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Abstract14

Speeded decision tasks are usually modeled within the evidence15

accumulation framework, enabling inferences on latent cognitive pa-16

rameters, and capturing dependencies between the observed response17

times and accuracy. An example is the speed-accuracy trade-off,18

where people sacrifice speed for accuracy (or vice versa). Different19

views on this phenomenon lead to the idea that participants may not20

be able to control this trade-off on a continuum, but rather switch21

between distinct states (Dutilh, Wagenmakers, Visser, & van der22

Maas, 2010).23

Hidden Markov models are used to account for switching be-24

tween distinct states. However, combining evidence accumulation25

models with a hidden Markov structure is a challenging problem,26

as evidence accumulation models typically come with identification27

and computational issues that make them challenging on their own.28

Thus, hidden Markov models have not used the evidence accumula-29

tion framework, giving up on the inference on the latent cognitive30

parameters, or capturing potential dependencies between response31

times and accuracy within the states.32

This article presents a model that uses an evidence accumula-33

tion model as part of a hidden Markov structure. This model is34

considered as a proof of principle that evidence accumulation mod-35

els can be combined with Markov switching models. As such, the36

article considers a very simple case of a simplified Linear Ballistic37

Accumulation. An extensive simulation study was conducted to val-38

idate the model’s implementation according to principles of robust39

Bayesian workflow. Example reanalysis of data from Dutilh et al.40
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(2010) demonstrates the application of the new model. The article41

concludes with limitations and future extensions or alternatives to42

the model and its application.43

Keywords: evidence accumulation, speeded decision, speed-accuracy trade-off,44

response times, hidden Markov models, phase transition45
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1 Introduction46

Evidence accumulation models (EAMs) have become widely popular for ex-47

plaining the generative process of response times and response accuracy in el-48

ementary cognitive tasks (N. Evans & Wagenmakers, 2019). The strength of49

EAMs is their ability to accurately describe the speed-accuracy trade-off in50

speeded decision paradigms. The speed-accuracy trade-off is the conundrum51

that typically occurs when participants are instructed to make faster decisions,52

thereby increasing their proportion of errors (Bogacz, Wagenmakers, Forstmann,53

& Nieuwenhuis, 2010; Luce, 1991; Wickelgren, 1977). The trade-off implies that54

in some situations, people can be slow and accurate, whereas fast and inaccu-55

rate in other situations. The dependency between response times and responses56

generally frustrates interpretation of response time and accuracy at face value.57

EAMs aim to capture and explain this dependency between response times and58

accuracy, and enable inference on the latent cognitive constructs and a mech-59

anistic explanation of the observed response time and accuracy. Thus, such60

analyses often enable us to tell, for example, whether slowing down is caused61

by increased response caution, increased difficulty or decreased ability of the62

respondent (N. Evans & Wagenmakers, 2019; van der Maas, Molenaar, Maris,63

Kievit, & Borsboom, 2011).64

The traditional view of the speed-accuracy trade-off is that of a continu-65

ous function. That is, people are able to control their responses on the entire66

continuum from “slow and accurate” to “fast and inaccurate”. This is an in-67

trinsic assumption of EAMs which makes it possible to manipulate parameters68

associated with “response caution” to make more or less accurate (on average)69

decisions by slower or faster (on average) responding. Under such a view, it is70

in principle possible to hold average accuracy to any value between a chance71

performance and a maximum possible accuracy (often near 100%), by adjusting72
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how fast one needs to be.73

An opposing view is that of a “discontinuity” hypothesis (Dutilh et al., 2010),74

which states that people are not able to trade accuracy for response time on75

a continuous function, but rather switch between different stable states. The76

discontinuity hypothesis in speeded decision-making is strongly associated with77

thinking about two particular response modes: a stimulus controlled mode and78

a guessing mode (Ollman, 1966). Under the stimulus controlled mode, one is79

maximizing response accuracy while sacrificing speed. Under the guessing mode,80

choices are made at random for the sake of responding relatively fast. Under81

discontinuity hypothesis, there are hence two different modes of behavior. Such82

dual behavioral modes are present in many models of cognitive processing (e.g.,83

dual processing theory J. Evans, 2008).84

The discontinuity hypothesis has an increasing relevance in the speeded de-85

cision paradigm because it is able to explain specific observed relationships86

between decision outcomes and reaction times that standard EAMs cannot ac-87

count for (Dutilh et al., 2010; Molenaar, Oberski, Vermunt, & De Boeck, 2016;88

van Maanen, Couto, & Lebreton, 2016). One of the most elaborate theoreti-89

cal and empirical investigations of the “discontinuity” hypothesis is the phase90

transition model for the speed-accuracy trade-off (Dutilh et al., 2010), which91

added several more predictions regarding the dynamics of switching between92

the controlled and guessing state. These phenomena can be modeled using hid-93

den Markov models (HMM, Visser, 2011; Visser, Raijmakers, & van der Maas,94

2009). Dutilh et al. (2010) used HMMs to model their data such that response95

time and accuracy are independent conditional on the state. Specifically, the96

model assumed that the responses are generated from a categorical distribu-97

tion and response times from the lognormal distribution, independently of each98

other. Thus, the speed-accuracy trade-off is described only by assuming one99
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slow and accurate state, and one fast and inaccurate state. However, at least100

under the controlled state, evidence accumulation presumably takes place to101

generate the responses, and so can lead to continuous speed-accuracy trade-off102

typical for EAMs, although within a smaller range than assumed under the103

continuous hypothesis. Thus, inference on the latent cognitive constructs given104

by the EAM might be the preferred option, but is neglected under the current105

HMM implementations of the phase transition model.106

Fitting an HMM combined with an EAM would enable researchers to test107

specific predictions coming from the phase transition model as well as utiliz-108

ing the strength of the EAM framework to account for the continuous speed-109

accuracy trade-off within the states. The ability of EAMs to infer the latent110

cognitive constructs liberates researchers from defining the states solely in terms111

of their behavioral outcomes. For instance, instead of describing the controlled112

state on the observed behavioral outcomes only (i.e., ”slow and accurate”),113

EAMs allows researchers to form a mechanistic explanation of the observed114

behavioral outcomes using the latent cognitive constructs (i.e., ”high response115

caution and high drift rate”). Further, capturing residual dependency between116

the observable variables conditionally on the latent states could improve perfor-117

mance of an HMM in terms of classification accuracy.118

However, fitting EAMs can be a challenging endeavor, especially for more119

complicated models that allow for various sources of within and between trial120

variability, which often exhibit strong mimicry between different parameters,121

and as such belong to the category of “sloppy models” (Apgar, Witmer, White,122

& Tidor, 2010; Gutenkunst et al., 2007). More complicated models, such as123

leaky competitor models, are not analytically tractable, and subject to highly124

specific simulation-based fitting methods (N. Evans, 2019). Thus, combining125

EAMs with HMMs, which themselves come with several computational (e.g.,126
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evaluation of the likelihood of the whole data sequence, Visser, 2011) and prac-127

tical (e.g., label switching, Spezia, 2009) challenges, is highly demanding. The128

only successful applications of HMMs in these tasks is in combination with mod-129

els that cannot capture possible residual dependencies, usually log-normal mod-130

els or shifted Wald models for response times (Dutilh et al., 2010; Molenaar et131

al., 2016; Timmers, 2019). Yet, even the supposedly simplest complete model of132

response times and accuracy — the Linear Ballistic Accumulation model (LBA,133

S. D. Brown & Heathcote, 2008) — has proven to be difficult to combine with134

an HMM structure or even as a simple independent mixture (Veldkamp, 2020);135

this may not come as a surprise considering the general identifiability issues of136

the standard LBA model (N. Evans, 2020).137

Given the potential of complex cognitive models to suffer from computational138

issues, it is important to present evidence that the model implementation is139

correct and that the procedure used to fit the model on realistic data (in terms140

of plausible values but also size) indeed succeeds in recovering the information141

that is used for inferences. The importance of validating models in terms of142

practical applicability is ever more increasing with the growing heterogeneity of143

approaches for fitting complex models, as well as modern approaches to build144

custom models tailored to specific purposes.145

This need is taken seriously in this article which implements and validates a146

simple (constrained) version of the LBA model as part of an HMM. This model147

makes it possible to capture the discontinuity of the speed-accuracy trade-off by148

the HMM part, while concomitantly striving to capture the residual dependency149

between speed and accuracy within the states. Further, the model retains the150

fundamental inferential advantages of an EAM framework, but is analytically151

tractable and stable enough to be used with standard, state-of-the-art, modeling152

tools. To our knowledge, this is the first working combination of an HMM and153
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an EAM, and serves as a proof of concept.154

The structure of this article is as follows. First, the model is described in155

conceptual terms to explain the core assumptions and mechanics. Second, a156

simulation study summarises all steps that were followed when building and157

validating the model in accordance with a robust Bayesian workflow (Lee et al.,158

