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A B S T R A C T   

Analyzing tree structural features and capturing their temporal dynamic is challenging but crucial for deter
mining key state variables related to plant function, management practices, and aboveground vegetation stocks. 
Terrestrial laser scanning (TLS) provides a mean for representing those key variables in three-dimensional space 
and through time. 

Here we further developed and tested two point cloud slice-based methods for estimating diameter at breast 
height (DBH) based on how the delineation of the slices of the tree stem point cloud was performed: the first 
method was based on the circumference of a slice (CM), and the second method was based on the average 
diameter of a slice (PM). Further, we focused on the characterization of three tree structural properties from TLS: 
maximum tree height (hmax), crown projected area (CA), and DBH, and then on the evaluation of their biometric 
relationships. Finally, we tested the potential of multitemporal TLS for evaluating the impact of tree management 
on tree structural properties and growth in a Mediterranean open woodland. In particular, we evaluated the 
effect of tree pruning and fertilization on hmax and CA. 

The study was conducted in three plots exposed to different fertilization treatments in a Mediterranean open 
woodland with ≃20% of fractional cover of evergreen holm oak (Quercus ilex L.): a control treatment without 
fertilization, a Nitrogen addition treatment, and a Nitrogen plus Phosphorus addition treatment. Pruning effects 
on tree growth were assessed in two plots within the control: an unpruned area and an area pruned in 2005. 

Estimation of the DBH showed a good agreement with field measurements (R2 
= 0.93 for PM and R2 

= 0.94 for 
CM). Despite Quercus ilex L. being characterized as a slow-growing species, a temporal difference of three years 
among TLS was sufficient to quantify the influence of different management strategies on tree structural prop
erties and growth rates. Our results showed: (i) CA increased relatively more than hmax, independent of the 
respective management strategy, suggesting a preferential lateral growth in holm oak tree canopies in this open 
woodland, (ii) pruned trees showed larger changes in CA than control trees (Wilcoxon test p < 0.01), whereas 
fertilized trees grew more in height compared with control trees (Wilcoxon test p < 0.01), and (iii) biometric 
relationships among plant properties were affected by nutrient fertilization and pruning. These results show that 
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Nitrogen and Phosphorus treatment. 
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multitemporal TLS shows promise for monitoring even small changes in crown dimensions, and it is a valuable 
tool for conducting vegetation dynamics studies and quantifying management effects.   

1. Introduction 

Accurately quantifying the dynamics and structure of vegetation is 
necessary to understand the ecological processes underlying ecosystem 
functioning, as well as the effect of human activities and management. 
State variables of vegetation, such as plant height, plant volume, and the 
diameter at breast height (DBH), as well as their spatial distribution and 
cover, are fundamental in ecosystem research and modeling of plant 
functional types, diversity, carbon accounting, and ecophysiology 
(Houghton et al., 2001; Chave et al., 2005; Hayat et al., 2017; Pom
merening and Grabarnik, 2019). Biometric relationships between plant 
height and diameter are used for estimating terrestrial biomass, which 
plays an essential role in carbon cycling (Houghton et al., 2009). The 
dynamics of vegetation structure, such as stem and canopy growth, are 
typically used as an indicator of vegetation function, which is mediated 
by environmental forcing and human activities, such as management. 
Some of the standard management practices aimed at increasing tree 
growth or fruit yield include fertilization and structural pruning. A 
robust characterization of structural canopy properties and their dy
namics is necessary to assess whether management strategies are 
successful. 

Light detection and ranging (LiDAR) active sensors have been suc
cessfully used to estimate vegetation structural parameters in a variety 
of ecosystem types. The substantial advantage of these sensors over 
passive sensors is their ability to reproduce the 3D structure of a given 
target independently on an external illumination source (Lefsky et al., 

2002; Hill et al., 2011). LiDAR instruments are operated from a variety 
of platforms. Spaceborne LiDAR is used primarily for land cover classi
fication and the estimation of ice, sea, and terrain elevation at the global 
scale. Airborne laser scanning (ALS), ground-based LiDAR, which is also 
known as terrestrial laser scanning (TLS), mobile laser scanners (MLS), 
Hand-Held Mobile Laser Scanning (HMLS), unmanned aerial vehicles 
(UAV) laser systems provide information about terrain and vegetation 
structure at the scale of single tree elements to the whole ecosystem (van 
Leeuwen and Nieuwenhuis, 2010). LiDAR instruments have been used to 
estimate tree structural parameters, such as height (Hopkinson et al., 
2004; Popescu et al., 2004; Popescu and Zhao, 2008; Lin et al., 2010; 
Moskal and Zheng, 2011; Olofsson et al., 2014; Srinivasan et al., 2015; 
Liu et al., 2018), crown diameter (Popescu et al., 2004; Popescu and 
Zhao, 2008; Yao et al., 2012; Srinivasan et al., 2015; Herrero-Huerta 
et al., 2018), and tree volume (Bienert et al., 2014; Herrero-Huerta 
et al., 2018; Putman and Popescu, 2018). DBH is one of the essential 
parameters for estimating tree basal area and biomass via allometric 
scaling. Whilst ALS can provide DBH estimations based on allometric 
equations in some system (Popescu et al., 2004; Yao et al., 2012), TLS 
provides a more direct measurement through circle and cylinder fitting 
(Hopkinson et al., 2004; Bienert et al., 2007; Moskal and Zheng, 2011; 
Srinivasan et al., 2015; Ravaglia et al., 2019). 

Seasonally dry tree-grass ecosystems, including savannas, are glob
ally widespread, and their functioning plays an important role in 
determining the interannual variability of global carbon dioxide (CO2) 
fluxes (Poulter et al., 2014; Ahlström et al., 2015). Therefore, it is 

Fig. 1. The study site Majadas de Tiétar. (a) location of the study site in Spain (red point) and an orthophotograph in UTM projection with locations of three 
fertilization experiments (red boxes): CT - control treatment (no fertilization), NT – nitrogen added treatment, NPT – nitrogen and phosphorus added treatment; red 
triangles – eddy covariance flux towers location; (b) CT plot was separated in two regions: unpruned area (CT_nP or control trees) and pruned area (CT_P, pruned 
trees); (c) TLS point cloud cross-section. The true-color RGB orthophotograph image used in a and b was provided by the Spanish National Orthophotography 
Program (PNOA in Spanish) database. The spatial resolution is 25 cm, the acquisition year is 2016. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article). 
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important to monitor the structural properties of savanna ecosystems 
through time and assess their response to management practices. Semi- 
arid savannas are characterized by sparsely distributed trees, with 
10–40 trees/ha typically, which makes them suitable for efficient 
characterization with LiDAR. Both ALS and TLS accurately characterize 
the structural features of savanna vegetation. For example, Chen et al. 
(2006) applied an ALS-derived canopy height model (CHM) to delineate 
trees in open oak-savanna in California. The combination of ALS and 
hyperspectral data was used for classifying and mapping tree species in 
African savannas (Cho et al., 2012; Colgan et al., 2012; Naidoo et al., 
2012). TLS has been used to estimate biomass (Zimbres et al., 2020) and 
tree structural properties (Muir et al., 2018) and for the characterization 
of the distribution of leaves inside the tree canopy (Béland et al., 2011; 
García et al., 2015). Both ALS and TLS are valuable for assessing the 
impact of management actions, such as controlled burning, on vegeta
tion structure in savannas (Levick et al., 2015; Singh et al., 2018; Levick 
et al., 2019). 

