeline 

with standard PGC settings26. 

 

Educational attainment summary statistics 

Educational attainment (EA) was coded according to the International Standard 

Classification of Education (1997) scale27 and analysed as a quantitative variable defined 

as an individual’s years of schooling. Participants were >30 years of age at the time of 

assessment and of European ancestry. Genome-wide data were predominantly imputed 

to a 1000 genomes project25 version 3 reference panel as described previously28. 

 

Linkage Disequilibrium score regression and correlation 

Linkage Disequilibrium score (LDSC) regression29 can estimate the cumulative 

effect of genetic variants as tagged by common genetic markers (SNP-h2) to phenotypic 

variation, based on GWAS statistics, and distinguishes confounding from polygenic 

influences in genome-wide analyses21. To estimate LDSC-h2, genome-wide χ2-statistics 
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are regressed on the amount of genetic variation captured by each SNP (linkage 

disequilibrium score, LD score)29, while the intercept of this regression minus one is an 

estimator of the mean contribution of confounding bias to the inflation in the mean χ2-

statistic21 . We estimated the SNP-h2 for LRAs and EA on the observed scale and ADHD 

SNP-h2 on the liability scale (assuming a population prevalence of 5% for ADHD30).  

In extension, LD score correlation31 analysis can be applied to estimate genetic 

correlations (rg) between genetic variants in distinct samples as a regression of the 

product of test statistics on LD score. All analyses were performed with LDSC 

software29,31 and based on the set of well-imputed HapMap3 SNPs32 and a European 

reference panel of LD scores31. Unconstrained LD-score correlation31 analysis was 

applied to estimate genetic correlations (rg) between LRAs and EA, as well as ADHD and 

EA, based on summary statistics from all thirteen LRAs (ALSPAC), EA (SSGAC)28, and 

ADHD (PGC+iPSYCH)23.  

 

Polygenic scoring analyses 

Consistent with current guidelines33, autosomal ADHD GWAS signals were 

clumped (LD-r2>0.25, ±500 kb) with PLINK15 software. Polygenic scores for ADHD were 

constructed based on P-value thresholds of 0.001, 0.01, 0.05, 0.10, 0.3, 0.5, 0.7, 0.9 and 

1. Only imputed markers with high imputation quality (INFO34>0.8, 95% posterior 

genotyping probability >0.9 and minor allele frequency >0.005) in ALSPAC were used to 

generate polygenic scores. 

To further illustrate the strength of the genetic overlap, we translated the fitted 

polygenetic model into the estimated genetic covariance. For this we used reading 

accuracy at age 9 (NARA II) as an example, where ADHD-PGS explained up to 1.2% of the 

phenotypic variation when based on the iPSYCH discovery sample. Genetic covariance 

was estimated from PGS results for reading accuracy at age 9 (NARA II) using Avengeme 

software35. Input parameters were consistent with PGS analyses for a P-value threshold 

of 0.1, including 63,968 SNPs, a discovery sample of N=55,734, a target sample of 

N=5,201 and an association Z-score of -8.85 (Table S5). We furthermore assumed an 

ADHD prevalence of 0.0530, a case sampling proportion of 0.36, an ADHD heritability on 

the liability scale of 0.21 (Table S4) and 95% null SNPs in the discovery sample. 

 

Overlap in genome-wide significant association signals between ADHD and educational 

attainment 

To identify independent genetic variants passing the genome-wide significance 

threshold in both the ADHD (PGC+iPSYCH) and EA (SSGAC) GWASs, we first selected all 

SNPs with P<5x10-8 in either GWAS summary statistics. Next, we clumped (LD-r2>0.25, 

±500 kb) these variants with PLINK 15 for ADHD and EA GWASs individually. Both 

approaches resulted in two independent overlapping variants. 
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Multivariable regression 

In multivariable regression (MVR) analyses, genetic effects for the outcome are 

regressed on the genetic effects for risk factor and covariates, using a multivariable 

weighted regression model36. The model allows for association between risk factor and 

outcome (risk-factor specific associations), but also covariate and outcome, based on the 

same set of instruments, where latter capture pleiotropic effects. However, the model 

does not imply causal inferences as modelling assumptions are not met.  

Using effect estimates from GWAS summary statistics ( ̂ ), the specific effect of 

a risk factor ( s ) conditional on a covariate ( C ) on the outcome can be estimated using 

the weighted regression, omitting the intercept term: 

2

,cov )ˆ(ˆˆˆ  outcomeariateCriskfactorsoutcome seweights  (equation 1) 

For a valid estimation of effects the following assumptions need to be met: 1) the genetic 

variants are associated with the risk factor and covariate, 2) the genetic variants are not 

associated with confounders, and 3) there is no pathway from any genetic variant to the 

outcome except via the risk factor and/or confounder36.  

In order to investigate whether the third assumption holds, we investigated the 

evidence for a regression intercept in an unconstrained regression model. An intercept 

consistent with zero (i.e. within the 95% confidence interval) suggests that there is no 

evidence for additional pleiotropic effects. Since the intercept is, however, sensitive to 

the defined direction of effect, unconstrained models were fitted twice, once with 

genetic variants aligned according to the risk factor and once according to the covariate. 

 

Meta-regression across literacy- and language-related abilities 

The genetic and phenotypic inter-relatedness among LRAs needs to be accounted 

for when combining ADHD effects (shared with and independent of EA) across multiple 

LRA combinations. A variance/covariance matrix across the correlated LRAs was 

approximated analogous to models accounting for correlated phylogenetic histories37. 

The matrix was based on the observed phenotypic correlation matrix using rank-

transformed measures (Table S1) and weighted by the standard errors of the estimated 

polygenic association. The model included, for each LRA combination, one random 

intercept. Evidence for polygenic effect heterogeneity was assessed using Cochran's Q-

test.  

MVR estimates for defined LRA combinations were contrasted with each other by 

conducting moderator analyses as part of a random-effects meta-regression model 

(R:metafor library38, Rv3.2.0) across the entire set of LRAs studied (at a significance level 

of 0.05). This includes a dummy coded contrast, the moderator (mod), that is added to 

the model in order to explain heterogeneity in effect estimates, and an assessment of 

the remaining residual effect heterogeneity (res het). Note that verbal intelligence 
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quotient scores were excluded from the analysis, as they represent a composite 

measure. 

 

Standardisation of genetic effect estimates 

To compare the magnitude of regression estimates capturing polygenic ADHD 

effects on LRAs independent of and shared with EA, we calculated standardised SNP 

effects for ADHD (PGC+iPSYCH), EA (SSGAC) and LRAs (ALSPAC) from GWAS summary 

statistics.  

Standardised regression coefficients for SNP j with minor allele frequency MAFj 

and sample size Nj were calculated as27 

�̂�𝑗 =
𝑧𝑗×𝜎�̂�

√𝑁𝑗×�̂�𝑥𝑗
2

    (equation 2) 

 

where 
jz  is the Wald test statistic, 

ŷ  is the standard deviation of the phenotype y, 

and �̂�𝑥𝑗
2  corresponds to the SNP variance 2 x MAFj x (1-MAFj). The corresponding 

standard error was calculated as27  
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   (equation 3)  

We estimated 
ŷ  for each component of the multivariable regression model as follows. 

 

Literacy- and language-related abilities 

All population-based linguistic traits were rank-transformed (continuous traits) 

and thus 
ŷ  equals to one.  

 

Educational attainment 

The combined 
ŷ  for EA, measured as continuous score in years of schooling, 

was pooled from 63 cohorts28,39 

kn
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i

k

i

ii
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    (equation 4) 

with sample size in  , sample variance 2

i , and number of studies k . 
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ADHD 

The estimated standard deviation of the liability of ADHD 
*

ˆ
y , taking the 

prevalence of the disorder K  (0.05 for ADHD30) and sample prevalence P  (0.364 for 

PGC+iPSYCH ADHD23) into account, was calculated as40 




















)1(

)(

)1(

)(
1ˆ

*
KK

KPz
t

KK

KPz transtrans

y   (equation 5) 

where t  is the truncation threshold (derived as the inverse standard normal distribution 

function at K1  and transz  the height of the standard normal probability density 

function at t .  

 

Attrition analysis in ALSPAC 

A dichotomous variable indicating missingness (coded as 1) for reading accuracy 

and comprehension at age 7 (WORD) was created for each child that was alive at the age 

of one year and had genotype data available (Ntotal=8,095; Nmissing=2,204). Genome-wide 

association analysis summary statistics were generated by logistic regression of sample 

drop-out on posterior genotype probabilities, assuming an additive genetic model, as 

implemented in SNPTEST (version 2.5.2) software19 (without genomic control-based 

correction20).   

ADHD polygenic scores were regressed on data missingness for reading accuracy 

and comprehension at age 7 (WORD) using logistic regression (R:stats library, Rv3.2.3) 

to estimate odds ratios and their standard errors per one-standard-deviation increase in 

polygenic scores (Methods). McFadden's pseudo-R2 values for logistic regression were 

estimated (R:pscl library, Rv3.2.3), analogous to the ordinary least square regression R2.  

Utilising a multivariable regression approach36 (see Methods), analysis were 

subsequently carried out conditional on genetically predicted educational attainment 

(EA), a potential correlate for non-participation41, using GWAS summary statistics. We 

dissected ADHD polygenic influences on LRA-missingness into genetic effects that are 

independent of EA and genetic effects that are shared with EA, using both conservative 

(P-threshold P<5x10-8) and subthreshold ADHD variants (P-threshold P<0.0015), as 

described for multivariable regression analyses (see Methods). 

We identified a positive genetic association between sample-dropout and ADHD-

PGS (PGC+iPSYCH, OR=1.03(SE=0.005), P=1.4x10-8, Table S12), consistent with previous 

studies42. Disentangling this polygenic link using MVR (Table S13) based on ADHD 

subthreshold instruments showed a 0.05 increase in log-odds sample drop-out per log-

odds increase in liability to ADHD, independent of EA (log(OR)=0.05(SE=0.01), P=3.7x10-

4). Additionally, a further 1.04 increase in log odds sample drop-out per missing year of 

schooling (log(OR)=1.04(SE=0.19),P=7.3x10-8) was observed, suggesting also ADHD 

effects shared with EA.  
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Web resources 

ALSPAC data dictionary:  

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/ 

ALSPAC variable catalogue:  

http://www.bristol.ac.uk/alspac/researchers/access/ 

PGC: http://www.med.unc.edu/pgc 

PLINK: https://www.cog-genomics.org/plink2 

HRC: http://www.haplotype-reference-consortium.org/ 

SANGER IMPUTATION SERVER: https://imputation.sanger.ac.uk/ 

SNPTEST: https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html 

LDSC: https://github.com/bulik/ldsc 

GCTA: http://cnsgenomics.com/software/gcta/#Overview 

GCTA power: http://cnsgenomics.com/shiny/gctaPower/ 

R: https://www.r-project.org/ 

METAFOR: http://www.metafor-project.org/doku.php 
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Supplementary Tables 

Table S1: Phenotypic correlations among literacy- and language-related measures 

Phenotypic correlations are depicted as Pearson's correlation coefficients. The upper triangle represents 
phenotypic correlations based on rank-transformed measures, whereas the lower triangle represents 
phenotypic correlations based on untransformed measures. Abbreviations: a, accuracy; c, comprehension; s, 
speed; WORD, Wechsler Objective Reading Dimension; NBO, Nunes, Bryant and Olson (ALSPAC specific 
instrument); NARA II, The Neale Analysis of Reading Ability- Second Revised British Edition; TOWRE, Test Of 
Word Reading Efficiency; NW, non-word; NB, Nunes and Bryant (ALSPAC specific instrument); PhonAware, 
phonemic awareness, AAT, Auditory Analysis Test; WOLD, Wechsler Objective Language Dimensions; CNRep, 
Children’s Test of Nonword Repetition; VIQ, verbal intelligence quotient; WISC-III, Wechsler Intelligence Scale 
for Children III
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Table S3: Genetic correlations among literacy- and language-related measures 

Genetic correlations were calculated based on rank-transformed scores using Restricted Maximum Likelihood 

(REML) analyses as implemented in genome-wide complex trait analysis software, based on samples of 

individuals with a genetic relationship of <0.05. Standard errors are provided in brackets. Abbreviations: a, 

accuracy; c, comprehension; s, speed; WORD, Wechsler Objective Reading Dimension; NBO, Nunes, Bryant and 

Olson (ALSPAC specific instrument); NARA II, The Neale Analysis of Reading Ability- Second Revised British 

Edition; TOWRE, Test Of Word Reading Efficiency; NW, non-word; NB, Nunes and Bryant (ALSPAC specific 

instrument); PhonAware, phonemic awareness; AAT, Auditory Analysis Test; WOLD, Wechsler Objective 

Language Dimensions; CNRep, Non-Word Repetition test; VIQ, verbal intelligence quotient; WISC-III, Wechsler 

Intelligence Scale for Children III 
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Table S4: SNP-heritability estimates for clinical ADHD and educational attainment  

Phenotype Sample SNP-h2 (SE) λGC Intercept (SE) 

ADHD 

PGC  0.08 (0.03) 1.00 0.99 (0.01) 

iPSYCH  0.26 (0.02) 1.23 1.03 (0.01)b 

PGC+iPSYCH (EUR) 0.22 (0.01) 1.25 1.04 (0.01)b 

PGC+iPSYCH  0.21 (0.01) 1.25 1.04 (0.01)b 

EA SSGAC 0.11 (0.004) 1.47 0.96 (0.01) 

SNP-heritability was estimated with LDSC regression analysis. SNP-heritability estimates for ADHD samples 
were calculated on a liability scale assuming a population prevalence of 0.0530. Abbreviations: ADHD, 
Attention-Deficit/Hyperactivity Disorder; EA, educational attainment; λGC, lambda GC; PGC, Psychiatric 
Genomics Consortium; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research; EUR, 
European ancestry; SSGAC, Social Science Genetic Association Consortium. 
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Table S5: Association of polygenic ADHD risk scores with literacy- and language-related measures 

LRAs ADHD sample β (SE) P R2 (%) 

Reading a/c 7 (WORD) 

PGC  -0.04 (0.01) 4.6x10-3 0.14 

iPSYCH  -0.10 (0.01) <1x10-10 0.99 

PGC+iPSYCH  -0.11 (0.01) <1x10-10 1.33 

PGC+iPSYCH(EUR) -0.12 (0.01) <1x10-10 1.42 

Reading a 9 (NBO) 

PGC  -0.02 (0.01) 6.4x10-2 0.06 

iPSYCH  -0.09 (0.01) <1x10-10 0.73 

PGC+iPSYCH  -0.10 (0.01) <1x10-10 0.93 

PGC+iPSYCH(EUR) -0.10 (0.01) <1x10-10 0.92 

Reading s 9 (NARA II) 

PGC  -0.04 (0.01) 7.6x10-3 0.14 

iPSYCH  -0.10 (0.01) <1x10-10 1.02 

PGC+iPSYCH -0.11 (0.01) <1x10-10 1.18 

PGC+iPSYCH(EUR) -0.11 (0.01) <1x10-10 1.28 

Reading a 9 (NARA II) 

PGC  -0.04 (0.01) 5.7x10-3 0.15 

iPSYCH  -0.11 (0.01) <1x10-10 1.20 

PGC+iPSYCH  -0.12 (0.01) <1x10-10 1.49 

PGC+iPSYCH(EUR) -0.12 (0.01) <1x10-10 1.47 

Reading s 13 (TOWRE) 

PGC  -0.03 (0.02) 2.5x10-2 0.12 

iPSYCH  -0.09 (0.02) 4.2x10-9 0.81 

PGC+iPSYCH  -0.11 (0.02) <1x10-10 1.19 

PGC+iPSYCH(EUR) -0.11 (0.02) <1x10-10 1.22 

NW reading a 9 (NBO) 

PGC  -0.03 (0.01) 4.8x10-2 0.07 

iPSYCH  -0.07 (0.01) 4.7x10-8 0.52 

PGC+iPSYCH  -0.09 (0.01) <1x10-10 0.76 

PGC+iPSYCH(EUR) -0.09 (0.01) <1x10-10 0.77 

NW reading s 13 (TOWRE) 

PGC  -0.03 (0.02) 4.7x10-2 0.09 

iPSYCH  -0.09 (0.02) 2.6x10-8 0.73 

PGC+iPSYCH  -0.11 (0.02) <1x10-10 1.14 

PGC+iPSYCH(EUR) -0.10 (0.02) <1x10-10 1.08 

Spelling a 7 (NB) 

PGC  -0.03 (0.01) 9.6x10-3 0.12 

iPSYCH  -0.09 (0.01) <1x10-10 0.86 

PGC+iPSYCH  -0.11 (0.01) <1x10-10 1.17 

PGC+iPSYCH(EUR) -0.11 (0.01) <1x10-10 1.16 

Spelling a 9 (NB) 

PGC  -0.04 (0.01) 1.5x10-3 0.18 

iPSYCH  -0.09 (0.01) <1x10-10 0.81 

PGC+iPSYCH  -0.10 (0.01) <1x10-10 1.08 

PGC+iPSYCH(EUR) -0.10 (0.01) <1x10-10 1.06 

PhonAware 7 (AAT) 

PGC  -0.02 (0.01) 2.4x10-1 0.02 

iPSYCH  -0.08 (0.01) 2.9x10-9 0.59 

PGC+iPSYCH  -0.09 (0.01) <1x10-10 0.84 

PGC+iPSYCH(EUR) -0.10 (0.01) <1x10-10 0.98 

Listening c 8 (WOLD) 

PGC  -0.02 (0.01) 1.9x10-1 0.03 

iPSYCH -0.06 (0.01) 9.9x10-6 0.36 

PGC+iPSYCH -0.08 (0.01) 2.5x10-8 0.57 

PGC+iPSYCH(EUR) -0.08 (0.01) 9.2x10-10 0.68 
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Table S5: Association of polygenic ADHD risk scores with literacy- and language-related measures - continued 

LRAs ADHD sample β (SE) P R2 (%) 

Non-word repetition 8 
(CNRep) 

PGC  -0.003 (0.01) 8.1x10-1 0.001 

iPSYCH  -0.05 (0.01) 1.7x10-4 0.26 

PGC+iPSYCH -0.06 (0.01) 6.3x10-6 0.37 

PGC+iPSYCH(EUR) -0.07 (0.01) 2.3x10-7 0.49 

VIQ 8 (WISC-III) 

PGC -0.03 (0.01) 2.8x10-2 0.09 

iPSYCH  -0.11 (0.01) <1x10-10 1.28 

PGC+iPSYCH  -0.13 (0.01) <1x10-10 1.59 

PGC+iPSYCH(EUR) -0.13 (0.01) <1x10-10 1.69 

ADHD SNPs were selected from GWAS summary statistics based on a P-value threshold of 0.1, and alleles were 
aligned such that the effect allele increased ADHD risk. LRAs were regressed on polygenic ADHD risk scores 
using ordinary least square regression. Effects were considered as significant if they passed the experiment-
wide significance threshold (P<0.007). Abbreviations: LRAs, literacy- and language-related abilities; ADHD, 
Attention-Deficit/Hyperactivity Disorder; R2, OLS-regression R2; a, accuracy; c, comprehension; s, speed; 
WORD, Wechsler Objective Reading Dimension; NBO, Nunes, Bryant and Olson (ALSPAC specific instrument); 
NARA II, The Neale Analysis of Reading Ability- Second Revised British Edition; TOWRE, Test Of Word Reading 
Efficiency; NW, non-word; NB, Nunes and Bryant (ALSPAC specific instrument); PhonAware, phonemic 
awareness; AAT, Auditory Analysis Test; WOLD, Wechsler Objective Language Dimensions; CNRep, Children’s 
Test of Nonword Repetition; VIQ, verbal intelligence quotient; WISC-III, Wechsler Intelligence Scale for Children 
III; PGC, Psychiatric Genomics Consortium; iPSYCH, The Lundbeck Foundation Initiative for Integrative 
Psychiatric Research; EUR, European descent.  
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Table S6: Association of polygenic ADHD risk scores with literacy- and language-related measures excluding 

ADHD children 

LRAs ADHD sample β (SE) P R2 (%) 

Reading a/c 7 (WORD) 

PGC  -0.04 (0.01) 3.5x10-3 0.15 

iPSYCH  -0.10 (0.01) <1x10-10 0.99 

PGC+iPSYCH  -0.12 (0.01) <1x10-10 1.33 

Reading a 9 (NBO) 

PGC  -0.02 (0.01) 0.09 0.05 

iPSYCH  -0.09 (0.01) <1x10-10 0.74 

PGC+iPSYCH  -0.10 (0.01) <1x10-10 0.93 

Reading s 9 (NARA II) 

PGC  -0.04 (0.01) 7.3x10-3 0.14 

iPSYCH  -0.10 (0.01) <1x10-10 1.04 

PGC+iPSYCH -0.11 (0.01) <1x10-10 1.19 

Reading a 9 (NARA II) 