2019; Schad, Betancourt, & Vasishth, 2019; Talts, Betancourt, Simpson, Vehtari,159

& Gelman, 2018). The model validation is followed with an empirical example160

to demonstrate the full inferential power of the model on experimental data.161

The article concludes with discussion and future potential directions towards162

improving the model.163
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2 Model164

The general architecture of the model for response times and choices that we165

adopt here is the same as for the Linear Ballistic Accumulator (LBA, S. D. Brown166

& Heathcote, 2008). In the standard LBA, each response option is associated167

with its own evidence accumulator. Each accumulator rises linearly towards168

a threshold from a randomly drawn starting point, with its own specific drift169

rate, drawn from some distribution (commonly a normal distribution that is170

truncated at zero). The first accumulator that reaches its decision threshold171

triggers the corresponding response.172

Although the LBA became a popular choice for analyzing response times173

and accuracy, more recently evidence has surfaced suggesting practical identifi-174

ability issues of the standard LBA model — especially when trying to quantify175

differences in parameters such as decision boundary or drift rates between exper-176

imental conditions (N. Evans, 2020). Given that HMMs can be viewed as way177

to quantify differences between ”conditions” (states) which themselves need to178

be inferred from the data, (lack of) identifiability of the standard LBA is a con-179

cern. Problems with identifiability issues of the LBA in combination of HMM180

were observed recently as well (especially in the upper bound of the starting181

point Timmers, 2019; Veldkamp, 2020).182

However, there exists a number of potential remedies to solve the identifia-183

bility issue of the standard LBA. These remedies involve constraining the LBA184

model in some way while retaining as much flexibility of the model as possible185

to account for different patterns in the data, and to still allow inferences on186

the most fundamental parts of the evidence accumulation decision process (e.g.,187

speed of accumulation, response caution, etc). For example, a relatively well188

established set of constraints is to ensure that the average drift rates across accu-189

mulators are equal to some constant value (e.g. 1 Donkin, Brown, Heathcote, &190
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Wagenmakers, 2011; N. Evans, 2020; Visser & Poessé, 2017)). Such constraints191

may be accompanied by implementing equality constraints on parameters such192

as the upper bound of the starting point or the standard deviation of the drift193

rates. In the context of different conditions, even more stringent (equality) con-194

straints are possible, such as equating parameters (such as drift rate for the195

”error” response) across conditions (N. Evans, 2020).196

This article aims to provide a proof of concept that EAMs and HMMs can be197

combined into a single model. The present application simplifies the LBA model198

to a bare minimum and acts as a sanity check – in case even very minimalist199

EAM model cannot be employed as part of a HMM model, there is little reason200

to expect that more complex, complete and computationally demanding models201

of decision making will be more successful.202

The bare minimum, simple instance of LBA is achieved in this article by203

setting several constraints on the parameters. Most significantly, the model204

implemented in this article fixes all starting points at zero, effectively removing205

the variability of the starting point. As commonly done in the LBA, we constrain206

the drift rates to sum to unity. In addition to that, the drift rates are assumed to207

have equal standard deviations across accumulators. Full details on the model,208

its likelihood and identifiability are described in Appendix A, additional helpful209

derivations can be found in Nakahara, Nakamura, and Hikosaka (2006).210

The simplification achieved by removing the variability of the starting point211

makes the model coarsely similar to LATER model (Linear Approach to Thresh-212

old with Ergodic Rate, R. Carpenter, 1981; Noorani & Carpenter, 2016), with213

the difference that the current model explicitly evaluates the likelihood of ob-214

serving the first accumulator that reached the threshold according to the general215

race equations (see Heathcote & Love, 2012), and contains additional param-216

eters (such as non-decision time). Therefore, it enables researchers to model217
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accuracy in addition to response times as opposed to the LATER model (see218

Ratcliff, 2001, for critique of LATER for inability to do so).219

The constraints employed in this application greatly reduce the complexity220

compared to the standard LBA model. Specifically, our model for responses221

and response times on a two choice task contains the following parameters: the222

average drift rate for the correct (ν1) and incorrect (ν2) responses, the standard223

deviation of the drift rates (σ), the decision threshold (α), and the non-decision224

time (τ). The latter three parameters are equal for both accumulators.225

The purpose of simplifying the LBA model is to employ it as a distribution226

of response times and responses in an HMM. Specifically, the current model227

assumes two latent states: A “controlled” state (s = 1) and a “guessing” state228

(s = 2). These states evolve according to a Markov chain, which is characterized229

by the initial (π1 and π2) and transition state probabilities ρij , where the first230

index i corresponds to the outgoing state and j corresponds to the incoming231

state: For example, ρ12 is the probability that the participants switch from the232

controlled state to the guessing state.233

Traditionally, these states would be equipped by their own distribution of234

response times and responses, possessing their own parameters. That is, we235

could use the LBA model for each latent state of the HMM, and estimate the236

drift rate for the correct responses for the first state ν
(1)
1 , second state ν

(2)
2 , and237

similarly for all of the parameters. However, we further reduce the complexity of238

the model by equating some parameters between states. Specifically, we assume239

that the difference between the guessing state and the controlled state is evoked240

by differences between average drift rates and decision thresholds. The rest241

of the parameters are held equal across the states. Thus, equality constraints242

σ(1) = σ(2) and τ (1) = τ (2) are used to further simplify the model.243

Additionally, there are some notable considerations regarding the controlled244
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and guessing states, which will later help setting priors and preventing label245

switching. Specifically, the controlled state has higher average drift rate for246

the correct response than the guessing state (ν
(1)
1 > ν

(2)
1 , and consequently247

ν
(1)
2 < ν

(2)
2 due to the sum-to-one constraint of the drift rates, see Appendix A)248

at the expense of having higher decision threshold (α(1) > α(2). Further, if the249

second state truly is guessing, the drift rates under this state should be roughly250

the same: ν
(2)
1 ≈ ν(2)2 ≈ 0.5.251

2.1 Implementation252

We implemented the HMM of sLBA model in a probabilistic modeling lan-253

guage Stan (B. Carpenter et al., 2017); specifically, v2.24.0 release candidate of254

CmdStan (https://github.com/stan-dev/cmdstan/releases/tag/v2.24.0-rc1,255

Stan Development Team, 2020). In this version of Stan, several new functions256

were introduced that implement the forward algorithm for calculating the log-257

likelihood of the data sequence, while marginalizing out the latent state param-258

eters (for easy introduction, see Visser, 2011), which makes estimating HMM259

models in Stan much easier, computationally cheaper, and less error-prone than260

before (which required manual coding of the forward algorithm). The sLBA261

distribution of response times and responses was custom coded in the Stan lan-262

guage. We executed CmdStan from the statistical computing language R (R263

Core Team, 2020) using the R package cmdstanr (Gabry & Češnovar, 2020).264

The code is available at https://github.com/Kucharssim/hmm slba.265
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3 Simulation study266

In order to investigate the quality of inferences we draw from the model, a267

simulation study was conducted. Specifically, we conducted the simulation in268

accordance with a principled Bayesian workflow (Schad et al., 2019). The sim-269

ulation study consists of 1) prior predictive checks to identify priors that reflect270

our domain specific knowledge, 2) a computational faithfulness check to test271

correct posterior distribution approximation, 3) model sensitivity analysis to272

investigate how well the estimated posterior mean of parameter matches the273

true data generating value, and the amount of updating (i.e., how much are the274

parameters informed by the data). Additionally, as is the case in classical model275

validation simulation, we report standard parameter recovery results, including276

coverage probabilities of credible intervals.277

3.1 Prior predictives278

To place priors that reflect our expectations about data from the tasks to which279

the model will be applied, we conducted prior predictive simulations. In par-280

ticular, we first set out to generate 1,000 data sets each of 200 trials, which is281

generally a lower bar for running speeded decision tasks. Then, the following282

expectations of the generated data are defined, specified in terms of summary283

statistics across the 200 observations per data set. Throughout, response times284

are measured and reported in seconds. In case response times are measured in285

different units, the priors should be re-scaled appropriately.286

Latent state distribution.287

First, we expect that the number of trials participants spend in one or another288

state will be relatively even, and that it is very rare that participants would com-289

plete all 200 trials in a single state. The evenness is achieved by composing a290

13



Pr
ep
rin
t

symmetric initial state probabilities vector π and a symmetric transition matrix291

P =

ρ1

ρ2

. Further, we assume that the states are relatively sticky, therefore292

there will be a tendency to stay in the current state rather than switching to293

another state. Specifically, the average run length is expected to be approxi-294

mately between 5–10, and that in at least 50% of the simulations the proportion295

of the trials under the controlled state ranges between 30% to 70%.296

We chose the following priors

π ∼ Dirichlet(5, 5)

ρ1 ∼ Dirichet(8, 2)

ρ2 ∼ Dirichet(2, 8).