Mediterranean open woodlands, which are also called “Iberian 
dehesa” are tree-grass ecosystems with high socioeconomic and envi
ronmental value primarily located in the Central-West Iberian Penin
sula. They are formed by thinning dense oak forests, and they are 
maintained by grazing the grass understory and through the periodical 
pruning of sparse trees. Holm oak (Quercus ilex L) is one of the key tree 
species occupying Mediterranean landscapes (Huntsinger et al., 2013). 
Periodical pruning is conducted to shape the tree canopy to maximize 
light interception and acorn production, which is a preferred forage 
resource of livestock (Joffre et al., 1999). Monitoring tree growth is a 
challenging task, especially for slow-growing tree species, such as the 
holm oak. Consequently, different measurable proxies for tree growth 
have been used in the past. For instance, most studies determine holm 
oak growth using multitemporal dendrometer measurements of tree 
stem diameter (Mayor and Rodà, 1994; Martin et al., 2015) or manual 
measurements of shoot length (Pulido et al., 2013). However, these 
metrics do not provide an overview of whole-tree growth. Multi
temporal LiDAR surveys provide an opportunity to detect changes in 
vegetation structure at a high spatial resolution in three dimensions. For 
example, ALS has been used to determine forest decline, tree loss, and 
tree growth through height and biomass changes in mixed and conifer 
forests (Yu et al., 2006; Hopkinson et al., 2008; Duncanson and 
Dubayah, 2018). Multitemporal ALS has also been used for monitoring 
structural changes in vegetation in savannas (Levick and Asner, 2013). 
However, the accuracy of changes detection is limited by measurements 
uncertainty, and for quantifying fine-scale changes the use of multi
temporal TLS offers advantages in resolution and precision over ALS. 

This study aimed to evaluate the potential of multitemporal TLS to 
estimate tree structural parameters of holm oak trees in a Mediterranean 
open woodland and to measure the impact of management actions on 
tree growth. We decided to focus on three key state variables, maximum 
tree height (hmax), crown projected area (CA), and DBH. These variables 
are widely used for characterizing of stand structure (Valladares and 
Guzmán, 2006), allometric equations (Henry et al., 2011; Forrester 
et al., 2017), and modeling (Chave et al., 2005; Hayat et al., 2017). We 
have three specific objectives: (i) to develop tree stem slice-based 
methods further to estimate DBH for holm oak, (ii) to characterize the 
variability of TLS-derived biometric relationships between maximum 
tree height (hmax), crown projected area (CA), and DBH, to define the 
structural composition of a Mediterranean open woodland and (iii) to 
investigate the impact of pruning and fertilization treatments on tree 
growth by focusing on variations in hmax and CA. 

2. Material and methods 

2.1. Study site 

The study site is located in western Spain (39◦56′024.68′′N, 
5◦45′50.27′′W; Majadas de Tiétar, Cáceres, Extremadura; Fig. 1a). The 

ecosystem type is a Mediterranean open woodland with a Mediterranean 
climate, characterized by a hot, dry summer, annual precipitation of 
~650 mm, which falls mostly in spring and autumn, and mean annual 
temperature of ~16 ◦C. The understory is dominated by a grass layer of 
Vulpia bromoides (L.), Vulpia geniculate (L.), Trifolium subterraneum (L.), 
and Ornithopus compressus (L.). The woody vegetation is dominated by 
the evergreen holm oak, Quercus ilex L., with a low tree density of ~20 
trees per ha, with an average height of 8 m and an average DBH of 0.4 m. 
The holm oak is a slow-growing species, and it has a dense canopy and 
small coriaceous leaves (Terradas, 1999). Vegetative growth occurs 
primarily during spring and occasionally late in autumn. 

The site is managed by low-intensity grazing of < 0.3 cows per ha 
(Perez-Priego et al., 2017; El-Madany et al., 2018), as is typical for 
Iberian dehesas. The trees at the study site were pruned every 20–25 
years to maximize acorn production as forage for livestock. 

2.2. Fertilization experiment and management 

We made use of a large scale (~24 ha) nitrogen and phosphorous 
fertilization experiment conducted in 2015 (Nair et al., 2019; Luo et al., 
2020) on three different plots (Fig. 1a): the control treatment (CT), the 
Nitrogen treatment (NT) and the Nitrogen plus Phosphorus treatment 
(NPT). We covered with TLS a portion of each treatment: 13.3 ha for CT, 
14.9 ha for NT, and 11.8 ha for NPT. All the plots were equipped with 
eddy covariance flux towers (El-Madany et al., 2018). 

Some trees on the CT plot were pruned in 2005, and we analyzed the 
changes in tree structural characteristics in the 6.4 ha unpruned (CT_nP 
or control trees, n = 30) and 6.9 ha pruned areas (CT_P, pruned trees, n 
= 42) (Fig. 1b). 

2.3. Data 

2.3.1. Terrestrial laser scanning data 
We conducted two TLS surveys in the three plots using a Riegl VZ- 

2000 laser measurement system (Riegl Laser Management Systems 
GmbH): the first was between the 19th and 21st of August 2015, and the 
second was between the 21st and 26th of October 2018. The Riegl VZ- 
2000 is a full-wave TLS system that operates in the near-infrared re
gion of spectrum (1500 nm wavelength), with a maximum of 360◦

horizontal and 100◦ vertical field-of-view. Our scans were conducted at 
0.02 mrad and 550 kHz with a maximum ranging ambiguity of 750 m. In 
2015, the TLS sensor was installed on a tripod at a height of ~1.80 m. 
Data acquisition covered an area of 67 ha and included 113 randomly 
selected scanning locations (Fig. A1 in appendix). In 2018, we modified 
the acquisition scheme to reduce occlusion that was observed in the 
2015 data, which could lead to the underestimation of tree structural 
parameters. The acquisition scheme in 2018 was implemented in a 
regular predefined grid with a ~ 80 m distance between scan locations, 
which resulted in 174 scanning locations covering 76.16 ha (Fig. A1 in 
appendix). The scanner was mounted on a vehicle at a height of ~2.20 
m. The acquisition patterns in 2015 and 2018 resulted in point densities 
of 1186 and 3372 points per m2 respectively for all returns. For both 
years, the last sprout had occurred in the previous spring (April-May) at 
the time of field scanning, and the stem and branches were not growing. 