PGC  -0.04 (0.01) 6.5x10-3 0.14 

iPSYCH  -0.11 (0.01) <1x10-10 1.22 

PGC+iPSYCH  -0.12 (0.01) <1x10-10 1.50 

Reading s 13 (TOWRE) 

PGC  -0.03 (0.02) 0.03 0.11 

iPSYCH  -0.09 (0.02) 2.8x10-9 0.84 

PGC+iPSYCH  -0.11 (0.02) <1x10-10 1.23 

NW reading a 9 (NBO) 

PGC  -0.03 (0.01) 0.05 0.07 

iPSYCH  -0.07 (0.01) 4.2x10-8 0.53 

PGC+iPSYCH  -0.09 (0.01) <1x10-10 0.77 

NW reading s 13 (TOWRE) 

PGC  -0.03 (0.02) 0.05 0.09 

iPSYCH  -0.09 (0.02) 2.5x10-8 0.74 

PGC+iPSYCH  -0.11 (0.02) <1x10-10 1.17 

Spelling a 7 (NB) 

PGC  -0.04 (0.01) 7.9x10-3 0.12 

iPSYCH  -0.09 (0.01) <1x10-10 0.86 

PGC+iPSYCH  -0.11 (0.01) <1x10-10 1.17 

Spelling a 9 (NB) 

PGC  -0.04 (0.01) 1.4x10-3 0.18 

iPSYCH  -0.09 (0.01) <1x10-10 0.79 

PGC+iPSYCH  -0.10 (0.01) <1x10-10 1.06 

PhonAware 7 (AAT) 

PGC  -0.02 (0.01) 0.22 0.03 

iPSYCH  -0.08 (0.01) 3.8x10-9 0.60 

PGC+iPSYCH  -0.09 (0.01) <1x10-10 0.86 

Listening c 8 (WOLD) 

PGC  -0.02 (0.01) 0.13 0.04 

iPSYCH -0.06 (0.01) 7.9x10-6 0.37 

PGC+iPSYCH -0.08 (0.01) 1.7x10-8 0.59 

Non-word repetition 8 (CNRep) 

PGC  -0.01 (0.01) 0.70 0.003 

iPSYCH  -0.05 (0.01) 2.4x10-4 0.25 

PGC+iPSYCH -0.06 (0.01) 7.6x10-6 0.37 

VIQ 8 (WISC-III) 

PGC -0.03 (0.01) 0.02 0.10 

iPSYCH  -0.11 (0.01) <1x10-10 1.27 

PGC+iPSYCH  -0.13 (0.01) <1x10-10 1.60 

 

ADHD SNPs were selected from GWAS summary statistics based on a P-value threshold of 0.1, and alleles were 

aligned such that the effect allele increased ADHD risk. Children with ADHD were excluded from the ALSPAC 

sample based on the Development and Wellbeing Assessment12. LRAs were regressed on ADHD-PGS using 

ordinary least square regression. Effects were considered as significant if they passed the experiment-wide 

significance threshold (P<0.007). Abbreviations: LRAs, literacy- and language-related abilities; ADHD, 

Attention-Deficit/Hyperactivity Disorder; R2, OLS-regression R2; a, accuracy; c, comprehension; s, speed; 

WORD, Wechsler Objective Reading Dimension; NBO, Nunes, Bryant and Olson (ALSPAC specific instrument); 

NARA II, The Neale Analysis of Reading Ability- Second Revised British Edition; TOWRE, Test Of Word Reading 
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Efficiency; NW, non-word; NB, Nunes and Bryant (ALSPAC specific instrument); PhonAware, phonemic 

awareness; AAT, Auditory Analysis Test; WOLD, Wechsler Objective Language Dimensions; CNRep, Children’s 

Test of Nonword Repetition; VIQ, verbal intelligence quotient; WISC-III, Wechsler Intelligence Scale for Children 

III; PGC, Psychiatric Genomics Consortium; iPSYCH, The Lundbeck Foundation Initiative for Integrative 

Psychiatric Research.  

 
Table S7: Genetic correlations of literacy- and language-related measures with educational attainment  

LRAs rg (SE) P 

Reading a/c 7 (WORD) 0.65 (0.08) <1x10-10 

Reading a 9 (NBO) 0.57 (0.11) 2.0x10-7 

Reading s 9 (NARA II) 0.77 (0.12) <1x10-10 

Reading a 9 (NARA II) 0.64 (0.08) <1x10-10 

Reading s 13 (TOWRE) 0.80 (0.22) 3.0x10-4 

NW reading a 9 (NBO) 0.61 (0.14) 2.1x10-5 

NW reading s 13 (TOWRE) 0.89 (0.31) 3.9x10-3 

Spelling a 7 (NB) 0.57 (0.08) <1x10-10 

Spelling a 9 (NBO) 0.69 (0.12) 1.8x10-8 

PhonAware 7 (AAT) 0.56 (0.09) 8.6x10-10 

Listening c 8 (WOLD) 0.62 (0.12) 4.6x10-7 

Non-word repetition 8 (CNRep) 0.68 (0.25) 5.6x10-3 

VIQ 8 (WISC-III) 0.82 (0.10) <1x10-10 

Genetic correlations were estimated with unconstrained LD-score correlation analyses34. Genetic correlations 

were considered as significant if they passed the experiment-wide significance threshold (P<0.007). 

Abbreviations: LRAs, literacy- and language-related abilities; rg, genetic correlation; a, accuracy; c, 

comprehension; s, speed; WORD, Wechsler Objective Reading Dimension; NBO, Nunes, Bryant and Olson 

(ALSPAC specific instrument); NARA II, The Neale Analysis of Reading Ability- Second Revised British Edition; 

TOWRE, Test Of Word Reading Efficiency; NW, non-word; NB, Nunes and Bryant (ALSPAC specific instrument); 

PhonAware, phonemic awareness; AAT, Auditory Analysis Test; WOLD, Wechsler Objective Language 

Dimensions; CNRep, Children’s Test of Nonword Repetition; VIQ, verbal intelligence quotient; WISC-III, 

Wechsler Intelligence Scale for Children III.  
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Table S8: Selection of ADHD and EA instruments  

LRAs  

ADHD-associated  
instruments 

EA-associated  
instruments 

Conservative 
(Pthr<5x10-8) 

Subthreshold 
Pthr<0.0015) 

Conservative 
(Pthr<5x10-8) 

Subthreshold 
Pthr<0.0015) 

Reading a/c 7 (WORD) 15 2,690 99 4,611 

Reading a 9 (NBO) 15 2,690 99 4,611 

Reading s 9 (NARA II) 15 2,689 99 4,608 

Reading a 9 (NARA II) 15 2,689 99 4,608 

Reading s 13 (TOWRE) 15 2,688 99 4,608 

NW reading a 9 (NBO) 15 2,690 99 4,612 

NW reading s 13 (TOWRE) 15 2,688 99 4,609 

Spelling a 7 (NB) 15 2,691 99 4,613 

Spelling a 9 (NB) 15 2,690 99 4,611 

PhonAware 7 (AAT) 15 2,689 99 4,612 

Listening c 8 (WOLD) 15 2,689 99 4,613 

Non-word repetition 8 (CNRep) 15 2,688 99 4,613 

VIQ 8 (WISC-III) 15 2,688 99 4,612 

ADHD and EA instruments were selected based on ADHD (PGC+iPSYCH) and EA (SSGAC) GWAS summary 

statistics respectively. Conservative instruments passed the genome-wide significance level (P<5x10-8), 

whereas the subthreshold set, containing typically defined instruments, was based on a more lenient P-value 

threshold (P<0.0015). Abbreviations: LRAs, literacy- and language-related abilities; ADHD, Attention-

Deficit/Hyperactivity Disorder; EA, educational attainment; Pthr, P-value threshold; a, accuracy; c, 

comprehension; s, speed; WORD, Wechsler Objective Reading Dimension; NBO, Nunes, Bryant and Olson 

(ALSPAC specific instrument); NARA II, The Neale Analysis of Reading Ability- Second Revised British Edition; 

TOWRE, Test Of Word Reading Efficiency; NW, non-word; NB, Nunes and Bryant (ALSPAC specific instrument); 

PhonAware, phonemic awareness; AAT, Auditory Analysis Test; WOLD, Wechsler Objective Language 

Dimensions; CNRep, Children’s Test of Nonword Repetition; VIQ, verbal intelligence quotient; WISC-III, 

Wechsler Intelligence Scale for Children III; PGC, Psychiatric Genetics Consortium; iPSYCH, The Lundbeck 

Foundation Initiative for Integrative Psychiatric Research 
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Table S10: Comparison of ADHD-specific MVR effects on literacy-related abilities versus other LRAs 

ADHD instruments Effect Beta (SE) P Pres het 

Conservative 
(Pthr<5x10-8) 

Reading -0.300 (0.082) 2x10-4 

0.054 
Other LRAs (Moderator) 0.150 (0.059) 0.011 

Subthreshold  
(Pthr<0.0015) 

Reading -0.024 (0.006) 1x10-4 

0.054 
Other LRAs (Moderator) -0.003 (0.004) 0.427 

Spelling -0.036 (0.006) 2x10-9 
0.56 

Other LRAs (Moderator) 0.012 (0.004) 0.001 

Reading+spelling -0.035 (0.006) 5x10-8 
0.22 

Other LRAs (Moderator) 0.012 (0.005) 0.016 

ADHD-specific effect differences on LRAs were compared using contrasts within a random-effects meta-

regression model, based on all LRAs studied, while accounting for phenotypic inter-correlations. Moderator 

effects were considered significant at a significance level of 0.05.  Abbreviations: ADHD, Attention-

Deficit/Hyperactivity Disorder; LRAs, language- and literacy-related abilities; Pres het - Evidence for residual effect 

heterogeneity; Pthr, P-value threshold 
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Table S12: Association between polygenic ADHD risk and sample-dropout 

Outcome ADHD sample OR (SE) P 
McFadden's 
pseudo R2 

Sample drop-out for 
reading accuracy and 
comprehension at age 7 
(WORD) 

PGC  -0.995 (0.005) 0.36 8.6x10-5 

iPSYCH  1.029 (0.005) 5.0x10-9 3.5x10-3 

PGC+iPSYCH  1.028 (0.005) 1.4x10-8 3.3x10-3 

A yes/no variable indicating sample drop-out for reading accuracy and comprehension at age 7 (WORD) was 
generated. ADHD SNPs were selected based on a P-value threshold of 0.1, and alleles were aligned such that 
the effect allele increased ADHD risk. Sample drop-out was regressed on polygenic ADHD risk scores using 
logistic regression. The experiment-wide significance threshold is P<0.007. Abbreviations: ADHD, Attention-
Deficit/Hyperactivity Disorder; WORD, Wechsler Objective Reading Dimension; PGC, Psychiatric Genomics 
Consortium; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research  

 

 

Table S13: Multivariable regression analysis of polygenic associations between ADHD, sample drop-out and 

literacy- and language-related abilities 

Sets of conservative (P<5x10-8) and subthreshold (P<0.0015) ADHD instruments were extracted from ADHD 

(PGC+iPSYCH), EA (SSGAC) and sample drop-out for reading accuracy and comprehension at age 7 (WORD) 

(ALSPAC) GWAS summary statistics. ADHD-specific effects independent of EA (βADHD) and ADHD effects shared 

with EA (βEA) on LRAs were estimated with MVRs. βADHD estimates measure the change in liability to drop-out 

per log odds increase in ADHD liability. βEA estimates measure the change in liability to drop-out per missing 

school year. The experiment-wide significance threshold is P<0.007. 1. ADHD genetic effects shared with EA as 

assessed through EA genetic effect estimates of ADHD-associated variants. Abbreviations: ADHD, Attention-

Deficit/Hyperactivity Disorder; EA, educational attainment; Pthr, P-value threshold; MVR - Multivariable 

regression 

  

  
ADHD (βADHD) 

(ADHD-specific effects independent of 
EA) 

EA (βEA) 
(EA genetic effects of ADHD-associated 

variants)1 

ADHD instruments OR (SE) β (SE) P OR (SE) β (SE) P 

Conservative 
(Pthr<5x10-8) 

0.99 (0.29) -0.01 (0.30) 0.96 50.0 (133.7) 3.91 (2.68) 0.17 

Subthreshold 
(Pthr<0.0015) 

1.05 (0.02) 0.05 (0.01) 3.7x10-4 2.83 (0.54) 1.04 (0.19) 7.3x10-8 
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Supplementary Figures 

 

 

Figure S1: Multivariable regression analysis of polygenic associations between EA and literacy- and language-

related abilities. Sets of conservative (P<5x10-8) and subthreshold (P<0.0015) EA instruments were extracted 

from ADHD (PGC+iPSYCH), EA (SSGAC) and LRAs (ALSPAC) GWAS summary statistics. EA-specific effects 

independent of ADHD (βEA) and EA effects shared with ADHD (βADHD) on LRAs were estimated with MVRs. EA 

effects shared with ADHD were assessed through ADHD genetic effect estimates of EA-associated variants. 

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; EA, educational attainment; LRAs, literacy- 

and language-related abilities; MVR, Multivariable regression 
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Abstract 
Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder 

(ADHD) are complex co-occurring neurodevelopmental conditions. Their genetic 

architectures reveal striking similarities but also differences, including strong, discordant 

polygenetic associations with educational attainment (EA). To study genetic mechanisms 

that present as ASD-related positive and ADHD-related negative genetic correlations 

with EA, we carried out multivariable regression analyses using genome-wide summary 

statistics based on 10,610 to 766,345 individuals. Our results showed that EA-related 

genetic variation is regionally shared across ASD and ADHD architectures, involving the 

same risk alleles at the same markers. However, the polygenic association profile with 

EA, across these shared markers, was discordant for ASD versus ADHD risk, indicating 

independent genetic effects. Thus, at the single-variant level, our results suggest either 

biological pleiotropy or co-localisation of different risk variants. At the polygenic level, 

they are consistent with local negative genetic covariance that may contribute to the 

total genome-wide correlation between ASD and ADHD. 

 

Key words: ASD, ADHD, educational attainment, pleiotropy, shared genetic 

variation 

 

 

 

 

 

 

  

7 



Main 

 
227 

7.1. Main 
 

Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder 

(ADHD) are genetically complex childhood-onset neurodevelopmental disorders1,2 that 

often co-occur3. Approximately 15–25% of individuals with ADHD show ASD symptoms, 

and ~40–70% of individuals with ASD have a comorbid ADHD symptomatology3, although 

knowledge of shared aetiological mechanisms is scarce. 

Like many other complex psychiatric disorders, ASD and ADHD are highly 

polygenic, and the majority of genetic influences can be attributed to common genetic 

variation4. There is increasing evidence from twin and genome-wide association studies 

(GWAS)5,6 suggesting genetic links between ASD and ADHD symptoms, both throughout 

population variation7–13 and at the clinical level14. The largest and most recent cross-

disorder GWAS analysis reported at least hundred loci (as tagged by single variants) with 

pleiotropic effects on more than one disorder, including ASD and ADHD4. A model of 

single-nucleotide polymorphism (SNP)-based genetic correlations among multiple 

psychiatric disorders, using exploratory factor analyses and genomic structural equation 

models, showed that both ASD and ADHD are part of the same cluster of early-onset 

neurodevelopmental disorders4. The existence of genetic links between these disorders 

is further strengthened by the familial co-aggregation of both clinical disorders in large 

register-based studies15 and the identification of shared copy number variations, 

suggesting similar biological pathways16.  

Estimates of genetic correlations between ASD and ADHD diagnosis range 

between 0.36(95%-confidence interval (CI): 0.26-0.46)17 in molecular studies to 

0.87(95%-CI: 0.77-1.0)18 in twin analyses19. Evidence for genetic links between ASD and 

ADHD symptom co-occurrence can even be stronger in population-based samples8. 

However, when both, clinical ASD and clinical ADHD, are investigated with respect to a 

third genetically complex trait, also differences in the genetic architecture become 

apparent. Each disorder, when predicted with GWAS variants, reveals an opposite 

genetic correlation with cognitive functioning and educational attainment (EA). While 

increased polygenic ADHD risk has been linked to lower cognitive abilities and EA20,21, 

increased polygenic ASD risk has been associated with higher cognitive functionality and 

EA17,20,22. This discordant association pattern is most discernible for measures of years-

of-schooling and college-completion17,21. Observational research in ADHD strongly 

confirms the associations with lower school performance and educational outcomes23. 

Reports of academic achievement in ASD are more variable24, although high-functioning 

individuals can obtain higher-order qualifications, despite disadvantages in the labour 

market25.  

The mechanisms underlying the discordant polygenic association pattern with EA 

are not yet known and may involve different biological effects, including pleiotropy. 

Following Solofiev and colleagues26, we define biological pleiotropy as processes where 

7 



Disentangling the genetic overlap between ASD and ADHD 

 

228 

the same gene has a direct biological influence on more than one phenotype. In contrast, 

spurious pleiotropy involves multiple sources of bias that cause a false association 

between a gene and multiple phenotypes26. Different causal risk variants in high linkage 

disequilibrium (LD) with the same marker are described as co-localising variants26. We 

do not consider mechanisms of mediated pleiotropy, i.e. an indirect association between 

a genetic variant and a further phenotype that arises due to causal associations between 

phenotypes26, as this mechanism would imply concordant associations between EA and 

both ASD and ADHD risk. An overview of hypothetical non-pleiotropic and pleiotropic 

mechanisms is shown in Figure 1. 

First (scenario I), the set of underlying causal variants linking ASD to EA is different 

from the set of underlying causal variants linking ADHD to EA. Here, causal alleles are 

tagged by different GWAS markers, residing either within low LD regions within the same 

gene locus (biological pleiotropy, Figure 1a) or at different loci (no pleiotropy, Figure 1b). 

Consequently, they could give rise to different polygenic associations with EA. Second 

(scenario II), association with EA is introduced because of ascertainment bias during the 

recruitment of ASD and ADHD cases (Figure 1c). In the US, the prevalence of ASD has 

been associated with higher parental socio-economic status27. In a large population-

based Swedish study, also an association between lower SES and higher ASD risk28 has 

been observed. In contrast, children in low SES families are consistently more likely to 

receive a diagnosis of ADHD than children in high SES families29. Third (scenario III), 

different causal ASD and ADHD risk alleles are tagged by different GWAS marker alleles, 

either at the same variant within the same gene locus (biological pleiotropy, Figure 1d), 

at different causal variants within the same locus (biological pleiotropy, co-localising 

variants, Figure 1e) or at different loci (spurious pleiotropy, co-localising variants , Figure 

1f). The most recent cross-disorder GWAS analysis identified several loci with opposite 

directional allelic effects at the 10-6 P-value threshold. None of these loci were shared 

between ASD and ADHD4, though these effects may become more prevalent when 

applying less stringent GWAS marker selection criteria. Fourth (scenario IV), different 

causal risk alleles for ASD and ADHD are tagged by the same GWAS marker allele, given 

LD26, either at the same locus (biological pleiotropy, co-localising variants, Figure 1g) or 

at different loci (spurious pleiotropy, co-localising variants, Figure 1h). The vast majority 

of trait-associated loci across the genome overlaps with loci from multiple traits and each 

physical location can contain multiple groups of variants with independent genetic 

effects30,31. Hence, the distribution of genetic effects across the same GWAS marker 

alleles could differ for ASD and ADHD summary statistics and shape polygenic 

associations with a third phenotype, such as EA. Finally (scenario V), identical causal risk 

alleles are shared between ASD and ADHD at the same variant and locus, and exert, 

because of pleiotropy, different genetic effects leading to different polygenic 

associations with EA (Figure 1i). Note that in the absence of pleiotropy, identical ASD and  
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Figure 1: Non-pleiotropic and pleiotropic mechanisms. Discordant associations with EA for ASD versus ADHD 

risk may involve different non-pleiotropic or pleiotropic mechanisms (a-i). Scenario I: Different causal ASD and 

ADHD risk variants are tagged by different markers, (a) at the same gene locus in regions with low linkage 

disequilibrium (LD) or (b) at different loci. (c) Scenario II: Ascertainment bias during the recruitment of cases 

leads to an artificial association of ASD with higher socio-economic status (SES) and ADHD with lower SES (non-

testable). Scenario III: Different causal ASD and ADHD risk alleles are captured by opposite alleles at a single 

marker tagging (d) a single risk variant, (e) different risk variants at the same gene or (f) different risk variants 

at different genes in regions of high LD. Scenario IV: Different causal ASD and ADHD risk alleles are captured 

by the same marker allele tagging (g) different risk variants at the same gene or (h) different risk variants at 

different genes in regions of high LD. (i) Scenario V: A single causal risk allele is tagged by the same marker 

allele and exerts different ASD and ADHD genetic effects due to biological pleiotropy. Within each subfigure, 

one or more observed marker allele is shown in linkage disequilibrium with one or more causal risk allele for 

ASD and ADHD risk. Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum 

Disorder, EA, educational attainment.  
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ADHD risk alleles captured by the same marker would lead to a concordant and not 

discordant polygenic association with EA.  