The initial state probabilities are assigned a symmetric Dirichlet prior. The297

hyperparameters slightly favor probabilities closer to 0.5. Usually, the initial298

state probabilities are not the focus of inference as they depend mostly on just299

the first trial. Thus, slightly informative priors were chosen to help the model300

to converge. For the transition probabilities, Dirichlet priors that favor ”sticky”301

states were chosen. Specifically, the mean probability of staying under the302

current state is 0.8. There is still considerable uncertainty about how sticky the303

two states are: 90% of the prior mass for the probability of persisting in the304

current state lies between 0.63 and 0.94.305

The results of the prior predictive simulation showed that the median of the306

average run length is 6.25, IQR[4.35, 9.524]. The distribution of the average307

run length is positively skewed. Although it could be expected in many experi-308

ments that run lengths could be higher, the priors would have to be much more309

informative (pushing the probability of staying in a current state closer to one)310

than the current settings. However, that would give only a very narrow range311
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of the values used for validating the models. Therefore, the current setting of312

the prior is a compromise between prior expectations about the data and the313

need to validate the model on a wider range of parameter values. Regarding314

the percentage of trials in the controlled state, the distribution over the 1,000315

simulations had a median of 0.51, IQR[0.35, 0.67].316

Response and response time distributions.317

We expect that the distributions of the responses will be the following. Under318

the controlled state, the proportion of correct responses is well above chance;319

we assume that under the controlled state, there is almost zero probability320

that a person would have accuracy smaller than 50%, and that it is possible to321

achieve relatively high accuracy on average (≈75%). Under the guessing state,322

we assume that the average accuracy is exactly 50%.323

For the distributions of the response times, we have the following expecta-324

tions. First, the response times under the controlled state are on average slower325

than responses under the guessing state. Second, the responses under the guess-326

ing state are relatively rapid: responses in simple perceptual decision tasks can327

be faster than 1 sec on average. Third, the majority of response times does not328

exceed 5 sec (Tran, van Maanen, Heathcote, & Matzke, 2020).329

Based on these considerations and prior predictive simulations, the following
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Figure 1. Prior predictive distribution of the response accuracy (proportion
of correct answers).

prior specification for the LBA parameters were identified as suitable:

ν(1) ∼ Dirichlet(14, 6)

ν(2) ∼ Dirichlet(10, 10)

α(1) ∼ Gaussian(0.5, 0.1)(0,∞)

α(2) ∼ Gaussian(0.25, 0.05)(0,∞)

σ ∼ Gaussian(0.4, 0.1)(0,∞)

τ ∼ Exponential(5)

Figure 1 and Table 1 summarise the prior predictive distribution of the330

accuracy (proportion of correct answers) under the two states separately. As331

desired, the accuracy under the controlled state is well above chance, whereas332

under the guessing state it clusters around 50%. There is considerable variability333

under both states, leaving the possibility for the model to learn from the data.334

Figure 2 and Table 2 summarise the prior predictive distributions of the aver-335

age response times for correct and incorrect responses under the two states sep-336

arately. As desired, the average response times are slower under the controlled337

state than under the guessing state. The majority of the average response times338
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Table 1. Descriptives of the prior predictive distribution of the response
accuracy (proportion of correct answers).

Quantile

State Mean SD 2.5% 25% 50% 75% 97.5%

Controlled 0.73 0.12 0.48 0.65 0.73 0.81 0.96
Guessing 0.50 0.16 0.21 0.39 0.50 0.60 0.81

Figure 2. Prior predictive distribution of the average response times.

under the guessing state are below 1 sec, whereas under the controlled state339

cluster around 1 sec. There are no large differences between response times340

for correct and incorrect responses under the two states separately, although341

the average response times for incorrect responses under the controlled state342

show higher variance than for the correct responses. However, this phenomenon343

might by caused by the fact that there are more correct responses than incorrect344

responses under the guessing state, resulting in higher standard errors for the345

averages of the incorrect responses.346
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Table 2. Descriptives of the prior predictive distribution of the average re-
sponse times.

Quantile

State Response Mean SD 2.5% 25% 50% 75% 97.5%

Controlled Correct 0.92 0.28 0.49 0.73 0.87 1.03 1.57
Controlled Error 1.09 0.34 0.59 0.87 1.03 1.26 1.82
Guessing Correct 0.60 0.24 0.28 0.44 0.55 0.70 1.19
Guessing Error 0.60 0.23 0.27 0.44 0.55 0.70 1.18

The prior distributions specified above may seem extremely informative, in-347

troducing “subjective” bias to the analysis. However, we believe the prior distri-348

butions are justified by our prior predictive simulations and based on cumulative349

characterizations of psychological processes underlying a lexical decision and a350

perceptual decision task of EAMs (Tran et al., 2020). Further, prior distribu-351

tions may be also regarded as constraining the parameter space to plausible val-352

ues (Kennedy, Simpson, & Gelman, 2019; Tran et al., 2020; Vanpaemel, 2011),353

similarly as a traditional statistician would decide on ranges of parameters for354

a simulation study. In the current study, the prior distributions actually cover355

slightly more volume of the parameter space than is typical in simulation studies356

of similar type (e.g., Donkin et al., 2011; Visser & Poessé, 2017). Lastly, priors357

on the parameters that have their independent version under both states (e.g.,358

α(1) and α(2)) are used to a priorily separate the latent states from each other,359

and associate the first state with the controlled state (and conversely the second360

state with the guessing state). Using informed priors in such occasions prevents361

label switching problems, and gently nudges the model towards convergence.1362

1There are other techniques to identify states and prevent label switching. For example,
a common approach is to put an order constraint on the model parameters, for example,
α(1) < α(2), by using a transformation α2 := α1 + exp(θ). Such a “hard” order restriction
is effective in dealing with label switching, but makes it harder to reason about the prior
specification. Further, “hard” order restrictions can hinder computing normalizing constants,
in case one is eager to quantify the marginal likelihood (evidence) of the model (Frühwirth-
Schnatter, 2004, 2019).
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3.2 Computational faithfulness363

There are many ways in which model implementation can fail, especially in case364

of Bayesian models requiring MCMC. Possible problems might arise due to error365

in specification of the likelihood (or just insufficiently robust implementation),366

the use of difficult parameterizations, or a simple coding error. Another problem367

may arise when the model combined with the priors and the data result in a368

very complex parameter space for the MCMC algorithm to navigate, which may369

lead to inefficient exploration of the target posterior distribution. Such issues370

can lead to biased estimates, underestimating the uncertainty of parameters, or371

simply wrong inferences.372

For the endless possibilities in which model implementation can fail, there373

was a lot of recent advancement in techniques that aim to check for compu-374

tational faithfulness of a model — in the context of the Bayesian framework,375

this means testing whether the proposed MCMC procedure yields valid approx-376

imations of the posterior distributions (Schad et al., 2019). One established377

technique is Simulation-based calibration (SBC, Talts et al., 2018). As the378

model that we propose in this article is definitely suspect for computational379

problems, we use SBC to check our model implementation (although it could380

be argued that such checks should be done by default for non-standard models381

at least). Since these checks are not yet the standard in cognitive modeling382

literature (Schad et al., 2019), we briefly summarise the rationale behind SBC383

here, although the interested reader should refer to excellent articles by Talts384

et al. (2018) and Schad et al. (2019).385

In short, SBC builds on the fact that (Talts et al., 2018)386

π(θ) =

∫ ∫
π(θ|ỹ)π(ỹ|θ̃)π(θ̃)dỹdθ̃, (1)

which means that we can recover analytically the prior distribution on model387
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parameters π(θ) by averaging the posterior distribution π(θ|ỹ) weighted by the388

prior predictive distribution
∫
π(ỹ|θ̃)π(θ̃)dθ. Procedurally, to check whether the389

method used for approximating the posterior distribution π(θ|ỹ) is correct, the390

following steps can be done: (1) draw from the prior distribution θ̃ ∼ π(θ̃), (2)391

draw a data set from the model using the generated values of the parameters,392

ỹ ∼ π(ỹ|θ̃), and (3) fit the model on the generated data to obtain the posterior393

distribution π(θ|ỹ). The draws from such an obtained distribution, across many394

repeated replications of this procedure, should give back the prior distribution395

of the parameters π(θ). In order to check whether the prior distribution is396

indeed recovered, for each repetition, we compare the draw from the prior (that397

generated the data) to the samples from the posterior, and count the posterior398

samples that are smaller than the draw from the prior. If these two distributions399

are the same, every rank would be equally likely – yielding an approximately400

uniformly distributed rank statistic (Talts et al., 2018).401

Using the already created ensemble of 1,000 prior predictive data sets in sec-402

tion 3.1, each of the data sets was fitted using Hamiltonian Monte Carlo supplied403

by Stan (B. Carpenter et al., 2017). Due to computational constraints (typical404

run of a model averages roughly about 500 sampling iterations per minute on405

Apple’s MacBook Air edition 2017), each model run only with one chain for 500406

warmup and 1,000 sampling iterations. Starting points were generated by draw-407

ing independent samples from the priors. In case the model label switched, the408

model was reran (at maximum five times). This resulted in non-label switching409

MCMC samples for 945 data sets out of the total 1,000. Since only 783 repe-410

titions achieved acceptable values of the (split-half) Gelman-Rubin R̂ statistic411