2.3.2. Orthophotographs 
Field measurements of CA in dehesa are error-prone because of the 

irregular shape of the tree crown and its large size (Husch et al., 2002). 
Thus, we used an orthophotograph for inter-comparison with the CA 
derived from the 2015 TLS. The true-color RGB orthophotograph was 
provided by the Spanish National Orthophotography Program (PNOA in 
Spanish) database. The orthophotograph, with a spatial resolution of 25 
cm, was acquired in 2016 during the dry season. We randomly selected 
36 trees among those that were unoccluded in the TLS point clouds in 
2015 (Fig. A2 in appendix), and we manually delineated tree crowns on 
the orthophotographs based on the spectral difference with the 

E. Bogdanovich et al.                                                                                                                                                                                                                           



Forest Ecology and Management 486 (2021) 118945

4

background of dry grass and shadows. CA was then calculated using 
QGIS software (QGIS Development Team, 2019). 

2.3.3. Field measurements of the diameter at breast height and dendrometer 
data 

We used field observations of DBH (DBHf) acquired in 2015 to 
ground-validate the DBH derived from TLS (DBHTLS) and to establish the 
biometric relationships between tree parameters. We sampled >900 
trees in the study site using a tree caliper at the height of 1.30 m. 

Dendrometer bands were installed around the stems of 10 selected 
holm oak trees (Fig. A2 in appendix) at a height of 1.30 m above the 
ground at the permanent tree girth band D1 (UMS GmbH) to follow the 
temporal dynamic of DBH. Changes in the circumference of the trees 
were manually recorded up to five times per year. Six additional trees 
were equipped with stand-alone logging dendrometer bands DBL60 ICT 
(ICT international) to obtain a higher temporal resolution (Fig. A2 in 
appendix). Among trees equipped with dendrometers 4 trees were 
fertilized, 10 trees were pruned, and 2 trees were control ones. We 
extracted the circumference values closest to the TLS surveys: 19/08/ 
2015 and 24/10/2018 for automatic dendrometers, 22/05/2015 and 
24/10/2018 for the manual ones. Then, the DBH at the time of the scan 
was calculated by dividing the actual circumference value by π (DBHd). 
We recalibrated the manual readings to account for temporal differences 
between the manually acquired data and TLS data. We observed a 
growth of 0.02 cm with the automatic dendrometers for this temporal 
frame. The calculation of the relative change in DBHd between 2015 and 
2018 is explained in Section 2.7. 

2.4. Terrestrial laser scanning data pre-processing 

The 2015 and 2018 TLS datasets were processed in the same way, 
using the multi-station adjustment tool in RiSCAN Pro (Riegl Laser 
Management Systems GmbH) for co-registration. Further post- 
processing steps were implemented using LAStools (rapidlasso GmbH, 

2007–2019). First, we clipped the TLS point clouds according to the 
reference plots (Fig. 1a) to analyze common areas for the two datasets. 
After classifying the TLS returns to ground and non-ground points, the z- 
coordinate of non-ground points was normalized to the height above 
ground level. For the height calculation, we generated a CHM using the 
normalized non-ground returns with a rasterizing of the triangulated 
irregular network (TIN) (Axelsson, 2000) to a 0.05 m grid spatial reso
lution. An interpolated CHM, with the same resolution, was used to 
calculate the CA following the approach of Isenburg (2014), which is 
based on Khosravipour et al. (2014). The advantage of interpolated CHM 
is the absence of “pits,” which are empty pixels inside tree canopies on 
the standard CHM, which obstruct tree crown delineation. The inter
polated CHM is a combination of several standard CHMs, which are 
generated by interpolating the highest returns below a certain height 
using a TIN (Axelsson, 2000). Thus, each of the standard CHMs repre
sents only part of the canopy, and their further emergence allows the 
generation of smoothed rasters, which are known as interpolated CHMs. 
We generated nine standard CHMs using the LAStools “las2dem” tool, 
one “ground” CHM to fill the potential holes on the ground level, with an 
interpolation of the highest returns below 0.1 m, one “initial” CHM, with 
an interpolation of all the highest returns to fill the potential holes at the 
vegetation level, and seven CHMs with interpolation steps 1, 2, 5, 10, 12, 
15, and 20 m. Then, we used the LAStools “lasgrid” tool to merge all 
standard CHMs into one interpolated CHM. 

2.5. Selection of trees 

For the characterization of tree structural parameters and temporal 
analysis we selected only those trees for which we had the complete 
coverage of the point cloud for all sides and in both scans in order to 
avoid uncertainties related to the differences in data acquisition meth
odology followed in the 2015 and 2018 campaigns (described in Section 
2.3.1). In order to evaluate the completeness of point cloud coverage we 
applied a tree crown voxelization. The point clouds of crowns of all trees 

Fig. 2. DBH estimation from TLS scans. (a) Left: TLS point cloud of a tree stem. The red polygon indicates the approximated location of DBH measurements 
(1.25–1.35 m); right: Point cloud of sliced stem (up-down view) (b) result of delineation: external boundary is in blue color and internal boundary is in red color (c) 
calculation methods: CM – circumference method, PM - perpendiculars method. C is circumference, D is diameter. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article). 
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for both years were voxelized using “VoxR” package (Lecigne et al., 
2017). We applied a voxel size of 5 cm to capture even the small gaps 
and calculated the number of voxels for 2015 and 2018 for each tree. We 
estimated the percentage of change in the number of voxels between 
years. Taking into account the slow growth of holm oak we decided to 
retain for further analysis the trees with a change in number of voxels 
below 15%. This threshold was chosen after visual analysis of a variety 
of different thresholds. The total number of selected trees was n = 174: 
42 for CT_P plot, 30 for CT_nP plot, 59 for NT plot, and 43 for ST plot 
(Fig. A2 in appendix). 

2.6. Estimation of holm oak structural parameters using terrestrial laser 
scanning data 

2.6.1. Estimation of the diameter at breast height 
We developed two methods to estimate the DBH using TLS point 

clouds: the circumference method (CM) and the perpendiculars method 
(PM), which are based on the delineation of tree stem slices. Then, we 
compared the estimates of the two methods with that of a widely used 
circle-based fitting method (Fig. 2). Both the CM and circle fitting 
methods are based on the simplification that tree stem can be aligned 
with a ring shape (Olofsson et al., 2014; de Conto, 2019). We selected 36 
tree stems that were sampled accurately with the TLS in 2015 (Fig. A2 in 
appendix) and isolated them from the denoized and normalized point 
cloud using the shapefile derived from the interpolated CHM. The CM 
and PM of the point clouds of each tree were sliced at 1.25–1.35 m 
vertically above the lowest point in the file (Fig. 2a). 