In this work, we (1) study evidence for genetic mechanisms presenting as 

discordant polygenic association pattern between EA and both ASD and ADHD risk, (2) 

characterise ASD and ADHD risk variants that contribute to the association with EA and 

(3) assess the specificity of identified genetic mechanisms by investigating genetic 

overlap with EA for other disorders. We finally integrate our findings with knowledge of 

genetic correlations between ASD and ADHD. 

To evaluate evidence for genetic mechanisms that may result in a discordant 

association pattern with EA (Figure 1), we model polygenic relationships through 

individual genetic variants, controlling both for the position of the studied SNPs and the 

direction of the genetic effects at the single-marker level. The simultaneous investigation 

of ASD and ADHD risk alleles facilitates the identification of multiple independent 

polygenic associations with EA and their direction of effect, as encoded by the same 

GWAS markers. Furthermore, we can estimate the extent of variance inflation due to 

correlations among independent variables (multicollinearity).  

To this end, we studied SNP estimates from existing GWAS summary statistics for 

EA, ASD and ADHD (Table 1) with bidirectional multivariable regression (MVR) analyses 

(Figure 2), using a multivariate methodology borrowed from a causal modelling 

approach32. Without making causal inferences, as we allow for biological pleiotropy, this 

method can estimate polygenic associations conditional on each other, while controlling 

for potential bias that may arise when adjusting for heritable covariates33. The selection 

of variant sets follows guidelines established for polygenic scoring methods34, but 

without generating accumulated allele risk scores34. Thus, we describe here, due to the 

polygenic context, genetic associations only. We assess evidence in support of genetic 

mechanisms as outlined in Figure 1, except evidence for ascertainment bias (scenario II). 
 

Table 1: Sample description 

 All individuals were of European descent. #. Predominantly 1000 genomes phase 3, see Lee et al.49. 

Abbreviations: ASD, Autism Spectrum Disorder; ADHD, Attention-Deficit/Hyperactivity Disorder; EA, 

educational attainment; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research; PGC, 

Psychiatric Genomics Consortium; SSGAC, Social Science Genetic Consortium; woADHD; without ADHD. 
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7.2. Results 
 

Analyses of genetic mechanisms underlying discordant polygenic 

association patterns with educational attainment 
Applying a MVR analysis framework, we investigate polygenic associations with 

EA by studying evidence for ASD-specific (Figure 2a) and ADHD-specific association 

effects (Figure 2b), in addition to genetic association effects that are shared, by genetic 

marker position, across both conditions (termed here forth cross-disorder genetic 

effects). Here, we study evidence for cross-disorder associations bi-directionally, as 

shown in Figure 2, using two MVR model designs: 

(1) ASD-MVR models (Figure 2a) estimate ASD-specific associations with EA (𝜃ASD), 

based on individual ASD SNP estimates (�̂�ASD), and ADHD cross-disorder associations 

(𝜃✠ADHD) with EA, based on individual ADHD SNP estimates (�̂�ADHD), as encoded by the 

same set of independent variants that were selected because of their subthreshold 

association with ASD risk (Gi).  

(2) ADHD-MVR models (Figure 2b) estimate ADHD-specific associations with EA 

(𝜃ADHD), using individual ADHD SNP estimates (�̂�ADHD), and ASD cross-disorder 

associations with EA (𝜃✠ASD), using individual ASD SNP estimates (�̂�ASD), as tagged by the 

same set of independent variants that were selected because of their subthreshold 

association with ADHD risk (Gj). 

These complementary models, and modifications thereof, were implemented 

into multiple stages of the study design (Supplementary Figure 1). Using GWAS summary 

statistics with independent cases from large consortia (Table 1), we apply a weighted 

regression framework (Methods, Formulae 1-4), analogous to Mendelian Randomization 

(MR) approaches32, but with markers as selected for polygenic scoring34 to assess 

concurrent polygenic ASD and ADHD risk associations with EA. 

During the discovery stage, we analysed 11 ASD-MVRs and 11 ADHD-MVRs using 

a series of variant sets selected at different P-value selection thresholds (5x10-8<Pthr<0.5, 

Supplementary Figure 1a-b) of which findings at Pthr<0.0015 and Pthr<0.05 are shown in 

Figure 2c. These analyses provided evidence for ASD-specific, ADHD-specific and cross-

disorder associations with EA, across multiple P-value thresholds (Supplementary Table 

6-7). For example, for ASD-MVR at Pthr<0.0015 (NSNPs=1,973, Figure 2a,c,d, 

Supplementary Table 8), we observed a positive ASD-specific association with EA, with 

an 0.009 increase in years-of-schooling per log-odds in ASD liability (ASD-MVR 

𝜃ASD=0.009(SE=0.003), P=0.002). 

Conditionally, the same ASD-related risk alleles captured a negative association 

between ADHD and EA with a 0.029 decrease in years-of-schooling per log-odds in ADHD 

liability (ASD-MVR 𝜃✠ADHD=-0.029(SE=0.004), P<1x10-10). Thus, ADHD cross-disorder 

associations showed an opposite direction of effect compared to ASD-specific 
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associations (Figure 2c,d), even though they were modelled with respect to same, here 

ASD-related, risk alleles. 

An analogous approach with ADHD-MVRs (Supplementary Figure 1b) revealed a 

complementary association profile (Supplementary Table 7). There was a negative 

ADHD-specific association between ADHD risk and EA. Conditionally, ASD cross-disorder 

associations with EA were positive, thus discordant, even though they were modelled 

with the same ADHD-related risk alleles (Figure 2c,e). For ADHD-MVR at Pthr<0.0015 

(NSNPs=2,717, Figure 2b,c,e, Supplementary Table 8), this corresponds to an 0.012 

decrease in years-of-schooling per log-odds in ADHD liability (ADHD-MVR 𝜃ADHD=-

0.012(SE=0.003), P=4x10-5), and an increase in 0.022 years-of-schooling per log-odds in 

ASD liability (ADHD-MVR 𝜃✠ASD=0.022(SE=0.003), P<1x10-10). Increasing the number of 

variants in ASD-MVRs and ADHD-MVRs using more relaxed selection thresholds (e.g. 

Pthr<0.05) boosted the statistical power (Figure 2c, Supplementary Table 6-8). 

Compared to univariable regression (UVR) models (modelling genetic 

associations between a single disorder and EA only), the simultaneous estimation of ASD 

and ADHD effects on EA using MVR improved the model fit (Supplementary Table 8). 

Multivariable models explained up to 3% more variation in genetically predictable EA 

compared to univariable models, with modest evidence for multi-collinearity 

(Supplementary Table 8, Variance inflation factor (VIF)≤1.2). Hence, the concurrent 

identification of disorder-specific and cross-disorder MVR effects suggests that different 

causal ASD and ADHD risk effects are encoded at the same genetic markers (scenario III, 

IV or V) and may, consequently, result in different genetic associations with EA (Figure 

1d-i). 

If genetic markers are shared between ASD and ADHD genetic architectures, 

different causal ASD and ADHD effects can be encoded with respect to the same 

(scenario IV and V, Figure 1g-i) or opposite alleles (scenario III, Figure 1d-f) at a single 

GWAS marker. Within a next step, we therefore restricted discovery ASD and ADHD 

variant sets to markers carrying the same risk-increasing allele for both disorders 

(termed here forth concordant variants; ~80% of the initial sets, Supplementary Figure 

1c,d) and studied the robustness of discovery MVR signals. These follow-up analyses with 

ASD and ADHD concordant variants confirmed the discordant association patterns with 

EA, with little evidence for attenuation (Supplementary Table 9). The corresponding 

bivariate relationships between SNP estimates for ASD, ADHD and EA are displayed in 

Supplementary Figure 2 and illustrate both the positive correlation of ASD (�̂�ASD) and 

ADHD (�̂�ADHD) risk allele effects and their opposite association with EA. Thus, MVR 

analyses with concordant variants demonstrate that discordant genetic associations with 

EA can arise independent of the allelic alignment to ASD or ADHD risk. These findings are 

inconsistent with scenario III (Figure 1d-f) and suggest that different ASD and ADHD 

causal alleles are tagged by the same GWAS marker allele (scenario IV, Figure g-h) or that 

identical causal risk alleles exert different ASD and ADHD genetic effects due to biological  
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Figure 2: ASD-specific, ADHD-specific and cross-disorder associations with educational attainment. (a) Acyclic 

graph illustrating multivariable regression (MVR) for a set of ASD variants Gi (ASD-MVR), two independent 

variables (ASD and ADHD risk) and the dependent variable EA. The genetic association effect of Gi on ASD and 

ADHD risk is βASDi and βADHDi respectively. The genetic association effect of ASD risk on EA is the ASD-specific 

effect θASD. The genetic association effect of ADHD risk on EA is the ADHD cross-disorder effect θ✠ADHD. The 

intercept α’ASD represents the direct effect of ASD variants Gi on EA that are neither captured by θASD nor θ✠ADHD. 

(b) Analogous acyclic graph illustrating MVR for a set of ADHD variants Gj (ADHD-MVR), two independent 

variables (ASD and ADHD risk) and the dependent variable EA. The genetic association effect of Gj on ASD and 

ADHD risk is βASDj and βADHDj respectively. The genetic association effect of ASD risk on EA is the ASD cross-

disorder effect θ✠ASD. The genetic association effect of ADHD risk on EA is the ADHD-specific effect θADHD. The 

intercept α’j represents the direct effect of ADHD variants Gj on EA that are neither captured by θADHD nor θ✠ASD. 

(c) Estimated ASD-specific effect 𝜃ASD and ADHD cross-disorder effect 𝜃✠ADHD as fitted with ASD-MVR (a) and 

estimated ADHD-specific effect 𝜃ADHD and ASD cross-disorder effects 𝜃✠ASD as fitted with ADHD-MVR (b). Sets 

of independent ASD (Gi) and ADHD (Gj) genetic variants were selected from ASD(iPSYCH, woADHD) and 

ADHD(iPSYCH) GWAS statistics respectively and are shown for two P-value thresholds (Pthr<0.0015, Pthr<0.05). 

SNP estimates for ASD (�̂�ASD), ADHD (�̂�ADHD) and EA (�̂�EA) were extracted from ASD(iPSYCH, woADHD), 
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ADHD(iPSYCH) and EA(SSGAC) GWAS statistics respectively. All MVR effects are presented as change in years -

of-schooling per increase in log-odds of ASD or ADHD liability. Bars represent 95% confidence intervals. All 

estimated MVR effects 𝜃 passed the multiple testing threshold of P<0.0023. (d) 3D scatter plot of ASD SNP 

estimates (�̂�ASD(lnOR) , x-axis), ADHD SNP estimates (�̂�ADHD(lnOR), y-axis) and EA SNP estimates (�̂�EA, z-axis) for 

ASD-related variants Gi(Pthr<0.0015), as analysed with ASD-MVR (c). The regression plane reflects the 

estimated ASD-specific (𝜃ASD) and ADHD cross-disorder (𝜃✠ADHD) effects. (e) 3D scatter plot of ASD SNP 

estimates (�̂�ASD(lnOR), x-axis), ADHD SNP estimates (�̂�ADHD(lnOR), y-axis) and EA SNP estimates (�̂�EA, z-axis) for 

ADHD-related variants Gj (Pthr<0.0015), as analysed with ADHD-MVR (c). The regression plane reflects the 

ADHD-specific (𝜃ADHD) and ASD cross-disorder (𝜃✠ASD) effects. Abbreviations: ADHD, Attention-

Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; EA, educational attainment; MVR, 

multivariable regression; Pthr, P-value threshold.  

pleiotropy (scenario V, Figure 1i). Using these fully comparable models, we could 

furthermore confirm the increase in strength and size of MVR disorder-specific and 

cross-disorder effects compared to the respective UVR effects (Supplementary Table 9). 

This suggests not only the presence of independent causal ASD and ADHD effects across 

the same GWAS marker alleles, but a destratification of ASD and ADHD risk effects as 

estimated with ASD(iPSYCH,woADHD) and ADHD(iPSYCH). 

To replicate MVR findings, we replaced ASD SNP estimates (�̂�ASD) from 

ASD(iPSYCH,woADHD) with SNP estimates derived from the independent ASD(PGC) 

sample (Supplementary Figure 1e-f). We repeated ASD-MVRs and ADHD-MVRs with the 

same sets of selected variants as studied in the discovery MVR analyses (Supplementary 

Figure 1a-b) and confirmed the discordant genetic association pattern with EA at the 

relaxed P-value threshold (Pthr<0.05; Supplementary Table 10). Here, ADHD subthreshold 

associated risk alleles carrying ASD SNP estimates show positive associations with EA 

(ADHD-MVR at Pthr<0.05: 𝜃✠ASD=0.003(SE=4x10-4), P<1x10-10), despite zero genetic 

correlations between ADHD(iPSYCH) and ASD(PGC)(Supplementary Table 3). As a 

validation step, we confirmed the positive association with EA for ASD risk as captured 

by ASD(PGC) SNP estimates (ASD-MVR at Pthr<0.05: 𝜃ASD=0.005(SE=0.001), P<1x10-10). At 

the more stringent threshold (Pthr<0.0015), only ASD-specific effects passed the multiple 

testing threshold (ASD-MVR at Pthr<0.0015: 𝜃ASD=0.01(SE=0.003), P<1x10-10). This is 

consistent with the limited power of ASD(PGC)35 and the lesser pool of aligned risk alleles 

as part of the harmonisation of ASD(iPSYCH,woADHD), ADHD(iPSYCH) and ASD(PGC) SNP 

estimates. Risk allele effect concordance in ASD(iPSYCH,woADHD) versus ASD(PGC) 

ranged only between 49% to 52%, similar to the risk allele distributions in ADHD(iPSYCH) 

versus ASD(PGC)(51% to 52%; Supplementary Table 10). The study of fully independent 

SNP estimates for ASD, ADHD and EA also increased the stability of disorder-specific and 

cross-disorder effects in UVRs compared to MVRs, with little evidence for destratification 

(Supplementary Table 10). 

We finally investigated whether MVR findings for EA extend to general 

intelligence and reading (Supplementary Figure 1g-h), using summary statistics from 

intelligence(CTG) and reading. Discordant cross-disorder association patterns with 

intelligence were confirmed for both ASD and ADHD risk (Supplementary Table 11), 
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although ASD-specific effects at Pthr<0.0015 were only detectable as trend (ASD-MVR at 

Pthr<0.0015: 𝜃ASD=0.008(SE=0.004), P=0.05; 𝜃✠ADHD=-0.033(SE=0.005), P=5x10-10; ADHD-

MVR at Pthr<0.0015: 𝜃ADHD=-0.012(SE=0.004), P=0.002; 𝜃✠ASD=0.016(SE=0.004), P=2x10-

4). Discordant cross-disorder association patterns with reading were observed for ASD 

(Gi) and ADHD (Gj) variant sets selected at Pthr<0.05, with cross-disorder effects 

identified in ADHD-MVR only detectable as trend (Supplementary Table 12). These 

association effects agree with corresponding Linkage Disequilibrium Score (LDSC) 

genetic correlations, although there was no evidence for genetic links between reading 

and iPSYCH ASD samples (Supplementary Table 5).  

Thus, our findings, validated by the use of different GWAS summary statistics, 

suggest that discordant genetic association patterns with EA are encoded at the same 

marker alleles for both ASD and ADHD risk (scenario IV or V). 

 

Identification of cross-disorder loci 
To identify and characterise variants that drive the observed discordant 

association patterns with EA, we systematically assessed the overlap between ASD (Gi) 

and ADHD (Gj) variant sets, based on iPSYCH samples. We created subsets of markers, 

which were associated with both ASD and ADHD risk and fulfilled joint ASD and ADHD 

selection criteria (Supplementary Figure 1i-j). Starting with an ASD variant set (Gi) 

selected at Pthr<0.0015 (NSNPs≤1,973), we filtered markers for joint association with ADHD 

risk across multiple ADHD P-value thresholds (0.0015≤Pthr<0.5), creating six further 

subsets (Gij, Figure 3a). These sets captured 4.2% (ASD Pthr<0.0015 and ADHD 

Pthr<0.0015) to 46.3% (ASD Pthr<0.0015 and ADHD Pthr<0.5) of the discovery ASD variant 

set (Gi). Vice versa, applying similar selection criteria, we created six further ADHD 

variant subsets (Gji) based on the joint association with ASD risk (Figure 3b). These sets 

represented 3.1% (ASD Pthr<0.0015 and ADHD Pthr<0.0015) to 37.5% (ASD Pthr<0.5 and 

ADHD Pthr<0.0015) of the discovery ADHD variant set (Gj). 

Fitting additional MVRs with these 12 jointly selected ASD and ADHD risk variants 

increased the size of observed genetic association effects with EA up to 5 times, 

compared to the effects identified with risk alleles selected for one disorder alone 

(Figure 3c, Supplementary Table 13-14). For example, selecting markers at Pthr<0.0015 

for both ASD and ADHD risk (NSNPs=83, 4.2% of the discovery ASD variant set (Gi), Figure 

3c, Supplementary Table 13), ASD-MVR identified ASD-specific effects of 

0.15(SE=0.025)(P=1x10-7) and ADHD cross-disorder effects of -0.15(SE=0.025)(P=1x10-7) 

years-of-schooling, per log-odds in ASD and ADHD liability respectively. In comparison, 

using the discovery ASD variant set (Gi) at Pthr<0.0015 (NSNPs=1,973, Figure 3c, 

Supplementary Table 13), ASD-MVRs estimated ASD-specific effects of 

0.009(SE=0.003)(P=0.002) and ADHD cross-disorder effects of -0.029(0.004)(P<1x10-10) 

years-of-schooling, per log-odds in ASD and ADHD liability respectively. Findings for 

ADHD-MVR were highly similar (Figure 3c, Supplementary Table 14).  
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Figure 3: Identification of cross-disorder loci. (a) Acyclic graph illustrating ASD-MVR for subsets of ASD variants 

fulfilling joint ASD and ADHD selection criteria (Gij), two independent variables (ASD and ADHD risk) and the 

dependent variable EA, as shown in Figure 2a. The percentage of ASD variants (Pthr<0.0015) also associated 

with ADHD across multiple P-value selection thresholds (Pthr: 0.0015; 0.005; 0.05; 0.1; 0.3; 0.5) is represented 

through concentric circles. (b) Analogous acyclic graph illustrating ADHD-MVR for subsets of ADHD variants 

fulfilling joint ASD and ADHD selection criteria (Gji), two independent variables (ASD and ADHD risk) and the 
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dependent variable EA, as shown in Figure 2b. The percentage of ADHD variants (Pthr<0.0015) also associated 

with ASD across multiple P-value selection thresholds (6 thresholds: Pthr: 0.0015; 0.005; 0.05; 0.1; 0.3; 0.5) is 

represented through concentric circles. (c) Estimated ASD-specific effects 𝜃ASD and ADHD cross-disorder effects 

𝜃✠ADHD as fitted with ASD-MVR (a) and estimated ADHD-specific effect 𝜃ADHD and ASD cross-disorder effects 

𝜃✠ASD as fitted with ADHD-MVR (b) using SNP subsets Gij and Gji fulfilling joint ASD and ADHD selection criteria. 

Variant sets Gij and Gji are shown in % of the full (+) ASD (Gi) and ADHD (Gj) variant set respectively and consist 

of independent genetic variants from ASD(iPSYCH,woADHD) and ADHD(iPSYCH) GWAS statistics. SNP estimates 

for ASD (�̂�ASD), ADHD (�̂�ADHD) and EA (�̂�EA) were extracted from ASD(iPSYCH,woADHD), ADHD(iPSYCH) and 

EA(SSGAC) GWAS statistics respectively. All MVR effects are presented as change in years-of-schooling per 

increase in log-odds of ASD or ADHD liability. Bars represent 95% confidence intervals. All MVR effects passed 

the multiple testing threshold of P<0.0023, except ADHD-specific effects for ADHD-MVR (ADHD Pthr < 0.0015; 

ASD Pthr < 0.05, 0.1), which were present as trend (P=0.01). Bars represent 95% confidence intervals. 

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; MVR, 

multivariable regression; Pthr, P-value threshold. 

 

The largest association effects with EA were identified with the most stringently 

selected ASD and ADHD risk variants, meeting a joint selection threshold of Pthr<0.0015 

(Gij and Gji, Figure 3c). Irrespective of whether the selection process was started with a 

discovery ASD (Gi) or ADHD (Gj) variant set, the jointly selected variant sets (Gij and Gji) 

comprised the same 83 loci, based on identical or tagged proxy SNPs (LD-r2=0.6, 500 kb 

window), of which 99% carried the same risk-increasing allele for both disorders 

(Supplementary Table 15). This combination of risk alleles and effects (selected at 

Pthr<0.0015 for both disorders) is unlikely to arise due to chance, as shown by 

permutations (Supplementary Table 16, empirical P<3x10-4), and suggests locus 

specificity. The 83 variants mapped to at least 52 genes (RefSeq genes, Build37), 

including multiple regulatory RNAs such as microRNAs and lnc RNAs (Supplementary 

Table 15). A gene-set enrichment analysis using FUMA36 software found enrichment for 

microRNA targets when screened against brain-expressed genes according to the 

BrainSpan samples37. This includes MIR19A/19B targets (False Discovery Rate (FDR)-

adjusted P-value= 7.3x10-4) at genes such as CACNAC1 and ERBB4, as well as MIR9 

targets (FDR-adjusted P-value= 2.8x10-2)(Supplementary Figure 3), although there was 

little evidence for a developmental specificity in expression patterns (data not shown). 

