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Figure 1. Experimental strategy for the dissection of EMC function. Schematic representation of the combined structural and mutational approach to
dissect EMC function. (A) yEMC was purified either by overexpression of all subunits together and affinity pulldown with 3xFlag-tagged yEMCS5 or by
pulldown of endogenous yEMC proteins using an affinity pulldown with 3xFlag-tagged yEMC5. For hEMC, all subunits were overexpressed together
with Flag-tagged EMC5 via a single recombinant BacMam virus. Both yEMC and hEMC were purified by column chromatography and subjected to
cryo-EM analysis. (B) The obtained collection of cryo-EM structures of yEMC and hEMC in lipid nanodiscs or detergent micelles were compared to
identify similarities and differences. (C) Structure-guided mutagenesis was performed across four core hEMC subunits: hEMC1, hEMC2, hEMC3, and
hEMCS5 in mammalian K562 cells. (D) Each hEMC subunit knockout (KO) cell line was individually transduced with three different fluorescent client
reporters: SQS¥8410 full-length B1AR, and full-length TMEM97. Mutant hEMC subunits were then introduced into the corresponding subunit KO cell
lines carrying each of the three fluorescent hEMC client reporters. hREMC client stability in each mutant hEMC subunit cell line was assessed by
quantifying the mCherry-to-GFP ratio. Western blotting was performed for each mutant-transduced cell line to assess EMC integrity (by
immunoblotting for hEMC subunits) as well as client stability (by immunoblotting for REMC clients) compared against both wild-type (WT) and KO cell

lines.
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Figure 1—figure supplement 1. Purification of yEMC. (A) Size-exclusion chromatography (SEC) purification of overexpressed yEMC+FAb in DDM
detergent micelles. (B) SEC purification of endogenous yEMC + FAb in MSP1D1 nanodisc. (C) Coomassie-stained SDS-PAGE analysis of SEC elution
fractions from (A). The expected molecular weight of the subunits are as follows: yEMC1 - 87 kDa, yEMC2 - 34 kD, yEMC7 - 27 kD, yEMC10 - 25 kD,
yEMC3 - 23 kD, yEMC4 - 21 kD, yEMC5-3xflag - 17 kD, yEMC6 - 12 kD. (D) Coomassie-stained SDS-PAGE analysis of SEC elution fractions from (B).
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Figure 1—figure supplement 2. Purification of recombinant hEMC. (A) Size-exclusion chromatography (SEC) purification of hEMC in GDN detergent.
(B) SEC purification of hEMC reconstituted in MSP1D1 nanodiscs. (C) Coomassie-stained SDS-PAGE analysis of the SEC elution fractions from (A). The

Figure 1—figure supplement 2 continued on next page
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expected molecular weight of the subunits are as follows: hEMC1 - 110 kDa, hEMC2 - 35 kD, hEMC3 - 30 kD, hEMC10 - 25 kD, hEMC?7 - 24 kD, hEMC8/
9 - 24 kD, hEMCA4 - 20 kD, hEMC5-flag - 16 kD, hEMC6 - 12 kD. (D) Coomassie-stained SDS-PAGE analysis of the SEC elution fractions from (B). (E) Mass
spectrometry analysis of purified hEMC in GDN following SEC. iBAQ values for identified proteins in the sample are sorted in descending order along

the X-axis. hEMC subunits form a cluster (red) and their normalized iBAQ values (against EMC5-Flag) are shown in the inset. (F) As in (E) for REMC in
lipid nanodiscs.
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Figure 1—figure supplement 3. Fluorescent reporter cell line generation. Fluorescent reporter cell lines were created by introducing lentivirus
containing the fluorescently-tagged client reporters into five K562 cells lines: (1) wild type, (2) hREMC1 knockout (3) REMC2 knockout, (4) hEMC3

Figure 1—figure supplement 3 continued on next page
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Figure 1—figure supplement 3 continued

knockout, and (5) hEMCS5 knockout. A construct with mCherry-P2A-GFP was introduced into each cell line (control). This process was repeated
individually for three tail anchor membrane proteins with N-terminal tags: one EMC-dependent tail anchor client membrane protein (SQS) and two
EMC-independent tail anchor membrane proteins (SEC22B, VAMP2). This process was repeated individually for four polytopic membrane proteins with
C-terminal tags: an EMC-dependent polytopic membrane protein client with the N-terminus in the ER lumen (B1AR), an EMC-dependent polytopic
membrane protein client with the N-terminus in the cytoplasm (TMEM97), and two EMC-independent polytopic membrane proteins with N-termini in
the cytoplasm (TRAM2, JAGN1). (A) Ratio of mCherry to GFP measured by flow cytometry for mCherry-P2A-GFP construct for each of the five cell lines.
(B) Same as (A) for GFP—P2A—mCherry—SQS378'41O—opsin. (C) Same as (A) for GFP-P2A-mCherry-SEC22B. (D) Same as (A) for GFP-P2A-mCherry-VAMP2.
(E) Same as (A) for TMEM97-mCherry-P2A-GFP. (F) Same as (A) for BIAR-mCherry-P2A-GFP. (G) Same as (A) for TRAM2-mCherry-P2A-GFP. (H) Same as

(A) for JAGN1-mCherry-P2A-GFP.
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Figure 1—figure supplement 4. Overview of functional assays. (A) Into each K562 cell line (WT or knockout of respective subunit), fluorescent client

reporters were introduced lentivirally. Subsequently, knockout phenotypes were rescued by re-introducing the wild-type hEMC subunit. (B) After

Figure 1—figure supplement 4 continued on next page
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introducing client reporters into hEMC1 knockout cell lines cells were sorted to obtain a pure population. Then mutant hEMC subunits were re-
introduced lentivirally and selected with puromycin. Upon reaching a pure population, cells lines were subjected to flow cytometry to measure
abundance of mCherry and GFP for each client reporter in each mutant background. Cell pellets were collected for subsequent western blot analysis

for each mutant in WT and knockout cell line in a cell line with an mCherry-P2A-GFP reporter. (C) Same as (B) for hREMC2. (D) Same as (B) for REMC3. (E)
Same as (B) for hEMC5.
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Figure 1—figure supplement 5. Western blots for EMC1 and EMC2. Western blots of endogenous human EMC subunits and client proteins functional

assay to check for complex stability and endogenous protein levels. For
Figure 1T—figure supplement 5 continued on next page

each mutant, abundance of several hREMC subunits as well as several
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representative client proteins were tested. (A) Western blots for hREMC1 mutant cell lines, blotting for REMC subunits hREMC1, hEMC3, hEMC4, and
hEMC10. In addition, levels of three endogenous client proteins (SQS, BCAP31, and TMEM97) were blotted for. Wild-type cells with the fluorescent
reporter displayed in Lanes 1 and 16. hEMC1 knockout cells displayed in Lanes 2 and 17. hEMC1 knockout cells with reintroduction of wild-type hEMC1
shown in Lanes 3 and 18. (B) Western blots for REMC2 mutant cell lines, blotting for hREMC subunits hEMC2, hEMC3, hEMC4, and hEMCS5. In addition,
levels of three endogenous client proteins (SQS, BCAP31, and TMEM97) were blotted for. Wild-type cells with the fluorescent reporter displayed in
Lane 1. hEMC2 knockout cells displayed in Lane 2. hEMC2 knockout cells with reintroduction of wild-type hEMC2 shown in Lane 3. Mutant hREMC2

E206A+E209A+D252A is in Lane 10, flow cytometry of this mutant is not included. For the remaining mutants, both western blot and flow cytometry
were conducted.
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Figure 1—figure supplement 6. Western blots for EMC3 and EMC5. Human functional assay to check for complex stability. For each mutant,

abundance of several EMC subunits as well as several representative client proteins was tested. (A) Western blots for hREMC3 mutant cell lines, blotting

Figure 1—figure supplement 6 continued on next page
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for hREMC subunits hEMC1, hEMC3, hEMC4, and hEMCS. In addition, levels of three endogenous client proteins (SQS, BCAP31, and TMEM97) were
blotted for. Wild-type cells with the fluorescent reporter displayed in Lanes 1 and 12. hREMC3 knockout cells displayed in Lanes 2 and 13. hREMC3
knockout cells with reintroduction of wild-type hEMC1 shown in Lanes 3 and 14. (B) Western blots for hREMC5 mutant cell lines, blotting for hREMC
subunits REMC1, hEMC2, hEMC3, and hEMCS5. In addition, levels of three endogenous client proteins (SQS, BCAP31, and TMEMY97) were blotted for.