The LAStools “lasboundary” tool was used to delineate the 2D pro
jections of tree slices resulting in a ring-shaped polygon for each slice 
(Fig. 2b). The shapefiles were processed using SAGA GIS (Conrad et al., 
2015). The TLS points of the tree slices were projected onto a 2D hori
zontal surface to obtain a closed ring boundary of stem slice, and the 
height for diameter acquisition was located in the middle of the slice. We 
generated two polygons for every slice: the “interior,” from the hole, and 
the “exterior,” from the polygon boundary, and we smoothed them using 
Gaussian smoothing for better fitting of the actual stem slice form. We 
assumed that the location of the stem boundary was between the 
“interior” hole and the “exterior” polygon boundary (Fig. 2b). 

The DBH calculation followed field instrumental measurement pro
tocols that are typically used for forestry inventories. The CM is based on 
the calculation of the DBH using the average of the perimeters of the 
“interior” and “exterior” polygons divided by π (Fig. 2c left). This 
method follows the same assumptions as estimating the diameter by 
measuring the circumference of a stem using a tape. On the other hand, 
the PM follows the caliper measurement technique: we generated 10 
random perpendiculars passing through the centroid of each polygon of 
both “interior” and “exterior” using the R package “geosphere” (Hij
mans, 2016). Then, we estimated the diameter as an average of the 
lengths of the perpendiculars (Fig. 2c right). 

We used the random sample consensus (RANSAC) algorithm R 
package “TreeLS” (de Conto, 2019) to estimate the DBH using circle 
fitting. The points in the denoized and normalized point clouds of trees 
were classified to stem points using the “stemPoints” function of the 
package “TreeLS.” The function was used to divide the tree stems 
vertically into several segments of 0.1 m of length, and it applied the 
Hough Transform shape detection algorithm to each segment to search 
the circles. If the segments matched the circle pattern, then the points 
were considered stem points. Then, the RANSAC algorithm was used to 
fit the circle to the classified stem points of the segments using the 
“stemSegmentation” function. The RANSAC algorithm was used to fit a 
circle to a subset of 20 points in the stem segment, and the fitting was 
repeated until the best fit was chosen. The DBH was calculated as an 
average value between 2 diameters located closest to 1.30 m. We 
implemented the RANSAC circle fitting 10 times and recorded the 
average diameter value for each tree to account for the RANSAC algo
rithm randomly choosing the points to fit the circle. 

2.6.2. Estimation of the maximum tree height and crown projected area 
Tree crowns were delineated following Chen et al. (2006). The value 

of each pixel of a binary image was replaced with the distance to its 
nearest nonzero pixel using a distance transformed image. The binary 
image was the interpolated CHM, where all the background pixels were 
masked with the value of one, and the tree cover pixels were represented 
with a no data value. Pixels with large distance values inside of the tree 
cover on the distance transformed image present the treetops. A 
watershed algorithm was applied to the inverted-distance transformed 
image to segment the tree crowns. The watershed algorithm represents 
each image as a landscape with segments as catchment basins and a 
segment boundary as a watershed line. The inverted-distance trans
formed image provides treetops as a local minimum for the watershed 
algorithm to start the segmentation process (Chen et al., 2006). All 
calculations were implemented using SAGA GIS (Conrad et al., 2015). 
The output of the delineation process was a shapefile, which represented 
each tree crown as an individual spatial polygon. However, some issues 
were visually detected in this shapefile: over-segmentation of some tree 
crowns if there were more than two primary branches, tree crowns 
segmented as two single trees, and under-segmentation of some trees 
when the trees had similar heights in areas with high tree densities, 
resulting in them being delineated as single trees. Over- and under- 
segmented tree crowns were manually corrected using QGIS software 
(QGIS Development Team, 2019). 

After the segmentation process, each tree crown polygon was 
assigned an identifier (ID), and the respective coordinate of the crown 
centroid and the CA of each tree crown polygon were calculated. The 
hmax was calculated using the standard CHM as the maximum pixel 
(height) value inside each tree crown polygon. Field-measured DBHf was 
assigned to the respective tree to analyze the biometric relationships 
further. For the trees without field measurements, DBH was calculated 
from TLS scans using the circumference method CM (DBHTLS). We 
calculated the number of trees in 50 m diameter circles centered on 
every tree to obtain the local tree density (TD) for the biometric 
relationships. 

2.7. Analysis of changes in tree structural parameters among different 
treatments, the relationship between changes 

For the temporal analysis, we calculated the percentage change in 
hmax (Δhmax) and CA (ΔCA) for each selected tree using the following 
equations: 

Δhmax =
hmax2018 − hmax2015

hmax2015
*100% (1)  

ΔCA =
CA2018 − CA2015

CA2015
*100% (2) 

We selected the 16 trees equipped with dendrometers that matched 
with the respective trees in the point clouds of the two TLS scans to 
determine the relationships between changes in DBH and ΔCA and 
Δhmax. We used an absolute change in diameter between August 2015 
and October 2018 to calculate percentage changes in DBHd (ΔDBHd): 

ΔDBHd =
DBHd2018 − DBHd2015

DBHd2015
*100% (3) 

The dataset of the structural properties derived as described in the 
Sections 2.6 and 2.7 are available in Bogdanovich et al. (2020). 

2.8. Statistical analysis 

All statistical analyses were implemented in R 3.4.1 (R Development 
Core Team, 2017). Linear regression analysis of the TLS-derived and 
orthophotograph-derived CA, as well as the TLS-derived and field- 
measured DBH was performed using least-square regressions. Pear
son’s correlation coefficient was also calculated. 
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The errors of the estimated tree structural parameters were calcu
lated using the root mean square error (RMSE) and mean absolute error 
(MAE) using Eq. (4) and Eq. (5), respectively: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(

yi − ŷi

)2
√

(4)  

MAE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒yi − ŷi

⃒
⃒
⃒
⃒ (5)  

where n is the number of observations, yi is the TLS-estimated value, and 
ŷi is the measured value. 

We conducted residual analysis, where the residuals of DBH obtained 
using the PM were plotted against the standard deviation of 10 
perpendicular diameters. We applied the Shapiro-Wilk normality test (p 
> 0.05) to check the normality of the distribution of tree parameters for 
different treatments. We used Levene’s test to check the homogeneity of 
variance. Tukey’s honest significant difference (HSD) test was used to 
evaluate the significant differences in the tree structural parameters 
between different treatments. We used correlation analysis to determine 
how tree structural parameters relate to each other, in terms of the 
Pearson’s correlation coefficient. We tested correlations between vari
ables and the level of significance. The level of correlation significance 
was estimated using a t-test. Regression analysis was performed using 
least-square regressions. We used a Wilcoxon test to compare the me
dians of Δhmax and ΔCA between plots under the impact of different 
treatments and pruning because the distribution of the parameters was 
not normal. 

3. Results 

3.1. Estimation of holm oak structural parameters using terrestrial laser 
scanning data 

Fig. 3 shows the relationship between the TLS-derived and field- 
measured DBH. Validation against field measurements indicated a 
good performance for all methods. The developed methods, as well as 
the RANSAC method, showed accuracy in diameter prediction. The CM 
showed R2 = 0.93 (RMSE = 3.2 cm, MAE = 2.0 cm), the PM showed R2 

= 0.94 (RMSE = 2.6 cm, MAE = 1.8 cm), and the R2 value for the 
RANSAC method was 0.92 (RMSE = 2.8 cm, MAE = 2.2 cm). 