 

Cross-disorder genetic associations for other disorders 
Lastly, to assess the specificity of discordant cross-disorder effects with EA we 

also studied SNP estimates for other neuropsychiatric disorders (Supplementary Figure 

1k-l). For this, we assigned SNP estimates derived from GWAS summary statistics for 

Major Depressive disorder (MDD), schizophrenia (SCZ) and Bipolar disorder (BD; 

Supplementary Table 1) to ASD (Gi) and ADHD (Gj) risk alleles, as defined for the 

discovery MVR analyses (Pthr<0.0015 and Pthr<0.05, Supplementary Figure 4a-b).  
We identified further evidence for cross-disorder associations with EA, which was 

strengthened when studying variants at Pthr<0.05 (Supplementary Figure 4, 
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Supplementary Table 17-18) and associations were consistent with LDSC genetic 

correlations (Supplementary Table 3-4). Note that genetic association effects with EA for 

the studied adult-onset disorders might be inflated due to sample overlap between EA 

and MDD, SCZ and BD summary statistics (Methods). Still, cross-disorder effects with EA 

were weaker and smaller for adult-onset disorders compared to ASD and ADHD cross-

disorder effects with EA in the discovery analyses (Figure 2c, Supplementary Figure 4c), 

and evidence for SCZ cross-disorder effects in ADHD-MVR did not pass the multiple-

testing threshold. However, effects were comparable, in magnitude, to ASD cross-

disorder effects in the follow-up analyses using ASD(PGC) SNP estimates (Pthr<0.05, 

Supplementary Table 10). Furthermore, unidirectionally, discordant association patterns 

with EA were detected for ASD in combination with MDD risk (ASD-MVR at Pthr<0.05: 

𝜃✠MDD=-0.012, SE=0.001, P<1x10-10, Supplementary Table 17), and for ADHD in 

combination with BD risk (ADHD-MVR at Pthr<0.05: 𝜃✠BD=0.008, SE=0.001, P<1x10-10, 

Supplementary Table 18). Harmonised SNP effect concordance rates across disorders 

ranged between 51%-68%.  

 

7.3. Discussion 
 

Using a multivariate analysis approach, we investigated genetic mechanisms 

embedded in ASD and ADHD genetic architectures that present as discordant polygenic 

association pattern with EA. We found strong evidence that EA-related genetic variation 

is shared across ASD and ADHD architectures, consistent with pleiotropy or co-

localisation of genetic effects at the same subthreshold ASD- or ADHD-risk associated 

marker alleles.  

 

Genetic mechanisms for discordant polygenic association patterns with 

EA 
ASD and ADHD genetic risk effects encoded at subthreshold GWAS marker alleles, 

selected for association with either disorder, were found to predict discordant, and thus 

fully independent, association patterns with EA. These patterns remained robustly 

detectable even when GWAS markers with alleles conferring opposite directional ASD 

and ADHD risk effects were excluded. Despite positive genetic correlations between ASD 

and ADHD risk effects at the single-variant level, combinations of the same risk-

increasing alleles, carrying either ASD or ADHD risk effects, showed different associations 

with EA, and predicted either ASD-related positive or ADHD-related negative 

associations. The pattern of ASD- and ADHD-specific associations with EA, in combination 

with discordant genetic cross-disorder links, was (i) reciprocally detectable using either 

ASD- or ADHD-associated variant sets as selected for polygenic scoring approaches36, (ii) 

replicated at Pthr<0.05 using ASD(PGC) summary statistics,(iii) consistent with the 
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previously reported genetic overlap between EA, ASD and ADHD17,21 and (iv) 

independent of the harmonisation of GWAS marker alleles according to ASD or ADHD 

risk. 

At the single-variant level, our findings are consistent with mechanisms assuming 

different ASD and ADHD causal risk alleles that are tagged by the same marker allele, 

either at the same locus (biological pleiotropy, co-localisation, scenario IV, Figure 1g) or 

at different loci (spurious pleiotropy, co-localisation)(scenario IV, Figure 1h) and 

mechanisms that involve identical ASD and ADHD risk alleles and biological pleiotropy, 

including special cases such as GxE38 (scenario V, Figure 1i). Our findings are at odds with 

mechanisms proposing different ASD and ADHD risk alleles that are encoded at 

independent GWAS markers (scenario I) and mechanisms implicating opposite allelic 

effects at the same genetic marker (scenario III). Despite positive genetic correlations 

between harmonised ASD and ADHD risk effects, our findings can also not be explained 

by identical risk alleles, e.g. through mediated pleiotropy, which would result in 

concordant associations with EA.  

At the level of polygenic inheritance, our findings are consistent with reports of 

local genetic covariance, which is predominantly, but not exclusively, positive39. For 

example, partitioning genetic covariance of high-density lipoprotein (HDL) and low-

density lipoprotein LDL identified at least 11 loci with local genetic covariance, including 

negative covariance39. Here, the presence of discordant genetic cross-disorder 

associations with EA across the same risk alleles suggests local negative genetic 

covariance patterns that implicate not few but thousands of genetic risk variants 

associated with EA. This implies either wide-spread pleiotropy or co-localisation across 

ASD and ADHD genetic architectures, as well as extensive regional similarity. Given co-

localisation, the underlying causal ASD and ADHD risk alleles can be fully independent of 

each other, despite high genetic effect correlations between genetic markers, due to 

patterns of high LD39. 

 

Biological characterisation of risk variants 
Against the shared polygenic background involving several thousands of 

subthreshold ASD- and/or ADHD-risk associated variants, a small fraction (<5%, N=83) of 

SNPs passed a joint ASD and ADHD risk variant selection threshold (Pthr<0.0015). MVRs 

with these SNPs predicted larger association effects with EA, with non-overlapping 95%-

CIs, compared to those observed in the discovery MVR analyses. Mapping the 83 loci to 

at least 52 genes, we found an enrichment of miRNA targets as well as several miRNA 

and lncRNA loci. Identified genes with miRNA targets encode, for example, biological 

signalling proteins such as the calcium voltage-gated channel subunit alpha1C 

(CACNA1C) and the tyrosinkinase ERBB4, which been previously associated with both 

ASD and ADHD as well as other disorders40–42. miRNAs are key regulators of many 

biological processes and often exert post-transcriptional gene silencing that can also be 
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influenced by environmental signals43,44. Their functionality is consistent with multiple 

regulatory sites in close genomic proximity (scenario IV, Figure 1g) or different 

regulations of the same site (scenario V, Figure 1i), but not with spurious pleiotropy due 

to functionally unrelated causal genetic variants in high LD (scenario IV, Figure 1h). Thus, 

our results provide support for a recently proposed class of genetic influences for 

psychiatric illness which does not confer broad liability to disorder, but is thought to 

shape the phenotype expression through direct and interactive genetic effects or 

environmental factors4. As construed by the omnigenic model45, such ‘peripheral’ 

genetic influences, acting through trans effects, could control shared ADHD/ASD ‘core’ 

variation, although the candidacy of miRNAs functionality underlying pleiotropic effects 

requires replication in larger ASD and ADHD analyses.  

 

Genetic inter-correlations between ASD and ADHD  
Despite zero genetic correlations between ADHD(iPSYCH) and ASD(PGC), we 

observed strong evidence for cross-disorder polygenetic associations conveyed by the 

same GWAS marker alleles. Thus, it is possible that, beside a lack of power, the absence 

of genome-wide genetic correlation between ASD(PGC) and ADHD(iPSYCH) may involve 

a near symmetric distribution of positive and negative local genetic covariances and thus 

a cancellation of signals39. 

To illustrate this hypothesis, we re-formulated LDSC genetic correlations and SNP-

heritability (SNP-h2) estimates for ASD, ADHD and EA algebraically, as implied by a 

saturated trivariate structural equation model (Cholesky model, Supplementary Figure 

5). This entails an assumption-free description of trait inter-relationships according to 

genetic theory (Formulae 8-13) and does not represent a statistical model, given the lack 

of raw data.  

The simplified multi-factorial decomposition of genetic interrelationships 

between EA, ADHD(iPSYCH) and either ASD(iPSYCH) (Figure 4a) or ASD(PGC) (Figure 4b) 

describes two sources of shared genetic variation between ASD and ADHD. The first 

genetic factor (A1) captures shared variation between EA, ASD and ADHD and predicts 

negative genetic covariance between ASD and ADHD, consistent with MVR findings in 

this study. The second genetic factor (A2) describes, independently of A1, positive 

genetic covariance between ASD and ADHD, reflecting known positive or null genetic 

correlations between disorders17,46. The third genetic factor (A3) encodes ASD-specific 

variation, while alternative definitions of the model can also allow for ADHD-specific 

influences (Supplementary Figure 6). 

According to such a model, the observed net genetic covariance between ASD 

and ADHD reflects the sum of negative and positive covariance contributions from the 

independent genetic factors A1 and A2. Consequently, the genome-wide genetic 

correlations between ASD and ADHD might be reduced, as hypothesised for ASD(iPSYCH) 
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and ADHD(iPSYCH) (Figure 4a), or completely abolished, as hypothesised for ASD(PGC) 

and ADHD(iPSYCH) (Figure 4b). 

To confirm the plausibility of such a model, we conducted proof-of-principle 

simulations with model parameters derived from observed genetic correlations between 

ASD(PGC), ADHD(iPSYCH) and EA (Figure 4b). Assuming 6,000 unrelated individuals per 

trait and, for simplicity, larger SNP-h2 for ASD, ADHD and EA (which does not affect 

 
 

Figure 4: Multi-factor model of genetic interrelations between ASD, ADHD and educational attainment. The 

model predicts two sources of shared genetic influences between ASD and ADHD, as captured by common 

variants within an infinitely large population. The first genetic factor (A1, shared EA/ADHD/ASD) refers to 

shared genetic variation between EA, ADHD and ASD. It allows for negative genetic covariance between ASD 

and ADHD. The second genetic factor (A2, shared ADHD/ASD) acts independently of A1, explaining positive 

genetic covariance between ASD and ADHD. Additional ASD-specific effects are captured by a third factor (A3). 

Each factor loading (“a”) for the Cholesky decomposition of a trivariate trait is described in the Methods. (a) 

Multi-factor model consistent with ASD(iPSYCH), ADHD(iPSYCH) and EA(SSGAC) summary statistics. (b) Multi-

factor model consistent with ASD(PGC), ADHD(iPSYCH) and EA(SSGAC) summary statistics and supported by 

simulations (Supplementary Table 18). Factor loadings (“a”) were derived from LDSC SNP-h2 and genetic 

correlations according to theory. Phenotypic measures are represented by squares, while latent genetic factors 

are represented by circles. Single-headed arrows denote genetic factor loadings (“a”), double-headed arrows 

genetic correlations (“rg”). Residual influences and unit variances for latent variables were omitted. 

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; EA, 

educational attainment; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research; PGC, 

Psychiatric Genomics Consortium; SNP h2, SNP heritability observed scale; SNP hl
2, SNP heritability liability 

scale; SNP rg, SNP genetic correlation, covg, genetic covariance 
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genetic correlations but reduces the computational burden), we could re-capture 

zero genetic correlations between ASD(PGC) and ADHD(iPSYCH) (Supplementary Table 

19).  

Thus, ASD and ADHD genetic architectures might be interlinked through a 

combination of positive and negative covariances, acting locally, that influence 

detectable genome-wide correlations between ASD and ADHD and may, potentially, also 

affect GWAS signals, when both ASD and ADHD patients are jointly analysed within cross-

disorder investigations. 

 

Cross-disorder genetic associations for other disorders 
Genetic cross-disorder association effects with EA were strongest and largest 

when ADHD SNP estimates were assigned to ASD-risk associated alleles and, vice versa, 

ASD SNP estimates were assigned to ADHD-risk associated alleles, as studied in iPSYCH 

samples. However, cross-disorder effects are unlikely to be limited to ASD and ADHD 

genetic architectures. Despite the preliminary character of our analyses, we showed that 

the same selected ASD- and ADHD-related marker alleles also captured polygenetic 

relationships with EA for adult-onset disorders, such as SCZ, MDD and BD, consistent 

with the wide-spread pleiotropy among neuropsychiatric conditions4. Several of these 

cross-disorder effects were discordant compared to ASD or ADHD risk effects. Thus, local 

negative covariance patterns may also shape the genetic overlap between other 

psychiatric conditions.  

 

Strengths and limitations 
Adopting a statistical framework developed for Mendelian Randomization 

analyses32, this study disentangled ASD and ADHD single-variant effects at the same 

GWAS marker allele and identified independent polygenic associations with EA for ASD 

and ADHD risk. Evidence for discordant ADHD and ASD cross-disorder association 

profiles with EA was replicated using two independent ASD collections at a variant 

selection threshold (Pthr<0.05), which is commonly applied in polygenic scoring 

analyses47. This suggests that our findings are unlikely to be affected by diagnostic 

classification systems for clinical ASD, routes of patient ascertainment or association 

analysis designs. Furthermore, the use of fully independent samples, ASD(PGC), 

ADHD(iPSYCH) and EA(SSGAC), increased the robustness of ASD- and ADHD-specific 

findings in UVRs and MVRs and fully eliminated any variance inflation (VIF=1, 

Supplementary Table 10). However, the SNP effect concordance between ASD(PGC) and 

ASD(iPSYCH, woADHD) was only ~50%, consistent with the low power of ASD(PGC), but 

also some genetic heterogeneity between samples, possibly due to different routes of 

patient ascertainment17,21,41. This may have, consequently, decreased the power of 

follow-up analyses in this study. In comparison, the SNP effect concordance between risk 
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effects in ASD(iPSYCH,woADHD) and ADHD(iPSYCH) approached ~80%, suggesting 

similar genetic architectures, as captured by GWAS markers. The modest variance 

inflation (VIF≤1.4) between ASD(iPSYCH,woADHD) and ADHD(iPSYCH) might be the 

consequence of shared controls between different iPSYCH samples, as included in other 

large cross-disorder-studies4. This could, possibly, result in negative confounding in 

UVRs. However, we showed that independent polygenic risk effects can be successfully 

disentangled and de-stratified using MVR. In addition, there is a possibility that our 

findings are affected by ascertainment bias (scenario II, Figure 1c). Finally, ASD and ADHD 

symptom heterogeneity may shape the genetic overlap between neurodevelopmental 

disorders, EA and cognition-related traits17,48 and future studies with access to this 

information are warranted to fully understand the underlying complex multivariate 

inter-correlations. 

 

7.4. Conclusions 
Our findings show that EA-related polygenic variation is shared across ASD and 

ADHD genetic architectures and that combinations of the same risk alleles, through 

mechanisms consistent with pleiotropy or co-localisation, can encode ASD-related 

positive and ADHD-related negative associations with EA, without involving further loci. 

Our results imply local negative genetic covariance between ASD and ADHD risk that may 

contribute to the total detectable genome-wide correlation between both disorders. 

 

7.5. Methods 
 

Data sets 
Genome-wide SNP information on EA, intelligence, reading and neuropsychiatric 

disorders was obtained from GWAS summary statistics17,20,21,49–51. These aggregated 

results are briefly summarised here and described in detail in Table 1 and Supplementary 

Table 1. 

EA, intelligence and reading: GWAS summary statistics on years-of-schooling 

(excluding 23andMe) were obtained from the Social Science Genetic Association 

Consortium (SSGAC, https://www.thessgac.org/, Table 1)49. EA was coded according to 

the International Standard Classification of Education (1997) scale49 and analysed as a 

quantitative variable defined as an individual’s years-of-schooling. Participants were >30 

years of age at the time of assessment and of European ancestry. The meta-analysis 

consisted primarily of population-based cohorts, but also included family-based and 

case-control samples. 55.2% of participants were female. For most cohorts, genome-

wide data were imputed to a 1000 genomes project version 3 reference template, as 

previously described49.  
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GWAS summary statistics on intelligence20 were retrieved from the Complex Trait 

Genetics (CTG) lab (https://ctg.cncr.nl/software/summary_statistics, Supplementary 

Table 1). Participating cohorts were primarily population-based. Each cohort assessed 

intelligence with different instruments that were re-defined to index a common latent 

factor of general intelligence20. Participants had a wide age range (from 5 to 98 years), 

51.2% were female and all of them were of European descent. Genome-wide data were 

predominantly imputed to the Haplotype Reference Consortium (HRC) reference panel, 

as previously described20.  

Genome-wide association summary statistics on reading were derived by 

conducting a fixed-effect meta-analysis of reading abilities (N=13,027, Supplementary 

Table 1) as assessed in the Avon Longitudinal Study of Parents and Children52,53 (ALSPAC, 

N=4,247), the 1958 Birth Cohort54 (1958BC, N=4,638) and Philadelphia 

Neurodevelopmental Cohort55,56 (PNC, N=4,142). Within ALSPAC, word reading speed 

was assessed at 13 years using the Test of Word Reading Efficiency57 (TOWRE). Within 

the PNC, reading accuracy was assessed in participants between 8 and 22 years of age 

using the reading items of the Wide Range Achievement Test58 and within the 1958BC, 

reading comprehension was assessed at 11 years of age using a study-specific reading 

comprehension test designed to parallel the Watts-Vernon test of reading ability. Here, 

the child was required to choose from a selection of five words the word that 

appropriately completed the sentence. There were 35 questions in total and the 

reliability coefficient of this test is 0.82. Reading scores were adjusted for sex, age, age2, 

the first two principal components and study-specific covariates such as batch, if 

applicable. For each cohort, genome-wide genotyping data were imputed against the 

HRC r1.1 reference panel59 and association tests were performed using SNPTEST60 

(version 2.5.2). Finally, a fixed-effect meta-analysis across all three cohorts was 

performed using METAL61 (Nmax=13,027). 

ASD and ADHD: GWAS summary statistics for ASD and ADHD were accessed 

through the Danish Lundbeck Foundation Initiative for Integrative Psychiatric Research 

(iPSYCH, http://ipsych.au.dk/) using samples from the Danish Neonatal Screening 

Biobank hosted by Statens Serum Institute17,21,62 (ASD(iPSYCH), ADHD(iPSYCH), Table 1). 

iPSYCH adopts a case-control design (26.6% female ASD-cases17, 21.6% female ADHD-

cases21) with shared controls (~49% female)17,21, all of European ancestry with age ranges 

spanning infancy to adulthood17,21. For MVR analyses, ASD samples were restricted to 

ASD-cases without (wo) an additional ADHD diagnosis (ASD(iPSYCH,woADHD), Table 1) 

to avoid overlap with ADHD(iPSYCH). However, ADHD-cases may have an additional ASD 

diagnosis. Information on ADHD cases without ASD was not available. 

ASD cases and ADHD cases were diagnosed according to ICD-1063 and identified 

using the Danish Psychiatric Central Research Register64. Registry-based ASD diagnoses 

were validated previously17,21. Controls were randomly selected from the same 

nationwide birth cohort and did not have a diagnosis of ASD or ADHD or moderate-
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severe mental retardation (F71-F79)17,21,62. The median age at first diagnosis of ASD was 

10 years. Genotyping was performed using the Illumina Infinium PsychArray BeadChip 

and genotypes were imputed to a 1000 Genomes template (Phase3, release 02-05-

2013). Genotyping, quality control, imputation and genetic association analysis were 

carried out using the Ricopili pipeline with standard PGC settings17,21. 

Independent ASD GWAS summary statistics were obtained from the Psychiatric 

Genomics Consortium (PGC, www.med.unc.edu/pgc/). They were based on a case-

control/pseudo-control design and all individuals were ≥3 years of age and of European 

ancestry (ASD(PGC), Table 1). Information on the male-female ratio was not available41. 

A consensus ASD diagnosis was made using research standard diagnoses and expert 

clinical consensus diagnoses. The majority of ASD-cases (94.1%) also had a clinical 

diagnosis based on the Autism Diagnostic Interview-Revised65 or the Autism Diagnostic 

Observation Schedule66. Genome-wide data were imputed to a 1000 Genomes reference 

template (Phase1 v3). Note that the sample size for ADHD(iPSYCH) is about three times 

larger than for ASD(PGC).  