Wild-type cells with the fluorescent reporter displayed in Lane 1. hEMC5 knockout cells displayed in Lane 2. hREMCS5 knockout cells with reintroduction
of wild-type hEMC5 shown in Lanes 3 and 4.

Miller-Vedam, Brauning, Popova, et al. eLife 2020;9:e62611. DOI: https://doi.org/10.7554/eLife.62611 13 of 70


https://doi.org/10.7554/eLife.62611

ELIfe Research article Cell Biology | Structural Biology and Molecular Biophysics

*

@ Amino acid sequence alignment between human and yeast EMC1

Human EMCH1
Yeast EMC1

-

MAAEWASRFWLWATLLIP - - -AAAV.E QVGKF QQYVGKVKFA
MKILTCTDLVMVE ILLELNTSCVQAVESBDAF I T LANLGPWEKV

e

69 71 76 80 82 $
Human EMC1 61 NV TAAL IGI vi VDKGiAEGAVIAMLLHGQ“ITVSNGGRI
Yeast EMC1 67 CLVSSF ILERNVLPFE- - - - IDE1TQLDSNDHNAMVCVNSS

Human EMC1 127 SFQALGL VGL - -QESVRY | AVLKKT TLALHH L SSGHLKWVEHLPES
Yeast EMC1 127 VDNAPSTT ILPQSSYLNDQVSIKNNELHILDEQSKLAEWKL ELPQ -

Human EMC1 191 VVPFSHVN I VKFNVEDGE | VQQVRVSTPWLQHL SGACGVVDEAVLYV
YeastEMCI  #S3E5ErREE : AR IREEns 2 AR SREEEEE £ 2 A0S0

275 282

*
Human EMC1 257 RQIPLQSLDLEFGSGFQPRVEPTQPNPVDASRAQFFLHL SPSHYAL
Yeast EMC1 172 - - - - - - =« = - - - - - GENKVEMFHRE - - - - - - - - - m - e oo m oo oo s

Human EMC1 323 SEATTGEKTVAAVMACRNEVQKSSSSEDESMESFSEKSSSKDSLAC
Yeast EMCA 198 GESANGTEL - - - = - = = = -« o oo oo e oo oo

404

Human EMC1 389 TTITFSLEQSGTRPERLYIQVFLKKDDSVEGYRALVQTEDHLLLFLQ
Yeast EMC1 207 - - === - -----mmmmsssssssssssssssssssssssss e

Human EMC1 518 NEIIN | DFEIIARD EENEQRMMVMVITASG KL FGTES - SSGTIEWKQ Y LP
Yeast EMC1 284 LDAKDTTVSDLKFGFAKIL | VLTHDGF IGGLDMVNKGQL IWKLDLE

Human EMC1 583 BIPPQC TIL VKD KESGMS SEMVENP | FGKWSQVAPPVIIKRP | LQSLE
Veast EMG{ 337 FWTDKNHDELVVFSHDGHMLTIEMTKDQP | | KSRSPLSERKT VDSV

Human EMC1 648 KVTAFPATRNVLRQLIELAPIIFFILV“QGRLCG RLRKBILTTE
Yeast EMC1 403 LEKLNPGKNTDVP | VANNHSSSHIFVT TNGINGN | IENDITV - K

Human EMC1 714 ISlEHVHIQGRVMG-VL.SLNP LCLAVVTESTDAHHERTFIG
Yeast EMC1 466 TNLNTLGITLG YLYPNLAANL | ANE- - - -EHHTIT

Human EMC1 778 - AKGPVHTVHS NWVVIQIWN K - ARRNEFTVL TEQYNATA
Yeast EMC1 528 DFRIFPMD/I VFGEYWVV SSEPVPEQKLVVV L SLTPDERLS

Human EMC1 834 LQQSNMIFEPS S[ISAMEAT | ERG CLIGEPSGAL SEPRALLD
Yeast EMC1 594 QTKQF IFPE | IlKTMSISKETDD/ITTKA | VMELENGQIT Y I PKLLLN

Human EMC1 897 PMSPDVQIHAERFINNMNQTVS - - RMRG APIGL CLVVANGL
Yeast EMC1 660 P¥TPVIPINDNFII I THFRNLLPGSDSQL I N S ICDLGL

Human EMC1 961 [BYVLISSVILEFGLVEARMIT]KR L AQVKLENRAWR - -
Yeast EMC1 726 [EKGKLL | TIEVLLV I TYF JRPSVSNKKLKSQWL | K

471 473 483 91
Human EMC1 455 LEMVILPLTGAQAIL EGI G- - KKADGLLGMFLKIL.QL | LEQAWT SH LWKMF.DAR Q-[IK 517
Yeast EMC1 222 MAVLBIVED - SRDVELNKBMKAE LD SN SLWNANMWL NWNRL INLLKE - - -NQFSPG KLLA 283

= Mutated residues

SLEFSPGSKKLVVATE - - -K 60
I PDISRDRNRIVLILSNPTETS 66

MRSWETN | GGLNWE I TLBSG 126
SNH KY - -DLHDWELLEEG 126

DSIHYQMVYSYGSGVVWALG 190
-------------------- 171

CPDPSSRSLQTLALETEWEL 256

LQYHYGTLESLELKNFPQEALV 322
----- DPLALVLNVNDTQNMM 197

FNQTYTINLYLVETGRRLLD 388
-------------------- 206

QL AGKVVLWS SLAEVVC 454
----- I PVWQ WL TNVVD 221

NVKPDSSFRILEMVQRTTAHFP 582
IDQGV - - -BM- - - - - - - - - - 336

LPVMIQ.AKVLLLI D.— 647
IRLNEHDHQYL I KFEDKBDHL 402

L ELTIPPEV I VKVKGH 713
QEWKKAVNS - KEKMVA - YSHK 465

LIIGV GRI'ASSVQEK - - 777
GEILITQEHKDSP 527

FBBLD-------- RPQLP@V 833

NSSDNFSYDPL TGHINKPQF 593
881

PRRPE ---PTIQS ENL | 896

ARGKPAEEMAK FMAT 659

9
I IQ.VY PIGIFIVL KD[D | 960
VECERIITP LMSP[TE| 725

993
760

Figure 1—figure supplement 7. Amino acid conservation of EMC1. (A) Yeast (yfEMC sequence from uniprot entry for Saccharomyces cerevisiae EMC1,
sequence identifier: P25574-1) to human (hEMC sequence from uniprot entry for Homo sapiens EMC1 sequence identifier: Q8N766-1). Sequence