(Gelman & Rubin, 1992) between 0.99 and 1.01 for all of the parameters, we412

selected several data sets at random from non-converged cases and refitted them413

with 4 chains, 1,000 warmup and 1,000 sampling iterations. The new model fits414
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Figure 3. Simulation based calibration: Histogram of the rank statistic. The
dashed lines correspond to the lower and upper limits of the 95% interval under
the null hypothesis that the rank statistic is uniformly distributed.
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Figure 4. Simulation based calibration: ECDF of the rank statistic. The
shaded area corresponds to the 95% interval under the null hypothesis that the
rank statistic is uniformly distributed.

had good R̂ for all parameters, suggesting that the unsatisfactory convergence415

diagnostics were a consequence of the small number of MCMC iterations dur-416

ing the simulation. We excluded from the results only the repetitions that label417

switched, but kept those that did not yield satisfactory convergence diagnostics.418

Because the SBC rank statistic is sensitive to potential autocorrelation of the419

chain, the posterior samples were thinned by a factor of 50 — leading to the420

rank statistic ranging between 0 and 20.421

Figure 3 shows the histogram of the SBC rank statistic for each of the422
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parameter separately. Figure 4 shows the same statistic but as a cumulative423

distribution plot. Figure 5 shows the difference between the cumulative distri-424

bution and the theoretical cumulative distribution of a uniformly distributed425

variable.426

The results show that none of the parameters exhibit typical patterns present427

in case that the posterior approximation is under-dispersed or over-dispersed428

compared to the true posterior (which would manifest as a ∪ or ∩ shape of429

the rank distribution, Talts et al., 2018). Further, the distribution of rank430

statistics for most of the parameters seem consistent with a uniform distribution,431

suggesting that the posterior approximation is very close to the true posterior.432

However, three parameters seem potentially problematic: the rank statistic for433

α(1), α(2), and ν
(2)
1 show an excess of frequencies at 20 and 0, respectively,434

suggesting that α(1) approximation could be underestimating the true posterior,435

whereas α(2) and ν
(2)
1 approximations could be overestimating the true posterior.436

However, this observation could also arise if the thinning was not efficient to437

reduce the autocorrelation of the chain (autocorrelation can result in excess of438

ranks at the edge of the distribution Talts et al., 2018). Additionally Figure 5439

reveals that the rank distribution for ρ22 also potentially deviates from the440

uniform distribution. However, this deviance is not associated with any typical441

problem in posterior approximations, lacking a meaningful interpretation apart442

from that this deviance was observed purely by chance.443

SBC gave us assurance that our model is capable of approximating the pos-444

terior distribution for most of the parameters. Three potentially problematic445

parameters remain, although the deviance from the expected results it small.446

Potential explanations for these deviances could be the constraints to resolve447

label switching (which could cause the truncation of the parameters for one448

state near values for the same parameter from the other state), or unsuccessful449
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Figure 5. Simulation based calibration: ECDF of the rank statistic minus
the ECDF of a uniformly distributed variable. The shaded area corresponds to
the 95% interval under the null hypothesis that the rank statistic is uniformly
distributed.
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reduction of the auto correlations of the MCMC chains (which could be solved450

by running the procedure for more iterations and use higher thinning.)451

3.3 Model sensitivity452

Next, the goal was to investigate for each parameter, (1) how well the posterior453

mean matches the true data generating value of the parameter, and (2) how454

much uncertainty is removed when updating the prior to the posterior. This455

is useful to investigate the bias-variance trade-off for each parameter, and to456

adjust our expectations regarding how much we can learn about parameters,457

given a data set of a specified size (in this simulation, number of trials = 200).458

To answer (1), posterior z-scores for each parameter are defined as:459

z =
µposterior − θ̃
σposterior

, (2)

that is, the difference between the posterior mean and the true parameter value460

is divided by the posterior standard deviation. The posterior z-scores tell us461

how far the posterior expectation is from the true value, relative to the posterior462

uncertainty. The distribution of the posterior z-scores should have a mean close463

to 0 (if not, the posterior expectation is a biased estimator).464

To answer (2), posterior contraction for each parameter is defined as:465

contraction = 1−
σ2
posterior

σ2
prior

. (3)

If the posterior contraction approaches one, the variance of the posterior in neg-466

ligible compared to the variance of the prior, indicating that the model learned467

a lot about the parameter of interest. Conversely, if the posterior contraction is468

close to zero, there is not much information in the data about the parameter,469

resulting in the inability to reduce the prior uncertainty.470
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Figure 6. Model sensitivity plot for all nine parameters.

26



Pr
ep
rin
t

Figure 7. Model sensitivity plot for all nine parameters separately.

These two variables are plotted against each other in a scatter plot, which471

provides useful diagnostic insights (Schad et al., 2019). Specifically, for each472

parameter, and each simulation which did not label switch, the posterior z-scores473

and posterior contraction are plotted on the y-axis and x-axis, respectively.474

Figure 6 shows the diagnostic plot for the nine parameters with equal axes475

between them to enable comparison between parameters, and 7 shows the same476

but with custom axes for each parameter for more detailed display.477

All of the parameters cluster around z-scores of 0 (dashed horizontal line),478

suggesting that neither of the parameters exhibits systematic bias. However,479

27



Pr
ep
rin
t

there are large differences between parameters in terms of posterior contraction.480

The most contraction is present for the non-decision time τ , followed by the rest481

of the LBA parameters. We could expect that the contraction would increase482

with the number of trials. The worst results concern the initial state probability483

π1: The posterior contraction basically stays at zero. However, this is expected484

as the initial state probability is affected mostly by just the first trial, and as485

such, there is not much information in the data about it. Increasing the number486

of trials would not help to identify this parameter, only repeated experiments487

would.488

In general, the sensitivity analyses suggest that the amount of learning about489

the parameters of interest could be satisfactory given the typical experimental490

designs (our simulation was based on 200 trials per experiment, whereas typical491

decision tasks experiments could count multiples of that number), especially for492

the LBA parameters.493

3.4 Parameter recovery and coverage probability494

Traditional simulation studies aim to validate statistical models and assess the495

quality of a point estimator of a given parameter of interest. Additionally, such496

simulations are accompanied by assessment procedures. This section adheres to497

this tradition: for each of the parameters (that are not a linear combination of498

others) we report the standard ”parameter recovery” results.499

The simulation was done using two estimation techniques: the maximum a500

posteriori (MAP) estimation, and the posterior expectation (i.e., the mean of the501

posterior distribution). Pearson’s correlation coefficient between the estimated502

parameter value and its true values serves as a rough indicator of parameter503

recovery. High correlations indicate that the model is able to pick up variation504

in the parameter. Additionally, scatter plots visualizing the relationship between505

28



Pr
ep
rin
t

the true and estimated parameter values show the precise relationship between506

the true and estimated values of the parameters.507

We also investigate the coverage performance of the central credible in-508

tervals. For each parameter, the frequency with which 50% and 80% central509

credible intervals contain the true data generating value was recorded. The510

confidence levels are relatively low compared to traditionally reported values,511

because we have only 1,000 MCMC samples per parameter due to computa-512

tional constraints, which results in low precision in the tails of the posterior513

distributions (i.e., the tail effective sample size was generally too low).514

Maximum a posteriori515

The 1,000 data sets generated during the prior predictive simulation were used to516

fit the model coded in Stan (B. Carpenter et al., 2017), utilizing the optimize517

function conducting L-BFGS-B optimization routine to find the maximum a518

posteriori estimates (MAP) of the parameters. Initial values for the parameters519

were generated by randomly drawing from their prior distribution. Regardless,520

the log-likelihood frequently underflowed right at the beginning of the routine,521

got stuck during optimization, or converged at a local maximum. Thus, the522

fitting routine was repeated for each data set. If the optimization converged523

to an optimum, we checked whether label switching occurred: We calculated524

the percentage of trials where the model state classification corresponded to the525

true state. If the percentage was below 50%, label switching was assumed and526

the model was refitted (by construction of the priors, label switched optimum527

is not a global optimum). The model was repeatedly run until the optimization528

converged and did not label switch, or until the number of attempts to fit529

the model exceeded 50 attempts. If the latter occurred, the fit was classified as530

unsuccessful and removed from the results. Out of the total of 1,000 simulations,531