Other psychiatric disorders: To assess the specificity of MVR association profiles, 

we also investigated GWAS summary statistics for MDD50, SCZ51 and BD51. Cases were 

identified based on international consensus criteria. For MDD, cases were identified 

based on a lifetime diagnosis of MDD, established using DSM-III, DSM-IV, ICD-9 and/or 

ICD-10 criteria or self-report50. For SCZ, the majority of cases were diagnosed using DSM-

III, DSM-III-R, DSM-IV, ICD-10, and SCID criteria47,51. BD cases were diagnosed according 

to DSM-III, DSM-IV-TR, DSM-IV, SCID, ICD-10 or RDC criteria51,67. For all three data sets, 

genotype imputation was performed using the IMPUTE2/SHAPEIT pipeline against the 

1000 Genomes Project (v3) template. Summary data were obtained from the PGC 

(www.med.unc.edu/pgc/, Supplementary Table 1), all based on participants of European 

ancestry.  

Sample overlap: Independent GWAS summary statistics were available for EA49, 

intelligence20, reading, ASD(PGC)35 and ADHD(iPSYCH)21 (Table 1). ASD(PGC), 

ADHD(iPSYCH) and ASD(iPSYCH,woADHD)17 GWAS statistics have independent case 

samples, and case-overlap with MDD, SCZ or BD cases is at most 2%, similar to recent 

cross-disorder analyses4 (Table 1, Supplementary Table 1). Similarly, iPSYCH controls 

were shared across reported ASD(iPSYCH,woADHD), ADHD(iPSYCH), MDD, SCZ and BD 

summary statistics, as in recent cross-disorder analyses4. Also, UKBiobank and other 

large cohorts are shared across EA and MDD, SCZ or BD summary statistics (but not ASD 

and ADHD), and presented MVR studies for adult-onset disorders have thus exploratory 

character only. 

 

SNP-heritability and genetic correlations 
SNP-h2, the proportion of phenotypic or liability variance tagged by SNPs on 

genotyping arrays, was estimated for EA, intelligence, reading and psychiatric disorders 
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using LDSC regression67 (Supplementary Table 2). To estimate LDSC-h2, genome-wide χ2-

statistics are regressed on the amount of genetic variation captured by each SNP68, while 

the intercept of this regression minus one is an estimator of the mean contribution of 

confounding bias to the inflation in the mean χ2-statistic68. SNP-h2 was calculated on the 

liability scale for psychiatric disorder samples, assuming a population prevalence of 

0.012 for ASD17, 0.05 for ADHD69, 0.162 for MDD70, 0.007 for SCZ71 and 0.006 for BD72. 

In extension, unconstrained LDSC correlation72 analysis was applied to estimate 

bivariate genetic correlations (rg) (Supplementary Table 3-5). This involves a regression 

of the product of test statistics on LD score and captures the extent of shared genetic 

influences between phenotypes assessed in different samples73.  

All analyses were performed with LDSC software67,73 and based on the set of well-

imputed HapMap3 SNPs and a European reference panel of LD scores73.  

 

Multivariable regression analysis  
We adopted a bidirectional inverse-variance weighted regression framework, 

MVR, analogous to statistical models proposed for multivariable MR32. This approach 

was implemented here using GWAS summary statistics, often described as Egger 

regression32. MVR analyses do not infer causality as we allow for biological pleiotropy. 

We apply this method to simultaneously estimate genetic ASD and ADHD risk 

associations with EA. We control for collider bias that may arise when adjusting for 

heritable covariates33 by studying relationships between genetically predicted 

phenotypes only. 

Variant set identification: Multiple ASD (Gi) and ADHD (Gj) variant sets were 

created according to guidelines for polygenic scoring methods34. ASD-related variant sets 

Gi (with i = 1,...,I SNPs) and ADHD-related variant sets Gj (with j = 1,...,J SNPs) in this study 

were selected from ASD(iPSYCH,woADHD) and ADHD(iPSYCH) GWAS statistics 

respectively, using multiple P-value thresholds as described below (MVR study design). 

All variant sets were restricted to common (minor allele frequency>0.01), independent 

(LD-r2<0.25 within ±500 kb) and well-imputed (imputation quality(INFO) >0.7) SNPs. 

Estimation of ASD-specific, ADHD-specific and cross-disorder genetic associations 

with EA: For each ASD variant set Gi, an ASD-MVR was fitted as follows: 

 

�̂�𝐸𝐴𝑖 = 𝜃0∗ + 𝜃𝐴𝑆𝐷�̂�𝐴𝑆𝐷𝑖 + 𝜃✠𝐴𝐷𝐻𝐷�̂�𝐴𝐷𝐻𝐷𝑖 + 𝜀𝑖    (1) 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑠𝑒(�̂�𝐸𝐴𝑖)
−2      (2) 

 

where �̂�𝐸𝐴𝑖  (dependent variable) are SNP estimates for EA, �̂�𝐴𝑆𝐷𝑖  (independent variable) 

are SNP estimates for ASD and �̂�𝐴𝐷𝐻𝐷𝑖 (independent variable) are SNP estimates for 

ADHD. θ0* is the MVR regression intercept, θASD is the MVR ASD-specific effect and θ✠ADHD 

the MVR cross-disorder effect, weighted by the inverse variance of the dependent 

variable, consistent with the statistical framework of Egger regression-based MVR 
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analyses32. The intercept θ0* is an estimate of αi’32, the direct pleiotropic influences 

between the analysed variants Gi and EA that are neither captured by θASD nor θ✠ADHD.  

Similarly, for each ADHD variant set Gj, an ADHD-MVR was fitted as follows:  

�̂�𝐸𝐴𝑗 = 𝜃0# + 𝜃𝐴𝐷𝐻𝐷�̂�𝐴𝐷𝐻𝐷𝑗 + 𝜃✠𝐴𝑆𝐷�̂�𝐴𝑆𝐷𝑗 + 𝜀𝑗    (3) 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑠𝑒(�̂�𝐸𝐴𝑗)
−2      (4) 

where �̂�𝐸𝐴𝑗  (dependent variable) are SNP estimates for EA, �̂�𝐴𝐷𝐻𝐷𝑗  (independent 

variable) are SNP estimates for ADHD and �̂�𝐴𝑆𝐷𝑗  (independent variable) are the SNP 

estimates for ASD. θ0# is the MVR regression intercept, θADHD the MVR ADHD-specific 

effect and θ✠ASD the MVR cross-disorder effect. The intercept θ0# is an estimate of αj’32, 

the direct pleiotropic influences between the analysed variants Gj and EA that are neither 

captured by θADHD nor θ✠ASD. 

Cross-disorder effects were thus estimated bi-directionally: (1) θ✠ADHD, based on 

ADHD SNP estimates (�̂�𝐴𝐷𝐻𝐷𝑖) for ASD variant set Gi and (2) θ✠ASD, based on ASD SNP 

estimates (�̂�𝐴𝑆𝐷𝑗) for ADHD variant set Gj.  

Reported MVR effects (𝜃) present changes in years-of-schooling, either per 

increase in log-odds ASD or ADHD liability, pooled across the variant set. The overall MVR 

model fit was compared to UVR models (see below) using likelihood-ratio tests, as 

implemented in the R:stats library (Rv3.5.1). Collinearity between independent variables 

was assessed by the VIF(R:car library (Rv3.5.1)). 

Multivariable MR Egger-related approaches with intercept terms, including MVR 

analyses applied in this study, are sensitive to the allelic alignment. It has been 

recommended to orient all variants with respect to the genetic association with the 

independent variable of primary interest32. Thus, SNP estimates were aligned to increase 

ASD risk in ASD-MVRs and ADHD risk in ADHD-MVRs. As follow-up analyses, we carried 

out MVR with subsets of variants that have the same risk-increasing allele for both ASD 

and ADHD (concordant variants, Supplementary Figure 1c-d). Consequently, by design, 

SNP estimates were aligned to increase both ASD and ADHD risk (see below). 

Multivariable regression study design: MVR analyses were conducted in six 

different stages (Supplementary Figure 1): For discovery MVR analyses (1, 

Supplementary Figure 1a-b), SNP estimates for ASD (�̂�𝐴𝑆𝐷), ADHD (�̂�𝐴𝐷𝐻𝐷) and EA (�̂�𝐸𝐴) 

were extracted from ASD(iPSYCH,woADHD), ADHD(iPSYCH) and EA(SSGAC) GWAS 

statistics. 11 ASD-related Gi variant sets and 11 ADHD-related Gj variant sets were 

selected from ASD(iPSYCH,woADHD) and ADHD(iPSYCH) GWAS statistics respectively, 

using multiple P-value thresholds (Pthr, 5x10-8; 5x10-7; 5x10-6; 5x10-5; 0.0005; 0.0015; 

0.005; 0.05; 0.1; 0.3; 0.5). For simplicity, MVR findings in the main manuscript are 

presented for two P-value thresholds only: Pthr<0.0015, consistent with conservative 

selection thresholds recommended for polygenic scoring approaches34, and Pthr<0.05, a 

less stringent threshold that has been previously selected to study polygenic scores in 

complex psychiatric disorders47, to increase the statistical power and precision of MVR 

estimates.  
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Discovery MVR analyses were repeated using concordant variant sets (2, 

Supplementary Figure 1c-d, P-value thresholds: Pthr<0.0015; Pthr<0.05). 

To replicate MVR findings (3, Supplementary Figure 1e-f), ASD-MVR and ADHD-

MVR were conducted using ASD SNP estimates (�̂�ASD) from ASD(PGC), instead of 

ASD(iPSYCH,woADHD) (aligned to increase ASD risk as observed in ASD(PGC), using ASD 

and ADHD variant sets from the discovery analyses (P-value thresholds: Pthr<0.0015; 

Pthr<0.05).  

As part of sensitivity analyses (4, Supplementary Figure 1g-h), ASD-MVR and 

ADHD-MVR models were fitted with intelligence and reading as dependent variables 

(�̂�Intelligence and �̂�reading), instead of EA (�̂�EA), using GWAS summary statistics from 

Intelligence(CTG) and reading respectively, and ASD and ADHD variant sets from the 

discovery analyses (P-value thresholds: Pthr<0.0015; Pthr<0.05).  

To identify variants underlying the observed MVR cross-disorder associations 

with EA, we created variant sets meeting joint ASD and ADHD selection criteria (5, 

Supplementary Figure 1i-j). We assessed the proportion of overlapping independent 

SNPs associated with both ASD and ADHD risk using PLINK (https://www.cog-

genomics.org/plink2; 500 kb and LD-r2≥0.6). We started with the ASD and ADHD variant 

sets from the discovery analyses at Pthr<0.0015: ASD (Gi, NSNPs=1,973) and ADHD (Gj, 

NSNPs=2,717). For each variant set, we identified the SNPs that were also associated with 

the other disorder across a range of P-value thresholds (0.0015; 0.005; 0.05; 0.1; 0.3; 

0.5). In total, this resulted in six subsets for ASD-related variants (Gij) and six subsets for 

ADHD-related variants (Gji).  

To assess the specificity of the observed discordant cross-disorder associations 

with EA, we carried out MVR sensitivity analyses (6, Supplementary Figure 1k-l) 

modelling SNP estimates for MDD (�̂�MDD), SCZ (�̂�SCZ) or BD (�̂�BD) for either ASD (Gi, ASD-

MVR) or ADHD (Gj, ADHD-MVR) variant sets (Pthr<0.0015; Pthr<0.05) as used in the 

discovery MVR analyses. SNP estimates �̂�ASD, �̂�ADHD, �̂�MDD, �̂�SCZ, �̂�BD and �̂�EA were 

extracted from ASD(iPSYCH,woADHD), ADHD(iPSYCH), MDD(PGC), SCZ(PGC), BD(PGC) 

and EA(SSGAC) GWAS statistics respectively (Table 1, Supplementary Table 1).  

Multiple testing correction: We applied the following conservative Bonferroni-

corrected multiple testing thresholds for the MVR analysis stages described above: (1) 

discovery analyses with two MVR models across 11 variant sets (22 tests, PAdjusted=0.0023, 

Supplementary Figure 1a-b) with (2) concordant variant analyses being nested within 

these discovery analyses (Supplementary Figure 1c-d); (3) follow-up analyses with 

independent ASD(PGC) SNP estimates with two MVR models across two variant sets (4 

tests, PAdjusted=0.0125, Supplementary Figure 1e-f); (4) follow-up analyses with 

intelligence(CTG) and reading SNP estimates with two MVR models across two variant 

sets (8 tests, PAdjusted=0.0006, Supplementary Figure 1g-h); (5) screening of MVR effect 

sizes with variant sets meeting joint ASD and ADHD variant selection criteria: For each 

MVR model, variant sets selected at Pthr<0.0015 were successively restricted to SNPs that 
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are associated with both disorders, using six P-value thresholds nested within the set of 

discovery analyses (PAdjusted=0.0023 as described above, Supplementary Figure 1i-j); (6) 

follow-up analyses with MDD(PGC), SCZ(PGC) and BD(PGC) SNP estimates with two MVR 

models across two variant sets (12 tests, PAdjusted=0.0042, Supplementary Figure 1k-l). 

 

Univariable regression models 
To assess the robustness of MVR findings, weighted UVRs were included in the 

stages 1 to 4 and 6 of the MVR study design (Supplementary Figure 1a-h,k-l). UVRs 

included the same dependent variable but only one of the two independent variables 

described for MVR analyses (Formulae: 1-4), capturing either disorder-specific or cross-

disorder effects. Additionally, we carried out a weighted UVR regressing ADHD SNP 

estimates (�̂�ADHD) on ASD SNP estimates (�̂�ASD) for concordant variants. UVR and MVRs 

model fit was compared using a likelihood-ratio test as implemented in the R:stats library 

(Rv3.5.1).  

 

Gene-set enrichment analyses 
SNPs were mapped to 52 RefSeq gene IDs (genome build 37) based on positional 

mapping using PLINK software (0 kb gene window) (https://www.cog-

genomics.org/plink2), similar to the default options in MAGMA gene-enrichment 

software73. Gene-set enrichment (>5 overlapping genes, FDR-adjusted P-values) was 

conducted within BrainSpan samples37 (https://www.brainspan.org/), based on 29 

different ages of brain samples and 11 developmental stages of brain samples. 

Enrichment analysis was carried out with MAGMA74, as implemented in FUMA36 

software (https://fuma.ctglab.nl/), by mapping genes to unique Ensembl IDs (v92). 

 

Structural equation modelling 
To summarise genetic interrelationships between EA, ASD and ADHD with a multi-

factor model, we translated LDSC SNP-h2 and rg estimates (Supplementary Table 3-4) 

into hypothetical factor loadings consistent with structural equations for a saturated 

model. Specifically, we propose a multi-factorial structural equation model consisting of 

three continuous phenotypes (EA, ASD liability and ADHD liability Z-scores), three 

independent latent genetic factors and three independent latent residual influences. We 

assume that genetic factors give rise to genetic variances and covariances between EA, 

ASD and ADHD liability, while residual covariances are assumed to be absent. Phenotypic 

variances and covariances were described according to a Cholesky decomposition75 (i.e. 

a saturated model), assuming an infinitely large population and a fully identified model 

(Supplementary Figure 5). A Cholesky model involves the decomposition of both the 

genetic variances and residual variances into as many latent factors as there are 
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observed variables. The expected phenotypic covariance matrix Σ  for Z-standardised 

traits based on the factor model is  

(5) 

where Λ  is a lower triangular matrix of genetic factor loadings, Φ  is a diagonal 

matrix of latent genetic factor variances (standardised to unit variance) such that Φ  is 

an identity matrix I. The residual variance can be decomposed into latent residual 

factors, where Γ  is a lower triangular matrix of residual factor loadings and Θ  is a 

diagonal matrix of latent residual factor variances (standardised to unit variance) such 

that Θ  is an identity matrix I. For example, for a trivariate model consisting of measures 

P1, P2 and P3, assuming three genetic factors (A1, A2 and A3) and three residual factors 

(E1, E2 and E3), the expected phenotypic covariance matrix can be expressed as follows: 
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where 
2

1p ,
2

2p and 
2

3p represent the phenotypic variances, and 
12p , 

13p  and 

23p phenotypic covariances. We annotate the genetic factor loadings a (factor 

loadings) such that the first number indicates the direction of the effect (the variable to 

which the arrow points) and the second the origin of the effect.  

The trivariate AE Cholesky decomposition of three standardised measures, as 

described above, can be visualised by means of a path diagram (Supplementary Figure 

5) and the expected phenotypic variances and covariances can be expressed as follows:  
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223221312232213123 eeeeaaaap 
       (13) 

The variance of the latent genetic and residual factors has been standardised to 

unit variance and is not shown.  

Estimated genetic variances and covariances can be used to derive genetic 

correlation estimates between two phenotypes measuring the extent to which two 

phenotypes 1 and 2 share genetic factors (ranging from -1 to 1):  

2

2

2

1

12

gg

g

gr



      (14) 

where 
12g  is the genetic covariance between phenotypes 1 and 2, and 

2

1g , 
2

2g

their genetic variances. 

We derived (but did not fit) hypothetical factor loadings, based on LDSC SNP-h2 

estimates for EA and, on the liability scale, ASD and ADHD risk (Supplementary Table 2), 

as well as unconstrained LDSC genetic correlations (Supplementary Table 3-4) using EA, 

ASD(iPSYCH), ASD(PGC) and ADHD(iPSYCH) GWAS statistics (Table 1). We support the 

plausibility of such a model using simulations (Supplementary Table 19). 

 

Multi-factor model data simulation 
To evaluate the plausibility of the proposed multi-factorial model, we carried out 

data simulations (Supplementary Table 19). Assuming multivariate normality and 

unrelated individuals, we simulated three continuous interrelated measures P1, P2 and 

P3 corresponding to EA and liability for ADHD and ASD respectively, according to a 

Cholesky model. This includes three genetic factors with their variances and covariances 

and three residual factors with their variances and their covariances. The genetic 

interrelationships between these three traits were informed by unconstrained LDSC 

genetic correlations between EA, ADHD and ASD (Supplementary Table 3-4) using EA, 

ADHD(iPSYCH) and ASD(PGC) summary statistics and structural equations described 

above (Formulae 8-14). Residual interrelationships were assumed to be absent as the 

cohorts are independent of each other. However, simulated SNP-h2 estimates were 

increased, and sample sizes restricted to 6,000 individuals per trait with 20,000 SNPs per 

genetic factor, to ease the computational burden (72h, using 16 cores). Multivariate 

variances and covariances within the simulated data were modelled using genetic-

relationship-matrix structural equation modelling (GSEM, R gsem library, v0.1.2)76. This 

method involves a multivariate analysis of genetic variance by combining whole-genome 

genotyping information in unrelated individuals with structural equation modelling 

techniques using a full information maximum likelihood approach. Simulated 

parameters and estimated parameters are shown in Supplementary Table 19.
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Supplementary Materials 
 

Supplementary Methods 

 
Web resources 
Brainspan: https://www.brainspan.org/ 

CTG lab: https://ctg.cncr.nl/software/summary_statistics 

FUMA: https://fuma.ctglab.nl/  

iPSYCH: https://ipsych.au.dk/downloads/ 

LDSC: https://github.com/bulik/ldsc 

PLINK: https://www.cog-genomics.org/plink2 

PGC: https://www.med.unc.edu/pgc/ 

R: https://www.r-project.org/ 

SSGAC: https://www.thessgac.org/ 

 

Supplementary Tables 

 
Supplementary Table 1: Sample description for MDD, SCZ, BD, general intelligence and reading 

Source GWAS Consortium Imputation reference panel N  

Clinical sample 

MDD1 PGC 1000 Genomes multi-ancestry 
173,005 
(cases=59,851) 

SCZ2 PGC 1000 Genomes phase 3 
65,967 
(cases=33,426) 

BD2 PGC 1000 Genomes phase 3 
41,653 
(cases=20,129) 

Population 
sample  

Intelligence3 CTG lab HRC# 279,930 

Reading - HRC 13,027 

All individuals were of European descent. # Predominantly HRC, see Savage et al.3 Abbreviations: BD, Bipolar 

Disorder; CTG, Complex Trait Genetics lab; HRC, Haplotype Reference Consortium; MDD, Major Depressive 

Disorder; PGC, Psychiatric Genomics Consortium; SCZ, Schizophrenia 
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Supplementary Table 2: SNP-heritability estimates 

Phenotype Sample SNP-h2 (SE) λGC Intercept (SE) 

ASD 

ASD(iPSYCH) 0.12(0.01) 1.15 1.01(0.01) 

ASD(iPSYCH, woADHD) 0.13(0.01) 1.13 1.01(0.01) 

ASD(PGC) 0.26(0.03) 1.05 0.97(0.01) 

ADHD ADHD(iPSYCH) 0.26(0.02) 1.23 1.03(0.01) 

MDD MDD(PGC) 0.095(0.01) 1.24 0.99(0.01) 

SCZ SCZ(PGC) 0.24(0.01) 1.50 1.05(0.01) 

BD BD(PGC) 0.18(0.01) 1.27 1.02(0.01) 

Years-of-schooling EA(SSGAC) 0.11(0.003) 2.10 1.03(0.01) 

General intelligence Intelligence(CTG) 0.18(0.006) 1.75 1.08(0.01) 

Reading Reading 0.19(0.04) 1.06 1.02(0.01) 

SNP-heritability (SNP-h2) was estimated with LDSC regression analysis4. SNP-h2 estimates for EA, general 

intelligence and reading were calculated on the observed scale and for psychiatric disorders on a liability scale 

assuming a population prevalence of 0.012 (ASD), 0.05 (ADHD), 0.162 (MDD), 0.007 (SCZ) and 0.006 (BD). 