Figure 1—figure supplement 7 continued on next page
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alignment of EMC1 by T-Coffee PSI-Coffee homology extension online server. Colored by ClustalX coloring —Blue for hydrophobic (AILMFWV); Red for
positive charge (KR); Magenta for negative charge (ED); Green for polar (NQST); Pink for cysteines (C); Orange for glycines (G); Yellow for prolines (P);
Cyan for aromatic (HY); No color for any residues other than proline or glycine that are not conserved. Residues represented within REMC mutagenesis
are marked with hEMC amino acid sequence numbering and (*). Transmembrane helices are outlined in black, as annotated in uniprot entries.
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@ Amino Acid sequence alignment between human and yeast EMC2

18

Human EMC2 1 MAKVSELYDVTWEEM MR EENSRNSEQ@IVEVGE
Yeast EMC2 1 MLKDLV--------- LLTIMNT AYTQFNPEQLLQLEN

BO
Human EMC2 51 - D[IWI I1QVMIAALDYGRIDLALFCLQEL RQFP - VK
Yeast EMC2 48 GNMFFLMEML FMVLVYRNQDVDAQV VNN TL DRLGE MV

125 127
12 126 1

*kk
Human EMC2 105 D/ATI RILQ ------- NTAAR KAQGK - N
Yeast EMC2 104 GAI NLLN LEYETDFVTYVSIA TTSKNLSQ

68
170
Human EMC2 152 VGIQIAV\.ELA LIINEHDIA AAFCL LMMTNP‘LICQ
Yeast EMC2 160 PL LWWYAS FEMGQFEKACYCLEQVLC | TPFNYACFG
209 248
Human EMC2 208 LiLSRK.FAQAL LNNENMRALFGLNMMSASHITASNPKASAKT
Yeast EMC2 216 KATKTELLEKALKNALRSV - ELSELMLKGWALVN | 1ISR-ELG
2&6 269 273 286 290
Human EMC2 264 [IINRAYQF AGRS - KKETKNMSLKAVEDMLETLQITQS
Yeast EMC2 270 LKEISAKSNNKDK I TAEL I LNKI - - - - - -------

MK | YMKSGD

= Mutated residues

B--- INEYAIKLGI 50
ALTE 47

RLTGMRFEAMERYD 104
IMKATLLEQINGNDK 103
150
146 149

LNE.L QF 151
KE 159

VEAI
ESVLKEVVALT

206

*
QNA VK T GG L EN 207
RLS ALRSK 215

252 255

KDNMKNMASWAASQ 263
NKQNDL I KLSASK 269

297
292

| *
‘ Amino Acid sequence allqnmentmbetween human and yeast EMC3 e = Mutated residues
Human EMC3 1 MAGPELLL SNI VLPIVIITEFVGMI VIs I LLQSDKK - - -LTQEQVIS 50
YeastEMC3 1 - - -- - ML LBIDQL LLPISIVMVLTGVLKQNMIMTL I TGSSANEAQPRVKLT 48
59 62$
Human EMC3 I VLIRSRVLRE KYIPKQSFLT.Y.FNNPEDG--FF ----- KKTKRKVV 96
Yeast EMC3 LQWAQLL | GNGGNLSSDAFAAKKEFL VKDL TEERHLAKAKQQDGSQAGE 101
1171 12k2
Human EMC3 97 PPSPMTIPIM- - -LTDMMIGIVTNIVLPM L IGGWINMTESGEVT TIKVPFPLFL 146
Yeast EMC3 102 VPNPENDPSMSNAMMNMA! MAS[ETPQTI IMMVWWNHFFAGF ILMQLPFEPLTA 154
14
1 5 180 182 186
Human EMC3 147 IPML QGUEDL TEDASWY, WYELNVEGLRSIMSL NAADQSRNMM 199
Yeast EMC3 155 EMLQTGI | CQDLBVRWVS[STSWYF I SVLGLNPVYNL IGLNDQDMG | Q - AG 206
2*3 216 223 2*4 247 249
Human EMC3 200 QEQMTGAAMAMPAD TN AFKTEWEALELTD.WAL EEMAKDLHF EGMF 252
Yeast EMo3 207 | GGPQGPQGPPQSQVDKAMHAMANDLTI | QHETCL RVLKQYM- - - - - - 253
Human EMC3 253 KKELQTS | F 261
YeastEMC3 - --------
I© Amino Acid sequence alignment between human and yeast EMC5 * ;
= Mutated residues
44
*,
Human EMC5 DES[EP | 46
Yeast EMC5 | SKLPK 50
63 75 82 85
* * * %
Human EMC5 47 EFKD - - - - - ----- MDATSELINKTFDTLRr 87
Yeast EMC5 51 AGL ILFVLAVFTSFEKLQYLPIESNDGK I1SQGNYLKE I ALNKATNV 101
%
Human EMC5  gg PSF.VFrRGRVLFRPIDTANSSNODALSSNTILKL.LESLRR 131
Yeast EMC5 102 DNL IGSNPNGE/I I FTPSFVDVHMKRKICREWASNTVKKEK - - - - 141

Figure 1—figure supplement 8. Amino acid conservation of EMC2, EMC3, EMCS. Yeast t

o human sequence alignments. (A) Alignment of hREMC2 and

yEMC2. Computed by t-Coffee PSI-Coffee homology extension online server. Colored by ClustalX coloring — Blue for hydrophobic (AILMFWV); Red for

Figure 1—figure supplement 8 continued on next page
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positive charge (KR); Magenta for negative charge (ED); Green for polar (NQST); Pink for cysteines (C); Orange for glycines (G); Yellow for prolines (P);
Cyan for aromatic (HY); No color for any residues other than proline or glycine that are not conserved. Residues represented within hREMC mutagenesis
experiments are marked with hEMC amino acid sequence numbering and (*). Transmembrane segments are outlined in black, as annotated in uniprot
entries. (B) Same as (A) for hEMC3 and yEMC3. (C) Same as (A) for hREMC5 and yEMC5.
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@ Genotyping for hEMC1T82M Genotyping for hEMC3Ee3k+D213K+E223K

T TAMATTCCCOACTCEGCACATCT TGTGACGCCATETTE - ENG3 wild IAAGCAGAGTCCTCAGGGAMAATGGAMATACATTCCCAMA!  (GAGCAGCCAT \CAAAGCTTTC TTTGGAGCT

. CTaCTG TGTGT

EMCH wildtype widiype
; EMC3 5 s &2 64 6 70 06 28 20 22 24 26 28 220 222 224 26

EMC1 wildtype 66 68 70 72 74 76 78 80 82 8 8 88 99 92 94 9 98 100 . . ®'s FRVEINENE v T r )X GAAMAMPAD T NKAIFKTEWEALEL

translation LN SJRIT G JEVINL W IRVH VIDUKIG T AE'G AWID A MILILIH G QDVIIIT vV wildtype translation

EMC3E63K+D213K+E228K /U“ \”\‘r\y‘ \‘\\ My

Sanger Sequencing CAGGRAGAATGGAAAATACATTCCCAAA mmm GCARAGACAAACARAGCTT TTTGGAGCT

EMC1™2¢
Sanger Sequencing

Genotyping for hREMC1A1447 @ Genotyping for hLEMC3F48t

N CAGTGGCAGTTTCCAGGCACTTGGGCTGGT TGGCCTGCAGGAGTCTGTAAGGTACATCGCAGT CCTGAAGAAGACTACACTTGCCCTCCATCACCTCTCCAGTGGGCAC il \ACATGACATTCTCAGGCTTTGTCACAACCAAGGTCCCATTTCCACTGACCCTCCGTTTTAAGCCTATGTTACAGCAAGGAATCGAGCTACTCACATTAGATG
EMC1 wildtype = i e | | EMCS widtype = B 5 i
EMCT s s e im i e 1w e e e e s s s s s s i | | EMG
3 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 166 162
wildtype translation  EBG RIS R G  T = = N W TIF)S GIEEVT TIKEV.P JF)P LT LIRNESKIP ML Q Q G I JENL LT JEND

wildtype translation

EMC1AM44T
Sanger Sequencing

)