The residual analysis revealed that the sampled trees with the largest 
discrepancies were associated with the degree of asymmetry of their 
rings (Fig. 4a). Notably, the degree of asymmetry was defined here by 
the variance of the computed perpendicular diameters, as illustrated by 
the boxplot, resulting from a set of ring shapes in Fig. 4b–c. Based on 
visual inspection, the sampled trees with the largest discrepancies, such 
as ii-iv, Fig. 4a, belong to the tree stem slices with the highest standard 
deviation of perpendicular diameters (i.e., they have a more oval shape, 
Fig. 4b). As an illustrative example, Fig. 4b includes the extracted shapes 
of five stem slices, four of which represent the highest residuals (i–iv), 
and one represents the vast number with the lowest residual values (v). 
The shape of the slices with the tree identification “i-iv” are character
ized as irregular, while the slice with identification “v” is characterized 
as regular (circular). A comparison of the variation of 10 perpendicular 
diameters for the selected slices shows that the diameter variation for 
irregular shapes is significantly higher than that representing regular 
shapes, which suggests that the observed bias is associated with asym
metric issues (Fig. 4c). 

We compared TLS-derived CA in 2015 to orthophotograph-derived 
CA for 36 trees. Linear regression analysis showed that the TLS- 
derived CA agreed with the orthophotograph-derived CA (Fig. 5). The 
R2 value was 0.86, and the RMSE was 15.74 m2. 

3.2. Characterization of the maximum tree height and crown area for the 
different treatments 

First, we confirmed that the data are normally distributed (Shapiro- 
Wilk normality test p > 0.05). In addition, Levene’s test confirmed the 
homogeneity of variance for all data (p > 0.1). The pruned trees (CT_P 
plot) had a significantly smaller CA (Tukey HSD, p < 0.05) in compar
ison with the control trees (CT_nP plot; Table 1) in 2015 and 2018. In 
2015, CA in the CT_P plot was 89.36 ± 29.94 m2 (μ +/− σ), and in the 
CT_nP, it was 108.31 ± 34.51 m2. 

In 2018, CA in the CT_P plot was 94.68 ± 32.65 m2, and in the CT_nP, 
it was 112.34 ± 36.27 m2. The differences in hmax between CT_P and 
CT_nP were also significant in both years (Tukey HSD, p < 0.001). The 
hmax in the CT_P plot was 7.86 ± 1.20 m, while in the CT_nP plot, it was 
almost 1 m higher (8.85 ± 1.03 m) in 2015. In 2018, hmax in the CT_P 
plot was 8.03 ± 1.25 m, while in the CT_nP plot it was 8.93 ± 1.05 m. For 
CT_P, NT, and NPT, the mean values of hmax and mean values of CA were 
not significantly different from each other (Tukey HSD, p > 0.1) in both 
years. The averaged DBHs were also similar for all plots (Tukey HSD, p 
> 0.1). 

3.3. Biometric relationships between tree structural parameters 

A statistically significant correlation was found between tree struc
tural parameters (CA, hmax, and DBH) and TD for the selected trees in 
2015 and 2018 (p < 0.001, Fig. 6). 

Thus, significant positive correlations were found between CA and 
hmax in 2015 (R = 0.65) and 2018 (R = 0.67), and between hmax and 
DBH (R = 0.65) in 2015. The DBH was positively correlated with CA (R 
= 0.73) in 2015. Correlations between TD and CA and TD and hmax were 
significantly negative both in 2015 (R = − 0.35) and 2018 (R = − 0.36) 

Fig. 3. Comparison between field-measured and TLS-derived DBH. Different 
colors represent different methods (CM – green color, PM – red color, RANSAC – 
blue color). CM method RMSE = 3.2 cm, MAE = 2.0 cm; PM method RMSE =
2.6 cm, MAE = 1.8 cm, RANSAC method RMSE = 2.8, MAE = 2.2. n = 36. The 
colored area represents the 95% confidence interval (CM – light green color, PM 
– light red color, RANSAC – light blue color). The dashed line is 1:1 line. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article). 
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between TD and CA. Similarly, negative correlations were also found 
between TD and hmax in 2015 (R = − 0.33) and 2018 (R = − 0.35). In 
addition, TD was negatively correlated to DBH (R = − 0.47) in 2015. 

3.4. Analysis of changes in tree structural parameters among different 
treatments, the relationship between changes 

We used a Wilcoxon test to compare the differences in ΔCA and 
Δhmax between plots under different treatments and pruning (Table 2). 
The median value of ΔCA for pruned trees (CT_P) was about 1.91% 
higher than the medians of ΔCA for control trees. According to the 
Wilcoxon test (Table 3), this difference was significant (p < 0.01). The 
medians of ΔCA for fertilized trees were similar, and the difference 
between them was not significant. There was a significant difference in 
the median values of Δhmax between the fertilized and control unpruned 
trees (p < 0.01 for CT_nP – NPT, p < 0.001 for CT_nP – NT). The smallest 
difference in Δhmax was observed for the control, unpruned trees (0.96 
± 1.60%). The difference in the median values of Δhmax between pruned 
and control trees was significant (p < 0.01). There was no significant 
difference in the median values of Δhmax between fertilized trees. 

We compared changes in the DBHd with the changes in CA and hmax 
for the 16 trees using dendrometers (Fig. 7). The highest significant 
correlation was found between ΔCA and Δhmax (R = 0.78). Significant 
correlations were found between ΔCA and Δhmax (R = 0.58) and be
tween Δhmax and ΔDBHd (R = 0.51). 

Fig. 4. Tree diameter residuals and tree slice shapes. (a) Scatter plot between residuals of DBHTLS, obtained using PM method and standard deviation of the 10 
perpendicular diameters that were taken for each tree slice. Chosen trees are colored in red and labeled by tree ID; (b) shapes of stem slices of selected trees; (c) 
comparison of distribution of 10 perpendicular diameters for the selected slices. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article). 

Fig. 5. Comparison between orthophotograph-derived CA and TLS-derived CA 
in 2015. The black line represents the linear regression between 
orthophotograph-derived CA and TLS-derived CA. The grey colored area rep
resents the 95% confidence interval. The dashed line is 1:1 line. n = 36. 
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4. Discussion 

4.1. Estimation of tree structural parameters and validation against field 
measurements 

Our results show that TLS can be used to retrieve data on the dy
namic changes in state variables of vegetation as defined by tree key 
structural parameters, CA, hmax, and DBH, in open woodlands. 