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; BD, Bipolar 

Disorder; EA; educational attainment; CTG, Complex Trait Genetics lab; iPSYCH, The Lundbeck Foundation 

Initiative for Integrative Psychiatric Research; MDD, Major Depressive Disorder; PGC, Psychiatric Genomics 

Consortium; SCZ, Schizophrenia; SSGAC, Social Science Genetic Association Consortium; λGC, lambda GC; 

woADHD, without ADHD 

 

Supplementary Table 3: Genetic correlations among psychiatric disorders 

Sample 1 Sample 2 rg (SE) P 

ASD(iPSYCH, woADHD)  

ASD(PGC) 0.84(0.11) <10-10 

ADHD(iPSYCH) 0.30 (0.06) 2x10-7 

MDD(PGC) 0.43 (0.05) <10-10 

SCZ(PGC) 0.21 (0.06) 10-4 

BD(PGC) 0.18 (0.06) 0.001 

ASD(PGC) 

ADHD(iPSYCH) 0.04(0.08) 0.61 

MDD(PGC) 0.12(0.05) 0.017 

SCZ(PGC) 0.20(0.06) 0.001 

BD(PGC) 0.12(0.06) 0.063 

ADHD(iPSYCH) 

MDD(PGC) 0.55 (0.04) <10-10 

SCZ(PGC) 0.12 (0.04) 0.004 

BD(PGC) 0.12 (0.05) 0.007 

Genetic correlations (rg) among psychiatric disorder samples were estimated using summary statistics and 

unconstrained LD score correlation5. Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, 

Autism Spectrum Disorder; BD, Bipolar Disorder; iPSYCH, The Lundbeck Foundation Initiative for Integrative 

Psychiatric Research; MDD; Major Depressive Disorder; PGC, Psychiatric Genomics Consortium; rg, genetic 

correlation; SCZ, Schizophrenia; woADHD, without ADHD 
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Supplementary Table 4: Genetic correlations of psychiatric disorders with educational attainment 

Sample 1 Sample 2 rg (SE) P 

EA(SSGAC)  

ASD(iPSYCH) 0.16(0.03) 4x10-7 

ASD(iPSYCH, woADHD) 0.23(0.03) <10-10 

ASD(PGC) 0.28(0.03) <10-10 

ADHD(iPSYCH) -0.49(0.03) <10-10 

MDD(PGC) -0.22 (0.03) <10-10 

SCZ(PGC) 0.07 (0.02) 0.003 

BD(PGC) 0.18 (0.02) <10-10 

Genetic correlations (rg) were estimated using summary statistics and unconstrained LD score correlation5. 

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; BD, Bipolar 

Disorder; EA; educational attainment; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric 

Research; MDD, Major Depressive Disorder; PGC, Psychiatric Genomics Consortium; rg, genetic correlation; 

SCZ, Schizophrenia; SSGAC, Social Science Genetic Association Consortium; woADHD, without ADHD. 

 
Supplementary Table 5: Genetic correlations of ASD and ADHD with general intelligence and reading 

Sample 1 Sample 2 rg (SE) P 

Intelligence(CTG) 

ASD(iPSYCH) 0.20(0.04) 10-8 

ASD(iPSYCH, woADHD) 0.25(0.04) <10-10 

ASD(PGC) 0.19(0.04) 2x10-7 

ADHD(iPSYCH) -0.33(0.03) <10-10 

Reading 

ASD(iPSYCH) 0.11(0.11) 0.32 

ASD(iPSYCH, woADHD) 0.14(0.11) 0.20 

ASD(PGC) 0.32(0.11) 0.004 

ADHD(iPSYCH) -0.45(0.10) 8x10-6 

Genetic correlations (rg) were estimated using summary statistics and unconstrained LD score correlation5. 

Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; CTG, Complex 

Trait Genetics lab; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research; PGC, 

Psychiatric Genomics Consortium; rg, genetic correlation; woADHD, without ADHD; 
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Supplementary Table 16: Permutation analysis 

MVR 

Variant selection Empirical P-value (SE) 

Pthr ASD  
(iPSYCH, woADHD) 

Pthr ADHD 
(iPSYCH) 

NSNPs Specific effects 
Cross-disorder 

effects 

ASD-MVR 0.0015 0.0015 83 
P(𝜃ASD) 

<10-4(<10-4) 
P(𝜃✠ADHD) 

7x10-4(3x10-4) 

ADHD-MVR 0.0015 0.0015 83 
P(𝜃ADHD) 

9x10-4(3x10-4) 
P(𝜃✠ASD) 

2x10-4(10-4) 

83 SNPs were randomly selected from either ASD variants (Pthr<0.0015) or ADHD variants (Pthr<0.0015). 

Corresponding SNP estimates for ASD (�̂�ASD), ADHD (�̂�ADHD) and EA (�̂�EA) were subsequently extracted from 

ASD(iPSYCH, woADHD), ADHD(iPSYCH) and EA(SSGAC) GWAS statistics, respectively. 10,000 MVRs were 

performed and the number of times a permuted MVR effect was at least as significant as an observed MVR 

effect counted. Abbreviations: ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum 

Disorder; iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research; NSNPs, number of 

SNPs; Pthr, P-value threshold; woADHD, without ADHD 
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Supplementary Table 19: Simulation of a hypothetical multifactorial model of EA, ASD and ADHD 

interrelationships 

Parameter Simulated parameter Estimated parameter (SE) 

SNP-h2 

EA 0.25 0.34 (0.06) 

ADHD liability 0.50 0.42 (0.06) 

ASD liability 0.50 0.40 (0.06) 

e2 

EA 0.75 0.66 (0.06) 

ADHD liability 0.50 0.58 (0.06) 

ASD liability 0.50 0.60 (0.06) 

Genetic factor 
loadings 

 

a11 0.50 -0.58 (0.05) 

a21 -0.35 0.30 (0.07) 

a31 0.20 -0.14 (0.07) 

a22 0.62 -0.58 (0.05) 

a32 0.14 -0.11 (0.08) 

a33 0.66 -0.61 (0.05) 

Residual factor 
loadings 

e11 0.87 -0.81 (0.04) 

e21 0.00 0.01 (0.05) 

e31 0.00 -0.03 (0.05) 

e22 0.71 0.76 (0.04) 

e32 0.00 0.00 (0.05) 

e33 0.71 -0.77 (0.04) 

rg 

EA, ADHD -0.49 -0.46 (0.11) 

EA, ASD 0.28 0.23 (0.11) 

ADHD, ASD 0.04 0.04 (0.10) 

We simulated three continuous interrelated measures corresponding to EA, ADHD liability and ASD liability 

(N=6000 each), informed by unconstrained LDSC genetic correlations (rg) using GWAS statistics for EA, 

ADHD(iPSYCH) and ASD(PGC). Residual correlations were assumed to be absent, given the independence of 

the respective GWAS statistics. Note that simulated SNP-h2 estimates were increased, compared to the 

observed values, to reduce the computational burden. Abbreviations: ADHD, Attention-Deficit/Hyperactivity 

Disorder; ASD, Autism Spectrum Disorder; EA, educational attainment; SNP-h2, Single Nucleotide 

Polymorphism heritability; e2, residual variance; rg, genetic correlation 
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Supplementary Figure 1: MVR study design  

Acyclic graphs illustrating the multivariable regression (MVR) design and selected GWAS statistics. ASD-MVR 

(a,c,e,g,i,k) involve a set of ASD variants (Gi), two independent variables (ASD risk and risk for another disorder 

such as ADHD, MDD, SCZ or BD) and one dependent variable (EA, general intelligence or reading). The genetic 

association effect of Gi on ASD is βASDi. The genetic association effect of Gi on ADHD, MDD, SCZ or BD is βADHDi, 

βMDDi, βSCZi or βBDi respectively. The genetic association effect of ASD risk on the dependent variable is the ASD-

specific effect θASD. For ASD-MVR studying ADHD risk (a,c,e,g,i), the genetic association effect of ADHD risk on 

the dependent variable is the cross-disorder effect θ✠ADHD. For ASD-MVR studying MDD, SCZ or BD risk (k), the 

genetic association effects of MDD, SCZ or BD on the dependent variable are the cross-disorder effects θ✠*MDD, 

θ✠*SCZ or θ✠*BD respectively. The intercept α’ASD represents the direct effect of ASD variants Gi on the dependent 

variable that are neither captured by θASD nor any θ✠. ADHD-MVR (b,d,f,h,j,l) involve a set of ADHD variants (Gj), 

two independent variables (ADHD risk and risk for another disorder such as ASD, MDD, SCZ or BD) and one 

dependent variable (EA, general intelligence or reading). The genetic association effect of Gj on ADHD is βADHDj. 

The genetic association effect of Gj on ASD, MDD, SCZ or BD is βASDj, βMDDj, βSCZj or βBDj respectively. The genetic 

association effect of ADHD risk on the dependent variable is the ADHD-specific effect θADHD. For ADHD-MVR 

studying ASD risk (b,d,f,h,j), the genetic association effect of ASD risk on the dependent variable is the cross-

disorder effect θ✠ASD. For ADHD-MVR studying MDD, SCZ or BD risk (l), the genetic association effect of MDD, 

SCZ or BD on the dependent variable are the cross-disorder effects θ✠#MDD, θ✠#SCZ or θ✠#BD respectively. The 

intercept α’ADHD represents the direct effect of ADHD variants Gj on the dependent variable that are neither 

captured by θADHD nor any θ✠. For MVR models (a,b,c,d,i,j), SNP estimates �̂�ASD, �̂�ADHD and �̂�EA were extracted 

from ASD(iPSYCH, woADHD), ADHD(iPSYCH) and EA(SSGAC) GWAS statistics respectively. For MVR models (e,f), 

SNP estimates �̂�ASD, �̂�ADHD and �̂�EA were extracted from ASD(PGC), ADHD(iPSYCH) and EA(SSGAC) GWAS 

statistics respectively. For MVR models (g,h), SNP estimates �̂�ASD, �̂�ADHD. �̂�Intelligence and �̂�reading were extracted 

from ASD(iPSYCH, woADHD), ADHD(iPSYCH), Intelligence(CTG) and reading GWAS statistics respectively. For 

MVR models (k,l), SNP estimates �̂�ASD, �̂�ADHD, �̂�MDD, �̂�SCZ, �̂�BD and �̂�EA were extracted from ASD(iPSYCH, woADHD), 

ADHD(iPSYCH), MDD(PGC), SCZ(PGC), BD(PGC) and EA(SSGAC) GWAS statistics respectively. Independent 

ASD(Gi), ADHD(Gj) and joint ASD/ADHD (G ij and Gji) genetic variant sets were selected from ASD(iPSYCH, 

woADHD) and ADHD(iPSYCH) GWAS statistics respectively. Abbreviations: ADHD, Attention-

Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; BD, Bipolar Disorder; EA, Educational 

attainment, Intelligence, General intelligence, GWAS, genome-wide association study, iPSYCH, The Lundbeck 

Foundation Initiative for Integrative Psychiatric Research; MDD; Major Depressive Disorder; MVR, 

multivariable regression; Pthr, P-value threshold; PGC, Psychiatric Genomics Consortium; SCZ, Schizophrenia; 

SSGAC, Social Science Genetic Consortium; woADHD; without ADHD 
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Supplementary Figure 3: Enrichment for microRNA targets 
Variants selected at joint P-value threshold for both ASD and ADHD (Pthr<0.0015) included 83 SNPs that were 

mapped to 52 loci. Of those, 45 were aligned to unique Ensembl IDs (v92) and subjected to gene-set 

enrichment analysis (requesting at least 5 overlapping genes) within BrainSpan samples (29 different ages of 

brain samples and 11 developmental stages of brain samples) using FUMA software. The strongest evidence 

for enrichment was found for micro RNA targets, TTTGCAC_MIR19A_MIR19B and ACCAAAG_MIR9, as shown 

with 515 and 500 background genes respectively (Enrichment TTTGCAC_MIR19A_MIR19B P-

unadjusted=3.3x10-6, adjusted- P=0.00074; Enrichment ACCAAAG_MIR9 P-unadjusted = 0.00039, P-adjusted = 

0.028). 
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Supplementary Figure 4: Cross-disorder associations with educational attainment for other disorders. (a) Acyclic 

graph illustrating multivariable regression (MVR) for a set of ASD variants Gi (ASD-MVR), two independent 

variables (ASD risk and risk for either MDD, SCZ or BD) and the dependent variable EA. The genetic association 

effect of Gi on ASD, MDD, SCZ and BD risk are βASDi, βMDDi, βSCZi and βBDi respectively. The genetic association 

effect of ASD risk on EA is the ASD-specific effect θASD. The genetic association effects of MDD, SCZ or BD risk 

on EA are the cross-disorder effects θ✠*MDD, θ✠*SCZ and θ✠*BD respectively. The intercept α’ASD represents the 

direct effect of ASD variants Gi on EA that are neither captured by θASD nor any θ✠*. (b) Analogous acyclic graph 

illustrating MVR for a set of ADHD variants Gj (ADHD-MVR), two independent variables (ASD and ADHD risk) 

and the dependent variable EA. The genetic association effect of Gj on ADHD, MDD, SCZ and BD risk are βADHDj, 

βMDDj, βSCZj and βBDj respectively. The genetic association effect of ADHD risk on EA is the ADHD-specific effect 

θADHD. The genetic association effects of MDD, SCZ or BD risk on EA are the cross-disorder effects θ✠#MDD, θ✠#SCZ 

and θ✠#BD respectively. The intercept α’j represents the direct effect of ADHD variants Gj on EA that are neither 

captured by θADHD nor any θ✠#. (c) Estimated ASD-specific effect 𝜃ASD and MDD, SCZ or BD cross-disorder effects 

𝜃✠*MDD, 𝜃✠*SCZ and 𝜃✠*BD as fitted with ASD-MVR (a) and estimated ADHD-specific effect 𝜃ADHD and MDD, SCZ or 

BD cross-disorder effects 𝜃✠#MDD, 𝜃✠#SCZ and 𝜃✠#BD as fitted with ADHD-MVR (b). Sets of independent ASD (G i) 

and ADHD (Gj) genetic variants were selected from ASD(iPSYCH, woADHD) and ADHD(iPSYCH) GWAS statistics 

respectively and are shown for two P-value thresholds (Pthr<0.0015, Pthr<0.05). SNP estimates �̂�ASD, �̂�ADHD, �̂�MDD, 

�̂�SCZ, �̂�BD and �̂�EA were extracted from ASD(iPSYCH, woADHD), ADHD(iPSYCH), MDD(PGC), SCZ(PGC), BD(PGC) 

and EA(SSGAC) GWAS statistics respectively. All MVR effects are presented as change in years-of-schooling per 

increase in log-odds of ASD, ADHD, MDD, SCZ or BD liability. Bars represent 95% confidence intervals. n.s. - 

MVR effects 𝜃 that did not pass the multiple testing threshold of P< 0.0042. Abbreviations: ADHD, Attention-

7 



Supplementary Materials 

 
287 

Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; BD, Bipolar Disorder; EA, Educational 

attainment, iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research; MDD; Major 

Depressive Disorder; MVR, multivariable regression; Pthr, P-value threshold; PGC, Psychiatric Genomics 

Consortium; SCZ, Schizophrenia; SSGAC, Social Science Genetic Consortium; woADHD; without ADHD 

 

 

 

Supplementary Figure 5: Path diagram for a trivariate trait  

The variance/covariance structure of multivariate trait consisting of three standardised measures P1, P2 and 

P3 can be described using a Cholesky decomposition consisting of three genetic factors (A1, A2 and A3) and 

three residual factors (E1, E2 and E3), shown here with genetic and residual factor loadings. The observed 

phenotypic measures are represented by squares, while all latent genetic and residual factors are represented 

by a circle. Single headed arrows ('paths') denote causal relationships between variables and are shown for 

genetic factor loadings (a) and residual factor loadings (e). Note that the variance of latent variables is 

constrained to unit variance, this is omitted from the diagrams to improve clarity. 
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Supplementary Figure 6: Multi-factor model of genetic interrelations between ASD, ADHD and educational 

attainment (allowing for ADHD-specific genetic influences) 

The model predicts two sources of shared genetic influences between ASD and ADHD, as captured by common 

variants within an infinitely large population. The first genetic factor (A1, shared EA/ADHD/ASD) refers to 

shared genetic variation between EA, ADHD and ASD. It allows for a negative genetic covariance between ASD 

and ADHD. The second genetic factor (A2, shared ADHD/ASD) acts independently of A1, explaining positive 

genetic covariance between ASD and ADHD. Additional ADHD-specific effects are captured by a third factor 

(A3). Each factor loading (“a”) for the Cholesky decomposition of a trivariate trait is described in the Methods. 

(a) Multi-factor model consistent with ASD(iPSYCH), ADHD(iPSYCH) and EA(SSGAC) summary statistics. (b) 

Multi-factor model consistent with ASD(PGC), ADHD(iPSYCH) and EA(SSGAC) summary statistics. Factor 

loadings (“a”) were derived from LDSC SNP-heritability and genetic correlations, according to theory. 

Phenotypic measures are represented by squares, while latent genetic factors are represented by circles. Single 

headed arrows denote genetic factor loadings (“a”), double-headed arrows genetic correlations (“rg”). Residual 

influences and unit variances for latent variables were omitted. Abbreviations: EA, educational attainment; 

ADHD, Attention-Deficit/Hyperactivity Disorder; ASD, Autism Spectrum Disorder; iPSYCH, The Lundbeck 

Foundation Initiative for Integrative Psychiatric Research; PGC, Psychiatric Genomics Consortium; SNP h2, SNP 

heritability; SNP rg, SNP genetic correlation, covg, genetic covariance  
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Language is a complex human suite of skills that the majority of children acquire 

rapidly and effortlessly. However, there exist large individual differences in the pace and 

trajectory of language acquisition. This thesis aimed at broadening the knowledge of how 

genetic influences contribute to such differences during the first three years of life and 

investigates shared genetic links with subsequent language, literacy and cognitive 

development, as well as genetic associations of both language and related traits with 

childhood-onset neurodevelopmental disorders. 

 

8.1. Summary 
 

In chapter 1, I introduced the processes that underpin language development as 

well as genetic concepts that are relevant to this thesis. The literature review in chapter 

2 provided an overview of prior knowledge about the genetic architecture underlying 

early language development and its links with later language- and literacy-related skills. 

Studies based on collections of both community-based twin samples and unrelated 

individuals reported low to modest heritability for individual differences in language skills 

during the first three years of life, suggesting an underlying genetic component including 

common variation. At the single-nucleotide polymorphism (SNP) level, a previous meta- 

genome-wide association study identified a genome-wide signal with expressive 

vocabulary at 15-18 months of age near ROBO2, despite modest statistical power for 

variant discovery (~38%). At the polygenic level, latent factor twin analyses reported 

some stability in genetic factors related to language and literacy skills assessed from 

toddlerhood till early adolescence, but also age-specific genetic characteristics. Beyond 

these latent factor twin analyses, knowledge about the composition of shared and 

specific genetic factors underlying language and literacy development has been scarce, 

highlighting the need for further research on this key issue. In particular, the genetic 

architecture of early receptive vocabulary and its relationship with subsequent language 

and literacy development has been little characterised.  

Thus, in chapter 3, I assessed whether genetic factors underlying vocabulary skills 

during toddlerhood are related to a range of mid-childhood/early-adolescent language 

and literacy abilities, using the longitudinal dataset of the Avon Longitudinal Study of 

Parents and Children (ALSPAC). Applying a structural equation modelling approach based 

on unrelated individuals, Genetic-relationship-matrix Structural Equation Modelling 

(GSEM), I observed evidence for genetic stability during language and literacy 

development. Specifically, the majority of SNP-heritability (SNP-h2) for many later 

complex abilities could be explained by genetic influences that are related to early-

childhood vocabulary skills, especially in the receptive domain, suggesting a role for 

amplification processes. These findings extend the understanding of shared genetic links 
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between early-life vocabulary and subsequent language and literacy, and highlight the 

importance of studying receptive language skills early in life.  

In chapter 4, I disentangled the genetic factors contributing to vocabulary skills 

during the first three years of life and assessed the emergence of genetic associations 

with mid-childhood reading, verbal and non-verbal intelligence, using a similar approach 

to that in chapter 3. Here, I studied measures of expressive vocabulary at 15, 24 and 38 

months of age, as well as receptive vocabulary at 38 months of age. The genetic 

architecture underlying these vocabulary measures was highly dynamic, with evidence 

for age- and ability-specific genetic factors. Genetic influences identified for expressive 

vocabulary at 15 months also affected expressive vocabulary at 24 months, but did not 

affect vocabulary, reading or cognition measures beyond this age. An independent 

genetic factor contributing to expressive vocabulary at 24 months played a role in verbal 

processes throughout early and later childhood, including reading and verbal 

intelligence. Consistent with my findings in chapter 3, also genetic influences underlying 

receptive vocabulary at 38 months accounted for phenotypic covariance with mid-

childhood reading, verbal intelligence and performance intelligence, independent of 

genetic factors identified for expressive vocabulary. Thus, the genetic foundations of 

mid-childhood reading cognitive skills are diverse. They involve at least two independent 

genetic factors that emerge at different stages during early language development, 

where part of the genetic influences related to verbal cognitive skills can already be 

captured by measures of expressive vocabulary in children as young as two years of age.  