ACCOTCCTGAAGAAGACTACACTTGC

]
| l
| A F148L T | - Al
MW EMC3 . ‘”/\4” “v_ fw /\ v HAJwa‘v i A\“\‘,\n//\ AL \N”‘\ﬁ H\‘n
ATCACCTCTCCAGTGGCAC Sanger Sequencing LT YW WU RNV VLW il
\ACATGACATTCTCAGGCTTTGTCACAACEAAGGTCCCATTTCCACTGACCCl'CCGTCTGAAGCCTATGTTACAGCAAGGAATCGAGCTAETCACATTAGATG

=

Naasaadansianantinan AAA AAMAMM
ZAGTGGCAGTTTCCAGGCACTTGGGCTGGTTGGCCTGCAGGAGTCTGTARGGT;

Genotyping for hEMC 168687 ® Genotyping for hREMC3M151-

\ACGGGGCATCACCAGCCGACACCTGCTGATTGGACTACCTTCTGGAGCAATTCTTTCCCTTCCTAAGGCTTTGCTGGATCCCCGCCGCCCCAGATCCCAACA £TCAGGCTTTGT CACAACCANGGT COCAT ] CCACTGACCETCCGTT T AAGCCTAT GTTACAGCANGGAATCGAGCTACTCACATT AGATGCATCCTGRGTG)

EMC1 wildtype T I EMC3 wildtype s 2
EMC1 . 854 856 858 860 862 864 866 868 870 872 874 876 878 880 882 884 886 EMC3 2 134 136 138 140 142 144 146 148 ~ 150 152 154 156 158 160 162 164 166
wildtype translation fORVG JI'T SIRH UL TG L'P S G A I LS ILIPKIALL D PRIRPETIP T s cENNDT T KBNS XD I 7T INERENEDr M 10 o  MEENENN T JENGRAD s NN

wildtype translation

EMC1 G868R

Sanger Sequencing AW
\ACGGGGCATCA

EMC3M|51L \
Sanger Sequencing = AGGCTTTGTCACAACCAAGGTCCCATTTCCACTOACCCTCCOTT TTANGCCTCTGTTACAGCAAGGAATCGAGCTACTCACATTAGATGRATCCTGRGTG!

Genotyping for hEMC1Resc @ Genotyping for \AEMC5"7

ATGGCBLCGTCGCTGTGGAAGGGGCTGGTGGGCATCGGTCTCTTTGCCCTAGCCCACGCCGCCTTTTCCGCTGCGCAGCATCGTTCTTATAT

[TGGACTACCTTCTGGAGCAATTCTTTCCCTTCCTAAGGCTTTGCTGE c G TTAATCCCGTATTC

EMC1 wildtype ™ e . | | EMCS wildtype a4 250

10 12 1416 18 22

EMC1 864 866 868 870 872 874 876 878 880 882 884 886 888 890 892 894 895 898 EMC5 MiPgLVGIKgLVGIGL?"ALAHAAFSAAZ;NRS}?YW
|

" . cHBP s ¢ WD I EDAININDD P BN ENID P T EDQ s NEENED N NN XD S . .
wildtype translation wildtype translation

‘ Il |
I | f\wwn"‘m i 1l || I
Y VUYLV EMC5KE A N ’\J I\ “u“ m M‘\Hm‘

L i VETVVYY ! M
TGGACTACCTTCTGGAGCAATTCTTTCCCTTCCTAAGGCTTTGCTGE ATCCCAACAGAACAAAGC/ TTAATCCCGTATTC WY

EMC1 R881C A
Sanger Sequencing

Sanger Sequencing  A7oeCCeTCOCTGTGGRACGGECTGRTGRGCATCRGTCTCTTTGCCCTAGCCCACGECGCCT TTTCCGCTGUGEAGCATCGTTCTTATAT

Genotyping for hEMC3'% @ Genotyping for hEMC5H1oL+s23A+az6L

GGCTGGTGGGCATCGGTCTCTTTGCCCTAGCCCACGCCGCCTTTTCCGCTGCGCAGCATCGTTCTTATATGCGAT TAACAGAAAAAGAAGA™

EMGC3 wildtype o CTeTTGCTCRACT GoGTGGT TCGTTATCATCACTTTCTTOGT e | | EmCs witdtype e - " e
EMC3 A EMC5 8 16 12 1416 18 26 3 32 34 36 38
4 56 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 I )
wildtype translation s WEKS M A" P JENLNENENDN S N T ORNLIWIVAVIL) p ITOVETUEN T JEREIVE G M ITURN H ¥R wildtype translation GLVGIGL“FL‘ALA"AA"“SAAQ"RS{“RLTEKED

\ |
EMCamise m ) EMCSHiL szt O TR \ il o (\\ A/‘WM
i W A \all i . VWV \ VWY \! \ NIV WYY MVVIVVVVYY
Sanger Sequencing TCCTACCCATCGTTATCATCACTTTCTTCGT icc | | Sanger Sequencing 7 n

GGCTGGTGGGCATCGGTCTCTTTGCCCTAGCCCTGGCCGCCTTTGCCGCTGCGCTGCATCGTTCTT TATGCGATTAACAGAMAAGAAGA'

Figure 1—figure supplement 9. Genotyping of 10 mutants. (A) Sanger sequencing of mutant aligned to wild-type sequence for REMC1 T82M. (B)
Sanger sequencing of mutant aligned to wild-type sequence for hREMC3 E63K+D213K+E223K. (C) Sanger sequencing of mutant aligned to wild-type
sequence for hREMC1 A144T. (D) Sanger sequencing of mutant aligned to wild-type sequence for hEMC3 F148L. (E) Sanger sequencing of mutant
aligned to wild-type sequence for REMC1 G868R. (F) Sanger sequencing of mutant aligned to wild-type sequence for REMC3 M151L. (G) Sanger
sequencing of mutant aligned to wild-type sequence for hREMC1 R881C. (H) Sanger sequencing of mutant aligned to wild-type sequence for REMC5
K7E. (I) Sanger sequencing of mutant aligned to wild-type sequence for REMC3 R13E. (J) Sanger sequencing of mutant aligned to wild-type sequence
for hEMC5 H19L+S23A+Q26L.
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Figure 2. Overall structures of yeast and human EMC. (A) Cryo-EM structure of yEMC in nanodiscs. Three orthogonal views of the yEMC cryo-EM
structure shown as surface rendering. Gray bars delineate the approximate ER membrane boundaries with the cytoplasmic (C) and lumenal (L) sides
Figure 2 continued on next page
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indicated. The FAb molecule bound to the yEMC1 lumenal domain is colored in gray. (B) Cryo-EM structure of hEMC in nanodiscs. Labeling as in (A).
(C) Subunit composition and color scheme of yEMC used throughout the manuscript. Dotted line indicates a portion of yYEMC4 unresolved in the cryo-
EM map and left unmodeled. (D) Subunit composition and color scheme of hREMC used throughout the manuscript. (E) Schematic depiction and
comparison of the EMC architecture to known transmembrane protein biogenesis factors in the ER and the bacterial plasma membrane. Cytoplasmic,
transmembrane and lumenal domains are depicted as cartoons colored red, gray and blue, respectively. E, eukaryotic; P, prokaryotic.
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Figure 2—figure supplement 1. Cryo-EM reconstruction of yEMC. (A) Representative motion-corrected micrograph for yEMC-FabE in DDM. Scale-
bar = 500 A. (B) Representative motion-corrected micrograph for yYEMC-FabH in DDM. Scale-bar = 500 A. (C-D) Gallery of 2D classes for the final
Figure 2—figure supplement 1 continued on next page
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consensus particle set of yEMC in DDM. (E) Angular distribution of the final consensus particle set of yYEMC in DDM. (F) Gold-standard Fourier shell
correlation (FSC) of the consensus yEMC DDM map. The FSC at 0.143 is indicated by a gold line. (G) A slice through the consensus yEMC DDM map
colored by local resolution. (H) Representative motion-corrected micrograph for yEMC in nanodiscs. Scale-bar = 500 A. (I) Gallery of 2D classes of
yEMC in nanodiscs. (J) Angular distribution of the final consensus particle set of yYEMC in nanodiscs. (K) Gold-standard Fourier shell correlation (FSC) of