986 succeeded. Consequently, 14 data sets were not fitted successfully using532
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MAP estimation.533

Figure 8 shows the scatter plot between the true (x-axis) and estimated (y-534

axis) values for the nine free parameters in the model: the drift for the correct535

choice under the controlled state (ν
(1)
1 ), the drift for the correct choice under the536

guessing state (ν
(2)
1 ), the standard deviation of drifts (σ), the decision boundary537

under the controlled (α(1)) and guessing (α(2)) state, the non-decision time (τ),538

the initial probability of the controlled state (π1), the probability of dwelling in539

the controlled (ρ11) and the guessing (ρ22) state. The correlations for the LBA540

parameters range from high (r = 0.74 for ν
(1)
1 ) to nearly perfect (r = 0.98 for541

τ) and the point lie close to the identity line, suggesting good recovery of the542

LBA parameters. An exception is the parameter σ, which shows a pattern of543

underestimating the true values, if the true value is relatively high.544

As for the parameters characterizing the evolution of the latent states, the545

recovery of the initial state probability is bad (r = 0.22). This is expected,546

as there is not much information in the data about this parameter (it mostly547

depends on the state of the first trial), and so it is highly dependent on the prior.548

This parameter is not to be interpreted, however, unless the model is fitted on549

repeated trial sequences (so that there are more “first” trial observations). The550

recovery of the two “dwelling” probabilities are satisfactory.551

Posterior expectation552

Here parameter recovery is reported in the same way as in the previous section,553

but using the means of the posterior distributions instead of MAP estimates.554

Figure 9 shows the scatter plot between the true (x-axis) and estimated (y-555

axis) values for the nine free parameters in the model: the drift for the correct556

choice under the controlled state (ν
(1)
1 ), the drift for the correct choice under the557

guessing state (ν
(2)
1 ), the standard deviation of drifts (σ), the decision boundary558

under the controlled (α(1)) and guessing (α(2)) state, the non-decision time (τ),559
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Figure 8. Parameter recovery using maximum a posteriori estimates. Corre-
lation plots between the true values (x-axis) and the estimated values (y-axis).
The slope line shows the identity function.
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the initial probability of the controlled state (π1), the probability of dwelling in560

the controlled (ρ11) and the guessing (ρ22) state. The correlations for the LBA561

parameters range from high (r = 0.77 for ν
(1)
1 ) to nearly perfect (r = 0.99 for562

τ) and the point lie close to the identity line, suggesting good recovery of the563

LBA parameters. An exception is the parameter σ, which shows a pattern of564

underestimating the true values, if the true value is relatively high.565

As for the parameters characterizing the evolution of the latent states, the566

recovery of the initial state probability is sub optimal (r = 0.22). The recovery567

of the two “dwelling” probabilities are satisfactory.568

Coverage of the credible intervals569
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Figure 9. Parameter recovery using posterior expectation. Correlation plots
between the true values (x-axis) and the estimated values (y-axis). The slope
line shows the identity function.
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Using the MCMC samples, we computed the 50% and 80% central credible570

intervals for each parameter under each fitted model (that did not label switch),571

and checked whether the true value of the parameter lies within that interval.572

Table 3 shows that the relative frequencies with which the CIs cover the true573

value is very close to the nominal value of the confidence level. Thus, we did not574

observe that the credible intervals would be poorly calibrated with respect to575

their frequentist properties. It is important to keep in mind, though, that this576

is not a proof of well calibrated CIs in general (e.g., for all possible parameter577

values and all confidence levels).578

3.5 Conclusion579

We followed general recommendations for a principled Bayesian workflow for580

building and validating bespoke cognitive models (Kennedy et al., 2019; Schad581

et al., 2019; Tran et al., 2020). Knowledge about data typical in two-choice582

speeded decision tasks was used to define the prior distributions on the model583

parameters. The MCMC procedure yielded accurate approximations of the584

posterior distributions using simulation-based calibration. SBC further yielded585

good results except for three parameters for which slight bias could have po-586

tentially occurred. Model sensitivity analysis revealed that the model is able587

to learn about the parameters of interest while not introducing substantial sys-588

tematic bias to the estimates. The standard parameter recovery resulted in589

acceptable results. Further, the 50% and 80% credible intervals had coverage590

probabilities at their nominal levels. Results of the simulation study hence sug-591

gest that further work on improving the model is not absolutely necessary before592

applying it to real data.593
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contained the true parameter value. The numbers in the brackets correspond to
the 95% Jeffreys credible interval for binomial proportion (L. D. Brown et al.,
2001).

50% CI Coverage 80% CI Coverage

ν
(1)
1 0.52 [0.49, 0.55] 0.79 [0.76, 0.82]

ν
(2)
1 0.48 [0.45, 0.51] 0.79 [0.76, 0.82]
σ 0.51 [0.48, 0.54] 0.82 [0.80, 0.85]
α(1) 0.49 [0.45, 0.52] 0.78 [0.76, 0.81]
α(2) 0.51 [0.48, 0.54] 0.81 [0.79, 0.84]
τ 0.50 [0.47, 0.53] 0.81 [0.79, 0.84]

π1 0.49 [0.45, 0.52] 0.80 [0.78, 0.83]
ρ11 0.52 [0.49, 0.56] 0.83 [0.81, 0.86]
ρ22 0.51 [0.48, 0.54] 0.80 [0.77, 0.82]
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4 Example: Dutilh et al. (2010) study594

This section demonstrates the use of our model on a real data set from an ex-595

periment reported by Dutilh et al. (2010). In this experiment, 11 participants596

took part in a lexical-decision task (participants A–C in Experiment 1a and par-597

ticipants D–G in Experiment 1bL) and perceptual decision task (participants598

H–K in Experiment 1bV). Despite the fact that the experiments are based on599

a different modality, the analysis stayed the same as the data have the same600

structure regarding the application of the HMM. Specifically, participants were601

asked to give answers on a two-choice task with varying degrees of pay-off for602

response time and response accuracy: the sum of the pay-off was a given con-603

stant, but the difference between them varied, thus leading to trials preferring604

accuracy (high reward for getting the answer correctly) to trials preferring speed605

(high reward for responding fast). Dutilh et al. (2010) originally fitted a two606

state HMMs where the emission distribution for the response times was assumed607

log-normal, and the distribution for the responses a categorical (i.e., assuming608

independence of response times and accuracy after conditioning on the state).609

Here, the EAM HMM model is applied to each of the participants separately,610

and the model fit is assessed using posterior predictives.611

4.1 Method612

We fitted each participants’ data using the model described in section 2 and613

priors developed in section 3.1. Specifically, for each participant, we ran eight614

MCMC chains with a 1,000 warmup and 1,000 sampling iterations using Stan615

(B. Carpenter et al., 2017), with the tuning parameter δadapt increased to 0.9.616

Starting points were randomly generated from the prior. Some initial values617

yielded likelihoods that were too low, leading to failure of the chain initialization.618

If seven out of the eight chains failed to initialize, the model was reran. If at619
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least two chains managed to run, we inspected the Gelman-Rubin potential scale620

reduction factor R̂ (Gelman & Rubin, 1992), traceplots of the MCMC chains,621

and parameter estimates, to detect possible label switching. If label switching622

occurred, we reran the eight chains. Once we were able to run at least two chains623

without label switching, we proceeded to fit data from another participant.624

4.2 Results625

Model fit for two participants needed to be run three times and for one partici-626

pant five times due to seven chains failing to initialize. Further, models needed627

to be rerun twice for one participant and three times for four participants due628

to between chain label switching. The final fits for two participants ended with629

two valid chains, for six participants with three valid chains, and for three par-630

ticipants with four valid chains. Therefore, the number of posterior samples631

used for inference ranged between 2,000 and 4,000. None of the models yielded632

divergent transitions. All R̂ statistics range between 0.99 and 1.01, and trace-633

plots of the MCMC chains show typical caterpillar shape without a visible drift.634

Thus, the final model fits do not exhibit convergence issues.635

For each participant, we performed several fit diagnostics, to assess whether636

(and how) the model misfits the data. In the interest of brevity, results for only637

the first participant from each of the sub-experiments are shown (i.e., participant638

A, participant D, and participant H). The rest of the results can be found online639

at https://github.com/Kucharssim/hmm slba/tree/master/figures.640

First, we simulated the posterior predictives for response times and accu-641

racy and plotted them against the observed data. Figure 10 shows the posterior642

predictive distribution for the response times summarised as 80% and 50% quan-643

tiles of the posterior predictive distribution for each trial (light red and dark644

red, respectively), and the median of the posterior predictive distribution (red645
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line). The black line shows the observed response times at a particular trial.646