In chapter 5, I aimed to identify SNPs associated with early vocabulary and, as 

part of follow-up analyses, studied whether there are genetic links of early vocabulary 

with several later-life cognition-related traits, anthropometric traits and childhood-onset 

neurodevelopmental disorders. For this study, I performed the largest meta-GWAS of 

expressive and receptive vocabulary between 15 and 38 months of age to date, with 

increased study power compared to a previous effort1. The meta-GWAS was embedded 

within the Early Genetics and Life Course Epidemiology (EAGLE) Consortium and 

included seven independent European population- or community-based cohorts with 

genome-wide genotypes and early vocabulary scores, resulting in 37,913 observations 

across 17,298 individuals. To allow for age- and ability-specific genetic influences, I 

followed a stratified design investigating early-phase expressive vocabulary (15-18 

months, N=8,799); late-phase expressive vocabulary (24-38 months, N=16,615); and 

late-phase receptive vocabulary (24-38 months, N=6,291). Single-trait meta-analyses 

confirmed a known GWAS signal1, but did not result in the identification of novel SNP 

association signals. The strongest association with early phase expressive vocabulary was 

observed at rs9854781 (P=4x10-8), a SNP located within an intergenic region at 

chr3p12.3, ~20 kb downstream of the 3’ end of ROBO2, consistent with findings from 

the previous meta-GWAS on early expressive vocabulary in a largely overlapping 

sample1. Analysis across genetically highly correlated single-trait vocabulary GWAS 
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summary statistics using multi-trait analysis of genome-wide association (MTAG) 

increased the statistical power, equivalent to analysing a sample size of 26,206 

individuals, but did not yield additional evidence for genetic associations with 

vocabulary. As part of follow-up analyses, I estimated low SNP-h2 for both early-phase 

and late-phase expressive vocabulary, while SNP-h2 for late-phase receptive vocabulary 

was consistent with zero. Genetic correlation analyses with later-life cognition-related 

traits, anthropometric traits and childhood-onset neurodevelopmental disorders 

revealed weak-to-moderate positive genetic links of late-phase expressive vocabulary 

with subsequent reading, educational attainment (EA), and intelligence. These results 

imply that some genetic variation related to later-life cognition can already be tagged by 

genetic influences underlying expressive vocabulary between the ages of two and three 

years, supporting my findings from chapter 3 and 4. 

In chapter 6, I studied whether there was evidence for genetic links between 

Attention-Deficit/Hyperactivity Disorder (ADHD) and multiple mid-childhood/early-

adolescent language- and literacy-related abilities (LRAs) in the general population, using 

a polygenic scoring approach. Investigating summary statistics from two independent 

ADHD collections, I showed that increased ADHD polygenic risk was associated with 

lower language and literacy task performance in ALSPAC, especially for reading-related 

skills. Next, I studied to what extent this genetic overlap could be attributed to shared 

genetic influences with EA, a trait with an underlying genetic architecture that is 

genetically related to both ADHD and LRAs. Using a multivariable regression approach 

that makes it possible to disentangle genetic effects between multiple genetically 

correlated traits while controlling for a potential collider bias2, I dissected the genetic 

relationship between ADHD and LRAs into genetic effects that are also shared with EA 

(implying pleiotropy among ADHD, EA and LRAs) as well as genetic effects that capture 

overlap between ADHD and LRAs independent of EA. Polygenic associations of ADHD 

with language and literacy skills were largely shared with EA. However, conditional on 

these shared genetic effects, there was evidence for ADHD-specific associations with 

literacy-related skills. These findings suggest genetic overlap of ADHD with literacy 

performance, in particular reading, beyond genetic effects that are also shared with EA.  

In chapter 7, I studied the complex genetic overlap between ADHD, ASD and EA 

that simultaneously result in ASD-related positive and ADHD-related negative genetic 

correlations with EA, a powerful genetic proxy for language and literacy skills. I first 

investigated whether the discordant association profiles between polygenic risk for each 

disorder and EA were attributable to the same or different underlying genetic loci. Using 

summary statistic data from large consortia and applying a multivariable regression 

approach, I showed that EA-related genetic variation was regionally shared across ASD 

and ADHD genetic architectures, implying the same genetic variants. Next, I studied 

whether ASD and ADHD effects were encoded with respect to the same or the opposite 

allele at a single GWAS marker. At the polygenic level, the same set of risk alleles 
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captured opposite EA-related association profiles, with negative genetic associations 

when modelling ADHD SNP estimates and positive genetic associations when modelling 

ASD SNP estimates. These results suggest that ASD-related positive and ADHD-related 

negative genetic correlations with EA may involve biological pleiotropy and/or co-

localisation processes, implying that a single GWAS marker can capture different ASD 

and ADHD risk alleles due to linkage disequilibrium (LD). Similar findings were observed 

when studying genetic overlap with reading performance, though the statistical power 

of this analyses was low, due to a smaller sample size. The largest opposite associations 

with EA were observed for 83 SNPs that were associated with both ASD and ADHD risk 

at P<0.0015, showing evidence for enrichment of regulatory elements, such as miRNA 

targets. Furthermore, shared EA-related genetic variation between ASD and ADHD 

suggests local negative genetic covariance that may contribute to the total genome-wide 

correlation between ASD and ADHD, potentially cancelling out independent positive 

genetic covariance patterns. Thus, my work showed that EA-related polygenic variation 

is shared across ASD and ADHD genetic architectures at the same genetic variants, 

involving combinations of the same risk alleles, although the encoded effects 

fundamentally differ and may, through mechanisms consistent with pleiotropy or co-

localisation, encode ASD-related positive and ADHD-related negative associations with 

EA.  

Together, this thesis presents novel research on the genetic architecture 

underlying early language development and, by investigating proxy measures, examines 

the mechanisms shaping genetic overlap with ASD and ADHD. Studies include genome-

wide association analyses of early vocabulary and in-depth characterisations of its 

developmental genetic architecture. In addition, I studied genetic overlap of early 

language development with later cognitive skills, and, in turn, using these more powerful 

traits as proxies, I investigated complex genetic mechanisms linking language and literacy 

skills with several childhood-onset neurodevelopmental disorders. Next, I discuss the 

broader implications of my work for future research. I will focus on the following topics 

(i) developmental stability and change in genetic factors related to early vocabulary, (ii) 

statistical power, (iii) biological interpretation of genome-wide association signals, (iv) 

pleiotropy and related mechanisms, and (v) potential sources of bias in genetic 

associations. 

 

8.2. Developmental stability and change in genetic factors related to 

early vocabulary 
 

The findings described in this thesis support both stability and change of 

language-related genetic factors during the course of child and adolescent development. 

In chapter 4, I showed that the genetic architecture underlying expressive and receptive 
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vocabulary during the first three years of life is highly dynamic, with evidence for genetic 

factors showing both age- and ability-specific effects. This pattern is consistent with 

rapid developmental changes that occur at the behavioural level during early life. 

Whereas children produce only a few single words around the age of 15 months3, their 

expressive vocabulary has markedly increased to 100-600 words by the age of 24 

months4 with the concurrent production of first word combinations5,6. In addition, the 

development of receptive vocabulary skills is thought to precede the development of 

expressive skills7 and the size of children’s receptive vocabulary by far exceeds their 

expressive vocabulary8. Nonetheless, based on the outcomes of my studies, there is now 

evidence that from early childhood to early adolescence, genetic stability predominates 

over innovation processes, as presented in chapters 3 and 4. In particular, genetic 

influences underlying receptive vocabulary at 38 months, independent of expressive 

vocabulary, accounted for the majority of SNP-h2 in many mid-childhood/early-

adolescent language and literacy skills, suggesting genetic amplification. Previous 

research in twins on the genetic architecture underlying language and literacy 

development investigated links with respect to a latent factor consisting of early 

expressive language abilities only and found that the majority of genetic influences 

related to mid-childhood and adolescent language and reading skills could be attributed 

to innovation processes9,10. However, amplified receptive vocabulary-related genetic 

influences would have been missing from such an early latent factor, as they were not 

included in the study and largely independent of genetic sources underlying expressive 

vocabulary. These findings highlight the importance of studies researching the role of 

early receptive language skills and their shared genetic links with later cognitive skills. 

Part of the genetic covariance between receptive vocabulary at 38 months and 

subsequent mid-childhood/early-adolescent language and literacy skills could already be 

captured by genetic factors contributing to vocabulary skills emerging even earlier during 

development. Longitudinal GSEM analyses of early vocabulary identified evidence for 

the presence of such links for a measure of expressive vocabulary at 24 months of age 

(chapter 4). These findings are consistent with my genome-wide genetic correlation 

analyses using GWAS summary statistic data derived from meta-analysing measures of 

expressive vocabulary between 24 and 38 months, where I identified weak-to-moderate 

positive genetic correlations with mid-childhood to early-adulthood reading, general 

intelligence across the lifespan and adult EA (chapter 5). Association patterns with later-

life reading as well as verbal and non-verbal cognition, as reported in chapter 4, 

suggested that the earliest detectable genetic links with expressive vocabulary at 24 

months might be driven by processes related to later-life verbal abilities, based on 

analyses of individual level genotype data from the ALSPAC sample. However, the power 

of these analyses was limited and 95%-confidence intervals of estimated factor loadings 

overlapped with those for later-life performance intelligence. The identified genetic links 

between infant/toddler vocabulary and subsequent language, literacy and cognition also 
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strengthen previously established evidence for longitudinal relationships reported in 

observational studies11–14. For example, broadly defined early oral language skills, 

including receptive abilities, have been shown to affect word recognition11, while 

vocabulary comprehension is also a precursor of listening comprehension12. According 

to the “simple view of reading” theory, reading comprehension is the product of printed 

word recognition and oral language comprehension15. Consistent with this theoretical 

framework, early language skills at the age of three, including vocabulary, 

comprehension and sentence construction, have been linked to adolescent reading 

comprehension13. In addition, a delay in both expressive and receptive vocabulary at the 

age of two years is much more likely to lead to problems with later literacy, compared 

to delays in expressive vocabulary alone14. Variation in language comprehension has also 

been associated with more non-linguistic cognitive measures, such as tool use and 

symbolic play, compared to expressive vocabulary16. Thus, genetic variation influencing 

receptive vocabulary at 38 months may share genetic foundations with several key skills 

that are important for future cognitive development and only partially overlap with 

genetically predictable cognitive mechanisms underlying early expressive vocabulary. 

Nonetheless, the stability in genetic influences related to both early expressive and 

receptive vocabulary across developmental periods suggests that their joint analysis will 

increase power to detect shared genetic influences, as applied in chapter 5 and 

discussed in more detail in section 8.3.  

To gain further insight into how genetic factors captured by early language skills 

relate to other aspects of development, future studies could consider investigating 

behavioural and motor skills that are acquired during the first years of life17. In particular, 

the onset of walking is thought to initiate development in social interactions, personal-

social skills and language learning18–22. For example, an earlier age of mastering motor 

skills, such as sitting and walking, is associated with earlier attainment of language 

developmental milestones20–22. This relationship might reflect an increased level of 

interaction between children and their mothers once children are able to walk 

independently, both in terms of quantity and quality, where the latter may include 

pointing behaviour to direct mothers’ attention to particular objects23. To investigate 

whether interlinked motor, social and language developmental processes are also 

related at the genetic level and to assess the role of pre-linguistic abilities on language 

development, additional research based on large longitudinal samples is required.  

 

8.3. Statistical power 
 

To identify SNPs associated with vocabulary during the first three years of life, I 

performed a meta-GWAS in chapter 5. The study presented in this chapter extended a 

previous meta-GWAS effort on early expressive vocabulary1 by increasing the sample 
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size by almost 50%. In addition, I carried out the first GWAS on receptive vocabulary 

during the first few years of life. Finally, I maximised the statistical power by adopting a 

multivariate analysis approach implemented in MTAG to analyse genetically related 

expressive and receptive vocabulary traits. The power of this multi-trait vocabulary 

analyses corresponded to an estimated sample size of 26,206 children, but did not result 

in the identification of genome-wide significant associations. Although a sample of this 

size has 99% power to detect association with a genetic variant explaining as little as 

0.3% of the trait variance (assuming an additive model and an increaser allele frequency 

of 0.1, with complete LD with marker and genetic risk variant)24, the power to detect 

variants with smaller contributions to trait variance is only modest (e.g. 37% power to 

detect a genetic variant explaining 0.1% of the trait variance)24. In addition, MTAG 

analyses may provide biased estimates and have high maximum false discovery rates, 

especially when combining traits with low inherent power based on sample size and 

polygenic signal captured (mean χ2 < 1.02)25, such as some of the vocabulary GWAS 

statistics derived in chapter 5, although I did not observe evidence for such bias. 

However, despite an increase in statistical power compared to the previous meta-GWAS 

effort1, current sample sizes are still underpowered for identifying genetic variants with 

small effects on early vocabulary development.  

Compared to data on expressive vocabulary, the available information on 

receptive language skills is limited, both with respect to available psychological 

instruments and data collections (chapter 2). For children below the age of two years, 

low validity of receptive vocabulary assessments has been reported, based on a 

comparison of parent-report with child performance on a preferential looking task26. In 

addition, I observed little evidence for SNP-h2 for a measure of receptive vocabulary size 

at 15 months (chapter 4), potentially reflecting a relatively high random error rate in 

phenotypic assessment27 that would be consistent with low validity and/or reliability of 

parental report. However, there is evidence for validity of parental-reported receptive 

vocabulary scores in older children. A study comparing parental assessment and child 

task performance for receptive vocabulary in 25-month old children reported a 

correlation of 0.5528. In addition, I observed evidence for low SNP-h2 of receptive 

vocabulary at 38 months, as well as strong genetic relationships with expressive 

vocabulary at 24 and 38 months, suggesting utility of receptive vocabulary scores 

assessed in early childhood (chapter 4). Nonetheless, receptive vocabulary scales are 

absent from many frequently used psychological instruments assessing early language 

development, including forms of the MacArthur vocabulary scales (e.g. the MacArthur 

Communicative Development Inventory: Words & Sentences29 (CDI-WS)), but also the 

Language Development Survey30 (LDS), prohibiting investigation of the underlying 

genetic factors. Opportunities for reliable large-scale assessments of early receptive 

vocabulary development could involve the collection of app-based vocabulary data in 

combination with DNA samples. For expressive vocabulary size, this data ascertainment 
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route has already been successfully established, with app-based assessments showing 

high reliability and validity, even when based on 25 words only (drawn from CDI-WS 

items)31. Such approaches are cost- and time-effective and thus hold great promise for 

future sample collections.  

Another way to increase power could be by adopting a broader definition of early 

language skills. An observational study of 1,137 children showed that oral language 

conceptualised as vocabulary, grammar and semantics had increased predictive value 

for reading skills compared to measures of vocabulary alone11. At the genetic level, 

vocabulary and grammar in two- and three-year olds are moderately-to-strongly 

genetically correlated32,33, suggesting shared underlying factors. This supports joint 

analyses across language and grammatical scores of the MacArthur CDI5. Other 

questionnaires assessing broad aspects of early language competence include, for 

example, the Bayley Scales of Infant and Toddler Development34 and the Parent Report 

of Children’s Abilities-Revised35. Cohorts with data on such questionnaires and DNA 

samples may be approached to participate in future genetic studies. Importantly, genetic 

analyses can be performed using language data collected in different countries. Children 

follow similar patterns of language acquisition across various languages36 and CDI 

vocabulary assessments are comparable across different cultures37. Furthermore, there 

was little evidence for heterogeneity in SNP associations with early expressive 

vocabulary across English and Dutch languages1. In addition to studies across different 

language skills in early development, it might also be worth considering a joint analysis 

of early vocabulary skills with several language and literacy abilities assessed later in life. 

Based on my findings in chapter 3, 4 and 5, there is evidence for substantial genetic 

overlap between early-childhood vocabulary and for example reading performance. 

Thus, broadening the definition of early language skills as well as joint analysis with 

genetically correlated traits assessed later in life may increase the power to detect 

genetic factors underlying shared developmental processes of early language 

development, although it may limit the identification of vocabulary-specific genetic 

influences.  

 

8.4. Biological interpretation of genome-wide association signals 
 

Fixed-effect meta-analysis of early phase expressive vocabulary (15-18 months), 

a developmental window during which children typically speak words in isolation3, 

provided evidence for association with rs9854781. This genetic variant is located within 

an intergenic region at chr3p12.3, ~20kb near ROBO2. It is located only 976 base pairs 

apart from, and in high linkage disequilibrium (LD-r2=0.78) with, rs764282, a known 

signal for early expressive vocabulary reported by the prior meta-GWAS effort using 

largely similar samples1. ROBO2 is highly expressed across different human brain regions, 
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according to the Genotype-Tissue Expression project38 (GTEx, v8). During the course of 

development, ROBO2 expression peaks in the first trimester1 and has been associated 

with new-born neurons39. Analyses of gene expression and regulatory chromatin states 

indicated that variation at rs7642482 might be related to regulatory mechanisms in 

embryonic cell types1. However, an experimental validation of the functional relevance 

of rs764282 on ROBO2 is still lacking and searches based on the latest blood and (fetal) 

brain gene-expression data sets did not provide evidence for an effect of rs764282 

(chapter 2). Future experiments of developing neuronal cells are required to characterise 

the expression pattern of ROBO2 in great detail and to investigate the consequences of 

rs764282.  

 

8.5. Pleiotropy and related mechanisms 
 

Pleiotropy arises when a gene or genetic variant influences more than one trait40. 

Genetic links between early-life vocabulary measures and subsequent language and 

litearcy skills, as well as other cognition-related later-life outcomes (chapters 3, 4 and 5) 

are thus consistent with pleiotropy. Longitudinal genetic links between early vocabulary 

and later language and literacy abilities (chapters 3 and 4) may reflect a specific form of 

pleiotropy, mediated pleiotropy, that arises due to a causal association between two 

traits40, in line with evidence for longitudinal relationships from observational studies11–

14 (see section 8.2). Beside mediated pleiotropy, genetic overlap may occur due to other 

processes. For example, biological pleiotropy captures a direct biological influence of a 

genetic factor on multiple phenotypes40. Furthermore, both mediated and biological 

pleiotropy might be mimicked by genetic confounding, a process where genetic 

associations between two traits are induced due to their genetic correlations with a third 

phenotype41, or by co-localisation, where different risk variants are tagged by the same 

GWAS marker allele, due to high LD40. In addition, there could be a false association 

between a genetic factor and multiple traits due to various sources of bias, so-called 

spurious pleiotropy40. 

In chapter 6, I observed strong and consistent evidence for genetic links between 

ADHD and mid-childhood/early-adolescent language and literacy (as proxy for early-

childhood language), consistent with previous reports42–45. I showed that this genetic 

association was, to a large extent, attributable to genetic effects that were also shared 

with EA, consistent with genetic confounding. The results imply that genetic associations 

of ADHD with language and literacy skills might be inflated due to a relationship of both 

ADHD and LRAs, such as reading abilities, with genetically predicted EA45–48. A similar 

association profile was found between schizophrenia, bipolar disorder and EA, where 

the genetic correlation between schiozphrenia and EA could be attributed to shared 

genetic effects between schizophrenia and bipolar disorder49. Other possible 
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explanations for shared genetic variance between ADHD, EA, language and literacy 

abilities may involve an intergenerational multiple-deficit model proposed for reading 

disability50,51. For example, children growing up in disadvantaged environments, 

genetically predictable through polygenic EA scores52, might be more vulnerable to 

psychiatric illness including ADHD53 that affects, in turn, their language and literacy 

performance. In addition, adolescents with ADHD might be more likely to leave school 

at an earlier age, with lower educational achievement and, subsequently, pass on an 

increased genetic load to their own children54. Conditionally on shared genetic effects 

with EA, I observed evidence for genetic links between ADHD and especially reading 

abilities. Thus, their genetic overlap cannot be fully attributed to shared genetic effects 

with EA, possibly reflecting other forms of pleiotropy. These findings suggest that there 

is a potential need to target reading skills for improvement in children diagnosed with 

ADHD, beyond general training programmes aiming broadly at enhancing schooling 

outcomes55.  