Diameter calculations assume a circular form of the cross-section 
that is not necessarily common in nature. Deformations of tree stem 
are associated with environmental conditions, such as wind, mechanical 
damage, including pruning, and the influence of pathogens (Wade and 
Hewson, 1979; Mattheck, 1998; Mattheck and Tesari, 2004; Pulkkinen, 
2012). TLS allows capturing the structural features of tree stem and 

Table 1 
TLS-derived and measured tree parameters for each plot and year. CT_nP – control trees, CT_P – pruned trees, NT – nitrogen adding treatment, NPT – nitrogen and 
phosphorus adding treatment. Crown projected area (CA) and tree maximum height (hmax) are TLS-derived. n is number of trees for each plot. DBHf is diameter at 
breast height measured in the field. For the trees without field measurements DBH was calculated from TLS using CM (DBHTLS).   

2015 2018  

CT_nP CT_P NT NTP CT_nP CT_P NT NTP 

Number of trees n = 30 n = 42 n = 59 n = 43 n = 30 n = 42 n = 59 n = 43 
CA (m2)         
min 47.91 34.19 72.13 25.17 50.01 37.32 75.60 26.78 
max 174.5 154.9 213.1 163.3 184.9 165.2 217.0 167.0 
mean ± sd 108.31 ±

34.51 
89.36 ±
29.94 

118.46 ±
32.12 

104.48 ±
29.89 

112.34 ±
36.27 

94.68 ±
32.65 

122.79 ±
33.25 

107.48 ±
30.63 

hmax (m)         
min 7.23 5.41 6.52 5.90 7.25 5.55 6.59 6.00 
max 11.12 10.90 12.53 10.63 11.20 11.13 13.30 10.69 
mean ± sd 8.85 ± 1.03 7.86 ± 1.20 8.79 ± 1.14 9.09 ± 1.06 8.93 ± 1.05 8.03 ± 1.25 8.98 ± 1.20 9.24 ± 1.08 
DBH (cm)Number of trees DBHf 

/DBHTLS 

n = 24/6 n = 42/0 n = 59/0 n = 37/6 No measurements 

min 34.0 31.0 31.5 21.0     
max 63.5 62.5 67.0 62.5     
mean ± sd 46.4 ± 6.7 45.7 ± 7.2 48.7 ± 7.5 46.9 ± 8.4      

Fig. 6. Correlation matrix of average values of CA (m2), hmax (m), DBH (cm), and TD. 2015 is on the left matrix, 2018 is on the right one. All treatments are included 
except pruned trees. DBH included field measured DBH and TLS-derived DBH (for the trees without field measurements DBH was calculated from TLS scans using 
CM). There are no DBH measurements for 2018. Upper right boxes display the scatterplots and a linear square fit of the variables (red line). Lower left boxes show 
level of significance (p), the Pearson’s correlation coefficient (in the middle) and number of samples (n). The diagonal boxes show the variables. Positive correlation 
coefficient is colored in blue, negative correlation coefficient is colored in red. Level of significance <0.05 is colored in red. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article). 

Table 2 
Comparison of percentage changes in tree parameters between different treat
ments and pruning.   

Number of trees Median ± interquartile range 

Plots ΔCA (%) Δhmax (%) Δhmax /ΔCA 

CT_P 42 5.63 ± 3.80 1.92 ± 2.24 0.36 ± 0.53 
CT_nP 30 3.71 ± 2.77 0.96 ± 1.60 0.22 ± 0.46 
NT 59 3.59 ± 2.96 2.02 ± 1.91 0.57 ± 0.58 
NPT 43 3.25 ± 2.71 1.66 ± 1.37 0.55 ± 0.68  
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estimate DBH with high accuracy. The degree of stem asymmetry is a 
source of uncertainty underpinning field measurements of DBH using 
calipers or measuring tapes. Similar sources of errors are reported for the 
use of cylinder or circle fitting methods (Moskal and Zheng, 2011; Sri
nivasan et al., 2015) to calculate diameters using TLS. 

Here we further developed point cloud slice-based methods to esti
mate DBH of holm oak trees in a Mediterranean open woodland using 
the TLS scans. Both of our calculation methods, PM and CM, showed 
close agreement with field measurements. The methods are also com
parable to the widely used RANSAC algorithm. In particular, PM 
improved the accuracy (i.e., lower RMSE and MAE) compared with CM 
and RANSAC. Our results suggest that the source of uncertainties was 
primarily associated with irregular (non-circular) shapes of stem slices. 
The tree “i” in our study (Fig. 4) is an example of a non-regular cross- 
section. The PM takes into account the asymmetry of stem cross-section 
of holm oak. We showed that the shape factor could be more accurately 
evaluated using the standard deviation of the averaged length of random 
perpendicular diameters: regular-formed slice shapes had the lowest 
standard deviations, indicating more accuracy because the lengths of the 
perpendicular diameters were almost equal. At the same time, irregu
larly shaped slices showed relatively high standard deviations, indi
cating less accuracy (Fig. 4). TLS point clouds of trees were sliced 
parallel to the ground, while the cross-section of trees, including those 
that were tilted, were taken during field measurements perpendicular to 

the longitudinal axis of the stem, regardless of stem inclination. This 
approach can lead to a misrepresentation of cross-section shapes, e.g. an 
elliptical shape for a circular stem cross-section for a non-vertical tree. 
This problem could be solved by rotating the point cloud of each tree to 
account for the inclination angle. However, this procedure requires 
longer computational processing, especially when there are numerous 
tree counts. 

In terms of the density of point cloud and slice thickness, based on 
visual inspections of the point cloud, we can conclude that some trees 
had a heterogeneous density along the slices with more points on one 
side and less on the opposite side to the angles of the scans due to TLS 
occlusions. Although an optimal number of scan positions would always 
reduce this issue, the occlusion problem could be solved by increasing 
slice thickness. Slice thickness does not affect trees with straight stems, 
but in the case of tilted stems, it might be a prominent source of error. 
For instance, we found diameter errors of up to 8 cm, which can lead to 
significant miscalculations of whole-plant variables, such as stem 
biomass, and it might affect other biometric relations, such as DBH and 
hmax. Therefore, our results demonstrated that accounting for this effect 
provides a more accurate estimation than standard approaches, partic
ularly for stands with irregular shapes. 

The comparison with CA derived from orthophotographs demon
strated the potential of TLS to derive metrics related to crown areas, 
especially for trees with complex crown structures, such as the holm oak. 
Popescu and Zhao (2008) showed an R2 value of 0.59 for crown width 
estimation with ALS for deciduous trees, while (Srinivasan et al., 2015) 
reported R2 values of 0.84 with TLS. Our results showed correlations of 
up to 0.86, which is close to the range of other LiDAR studies. For the 
estimation of the crown area of trees in Mediterranean woodland eco
systems, orthophotographs are best utilized during the dry season, when 
there is a substantial contrast in the reflectance between the trees and 
understory (Carreiras et al., 2006). Despite the relatively high spectral 
contrast between the trees and the dry grass understory in the ortho
photograph used in this study, the similar spectral values of the tree 
foliage and canopy shadows complicated the delineation of crowns and 
may have been a potential source of error. Whereas the orthophotograph 
method relies on spectral differentiation, TLS is a direct physical mea
sure of structure. As demonstrated in this study where TLS surveys from 
dry and wet seasons were used, TLS is suitable for this purpose inde
pendent of the season. Additionally, the raster CHM derived from the 
TLS had a higher spatial resolution than the orthophotographs: 0.05 m 
compared with 0.25 m, respectively. It should be noted that one source 
of uncertainty in our results is the difference in the years of acquisition 
for TLS and the orthophotographs: orthophotograph was taken in 2016, 
while the TLS data were from 2015 and 2018. 