the consensus yEMC nanodisc map. The FSC at 0.143 is indicated by a gold line. (L) A slice through the consensus yEMC nanodisc map colored by
local resolution.
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Figure 2—figure supplement 2. Cryo-EM reconstruction of hREMC. (A) Representative motion-corrected micrograph for hREMC in nanodiscs. Scale-
bar = 500 A. (B) Gallery of 2D classes for the final consensus particle set of hREMC in nanodiscs. (C) Angular distribution of the final consensus particle

Figure 2—figure supplement 2 continued on next page
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set of hEMC in nanodiscs. (D) Gold-standard Fourier shell correlation (FSC) of the consensus hEMC nanodisc map. The FSC at 0.143 is indicated by a
blue line. (E) A slice through the consensus hEMC nanodisc map colored by local resolution. (F-J) As for (a — €) but for hREMC in detergent.
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Figure 2—figure supplement 3. Cryo-EM data processing workflow for yEMC. (A) Schematic of cryoEM data processing workflow for yEMC+Fab in b-

DDM detergent micelles. (B) Schematic of cryoEM data processing workflow for yEMC+Fab in lipid nanodiscs.
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Figure 2—figure supplement 4. Cryo-EM data processing workflow for hEMC. (A) Schematic of cryoEM data processing workflow for hREMC in GDN
detergent micelles. (B) Schematic of cryoEM data processing workflow for hEMC in lipid nanodiscs.
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Figure 2—figure supplement 5. yEMC cryo-EM map validation. (A) Final model-to-map FSC curve shown for yEMC in nanodiscs (left) and detergent
(right). (B) Consensus yEMC nanodisc density shown superposed on the final yEMC nanodisc model. Three cytoplasmic subunit interfaces are depicted.
(C) As in (B), for transmembrane subunit interfaces. (D) As in (B), for lumenal subunit interfaces.
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Figure 2—figure supplement 6. hEMC cryo-EM map validation. (A) Final model-to-map FSC curves shown for hEMC in nanodiscs (left) and detergent
(right). (B) Consensus hEMC nanodisc density shown superposed on the final REMC nanodisc model. Three cytoplasmic subunit interfaces are depicted.
Figure 2—figure supplement 6 continued on next page
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Figure 2—figure supplement 6 continued

Cyan dashed lines correspond to an unresolved cytoplasmic loop of EMCA4. (C) As in (B), for transmembrane subunit interfaces. (D) As in (B), for lumenal
subunit interfaces. The right most panel depicts the sub-classified hEMC nanodisc map featuring stronger EMC7 lumenal density.
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Figure 2—figure supplement 7. Subunit-subunit correspondence between yEMC and hEMC. (A-D) EMC models from both human (A,C) and yeast (B,
D) in lipid nanodiscs are colored with the same subunit color code, shown in the middle. Both cartoon ribbons and surface rendering are shown in two

different views.
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Figure 2—figure supplement 8. Comparison between individual yYEMC and hEMC subunits. (A-H) Each panel shows a side-by-side comparison of

homologous yeast and human EMC subunits, colored from N- (blue) to C-terminus (red). Schematics above each panel depict domain organization for
each subunit. TM = transmembrane helix. C = cytoplasmic. L = ER lumenal.
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Figure 2—figure supplement 9. Pairwise superposition of EMC structures in the PDB. Pairwise superpositions between hEMC and yEMC from this
work and recently published EMC structures. Alignments were performed with the matchmaker command in ChimeraX, in each case aligning on the
Figure 2—figure supplement 9 continued on next page
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conserved core subunits EMC3 and EMC5. RMSD values for alignments between pruned atom pairs are shown. (A) Alignment on hEMC in nanodiscs
(this work). (B) Alignment on yEMC in nanodiscs (this work).
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Figure 3. The EMC cytoplasmic domain contains conserved functional interfaces and may engage C-tail-anchored clients directly. (A) Position of the
hEMC cytoplasmic domain relative to the membrane and the rest of the complex. Shown is the surface rendered hEMC structure reconstituted in

Figure 3 continued on next page
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Figure 3 continued

nanodiscs. (B) EMC2 nucleates a protein-protein interaction hub in the cytoplasm. Zoomed-in view of the cytoplasmic domain from (A). EMC2 is shown
as surface rendering while interacting EMC subunits are shown as cartoon cylinders. (C) EMC2 forms a TPR domain which binds EMC5. Overlaid are
hEMC2 (red) and yEMC2 (dark red), illustrating the more tightly wound yEMC2 TPR solenoid. Two mutants, one in EMCS5 and three in EMC2, are
colored in blue, and show destabilizing phenotypes for EMC integrity. (D) A cytoplasmic cap structure involving EMC4 is conserved in yEMC and hEMC.
Shown is a side-by-side comparison between the cytoplasmic domains of hEMC (left) and yEMC (right), highlighting the similar path EMC4 takes from
the cytoplasmic domain toward the transmembrane domain. While an interaction surface between EMC8/9 and the EMC4 N-terminus is absent in
yeast, yYEMC4 binds at the top of the EMC2 TPR domain and assumes as similar position across the EMC3 cytoplasmic domain at the cytoplasm-
membrane interface. (E) Fluorescent client reporter stability assay for TMEM97 (N-cytoplasmic polytopic client), B1AR (N-lumenal polytopic client) and
5QS%78410 (C- lumenal tail-anchored client) in EMC2 KO cells expressing mutant hEMC2E168ADT70A+KIZ3A (ghaded) or WT hEMC2 rescue (unshaded).
Shown is the model of hEMC in nanodiscs superposed with the unsharpened cryo-EM map, where the weaker density for EMC4 (23-42) becomes

apparent. Mutated residues are colored blue and marked with asterisks for clarity. (F) Fluorescent client reporter stability assay, as in E, for the
REMC2E 46A+ET49A+QIS0A | 1oy
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Figure 3—figure supplement 1. Flow cytometry for mutations in the EMC cytoplasmic domain. (A) Mutant hEMC2K123E+R126D+KI27E iy TMEM97-
mCherry, B1AR-mCherry, and mCherry-SQS*8410 cell lines. Image of hREMC ND model displaying the residues mutated. (B) Mutant hEMC2K18A+K214

Figure 3—figure supplement 1 continued on next page
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with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS¥84'0 cell lines. Snapshot of hREMC ND model displaying the residues mutated. (C) Mutant
hEMC2?48E+D252K+K255E it TMEM97-mCherry, B1AR-mCherry, and mCherry-5QScterm cell lines. Snapshot of hEMC ND model displaying the
residues mutated. (D) Mutant hREMC2N37ATNIE7A \yith TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS*#4'° cell lines. Snapshot of hREMC ND
model displaying the residues mutated. (E) Mutant hREMC29267A+E286A+E290A \yity TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS¥#410 cell lines.
Snapshot of hEMC ND model displaying the residues mutated.
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Figure 3—figure supplement 2. Additional flow cytometry for mutations in the EMC cytoplasmic domain. (A) Mutant hEMC2R266ATQ269ATR2T3A iy
TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS¥841° cell lines. Snapshot of hEMC ND model displaying the residues mutated. (B) Mutant