In chapter 7, I investigated complex genetic mechanisms underlying the 

discordant association profile of two positively genetically correlated 

neurodevelopmental disorders, ASD and ADHD, with EA; with positive genetic 

correlations between ASD and EA, and negative genetic correlations between ADHD and 

EA. In this study, EA was included as a genetic proxy for language and literacy skills, 

supported by high genetic correlations of childhood language and literacy skills with EA 

as reported in chapter 6. The pattern of results in chapter 7 suggested that discordant 

genetic association patterns with EA are encoded at the same GWAS marker alleles for 

both ASD and ADHD risk, suggesting biological pleiotropy and/or co-localisation. The 83 

genetic variants capturing the strongest association effects were enriched for miRNA 

targets, and also comprised several miRNA and lncRNA loci, but replication of these 

findings is warranted. These findings suggest multiple regulatory sites in close genomic 

proximity or different regulations of the same genetic markers via epistatic or gene-

environment interaction effects56. Although the power to carry out similar investigations 

for early vocabulary and mid-childhood language and reading skills was too low, it can 

be speculated whether similar gene sets for language and literacy performance are also 

implicated in ASD and ADHD genetic architectures, but involve different regulation. For 

example, I observed evidence for a positive genetic link of ASD risk-increasing-variants 

and reading performance when accounting for shared genetic effects with ADHD, 

although this finding needs to be replicated (chapter 7). In addition, extensive research 

of genetic overlap is required to uncover links of early vocabulary with 

neurodevelopmental disorders that are characterised by a primary deficit in speech 

and/or language abilities, once large-scale genetic studies for these disorders have 

become available. Such efforts could, for example, include studies of developmental 

dyslexia (also known as reading disability) and specific language impairment (also known 

as developmental language disorder).  
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The identification of discordant genetic association profiles with EA for polygenic 

ASD and ADHD risk, encoded at the same marker alleles, suggests local negative genetic 

covariance between ASD and ADHD (chapter 7). Negative covariance has been previously 

observed among other complex traits57, even in the absence of genome-wide 

correlation58. Thus, genetic correlation patterns between ASD and ADHD may vary across 

the genome. Local negative genetic covariance may also contribute to genetic overlap 

of ASD and ADHD risk with other neuropsychiatric disorders, such as schizophrenia, 

major depressive disorder and bipolar disorder (chapter 7). More generally, patterns of 

local genetic covariance may also play a role in genetic relationships between many 

other human traits, including psychiatric disorders and brain phenotypes59. 

Characterising parts of the genome that are positively and negatively correlated with 

each other may provide additional insight into the biological mechanisms underlying 

genetic links between traits. This can for example be achieved by applying computational 

approaches that decompose shared and specific genetic effects, such as GSEM60. An 

alternative approach, genomic structural equation modelling61, is based on GWAS 

summary statistic data and might therefore be more widely applicable, although it is less 

precise, as it is based on estimated genetic variance/co-variance structures only. 

However, shared genetic variance between traits does not automatically imply similar 

biological processes, but may instead capture genetic confounding, biological pleiotropy 

and/or co-localisation. Genes are known to have multiple biological functions, and 

dynamic gene expression patterns over time and space have been shown for multiple 

brain-related gene expression modules62. Thus, specifically designed gene-based studies 

are warranted to reveal the actual biological processes captured by genetic variance/co-

variance structures. 

 

8.6. Potential sources of bias in genetic associations 
 

Recently, the influence of population-based phenomena including dynastic 

effects, population stratification and assortative mating (chapter 2) on heritability 

estimates and genetic correlations has gained attention in the literature63–66. Studies of 

dynastic effects primarily investigated the role of genetically predicted parental EA on 

offspring phenotype via modulation of the environmental niche. EA is genetically related 

to many other traits, including language and literacy skills (chapter 5, 6), cognitive ability 

and family socioeconomic status67. The latter is known to have an influence on the 

quality and quantity of language input a child receives in their home environment68. This 

input, in turn, is related to language acquisition69 and indeed, language processing was 

attenuated in 18 month old infants that grew up in families with low socioeconomic 

status compared to high socioeconomic status families70. Thus, parents who carry a 

higher load of EA increasing genetic variants may create more supportive environments 
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for language learning than parents with a lower load, which will affect their children’s 

performance indirectly. Many methods estimating genetic variance components based 

on genome-wide information from unrelated individuals, including polygenic scoring71, 

GCTA restricted maximum likelihood analyses72–74 and GSEM60, as applied within this 

thesis, will capture dynastic effects as part of additive genetic variation63–66. This may 

lead to inflated estimates of heritability and genetic overlap, especially for cognition-

related traits when studying samples of unrelated individuals64. Other population 

phenomena that may bias associations include population stratification and assortative 

mating. In this thesis, I accounted for population stratification by adjusting for the first 

two principal components, capturing genetic differences due to ancestry. However, 

adjustment for up to twenty63 or even more principal components might be required to 

fully control for population structure75. Finally, there is evidence for assortative mating 

on EA within ALSPAC, which may lead to increased heritability estimates63. Compared to 

population stratification or assortative mating, however, dynastic effects related to 

family socioeconomic status have been found to be the major source of inflated genetic 

associations with cognition-related traits64. So far, the extent to which dynastic effects, 

population stratification and assortative mating affect genetic studies on language 

development is unknown. Future investigations of large family-based samples with 

spouse, sibling and parent/child information as well as language data, such as the Twins 

Early Develpoment Study76 and the Netherlands Twin Register77, could specifically 

address this bias.  

 

8.7. Conclusion 
 

The studies of common genetic markers in this thesis show that several processes 

underlying early language development are genetically shared with multiple later 

language and literacy skills, as well as later-life cognition-related abilities such as 

adulthood EA, forming an early biological foundation. The mechanisms linking early 

vocabulary skills to subsequent language and literacy abilities are likely to involve 

amplification processes and mediated pleiotropy. However, the genetic overlap of 

language and literacy-related skills with several childhood-onset neurodevelopmental 

disorders is more complex, involving mechanisms of biological pleiotropy, co-localisation 

and/or shared genetic variation with a third variable such as EA. To further our 

knowledge of aetiological mechanisms underlying early language development, future 

studies may consider adopting a broader phenotype definition. It is, however, also 

important to carry out analyses that allow for developmental genetic heterogeneity, 

which is characteristic for early vocabulary development. Thus, the genetic landscape 

underlying early-life vocabulary is dynamic and includes genetic components that serve 

as foundation for subsequent cognitive development. 
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Summary 
 

Language is a complex human capacity that allows us to acquire knowledge, 

share thoughts, convey feelings, and report experiences. Mastering the components of 

language is a complex task and there are large individual differences in children’s 

language abilities during the first few years of life, which are predictive of future 

language development, literacy performance and cognitive skills. In addition, children 

diagnosed with a neurodevelopmental disorder, such as Attention-Deficit/Hyperactivity 

Disorder (ADHD) or Autism Spectrum Disorder (ASD), often experience problems with 

language and cognitive development.  

Individual differences in early language development are a consequence of 

variation in both genetic and environmental factors, as described in chapters 1 and 2. 

Previous studies showed that a small proportion of variation in language skills during the 

first three years of life is attributable to genetic factors, including common genetic 

variation. Using latent factor constructs, twin studies demonstrated that some of the 

underlying genetic influences remain stable from toddlerhood to early adolescence and 

affect later language and literacy skills, in addition to age-specific genetic contributions. 

However, beyond these findings, the genetic landscape of early language development 

is little characterised. In particular, developmental changes in genetic factor structures 

across early life and the role of receptive language skills are poorly understood. 

Molecular research of early language has so far been limited to a single meta- genome-

wide association study (meta-GWAS) that identified a genome-wide signal for expressive 

vocabulary size at 15-18 months near ROBO2, a gene involved in axon guidance. In this 

thesis, I analysed genome-wide genotype information to broaden knowledge of genetic 

factors underlying language abilities during the first three years of life, and their role 

during subsequent language, literacy and cognitive development, as well as links of 

language and related traits with childhood-onset neurodevelopmental disorders, such 

as ADHD and ASD. 

In chapter 3, I studied whether genetic factors underlying vocabulary skills 

during toddlerhood are related to mid-childhood/early-adolescent language and literacy 

abilities. Using a longitudinal structural equation modelling approach investigating 

genetic relationship information from unrelated children, I showed that the majority of 

genetic influences contributing to mid-childhood/early-adolescent language and literacy 

skills can already be captured by genetic factors underlying expressive and especially 

receptive vocabulary during early childhood. The phenotypic variation explained by 

these early genetic influences increased during development, suggesting not only 

genetic stability but amplification. Meta-regression analyses of genetic factor 

contributions across a spectrum of language and literacy abilities showed that these 

amplification patterns were strongest for mid-childhood reading-related measures.  
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In chapter 4, I investigated the developmental genetic architecture of early-life 

vocabulary skills in depth, using a similar structural equation modelling approach as in 

chapter 3. I showed that the genetic landscape underlying expressive and receptive 

vocabulary development from 15 to 38 months of age is dynamic, involving multiple 

independent age- and/or ability-specific genetic factors. Two of these genetic factors 

were also associated with mid-childhood reading and cognitive skills. Genetic influences 

identified for receptive vocabulary at 38 months accounted for the majority of genetic 

variation in mid-childhood reading and cognitive skills, consistent with my findings in 

chapter 3. However, genetic links with mid-childhood verbal processes, such as reading 

and verbal intelligence, could already be detected for expressive vocabulary at the age 

of two years. Thus, the genetic foundations of mid-childhood reading and cognitive skills 

involve at least two independent genetic factors that emerge at different stages during 

early language development. 

In chapter 5, I performed the most powerful meta-GWAS of early-life expressive 

and receptive vocabulary (15 and 38 months of age) to date. My analyses confirmed the 

previously identified GWAS signal at ROBO2, but did not result in the identification of 

novel SNPs. Genetic correlation analyses provided evidence for a genetic link between 

expressive vocabulary from 24 to 38 months of age and later-life verbal and cognition-

related traits, such as reading, educational attainment and intelligence, confirming my 

findings from chapters 3 and 4 using a GWAS approach.  

In chapter 6, I studied the complex pattern of genetic overlap between ADHD 

and mid-childhood language- and literacy-related abilities, which are powerful genetic 

proxies of early-life language abilities. Applying a polygenic scoring approach, I showed 

that increased polygenic ADHD risk was associated with lower language and literacy task 

performance, especially for reading-related skills. Using a multivariable regression 

approach, analogous to Mendelian Randomization methodologies, I showed that 

polygenic associations of ADHD with language and literacy skills could be largely 

attributed to shared genetic variation with educational attainment, a trait that is 

genetically related to both ADHD and language- and literacy-related abilities. Conditional 

on these shared genetic effects, risk for ADHD was predominantly linked to reading skills. 

Thus, my findings suggest that ADHD and reading performance share genetic factors 

beyond those that are related to educational attainment.  

In chapter 7, I investigated the genetic overlap between ASD, ADHD and 

educational attainment by disentangling genetic mechanisms that may result in known 

opposite genetic correlation patterns between educational attainment and both ASD 

(positive links) and ADHD (negative links), given a positive genetic correlation between 

ASD and ADHD. I studied these discordant association profiles in detail using summary 

statistic data and a multivariable regression approach. This analysis demonstrated that 

educational attainment-related polygenic variation is shared between ASD and ADHD. I 

showed that different combinations of the same ASD and ADHD risk-increasing alleles 
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can simultaneously re-capture known ASD-related positive and ADHD-related negative 

associations with educational attainment. These findings suggest pleiotropic 

mechanisms and/or co-localisation of different risk variants, where the same polygenic 

sites can encode multiple independent, even discordant, association patterns. 

The work presented in this thesis shows that processes underlying early 

language abilities are genetically complex and partially share genetic factors with 

multiple later-life language and literacy skills as well as cognition-related abilities. 

Furthermore, I showed that the genetic overlap of mid-childhood/early-adolescent 

language and literacy-related skills with neurodevelopmental disorders is highly 

intricate, involving mechanisms of biological pleiotropy, co-localisation and/or shared 

genetic variation with other traits. Based on the findings in this thesis, future studies of 

early language acquisition may consider adopting a broader phenotype definition of 

early language, including receptive vocabulary skills, while allowing for genetic 

heterogeneity, which is characteristic of early language development. 
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Taal is een complexe menselijke eigenschap die ons in staat stelt nieuwe kennis 

te vergaren, en ook gedachten, gevoelens en ervaringen te delen. Het aanleren van de 

verschillende componenten van taal is ingewikkeld en er bestaan grote individuele 

verschillen in de taalvaardigheden van kinderen in de eerste levensjaren. Deze 

verschillen zijn voorspellend voor taalvaardigheden, geletterdheid en cognitieve 

capaciteiten later in het leven. Daarnaast ervaren kinderen die gediagnosticeerd zijn met 

een ontwikkelingsstoornis als Attention-Deficit/Hyperactivity Disorder (ADHD) of Autism 

Spectrum Disorder (ASD, ookwel autisme genoemd) vaak problemen met taal en 

cognitieve vaardigheden.  

Individuele verschillen in de taalontwikkeling van jonge kinderen zijn een gevolg 

van variatie in zowel genetische als omgevingsfactoren, zoals beschreven in de 

hoofdstukken 1 en 2. Eerdere studies hebben aangetoond dat een klein deel van de 

variatie in taalvaardigheden in jonge kinderen kan worden verklaard door genetische 

factoren, onder andere door genetische varianten die veelvoorkomend zijn in de 

populatie. Tweelingstudies hebben zowel stabiliteit als specificiteit gerapporteerd voor 

genetische factoren die van invloed zijn op taal- en leesvaardigheden van de peutertijd 

tot aan adolescentie. Buiten deze tweelingstudies om, is de kennis over het genetische 

landschap onderliggend aan vroege taalontwikkeling beperkt. Er is met name weinig 

kennis over veranderingen in genetische factoren die van invloed zijn op 

taalontwikkeling in de eerste paar levensjaren en de rol van receptieve 

taalvaardigheden. Moleculair onderzoek gericht op taalontwikkeling in jonge kinderen 

bestond tot nu toe uit een enkele meta-analyse van genoom-wijde associatie studies 

(meta-GWAS). Deze studie heeft een associatie gevonden tussen een genetische variant 

gelegen nabij ROBO2, een gen betrokken bij axonale groei, en het aantal woorden dat 

een kind in de leeftijd van 15 tot 18 maanden spreekt (woordproductie). In dit 

proefschrift, heb ik genoom-wijde genotype data geanalyseerd met als doel het 

verkrijgen van meer inzicht in de genetische factoren die een rol spelen bij 

taalontwikkeling in de eerste drie levensjaren en hun relatie met latere taal-, lees- en 

cognitieve vaardigheden, als wel ontwikkelingsstoornissen zoals ADHD en ASD. 

In hoofdstuk 3 heb ik onderzocht of de genetische factoren onderliggend aan 

woordenschat in de peutertijd (38 maanden) ook een bijdrage leveren aan verschillende 

taal- en leesvaardigheden in kinderen tussen de 7 en 13 jaar. Hiervoor heb ik gebruik 

gemaakt van longitudinale data van niet verwante kinderen en structurele 

vergelijkingsmodellen. Mijn resultaten laten zien dat de meerderheid van genetische 

invloeden op taalvaardigheden en geletterdheid van midden kindertijd tot vroege 

adolescentie kan worden toegeschreven aan genetische factoren die al rol spelen bij 

woordenschat in de vroege kindertijd, met name bij woordbegrip. De phenotypische 

variatie die door deze vroege genetische factoren verklaard kan worden nam toe 

gedurende de ontwikkeling, hetgeen zowel genetische stabiliteit als amplificatie 

suggereert. Meta-regressie analyses voor een spectrum van taalvaardigheden en 
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geletterdheid toonden aan dat deze amplificatiepatronen het sterkst waren voor 

variabelen gerelateerd aan leesvaardigheid.  

In hoofdstuk 4 heb ik de samenstelling van genetische factoren onderliggend 

aan woordenschat in de vroege ontwikkeling in detail bestudeerd met behulp van een 

vergelijkbare onderzoeksaanpak als in hoofdstuk 3. Het genetische landschap 

onderliggend aan woordproductie en woordbegrip in de leeftijd van 15 tot 38 maanden 

was dynamisch, met bewijs voor het bestaan van zowel leeftijd- als dimensie-specifieke 

genetische factoren. Twee van deze genetische factoren waren ook gerelateerd aan 

lees- en cognitieve vaardigheden in midden kindertijd (7-8 jaar). Vooral genetische 

invloeden die geïdentificeerd zijn voor woordbegrip bij een leeftijd van 38 maanden 

droegen bij aan leesvaardigheid en cognitieve capaciteiten halverwege de kindertijd, 

consistent met mijn bevindingen in hoofdstuk 3. Echter, genetische factoren die met 

name van invloed zijn op latere verbale processen, zoals leesvaardigheid en verbale 

intelligentie, waren al detecteerbaar op een leeftijd van 24 maanden, voor 

woordproductie. Dus, genetische invloeden die een rol spelen in leesvaardigheid en 

cognitieve capaciteiten halverwege de kindertijd kunnen al vroeg in de ontwikkeling 

gedetecteerd worden en omvatten minstens twee onafhankelijke genetische factoren.  

In hoofdstuk 5 heb ik een meta-GWAS voor woordproductie en woordbegrip 

(15 tot 38 maanden) uitgevoerd, statistisch gezien de meest krachtige analyse hiervoor 

tot nu toe. Mijn analyses bevestigden de associatie van een genetische variant nabij 

ROBO2 met woordproductie gerapporteerd door een eerdere studie, maar leidden niet 

tot de identificatie van nieuwe genetische varianten. Genetische correlatie analyses 

leverden bewijs voor gedeelde genetische factoren tussen woordproductie in de leeftijd 

van 24-38 maanden en cognitie-gerelateerde eigenschappen later in het leven, zoals 

leesvaardigheid, opleidingsniveau en intelligentie. Deze bevindingen zijn in lijn met mijn 

bevindingen in de hoofdstukken 3 en 4.  

In hoofdstuk 6 heb ik het complexe patroon van genetische overlap tussen 

ADHD en taal- en leesvaardigheden halverwege de kindertijd bestudeerd. 

Laatstgenoemde zijn krachtige genetische proxies voor taalvaardigheden van jonge 

kinderen. Gebruikmakend van een onderzoeksaanpak genaamd polygenic scoring, heb 

ik laten zien dat een verhoogd polygeen risico op ADHD was geassocieerd met mindere 

taalvaardigheden en geletterdheid, met name leesvaardigheden. Vervolgens heb ik 

multivariabele regressie toegepast en aangetoond dat de polygene associaties tussen 

ADHD, taalvaardigheden en geletterdheid grotendeels ook gedeeld waren met 

opleidingsniveau. Echter, na inachtneming van deze gedeelde genetische effecten was 

er ook bewijs voor ADHD-specifieke associaties met leesvaardigheid. Deze bevindingen 

suggereren dat er een genetische relatie bestaat tussen ADHD en leesvaardigheden, die 

verder gaat dan gedeelde genetische effecten met opleidingsniveau.  

In hoofdstuk 7 heb ik de genetische overlap tussen ADHD, ASD en 

opleidingsniveau ontrafeld, die gelijktijdig resulteert in positieve ASD-gerelateerde en 

negatieve ADHD-gerelateerde genetische correlaties met opleidingsniveau, ondanks een 

positieve genetische correlatie tussen ASD en ADHD. Gebruikmakend van summary 
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statistics en multivariabele regressie, heb ik laten zien dat opleidingsniveau-gerelateerde 

genetische variatie gedeeld is tussen ADHD en ASD. Verschillende combinaties van 

dezelfde ASD en ADHD risico verhogende allelen leidden tot zowel positieve ASD-

gerelateerde als negatieve ADHD-gerelateerde associatie patronen met 

opleidingsniveau. Deze bevindingen suggereren een rol voor biologische pleiotropie 

en/of co-lokalisatie processen (dezelfde GWAS variant codeert voor een verschillende 

ASD en ADHD risico variant door linkage disequilibrium).  

De bevindingen gepresenteerd in dit proefschrift laten zien dat de processen 

die ten grondslag liggen aan vroege taalontwikkeling genetisch gezien complex zijn. Voor 

een deel zijn ze ook gerelateerd aan taalvaardigheden en geletterdheid later in het leven, 

als wel cognitie-gerelateerde capaciteiten. Daarnaast heb ik aangetoond dat de 

genetische overlap van ontwikkelingsstoornissen met taalvaardigheden en geletterdheid 

van midden kindertijd tot vroege adolescentie erg complex is en mechanismen als 

biologische pleiotropie, co-lokalisatie en/of genetische overlap met een derde 

eigenschap omvat. Het uitbreiden van de phenotypische definitie van vroege 

taalvaardigheden, bijvoorbeeld met receptief taalgebruik, kan een waardevolle 

toevoeging zijn voor toekomstig onderzoek naar genetische factoren onderliggend aan 

vroege taalontwikkeling. Daarnaast is het van belang om rekening te houden met 

genetische heterogeniteit, een eigenschap die kenmerkend is voor het genetisch 

landschap onderliggend aan taalontwikkeling in de eerste levensjaren.  
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