Figure 11 shows the posterior predictive distribution for the responses. Specif-647

ically, the red line shows the predicted probability of a correct response for a648

particular trial, whereas the black dots points the observed responses. For ease649

of the visual comparison, the observed responses were smoothed by calculating650

their moving average with a window of 10 trials, which is shown as a black line.651

In general, the posterior predictives capture the observed data well. Specif-652

ically, the model is able to replicate the bi-modality of the response times and653

captures the runs of trials with predominantly correct responses relatively well.654

The model also seems to capture correctly that the response times under the655

guessing (fast) state have smaller variance than under the controlled state. How-656

ever, for some participants, there seem to be many outliers (i.e., slow responses)657

that are not predicted by the model, suggesting that the model of the response658

times has perhaps tails that are too thin.659

We also assessed how well the model predicts the response time distributions660

for correct and incorrect responses. Figure 12 shows the observed response661

times of the correct and incorrect responses as histograms, overlaid with the662

predicted density of the response times — shown as a black line and 90% CI663

band. Further, the blue and red lines show the densities under the guessing664

and controlled state, respectively. Figure 13 shows the observed and predicted665

cumulative distribution functions conditioned on the state and response.666

The distribution plots show good model fits, as the bi-modality of the re-667

sponse times is captured correctly, as well as the proportions of correct and668

incorrect answers under the states. However, for some participants, there are669

clear signs of a slight misfit. For example, the predicted distribution of the670

response times of incorrect answers under the controlled state is shifted slightly671

to the right compared to the empirical distribution (this shift is the most visible672
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Figure 10. Posterior predictives for the response times for three participants.
Only the first 300 trials are shown.
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Figure 11. Posterior predictives for the responses for three participants. Only
the first 300 trials are shown.
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Figure 12. Observed and predicted response times distribution of correct and
incorrect responses.
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Figure 13. Observed and predicted cumulative distribution conditioned
on the state (blue=guessing, red=controlled) and response (dark=correct,
light=incorrect)
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for participant H). Further, there is a general tendency of the model to overes-673

timate the variance of the response times under the guessing state, which might674

be a consequence of equating the standard deviation of the drift rate (σ) across675

all accumulators and states. Another possibility would be to enable bias, by676

setting different decision boundaries for each of the accumulators. These alter-677

ations to the model would increase its flexibility and should be validated using678

simulations - therefore, such additions should be the focus of future projects. In679

general, the tendency of the model to imply slightly slower incorrect responses680

than the data suggests, could be also caused by the fact that the number of681

incorrect responses under the controlled state is low, generally about 10% of the682

trials (see Figure 13). It is possible that the likelihood is then dominated by683

the distribution of the correct responses and the distributions of the responses684

under the guessing state, thus favoring a better fit towards them.685

Parameter estimates for each participant are attached in Appendix B. Al-686

though there seems to be variability between participants’ parameter estimates,687

there are common patterns that to some degree apply to all participants. Gen-688

erally, the states of the HMMs are sticky, with a probability of remaining in the689

current state at about 90% of the trials for both of the states. This percentage690

is (likely) dependent on the experimental design of (Dutilh et al., 2010) who691

varied the pay-off balance in a structured way depending on the participant’s692

actions, and should not be interpreted as a general tendency of people to stick693

in the current state to exactly this extent.694

As for the parameters that were held fixed across states and accumulators,695

the non-decision time τ is negligible for the majority of participants; the longest696

non-decision time occurred for participant B with about 0.11 sec (110 msec),697

with some participants as short as about 0.01 sec (10 msec). Relatively surpris-698

ing were the values of the standard deviation of the drift rates σ, with posterior699
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means ranging between 0.13 and 0.27 — quite smaller than specified by the700

priors (σ ∼ Gaussian(0.4, 0.1)(0,∞)) — suggesting that the variability of the701

response times is smaller than implied by the prior. Future studies should pay702

specific attention to variability of the response times in prior predictive simula-703

tions.704

Shorter response times in the actual data compared to the prior predictive705

expectations resulted also in a relative mismatch between the prior settings for706

the decision boundaries under the two states. Specifically, the posterior means707

of the decision boundary under the controlled state ranged between 0.24 and708

0.37 (whereas the prior was set α(1) ∼ Gaussian(0.5, 0.1)(0,∞)). The posterior709

means of the decision boundary under the guessing state was as low as between710

0.08 and 0.18 (prior α(2) ∼ Gaussian(0.25, 0.05)(0,∞)).711

As expected, the average drift rate of the correct response under the guessing712

state is usually very close to 0.5, implying 50% accuracy. Under the controlled713

state, the posterior mean of the average drift rate of the correct response ranged714

between 0.58 – 0.65. This is slightly smaller than the prior expectation (which715

on average expects about 0.7), although it still leads to relatively high accuracy716

(at minimum 75%, and leading to accuracy as high as 90%) due to the small717

standard deviations of the drift rates.718

Thanks to the fact that our model is an EAM model, it is possible to inspect719

the pattern of the discontinuous speed-accuracy trade-off within and between720

participants in terms of the latent cognitive parameters that control speed of721

the evidence accumulation (ν) and the response caution (α). Figure 14 shows722

this between state trade-off and reveals striking similarity between participants.723
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Figure 14. Speed-accuracy trade-off for all participants in the Dutilh et al.
(2010) data set. Black dots show the posterior mean of each participants’ de-

cision boundary (α(1)) and drift rate for the correct response (ν
(1)
1 ) under the

controlled state, triangles the same but under the guessing state. Lines connect
the posterior means for separate participants. Colored points show the samples
from the joint posterior distributions.
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5 General Conclusion & Discussion724

This article presented a robust implementation of a model that combines an725

EAM with an HMM structure. To our knowledge, this is the first successful726

implementation combining both structures in one model. The model was built727

to capture the two state hypothesis following from the phase transition model of728

the speed-accuracy trade-off (Dutilh et al., 2010) — that there is a guessing and729

a controlled state between which participants switch. This hypothesis can be730

represented by an HMM structure. Compared to previous HMM applications731

on speeded-decision tasks, our model uses an EAM framework for the joint732

distributions of the responses and response times, and thus enables inference on733

latent cognitive parameters, such as response caution or drift rate (N. Evans &734

Wagenmakers, 2019).735

The model was validated using extensive simulations and by applying it to736

real data. The simulations suggested that the model implementation was ro-737

bust and did not show pathological behavior. Further, the model achieved good738

parameter recovery and coverage probabilities of the credible intervals. In the739

empirical example, the model was fitted to eleven participants who partook in740

the Dutilh et al. (2010) study. The results demonstrate that the model shows741

a good fit to the data and is able to capture most of the patterns in the data.742

However, the model also showed a slight systematic misfit because the predicted743

error responses under the controlled state were slower than that of the data (a744

typical example of a phenomenon known as fast errors; Tillman & Evans, 2020).745

The results suggested quite strong consistency between participants in terms of746

the speed-accuracy trade-off — suggesting that the inaccessibility region (i.e.,747

a region of speed of accumulation and response caution which “cannot be ac-748

cessed”, resulting in switching between two discrete states) predicted by the749

phase transition model could be qualitatively similar across participants (see750
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Figure 14).751

We used a full Bayesian framework in this article, and with it comes the752

perks of defining the prior distributions on the parameters. Setting well be-753

haved priors is important in any Bayesian application as they define the subset754

of the parameter space that generates data that are expected in a particular755

application of the model. Because the EAMs can cover a lot of heterogeneous756

experimental paradigms (with heterogeneous scales of the data), it is impor-757

tant to decide on priors in respect to the specific application of the model,758

preferably after consulting related research literature, careful reasoning about759

the experimental design and the particular parameterization of the model. The760

empirical analysis pointed to some discrepancies between empirical parameter761

estimates and their priors that highlight misalignment between the priors and762

the data. Ideally, such discrepancies would be minimized to avoid a prior-data763

conflict (possibly leading to problems with estimation, Box, 1980; M. Evans &764

Moshonov, 2006). In our application, the discrepancy between the priors and765

the data arose mainly because we apriorily expected longer and more variable766

response times than was the case in the Dutilh et al. (2010) study. For the767

purpose of model validation through extensive simulation, such discrepancy is768

not a critical problem as the simulation covered cases with potentially more769

variability and outliers (which usually cause problems in fitting), thus exposing770

the model to a robustness test.771

It is important to reiterate that the priors in this model also serve another772

purpose: to solve the label switching problem. As is commonly the case in773

HMMs, the current model is identified only up to the permutation of the state774

labels. The priors in this article were used to nudge the model towards one775

specific permutation — to associate the first state with the controlled response,776

and the second state with the guessing response. Such use of the priors was777
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possible because we specifically assumed the controlled and guessing state, and778

followed the implications from the theory about them (Dutilh et al., 2010).779

In case the expectation regarding the state identity is more vague (e.g., when780

expecting only that the distributions might be multimodal), such use of priors781

becomes much more problematic on both the conceptual and practical level.782

An alternative to identifying the HMMs using the priors is to assume func-783

tionally different emission distributions under the states. For example, as Dutilh784

et al. (2010) point out, it is questionable to assume that guessing requires evi-785

dence to make a response. Therefore, using an EAM to represent the guessing786

state probably leads to model misspecification, as under guessing there is no ev-787

idence accumulation (about the correct response). Such misspecification could788

be fixed, for example, by assuming that the response time of guessing is just789

a simple response time (Luce, 1991), and model it appropriately by a single790

accumulator independent of the response (which would be a categorical variable791

with proportion of correct answer fixed at 0.5). In the context of the phase792

transition model, such an assumption could further improve the model.793

In this article, we used a minimal linear ballistic model to ensure computa-794

tional stability of the model. However, such a model can hardly be considered795

adequate for characterizing all phenomena of the speeded-decision paradigm,796

and the current results already revealed some ways in which the current model797

misfits the data. Thus, it is desirable to find ways how to extend or improve the798

current model, while ensuring that the quality of inferences and implementation799

does not decline. One alternative to improve the current model is to use the800

full LBA model where the variability of the starting point is not fixed at zero801