Figure 3—figure supplement 2 continued on next page
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hEMC2RBOE+RBIEFKIOESRTIZE it TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS*#4° cell lines. Snapshot of hREMC ND model displaying the
residues mutated. (C) Mutant hREMC5" 7" with TMEM97-mCherry, BIAR-mCherry, and mCherry-SQScterm cell lines. Snapshot of hREMC ND model
displaying the residues mutated. (D) Mutant hEMC5%* with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS*#41° cell lines. Snapshot of hREMC

ND model displaying the residues mutated. (E) Mutant hEMC5P82A*REA \yith TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS¥841° cell lines.
Snapshot of hEMC ND model displaying the residues mutated.
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Figure 3—figure supplement 3. Both EMC8 and EMC? can be fitted into the hEMC cryo-EM maps. (A) Superposition of hEMC8 (cryo-EM model, this
work) and hEMC9 (X-ray model, PDB code 6Y4L) reveals strong structural homology between the two paralogous hEMC subunits. (B) Central slide

Figure 3—figure supplement 3 continued on next page
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through the models of hREMC8 (cryo-EM) and hEMC9 (X-ray) fitted into the hREMC nanodisc cytoplasmic focused map. (C) Representative non-conserved

residues in hEMC8 and hEMC9 showing evidence of side-chain density superposition. The hEMC nanodisc cytoplasmic focused map is depicted. (D)
Tcoffee sequence alignment between hEMC8 and hEMC9, displayed in Jalview and ClustalX coloring.
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Figure 4. The EMC houses two transmembrane cavities with conserved core structures and distinct accessibilities. (A) Location and composition of the
lipid-filled cavity. A zoom-in view on the cavity is shown below, which is composed of EMC1, EMC3, EMC5, and EMCé. Resolved lipid densities from
the cryo-EM map of hEMC in POPC nanodiscs are shown as black mesh zoned within 3 A of modeled POPC molecules. (B) Location and composition
of the gated cavity. Two orthogonal zoom-in views of the cavity are shown below, which is composed of EMC3 and EMCé. A transmembrane gate
opposite the cavity wall is depicted as transparent cartoon cylinders and has contributions from the C-terminal EMC4 transmembrane helix along with
up to two additional, unassigned helices. Resolved lipid densities are shown as in (A). (C) The dual-cavity architecture of the EMC transmembrane
domain is conserved between yEMC and hEMC. Unsharpened cryo-EM maps of hREMC and yEMC in nanodiscs (top) are shown along with
corresponding schematic representations of the spatial organization of all transmembrane helices (bottom). The gate helices of the gated cavity
represent the region of highest conformational heterogeneity across our collection of EMC structures. (D) The two EMC transmembrane cavities feature
distinct accessibilities. Shown is a central slice through the surface rendered hEMC nanodisc structure with the two membrane cavities on opposite
sides. Measuring from the lumenal to the cytoplasmic side, gated and lipid-filled cavities measure 45 A and 35 A across, respectively. This suggests that
the gated cavity has accessibility from the cytoplasm while the lipid-filled cavity does not.
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Figure 5. EMC houses an insertase module centered on EMC3 in the gated membrane cavity. (A) A transmembrane gate anchored in the cytosol and
the lumen is a structural hallmark of the EMC gated cavity. Shown is a surface rendering of the hEMC model in lipid nanodiscs with an unresolved
EMC4 connection between the cytoplasm and the membrane depicted as a dashed line. An unassigned helix of the gate is shown in gray (H1). (B) The
gated cavity in the hEMC nanodisc structure has sufficient space to accommodate a client transmembrane helix. The space-filling model of the first
transmembrane helix of B1AR (B1AR TMH1) is shown placed inside an outline of the EMC gated cavity. (C) A hydrophobic gradient characterizes the
surface of the EMC gated cavity from the cytoplasmic to the lumenal side. Gate helices have been omitted for clarity. The surface of the hEMC
nanodisc structure is colored by electrostatic surface potential ranging from —15 (red) to +15 (blue) kcal/(mol-e). (D) Distinct EMC3 regions along the
gated cavity hydrophobic gradient targeted for mutagenesis. Mutated residues are colored in lime. (E) Fluorescent client reporter stability assay for the
EMC3 cavity entrance mutant, hREMC3E63K+P213K+E223K (Fy Ag in (E) for the EMC3 buried polar patch mutant, hEMC3N'4P*NT7D (G) A in (E) for the
EMC3 hydrophobic seal mutant, hEMC3MTSIL
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Figure 5—figure supplement 1. Flow cytometry of gated cavity mutants. (A) Mutant hREMC1<7A*K97A ith TMEM97-mCherry, B1AR-mCherry, and
mCherry- SQS5%78410 cell lines. Snapshot of hEMC ND model displaying the residues mutated. (B) Mutant hREMC3™'%7E with TMEM97-mCherry, B1AR-

Figure 5—figure supplement 1 continued on next page
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mCherry, and mCherry- SQS*#41 cell lines. Snapshot of REMC ND model displaying the residues mutated. (C) Mutant hEMC3™ 8- with TMEM97-
mCherry, BIAR-mCherry, and mCherry-SQScterm cell lines. Snapshot of hEMC ND model displaying the residues mutated. (D) Mutant
hEMC3YT 1841224 \yith TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS¥541° cell lines. Snapshot of hEMC ND model displaying the residues

mutated. (E) Mutant hEMC3R'84 with TMEM97-mCherry, B1IAR-mCherry, and mCherry- SQS*8410 cell lines. Snapshot of REMC ND model displaying
the residues mutated.
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Figure 5—figure supplement 2. Additional flow cytometry of gated cavity mutants. (A) Mutant hREMC342A+K434 yith TMEM97-mCherry, B1AR-
mCherry, and mCherry- SQS*841° cell lines. Snapshot of REMC ND model displaying the residues mutated. (B) Mutant hEMC3K244ATHZATATEZ9A 4y
TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS¥841° cell lines. Snapshot of hREMC ND model displaying the residues mutated. (C) Mutant
hEMC3RS7EFROZEFK2IE \\ith TMEM97-mCherry, BIAR-mCherry, and mCherry- SQS¥84'° cell lines. Snapshot of hEMC ND model displaying the residues
Figure 5—figure supplement 2 continued on next page
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mutated. (D) Mutant hREMC3’%" with TMEM97-mCherry, B1AR-mCherry, and mCherry-SQScterm cell lines. Snapshot of hREMC ND model displaying the
residues mutated.
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@ Structure comparison of H. sapiens EMC3, S. cerevisiae EMC3, E. coli YidC, and M. jannaschii YidC-like proteins.
N terminus [T T C terminus

H. sapiens S. cerevisiae E. coli M. jannaschii
EMCS EMC3 YidC (PDB 6AL2) YidC-like protein (PDB 5C8J)
TH0
38
- " o
B g 2

Sequence alignment of H. sapiens EMCS3, S. cerevisiae EMC3, E. coli YidC, and M. jannaschii YidC-like protein colored by conservation
_ conserved