TLS can also be used to calibrate allometric relationships, such as 
DBH and hmax at the tree level (Sun et al., 2016; Lau et al., 2019), for 
modeling purposes (Raumonen et al., 2013; Hackenberg et al., 2014), 
and the estimation of biomass stocks at the ecosystem level (Calders 
et al., 2015; Stovall et al., 2017). 

The application of TLS for structural measurement of open wood
lands was not without some limitations. As reported in the literature, the 
accuracy of the retrieval of canopy metrics using TLS is influenced by the 
degree of occlusion, which can often lead to underestimation of tree 
height (Hopkinson et al., 2004; Moskal and Zheng, 2011; Olofsson et al., 

Table 3 
Results of Wilcoxon test. Bold values denote statistical significance at the p < 0.05 level. W is the Wilcoxon test statistic.   

ΔCA (%) Δhmax (%)    

95% Confidence interval   95% Confidence interval 

Plots p-value W Lower Upper p-value W Lower Upper 

CT_P – CT_nP <0.01 897.5 0.66 3.30 <0.01 869.0 0.33 1.89 
CT_nP – NPT 0.170 768.0 − 0.33 1.60 <0.01 381.5 − 1.38 − 0.24 
CT_nP – NT 0.952 892.5 − 0.86 0.99 <0.001 450.5 − 1.75 − 0.54 
NT – NPT 0.162 1061.5 − 1.45 0.20 0.186 1073.0 − 0.87 0.13  

Fig. 7. Correlation matrix of ΔDBHd (%), Δhmax (%) and ΔCA (%). Upper right 
boxes display the scatterplots and a linear square fit of the variables (red line). 
Lower left boxes show significant level (p), the Pearson’s correlation coefficient 
(in the middle) and number of trees (n). The diagonal boxes show the variables. 
Positive correlation coefficient is colored in blue. Level of significance <0.05 is 
colored in red. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article). 
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2014; Srinivasan et al., 2015). However, the low tree density of open 
woodlands enabled the more accurate delineation of trees in comparison 
with dense boreal or temperate stands. Nevertheless, even in open 
woodlands, we showed that occlusion can be a problem, and for this 
reason, we excluded some trees from the study. Occlusion occurred 
primarily in areas where the distribution of trees was denser. An in
crease in the number of scanning locations in those areas would help to 
alleviate this problem (Srinivasan et al., 2015; Sheppard et al., 2016). 
The second TLS acquisition in this study in 2018 was conducted with a 
higher number of scanning locations, which resulted in more compre
hensive coverage of scanned objects. The relatively flat crowns of holm 
oaks complicated tree delineation because the top of the crown is often 
naturally misplaced from the center point due to the growth of trees. 
Chen et al. (2006) reported overestimation for trees with large crowns 
and underestimation for overlapped crowns of neighbor trees. Further
more, noise in the data at the edge of crowns due to wind effects during 
TLS data acquisition may have an influence on accurate tree delineation 
and, therefore, height and canopy area estimation (Dassot et al., 2011). 

4.2. Biometric relationships between tree structural parameters 

In this study, we characterize the variability of TLS-derived bio
metric relationships between three key state variables of holm oak trees 
in Mediterranean open woodland: maximum tree height (hmax), crown 
projected area (CA), and DBH. Overall, we found a significant correla
tion between the three tree structural parameters, CA, DBH, hmax, and 
site-level properties, such as TD, which were derived from field obser
vations and TLS. Correlation values were similar in different years. 
Considering that holm oak trees are anthropogenically shaped by peri
odical pruning (Joffre et al., 1999), the presence of a significant corre
lation between tree parameters is not usually found. 

The strong correlation between DBH and other structural parameters 
(hmax and CA) means that higher trees with wider canopies have larger 
DBH. This is coherent with the positive association between the crown 
area and DBH shown by Verbeeck et al. (2019) over > 1000 trees. 
Diameter growth is an adaptive mechanism of trees to provide support 
to heavy crowns (McMahon, 1973). We also found a strong correlation 
between hmax and CA (R = 0.65, p < 0.001 in 2015). CA and hmax are not 
always related across different tree species (Jackson et al., 2019), but 
within holm oak, a positive relationship seems to exist. The positive 
correlation between tree height and canopy width (R = 0.52, p < 0.001) 
has been reported for holm oak by Pulido et al. (2001). At the same time, 
we found that DBH was more closely related to CA than to hmax (R =
0.73, p < 0.001 and 0.65, p < 0.001, respectively), which indicated the 
effect of pruning on the canopy shape. Pruning aims is to shape a wide 
tree canopy to maximize light interception and acorn production (Joffre 
et al., 1999). 

Inter-specific variability of tree structural components can lead to 
uncertainties in biomass estimation if using biomass equations non
calibrated to a specific study site (Forrester et al., 2017). For instance, 
Pulido et al. (2001) found a weaker correlation between canopy width 
and DBH (R = 0.63, p < 0.001) for another dehesa study site. Our results 
can elucidate the relationship between key structural parameters in 
holm oak (Verbeeck et al., 2019). 

We found a negative correlation between estimated tree structural 
parameters and TD, which may indicate the presence of intraspecific 
competition between the trees that can affect tree size (Thorpe et al., 
2010; del Río et al., 2019). The sparse trees have more soil and water 
available, which allows them to avoid water stress and, therefore, sur
vive during the drought (Moreno and Cubera, 2008). Gea-Izquierdo and 
Canellas (2009) demonstrated the negative effect of intraspecific 
competition on holm oak growth using a regression model, although 
they concluded that tree age more likely impacted tree growth. Inter
estingly, we found that tree density fitted using the classical biometric 
relationship with DBH (TD = 104 (DBH− 1.6), for a mean DBH of 49 cm 
provided a TD of 19 tree ha− 1, which agreed with Reineke’s rules 

(Reineke, 1933). Our results demonstrated the practical application of 
TLS in deriving key state variables and biometric constraints for dy
namic vegetation modeling. 

At the higher level of ecological integration, the relationship be
tween DBH and canopy fraction cover is alternatively used for esti
mating stand-level transpiration. Perez-Priego et al. (2017) used DBH as 
a key plant trait for linking both whole-plant level and stand-level 
transpiration in the studied Mediterranean open woodland. 