(S. D. Brown & Heathcote, 2008). Another would be to build on a different802

evidence accumulation mechanism (such as replacing the ballistic accumula-803

tion with sequential sampling models) — for example, the Diffusion Decision804
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model (DDM, Ratcliff & McKoon, 2008) or the Racing diffusion model (Till-805

man, Van Zandt, & Logan, 2020). Regardless of which framework will be in the806

end more successful in combination with a HMM, we believe it is important to807

start with a minimal existing model that captures the most crude phenomena808

from the speeded-decision framework, and expand from there. In the case of a809

DDM, that would be to start with the simplest four parameter model because is810

can be implemented in a fast and robust way (Navarro & Fuss, 2009; Wabersich811

& Vandekerckhove, 2014) and generally focus on the most important sources of812

variability at first (Tillman et al., 2020). Then — provided that model valida-813

tions are satisfactory — it is possible to add more parameters. In each stage of814

the model building, it is important to stick to the model validation procedures,815

some of which were demonstrated in the current article.816

Further development and additions to the model should probably also be817

combined with simplifications. Such simplifications, as for example, simplifying818

the distribution under the guessing state (as discussed above) can provide more819

computational stability and provide degrees of freedom to extend the model820

under the controlled state.821

The current model provides a proof-of-principle of a combination of an EAM822

with an HMM, and as such can lead to further interesting applications and823

extensions.824
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Šimon Kucharský was supported by the NWO (Nederlandse Organisatie voor827

Wetenschappelijk Onderzoek) grant no. 406.10.559.828

Conflict of interests829

None.830

Code and data availability831

The code and data used in this article are publicly available at https://github832

.com/Kucharssim/hmm slba.833

Contributions834

Ingmar Visser provided the concept of the article. Karel Veldkamp, Šimon Kucharský,835
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A Appendix: Derivation of the simplified LBA842

model843

Here, we provide the derivation of the likelihood function for the simplified LBA844

model. We assume that each choice option is associated with an accumulator845

of evidence. These accumulators are independent of each other and the first846

accumulator that reaches its decision threshold launches the decision associated847

with it. This leads to general race equations (Heathcote & Love, 2012), the848

probability density of observing response a with the reaction time rt comprises of849

the probability density that an accumulator associated with response a hits the850

threshold at time rt times the probability that none of the other accumulators851

has hit the threshold at an earlier time point:852

sLBA(rt, a|ν, σ, α, τ) = f(rt|νa, σa, αa, τa)×
∏
k 6=a

[1− F (rt|νk, σk, αk, τk)] , (4)

with νa the mean drift rate, σa the standard deviation of drift rate, αa the853

decision boundary, and τa the non-decision time for the accumulator a.854

The density of the passage time for each accumulator f(rt) is specified as855

follows:856

rt = τ + t

t =
α

δ

δ ∼ Gaussian(ν, σ)(0,∞).

(5)

We assume that the passage time is a sum of the non-decision time and the857

decision time t, where the decision time is a result of a linear rise of evidence858

towards a decision threshold α, at a drift rate δ drawn randomly from a Gaussian859

distribution with mean ν and standard deviation σ, truncated at 0 on the lower860
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bound. The truncation is assumed because we do not allow for the possibility861

of a non-response (i.e., that all drifts in a particular trial are negative, thus862

never cross the decision threshold). We do not assume any randomness in the863

parameters τ , α, ν and σ, hence, the only missing piece in deriving f(rt) is the864

change of variables rt = τ + α/δ.865

First, we derive the density of the latent drift (δ), which is defined as a866

truncated normal distribution for δ ≥ 0 and zero otherwise:867

g(δ|ν, σ) =
1

σ
×

φ
(
δ−ν
σ

)
1− Φ

(−ν
σ

) , (6)

where φ(.) is the pdf and Φ(.) the cdf of the standard normal distribution,868

respectively.869

Next, we determine the density of the variable t, which arises as a scaled870

reciprocal truncated normal variable for t ≥ 0 and zero otherwise (see also871

Nakahara et al., 2006):872

h(t|ν, σ, α) =
α

t2
× g

(α
t
|ν, σ

)
(7)

Finally, to obtain the density of the passage time, we shift the distribution873

by τ for t ≥ τ and zero otherwise:874

f(rt|ν, σ, α, τ) = h(rt− τ |ν, σ, α) =
α

(rt− τ)2
× g

(
α

rt− τ
|ν, σ

)
. (8)

The cumulative probability function of the passage times, F (rt|ν, σ, α, τ), is875

relatively easier to compute, by realizing that the only source of randomness in876
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this model is the distribution of the latent drift δ. Thus,877

P (rt ≤ X) = P (δ ≤ Y )

Y =
α

X − τ
,

(9)

which leads to878

F (rt|ν, σ, α, τ) = G

(
α

rt− τ
|ν, σ

)
, (10)

where G(.|ν, σ) is the cdf of a normal distribution truncated at zero.879

Identifiability and a minimal model880

If we had only response time data without choices (e.g., from a single choice881

response time task), the entire likelihood would be given by the distribution882

of the passage times for a single accumulator f(rt|ν, σ, α, τ). Such distribution883

is a ballistic analogue to the shifted Wald distribution (otherwise known as884

inverse Gaussian distribution) of response times (Anders, Alario, & van Maanen,885

2016; Chhikara & Folks, 1988), and would similarly require fixing one of the886

parameters ν, σ, or α to achieve identifiability.887

Once we have multiple choice tasks, it is possible to estimate more param-

eters per accumulator, as is the case for the LBA (S. D. Brown & Heathcote,

2008). However, some identifiability constraints still need to be put in place. In

this paper, we use the following set of identifiability constraints:

∑
i

νi = 1,

1 ≥ νi ≥ 0.

That is, we use the sum-to-one constraint common for the LBA model (S. D. Brown888

& Heathcote, 2008; Visser & Poessé, 2017), and make it even slightly more severe889
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by assuming that no average drift rate can be negative. The second, additional890

constraint is convenient for Bayesian implementation as it allows using Dirichlet891

priors on the drifts.892

The simplified LBA model can be achieved by additionally assuming that893

the non-decision time is equal between the accumulators – usually EAM models894

assume that non-decision time is by definition the time spend on processes895

that are not related to the decision – such as encoding and executing motoric896

responses (N. Evans & Wagenmakers, 2019). Further, we may equate σ and897

α between the accumulators. The minimal model for a two choice task would898

then contain five parameters: θ = (ν1, ν2, σ, α, τ), of which four of them are899

“free” (ν1 and ν2 are collinear due to the sum-to-one constraint). In general,900

the simplified LBA model would have K + 3 parameters (of which K + 2 are901

free), where K is the number of response options (accumulators).902
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B Appendix: Parameter estimates of the Dutilh903

et al. (2010) data904
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Table 4. Descriptives of the posterior draws for Participant A from Dutilh et
al. (2010).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail

ν
(1)
1 0.63 0.63 0.02 0.61 0.66 1.001 3319 2939

ν
(2)
1 0.51 0.51 0.01 0.49 0.53 1.000 4090 2860
α(1) 0.37 0.37 0.01 0.36 0.39 1.003 2540 2191
α(2) 0.14 0.14 0.00 0.13 0.15 1.002 2069 2483
σ 0.16 0.16 0.01 0.15 0.18 1.000 2250 2672
τ 0.01 0.01 0.01 0.00 0.02 1.003 1602 1690

π1 0.46 0.46 0.15 0.22 0.70 1.001 4497 2559
ρ11 0.92 0.92 0.02 0.88 0.95 1.001 4483 2909
ρ22 0.89 0.90 0.02 0.85 0.93 1.002 3901 2381