S. cerevisiae ENMC3 1fLLDDQ- - - - - - LKYWVLLEI- - - ----- - S[IVMVLTGV - - Y 1MT) 1TGSSANEAQPHVKLTEW]VLQWAQLLIGNGGNLSSDAIAA- -KKEFL VKDL TEERHL AKAKQQDGS - - - -QAG 100
H. sapiens EMC3 1MA--GPELLLDSN IRLWVVLPI - - - - VILI TEFVGM YVSILEQSDKKLT - - -QEQVSDSQVL IRSRVLRENGKY | PKQS| KYYFNN RKV 95
M. jannaschii YidC-like 1 MF - -GS1FD1YYKTLDAIFM AILIIATIVSL - - | ATKLLVDQKRVA - - - ELKKE | QEFQVKFK - = = == = = = = - - - -

E. coli YidC 1MD--sQ------- RNL-LVIAL----nnnnn LFVSEMIWQAWE VKTDVEDLTINT - -------- RGGDVEQALLPAYPKELNSTQP]

S. cerevisiae EMC3 101 EVPNBFNDBSM- - - - -« -« - -« .-« s- NAEv AR INMASF | IMVWVRIHEF A - 144
H. sapiens EMC3 96 VPPS MTD Y DMMKGN 8 L BN LI GOW! T FS - 133
M. jannaschit YidC-like 70 MSKN! EMMEKLQEEQQHIMQLNAELMKMSFRPMI YTWVEBI ILIF I YLRHVYG

E. coli YidC 19 GPDNIANG RPLYN- - - -oneeee VEKDAYVLAEGQNELQVBMT YTD AAGNTETKTFVLKRGDYAVNVN YNVANAGEKPLE | SSFGQLKQS | TLPPHLDTGSSNFALHTFRGAAYSTPDEKYEKYKFDT | ADNENLN | SSKGGWVAMLQQYFATAWI PHND ng
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M/annaschuvmcnks 148 - WLGSIFVKG SKI - SFATSTVLRK|

E. coli YidC 422 GCFPLL 1QMP | FLACEIE YYME - MGSVELRQAPFAL.IHDLIAQDP PILMIVTM FFIQKMSPTTV ------------- TDPMQQK IMTFMPV | FTVFFLWFPSGLVLYY I VSNLVT11QQQL | YRGLEKRGLHSRE

Figure 5—figure supplement 3. Comparison of EMC3 to YidC-family members. Structure and sequence comparison between EMC3 and YidC-family
proteins. (A) Side-by-side structure view of human EMC3, yeast EMC3, E. coli YidC, and M. jannaschii YidC-like protein. hEMC3 and yEMC are
displayed within the context of the EMC complex. EMC3 and YidC subunits are colored from the N-terminus (blue) to the C-terminus (red). (B) Amino
acid sequence alignment between human EMC3, yeast EMC3, E. coli YidC, and M. jannaschii YidC-like protein. Alignment from T-Coffee online server.

Conserved residues colored in shades of blue to indicate degree of conservation.
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Figure 5—figure supplement 4. Resolved lipid densities in hEMC and yEMC nanodisc maps. (A) Resolved lipids in the hEMC gated cavity. Left: The
hEMC model is shown as surface rendering, colored by molecular lipophilicity potential (mint = hydrophilic, gold = hydrophobic). Black mesh
corresponds to the hEMC consensus nanodisc map zoned within 3 A of the modeled POPC molecules. Enlarged views of lipid densities are shown,
although the second lipid on the lumenal side of the cavity is shown with the corresponding zoned Sidesplitter hREMC nanodisc map. Since this
particular lipid molecule shows only weak features in the consensus map, it is left unmodeled in the hEMC nanodisc model. Right: The yEMC model is
shown as surface rendering, colored by molecular lipophilicity potential. One POPC lipid is modeled at the lumenal side of the yEMC gated cavity and
shown is an enlarged view from the yEMC consensus nanodisc map zoned within 3 A of a modeled POPC molecule. (B) Same view as in (a), with the
hEMC model molecular surface colored according to amino acid conservation. (C) As for (A) but for the hEMC lipid-filled cavity. (D) Same view as in (C),
with the hEMC model molecular surface colored according to amino acid conservation.
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Figure 5—figure supplement 5. Comparison of gate conformations. (A) Comparison of gate helix conformations across hREMC and yEMC structures. In
each panel, the model of hREMC in nanodiscs is shown as ribbons (color-coded as elsewhere in the manuscript). Cryo-EM maps were aligned on their
Figure 5—figure supplement 5 continued on next page
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transmembrane cores and gate helices segmented, with the EMC4 transmembrane helix colored cyan and unassigned gate helices colored gray. (B)
Comparison of gate helix densities in cryo-EM maps of hEMC (O’Donnell et al., 2020) and yEMC (Bai et al., 2020), the latter of which was smoothed
by Gaussian filtering for clarity. Panels are in same view as (A), with the hREMC model from this work shown as colored ribbons. (C) Topology diagrams
of EMC4, EMC7, and EMC10. Based on resolved N- and C-terminal domains of EMC4 in our hEMC structure, EMC4 can possess either one or two
transmembrane domains, the latter scenario proposed by Bai et al., 2020 and O’Donnell et al., 2020. The resolved EMC7 and EMC10 N-terminal
lumenal domains in our yYEMC and hEMC structures orient their C-terminal, predicted transmembrane helices, toward the membrane. (D) Unsharpened
maps of the gate helix densities from yEMC in nanodiscs. The assigned C-terminal EMC4 transmembrane helix is colored cyan, whereas two
unassigned helices are colored gray. (E) Predicted transmembrane helices for EMC4, EMC7, and EMC10 were extracted from full-sequence prediction
models generated with Robetta (robetta.bakerlab.org). (F) Predicted transmembrane helices for EMC7 and EMC10 were docked into the unassigned
gate helix densities. (G) Predicted transmembrane helices for EMC4 were docked into the unassigned gate helix densities.
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Figure 6. A lipid-filled cavity in the EMC transmembrane domain stabilizes disparate client proteins. (A) An EMC1 ampbhipathic brace helix delineates
the boundary of the lipid-filled transmembrane cavity and packs against EMC5. Shown is a surface rendering of the hEMC model in nanodiscs. EMC4,
EMC5, EMC6, and EMC1 subunits all contribute to the cavity lining. (B) The lipid-filled cavity in the hEMC nanodisc is occupied by several lipid
molecules. Cartoon outlines of the gated cavity illustrate that the cavity could in principle allow for occupancy of a client helix (B1AR TMH1), possibly by
lipid displacement or movement of the EMC1 brace helix. (C) The lipid-filled cavity has a uniform hydrophobic lining. Shown is an electrostatic surface
rendering of the hEMC nanodisc structure colored as in Figure 5C. The cytoplasm-membrane interface contains positively charged residues and the
lumenal interface contains negatively charged residues. Modeled phospholipid molecules are displayed in black. (D) Lipid-proximal and brace interface
residues targeted for mutagenesis. Selected regions targeted for mutagenesis are colored in magenta and include brace interface mutations both in
EMC1 and EMCS5, as well as a lipid-proximal residue in EMC3. (E) Fluorescent client reporter stability assay for the hEMC3®"*E mutant, which is in close
proximity to a modeled POPC molecule. (F) As in (E) for the hEMC5H19L+5234+Q26L 1 ytant, which sits at the interface to the EMC1 amphipathic brace
helix. (G) As in (E) for the hEMC1F473Y*R487K 1 utant, which sits at the interface to the EMC5 transmembrane helices.
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Figure 6—figure supplement 1. Flow cytometry of lipid-filled cavity mutants. (A) Mutant hREMC5 ’E with TMEM97-mCherry, B1AR-mCherry, and
mCherry- SQS*8410 cell lines. Snapshot of REMC ND model displaying the residues mutated. (B) Mutant hREMC5<’* with TMEM97-mCherry, B1AR-