4.3. Analysis of changes in tree structural parameters 

The two scans from 2015 and 2018 provided an accurate description 
of the influence of different management treatments on the growth rate 
of crown area and maximum tree height. We demonstrated that TLS 
measurements allow capturing even small changes in structural pa
rameters, which is essential for such slow-growing species as holm oak. 
Furthermore, TLS was able to detect differences in the growth rate, 
which is the result of the impact of different treatments. Multitemporal 
TLS was able to inform the effect of different drivers, such as pruning 
and fertilization, on vegetation structure dynamics. This finding sup
ports the idea that proximal and remote sensing are valuable tools for 
understanding the dynamics and structure of ecosystems in research 
stations (Shiklomanov et al., 2019). 

We found that lateral growth prevails for all trees. This finding was 
also confirmed by the correlation analysis of changes in structural pa
rameters. In particular, ΔDBHd was more correlated with ΔCA than 
Δhmax that indicates the effect of pruning on canopy shape. Pruning aims 
to shape a wide tree canopy to maximize light interception and acorn 
production (Joffre et al., 1999). The correlation performed better if the 
acquisition dates for the different parameters were the same. Changes in 
DBH are difficult to measure for slow-growing trees, such as holm oaks: 
the mean value of ΔDBHd was only 0.30 cm/year. Changes in diameter 
may also relate to tree age (Gea-Izquierdo et al., 2008), tree health (Solla 
et al., 2009; Corcobado et al., 2014) or climate conditions (Gutiérrez 
et al., 2011). 

Despite pruning being the most popular treatment (Plieninger et al., 
2004), there is a lack of research on canopy recovery and canopy growth 
rates after pruning. Our results showed that pruning had more effects on 
lateral growth compared with nutrient fertilization treatments. This 
finding is related to the canopy recovery processes after pruning, which 
increase the number of yearly shoots per brunch (Marini, 2009). 

Our results showed that the fertilized trees grew more in height than 
the non-fertilized ones, which is in agreement with other nutrient- 
related studies focused on characterizing the effect of fertilization on 
the growth of holm oak trees. For instance, Pulido et al. (2013) showed 
that the addition of nitrogen, phosphorus, and potassium (NPK) resulted 
in the production of longer shoots in the tree canopy. Rivest et al. (2011) 
showed that tree growth (annual shoot elongation) was affected posi
tively by fertilization, especially by nitrogen fertilization. However, 
stem diameter growth did not respond to phosphorus or nitrogen soil 
fertilization (Mayor and Rodà, 1994; Martin et al., 2015). Mayor and 
Rodà (1994) suggested that the trees preferably used the nutrients for 
canopy foliage production. 

The use of LiDAR to detect dynamic changes in vegetation has some 
limitations that need to be considered. As reported by other studies 
focused on estimating changes in tree structural parameters using LiDAR 
time series, one major problem is the precise alignment of tree point 
clouds and repeatable parameter estimations despite variations in 
LiDAR acquisitions (Hopkinson et al., 2004; Duncanson and Dubayah, 
2018). Occluded areas complicate the precise estimation of tree pa
rameters (Hopkinson et al., 2004; Moskal and Zheng, 2011; Olofsson 
et al., 2014; Srinivasan et al., 2015), but increasing the density of 
scanning locations helps to avoid this problem (Sheppard et al., 2016). 
In our study, the different number of scan locations in the two sampling 
years resulted in different point cloud densities and the illumination of 
the tree canopies. This complicated the estimation of changes because it 
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is difficult to determine whether there is significant shoot growth or one 
side of the tree canopy is poorly sampled by the TLS. Even for an 
ecosystem with such a low tree density, the study requires appropriate 
filtering of trees whose scans are suitable for the detection of such 
change. In addition, remote sensing data or previous information on the 
mapping of crowns in the study site might be used to optimize sampling 
locations in TLS campaigns. Visual analyses could contribute to deter
mine the locations that maximize data density for a limited number of 
TLS locations. 

5. Conclusions 

TLS showed good performance in the retrieval of the three measured 
structural parameters of vegetation, DBH, CA, and hmax, and their bio
metric relationships in a heterogeneous Mediterranean woodland 
characterized by sparse trees. 

We developed two TLS-based DBH calculation methods. Both 
methods accurately matched field observations (R2 = 0.93–0.94, RMSE 
= 2.61–3.2 cm) and outperformed standard approaches. In particular, 

we showed that factors, such as a tree inclination, which led to asym
metrical shapes of the slices, and a low point density of the TLS point 
cloud are prominent sources of uncertainties. For instance, the irregular 
shape of a cut led to residuals of up to 8 cm, which had substantial 
implications for whole-plant accounting when it might cause errors in 
biomass calculation. The proposed approach can be further improved 
using geometrical functions to reduce the uncertainty related to tree 
inclination. 

TLS accurately estimated tree CA. Inter-comparison with 
orthophoto-derived CA showed an R2 value of 0.86, and RMSE was 
15.74 m2. The approach can also be used to calibrate allometric re
lationships, such as DBH and hmax, at the tree level (Sun et al., 2016; Lau 
et al., 2019), for modeling purposes (Raumonen et al., 2013; Hacken
berg et al., 2014), and estimate biomass stocks at the ecosystem level 
(Calders et al., 2015; Stovall et al., 2017). Moreover, TLS enabled the 
characterization of how biometric relations were shaped by vital site- 
level properties, such as tree density. 

Our case study illustrates several ecological applications of TLS 
despite the challenges of discerning precise dynamic changes for slow- 

Fig. A1. Orthophotograph in UTM projection with scan locations, selected for this study in 2015 and 2018. CT_nP - control treatment (no fertilization, no pruning), 
CT_P – pruned area, NT – nitrogen added treatment, NPT – nitrogen and phosphorus added treatment. The true-color RGB orthophotograph was provided by the 
Spanish National Orthophotography Program (PNOA in Spanish) database. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article). 
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growing trees, such as holm oak. Our multitemporal scanning provided 
an accurate description of the influence of different management 
treatments on changes in tree structural properties such as CA and hmax. 
In particular, we found that (i) lateral growth prevails for all trees, (ii) 
pruning has more substantial effects on lateral than vertical growth, 
whereas fertilized trees grow more in height (iii) and both nutrient 
fertilization and pruning affected biometric relationships among 
changes in tree structural properties. 

Future work could expand our study area, using the same scan pro
tocol for TLS. The various additional metrics related to tree crown (e.g. 
crown base height, bulk volume), branching (e.g. size, angle, and dis
tribution), or/and foliage density (e.g. clumping index, gap distribution) 
should be estimated for full and more accurate analysis of tree growth. 
Integrating ALS or UAV LiDAR and TLS would reduce occlusions and 
improve the accuracy of the calculation of structural parameters. It 
would also be interesting to apply the developed methodology to time 
series. 
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Béland, M., Widlowski, J.-L., Fournier, R.A., Côté, J.-F., Verstraete, M.M., 2011. 
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Wichmann, V., Böhner, J., 2015. System for automated geoscientific analyses 
(SAGA) v. 2.1. 4. Geosci. Model Dev. 8, 1991–2007. 
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