Table 5. Descriptives of the posterior draws for Participant B from Dutilh et
al. (2010).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail

ν
(1)
1 0.65 0.65 0.02 0.62 0.68 1.004 1837 1704

ν
(2)
1 0.49 0.49 0.01 0.47 0.51 1.000 3065 2167
α(1) 0.27 0.27 0.01 0.26 0.29 1.000 1979 1934
α(2) 0.08 0.08 0.01 0.07 0.09 1.005 1168 1061
σ 0.18 0.18 0.02 0.16 0.21 1.003 1271 1370
τ 0.11 0.11 0.01 0.08 0.13 1.005 1127 1063

π1 0.45 0.45 0.14 0.22 0.70 1.001 3029 1997
ρ11 0.90 0.90 0.02 0.87 0.93 1.001 3038 1897
ρ22 0.84 0.84 0.03 0.80 0.89 1.001 3049 2364
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Table 6. Descriptives of the posterior draws for Participant C from Dutilh et
al. (2010).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail

ν
(1)
1 0.64 0.64 0.02 0.61 0.68 1.001 2190 1837

ν
(2)
1 0.51 0.51 0.01 0.49 0.53 1.000 2883 2091
α(1) 0.35 0.35 0.01 0.34 0.37 1.002 1985 1831
α(2) 0.15 0.15 0.01 0.14 0.16 1.001 1693 1564
σ 0.17 0.17 0.01 0.15 0.19 1.001 2022 1734
τ 0.01 0.01 0.01 0.00 0.03 1.002 1358 1622

π1 0.46 0.46 0.14 0.23 0.69 1.001 3171 2226
ρ11 0.91 0.92 0.02 0.88 0.94 1.000 3279 1883
ρ22 0.87 0.88 0.03 0.82 0.92 1.002 2925 2082

Table 7. Descriptives of the posterior draws for Participant D from Dutilh et
al. (2010).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail

ν
(1)
1 0.61 0.61 0.01 0.60 0.62 1.000 2911 2213

ν
(2)
1 0.50 0.50 0.00 0.50 0.51 1.004 3268 1746
α(1) 0.30 0.30 0.00 0.30 0.31 1.000 2889 1793
α(2) 0.11 0.11 0.00 0.10 0.11 1.001 1391 1591
σ 0.13 0.13 0.00 0.12 0.14 1.000 2095 2116
τ 0.00 0.00 0.00 0.00 0.01 1.001 1131 1488

π1 0.54 0.54 0.15 0.29 0.78 1.000 3930 2281
ρ11 0.90 0.90 0.01 0.88 0.92 1.000 3998 2251
ρ22 0.90 0.90 0.01 0.88 0.92 1.000 3513 1906
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Table 8. Descriptives of the posterior draws for Participant E from Dutilh et
al. (2010).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail

ν
(1)
1 0.62 0.62 0.01 0.60 0.65 1.001 2303 2036

ν
(2)
1 0.50 0.50 0.01 0.49 0.51 1.000 2858 2045
α(1) 0.30 0.30 0.01 0.29 0.32 1.000 1530 1782
α(2) 0.14 0.14 0.01 0.12 0.15 1.001 957 1785
σ 0.15 0.14 0.01 0.13 0.16 1.001 1458 1674
τ 0.02 0.01 0.01 0.00 0.04 1.001 899 987

π1 0.46 0.45 0.14 0.23 0.70 1.000 2769 1768
ρ11 0.85 0.85 0.02 0.80 0.88 1.002 2862 1848
ρ22 0.85 0.85 0.02 0.81 0.89 1.000 2668 1749

Table 9. Descriptives of the posterior draws for Participant F from Dutilh et
al. (2010).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail

ν
(1)
1 0.62 0.62 0.01 0.60 0.64 1.002 1999 2295

ν
(2)
1 0.51 0.51 0.01 0.50 0.51 1.001 3617 2235
α(1) 0.28 0.28 0.01 0.27 0.29 1.003 1206 1413
α(2) 0.12 0.12 0.01 0.11 0.13 1.004 893 803
σ 0.16 0.16 0.01 0.14 0.18 1.003 1023 974
τ 0.05 0.05 0.01 0.02 0.07 1.004 874 815

π1 0.45 0.45 0.14 0.23 0.70 1.004 2860 1943
ρ11 0.91 0.91 0.01 0.88 0.93 1.002 2486 1753
ρ22 0.91 0.91 0.01 0.89 0.93 1.001 2647 1798
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Table 10. Descriptives of the posterior draws for Participant G from Dutilh et
al. (2010).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail

ν
(1)
1 0.58 0.58 0.01 0.56 0.61 1.001 3076 2370

ν
(2)
1 0.50 0.50 0.01 0.48 0.51 1.000 2903 2069
α(1) 0.29 0.29 0.01 0.28 0.31 1.001 1334 1996
α(2) 0.15 0.16 0.01 0.14 0.17 1.001 1109 1461
σ 0.17 0.17 0.01 0.15 0.19 1.000 2029 1885
τ 0.02 0.01 0.01 0.00 0.04 1.001 1049 1069

π1 0.46 0.46 0.14 0.23 0.69 1.001 2437 1881
ρ11 0.89 0.89 0.03 0.84 0.93 1.000 2661 2149
ρ22 0.88 0.89 0.03 0.84 0.93 1.001 2175 2087

Table 11. Descriptives of the posterior draws for Participant H from Dutilh et
al. (2010).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail

ν
(1)
1 0.64 0.63 0.02 0.61 0.67 1.000 2787 2656

ν
(2)
1 0.51 0.51 0.02 0.48 0.54 1.001 3673 2653
α(1) 0.30 0.30 0.01 0.29 0.32 1.000 2982 2630
α(2) 0.08 0.08 0.01 0.07 0.09 1.002 1922 1484
σ 0.27 0.27 0.02 0.23 0.31 1.001 2001 1784
τ 0.09 0.09 0.01 0.06 0.10 1.002 1825 1520

π1 0.55 0.55 0.14 0.30 0.77 1.002 4024 2054
ρ11 0.94 0.94 0.01 0.92 0.96 1.002 3678 2633
ρ22 0.88 0.88 0.02 0.84 0.92 1.003 3683 2612
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Table 12. Descriptives of the posterior draws for Participant I from Dutilh et
al. (2010).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail

ν
(1)
1 0.62 0.62 0.02 0.60 0.65 1.001 1423 1521

ν
(2)
1 0.51 0.51 0.01 0.50 0.53 1.000 2217 1289
α(1) 0.30 0.30 0.01 0.29 0.32 1.000 1851 1275
α(2) 0.10 0.10 0.01 0.09 0.12 1.001 899 934
σ 0.26 0.25 0.02 0.22 0.30 1.001 1074 1177
τ 0.06 0.06 0.01 0.04 0.08 1.001 854 789

π1 0.55 0.55 0.15 0.30 0.80 1.000 2496 1225
ρ11 0.91 0.91 0.01 0.89 0.93 1.001 2211 1267
ρ22 0.90 0.90 0.02 0.88 0.93 1.000 2047 1255

Table 13. Descriptives of the posterior draws for Participant J from Dutilh et
al. (2010).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail

ν
(1)
1 0.58 0.58 0.01 0.56 0.59 1.000 4004 3489

ν
(2)
1 0.51 0.51 0.01 0.50 0.52 1.002 4176 2785
α(1) 0.24 0.24 0.01 0.23 0.25 1.001 2186 2528
α(2) 0.09 0.09 0.01 0.08 0.10 1.001 1731 1602
σ 0.18 0.18 0.01 0.16 0.20 1.002 2166 2552
τ 0.05 0.06 0.01 0.04 0.07 1.002 1674 1606

π1 0.45 0.45 0.14 0.22 0.69 1.001 4561 2501
ρ11 0.94 0.94 0.01 0.92 0.96 1.000 3888 2076
ρ22 0.89 0.89 0.02 0.86 0.92 1.002 4567 2907
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al. (2010).

Quantile ESS

Parameter Mean Median SD 5% 95% R̂ Bulk Tail

ν
(1)
1 0.66 0.66 0.02 0.63 0.69 1.001 1492 1412

ν
(2)
1 0.51 0.51 0.01 0.49 0.53 1.000 1757 1341
α(1) 0.30 0.30 0.01 0.28 0.31 1.000 1590 1497
α(2) 0.10 0.10 0.01 0.09 0.11 1.002 769 778
σ 0.21 0.21 0.02 0.19 0.24 1.000 944 1039
τ 0.04 0.05 0.01 0.03 0.06 1.002 708 725

π1 0.46 0.46 0.15 0.22 0.70 1.000 2083 1334
ρ11 0.91 0.92 0.02 0.88 0.94 1.002 1898 1417
ρ22 0.92 0.92 0.02 0.89 0.94 1.000 2218 1371
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