Figure é—figure supplement 1 continued on next page
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mCherry, and mCherry- SQS*#41 cell lines. Snapshot of REMC ND model displaying the residues mutated. (C) Mutant hEMC3'"82V+1188V \yith TMEM97-
mCherry, BIAR-mCherry, and mCherry- SQS¥841° cell lines. Snapshot of hREMC ND model displaying the residues mutated. (D) Mutant hREMC5'*3- with
TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS*841° cell lines. Snapshot of hREMC ND model displaying the residues mutated. (E) Mutant
hEMC54" with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQ5¥84'0 cell lines. Snapshot of hEMC ND model displaying the residues mutated.
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Figure 6—figure supplement 2. Additional flow cytometry of lipid-filled cavity mutants. (A) Mutant hEMC5F?2- with TMEM97-mCherry, B1AR-mCherry,
and mCherry- SQS*8419 cell lines. Snapshot of hEMC ND model displaying the residues mutated. (B) Mutant hEMC1MA83A+RABTH+QITIN vk TMEM97-
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mCherry, B1AR-mCherry, and mCherry- SQS*"#4° cell lines. Snapshot of hREMC ND model displaying the residues mutated. (C) Mutant hREMC5P** with
TMEM97-mCherry, BIAR-mCherry, and mCherry- SQS¥841° cell lines. Snapshot of hREMC ND model displaying the residues mutated. (D) Mutant
hEMCSRZATRIZA \yith TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS¥#41° cell lines. Snapshot of hAEMC ND model displaying the residues

mutated. (E) Mutant hEMC3P?* with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS¥84° cell lines. Snapshot of hEMC ND model displaying the
residues mutated.
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Figure 7. The large EMC lumenal domain is the site for several annotated disease mutations. (A) Two views of the hEMC nanodisc structure. Two beta
propellers are present in EMC1, one proximal to the membrane and one distal. (B) EMC1 is the largest EMC subunit and differs in size between yeast
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and human. Shown are human EMC1 (nanodisc), an overlay of human and yeast EMC1 (both nanodisc), and yeast EMC1 (nanodisc). (C) The

hEMC1R®8'C mutant sits near the EMC4 lumenal gate anchor. Left: Location of the mutation (colored pink). Right: Fluorescent client R881C reporter
stability assay for hEMC1. (D) As in (C) for for the hEMC1%88R mutant. (E) As in (C) for the hREMC1P3'8 mutant.
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Figure 7—figure supplement 1. Conformational heterogeneity of the hEMC lumenal domain between detergent and nanodisc maps. (A)
Superposition of hREMC in detergent (green) and nanodiscs (color-coded). Models were aligned on hEMC2 (cytoplasm) and hEMC5 (transmembrane),
revealing a rotation of the lumenal domain. (B) Enlarged view on the superposition around the area of the hEMC1 brace and the membrane proximal
beta-propeller. A helix leading toward the amphipathic brace is resolved in the nanodisc map and disordered in the detergent map. In the nanodisc
structure, several proximal propeller loops approach and form stabilizing interactions with the leading helix (dashed circle). (C) Enlarged view on the
superposition around the area of the lumenal hydrophobic seal of the gated cavity. The loop stabilized by hEMC178" (corresponding to the disease
mutant R881C) is well resolved in the hEMC nanodisc map and more disordered in the detergent map. The loops of the hEMC3 hydrophobic seal shift
concomitantly with the lumenal rotation between detergent and nanodisc structures. (D) Structural alignment of hEMC1 from the detergent (green) and
Figure 7—figure supplement 1 continued on next page
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nanodisc (blue) models. While the beta-propellers align extremely well, a clear rotation of the hEMC1 brace and the hEMC1 transmembrane helix can
be observed.
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Figure 7—figure supplement 2. Flow cytometry of lumenal domain mutants. (A) Mutant hEMC1%47"® with TMEM97-mCherry, B1AR-mCherry, and
mCherry- SQS¥#41° cell lines. Snapshot of hREMC ND model displaying the residues mutated. (B) Mutant hEMC14™4T with TMEM97-mCherry, B1AR-
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mCherry, and mCherry- SQS*841° cell lines. Snapshot of REMC ND model displaying the residues mutated. (C) Mutant hEMC17?® with TMEM97-
mCherry, BIAR-mCherry, and mCherry- SQS¥841° cell lines. Snapshot of hREMC ND model displaying the residues mutated. (D) Mutant hEMC17"S with
TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS*841° cell lines. Snapshot of hREMC ND model displaying the residues mutated. (E) Mutant
hEMC178M with TMEM97-mCherry, BIAR-mCherry, and mCherry- SQS¥841° cell lines. Snapshot of REMC ND model displaying the residues mutated.
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Figure 7—figure supplement 3. Additional flow cytometry of lumenal domain mutants. (A) Mutant hEMC1782A with TMEM97-mCherry, B1AR-mCherry,
and mCherry- SQS¥8470 cell lines. Snapshot of hEMC ND model displaying the residues mutated. (B) Mutant hREMC1%7P*<€%D \yith TMEM97-mCherry,
B1AR-mCherry, and mCherry- SQS¥#41° cell lines. Snapshot of hREMC ND model displaying the residues mutated. (C) Mutant hEMC1H73P+E138D+N282K
with TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS¥841° cell lines. Snapshot of hREMC ND model displaying the residues mutated. (D) Mutant
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hEMC1R?73E+RA0IE \yith TMEM97-mCherry, B1AR-mCherry, and mCherry- SQS*7841° cell lines. Snapshot of REMC ND model displaying the residues
mutated.
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Figure 8. Model of coordinated EMC functions. (A) Model of EMC insertase function for a C-lumenal tail-anchored client. Cytosolic factors bring post-
translationally localized clients to the ER. Then the client engages the EMC cytoplasmic domain. The polar roof modulates entry into the gated cavity. A
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Figure 8 continued

hydrophobic slide facilitates the client helix fully entering the cavity. A lateral movement of the gate releases the client helix into the membrane and the
EMC gate closes. (B) Our mutagenesis data provide the following insights into EMC regions of functional importance for each of the three client types
we tested. Mutants are depicted by yellow triangles. Tail-anchored client (coral) abundance was depleted upon mutagenesis of the cytoplasmic domain
entrance to the gated cavity, polar and charged residues at the cytoplasm-membrane boundary, residues along the length of the gated cavity, in the
hydrophobic seal to the lumen, and lipid interacting residues in both cavities (left). We also observed a subset of mutants that resulted in higher levels
of the C-lumenal tail-anchored client (right) that are positioned in the cytoplasmic domain cap, throughout the ER lumenal domain, and one mutation
at the center of the gated cavity. (C) The EMC facilitates biogenesis of N-lumenal polytopic client protein B1AR (dark red). (D) Regions important for
B1AR stability primarily map to the transmembrane region of the EMC structure, with depletion observed for lipid proximal residues on both sides of
the cavity, the polar entrance roof of the gated cavity, and the EMC1 brace helix. (E) The EMC facilitates biogenesis of N-cytoplasmic polytopic client
protein TMEM97 (dark purple). (F) Regions important for TMEMO97 stability were primarily located in the lumenal domain spanning both propellers, in
EMCT1. In addition to these lumenal regions, there was a depletion of TMEM97 at the lipid-interacting positions at the lumenal interface of both
membrane cavities of the EMC. Figure - Figure Supplement legends.
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Scheme 1. Client reporters.
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Scheme 2. hEMC subunit mutation construct design.
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