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ENTROPY TRADE-OFFS IN ARTISTIC DESIGN 2

Abstract

From an evolutionary perspective, art presents many puzzles. Humans invest
substantial effort in generating apparently useless displays that include artwork’. 7 ese
vary greatly from ordinary to intricate. From the perspective of signaling theor, »tha e
investments into highly complex artistic designs can reflect information a: out
individuals and their social standing.

Using a large corpus of kolam art from South India (N = 3,139 i lar from 192
women), we test a number of hypotheses about the ways in whi hcie  stratification
and individual differences affect the complexity of artistic desigi.

Consistent with evolutionary signaling theories of cansti i»'d optimization, we
find that kolam art tends to occupy a “sweet spot” al’ vhich a.tistic complexity, as
measured by Shannon information entropy, remai’s 1 “atively constant from small to
large drawings. This stability is maintained  rougl an‘observable, apparently
unconscious trade-off between two standard in. rme ion-theoretic measures: richness
and evenness. Although these drawings a. = in a highly stratified, caste-based society,
we do not find strong evidence tha rartistic complexity is influenced by the caste
boundaries of Indian society. Ratl =r, the ‘rade-off is likely due to individual-level
aesthetic preferences and diffe:C..»s 11 skill, dedication and time, as well as the

fundamental constraints.of:-ht. ‘an ¢ gnition and memory.

Keywords: Art, Sign ng, Ei tropy, Skill, Material Culture, Bayesian inference

Media S»m. 2r7: South Indian Tamil kolam drawings indicate successful artistic

traditio s hit i complexity “sweet spot”.
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ENTROPY TRADE-OFFS IN ARTISTIC DESIGN 3

Entropy trade-offs in artistic design: A case study of Tamil kolam
Introduction

From the perspective of human evolution, art is mysterious. People in all know
populations invest substantial time, energy and effort into generating abstrac . pat. rus
and performances (Brown, 1991), to no obvious benefit. In biology, the su. 1y of
seemingly non-functional traits in social communication relies on the evolut onary
theory of signaling, a framework for understanding how reprodus.ive traae-offs produce
phenomena such as warning displays, mating calls, and specializea adsptations such as
bright, colorful plumage (Zahavi, 1975). It is currently un<'ear wl ‘her human art is
comparable to signaling behaviours, what features they e » in common with each
other, or if art is even something that can be usefully u. lerstood using an evolutionary
approach.

In recent years, the availability of large aidataocts has enabled large-scale
quantitative analysis (Liu et al., 2018;¢ . ar & Winters, 2018; Sigaki, Perc, & Ribeiro,
2018), which is the cornerstone of the “popu. *ion thinking” approach characteristic of
evolutionary thinking in modern bia sv (Mayr, 1994). Here we present such an
analysis of a large corpus of mater »l art’ rom South India: the kolam drawings created
by the women of Tamil Nadu in ot h India. Because this long-standing artistic
tradition follows systema: - rule. inenable to quantification, statistical models allow us
to characterize the striveg. = pursued by individual artists, detect the existence of a
theoretically-derived en =an:' trade-off between richness and evenness, and weigh the
importance of p¢ -ticala constraints on the flow of information within an artistic

community.

Theor¢ cical Background

~volutionary theory, signals can successfully coordinate behaviour between
org. dsms by reliably indicating skill (Hawkes & Bird, 2002), commitment (Bulbulia &
Sosis, 2011; Soler, 2012), social status (Smith, Bird, & Bird, 2003), strength (Sosis,

Kress, & Boster, 2007) and cooperativeness (Gintis, Smith, & Bowles, 2001; Granito,
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ENTROPY TRADE-OFFS IN ARTISTIC DESIGN 4

Tehrani, Kendal, & Scott-Phillips, 2019). Courtship behaviours, such as the ornate nest
structures built by bowerbirds, often have no practical use, but their great cost i =e'f is
a signal of underlying phenotypic quality and potential mate value (Madden, 2002
Schaedelin & Taborsky, 2009; Zahavi, 1975). Some human behaviours, such a.
inefficient and unnecessarily difficult spearfishing in Meriam communities: Blic = B!
& Douglas, 2002), have been nominated as having a similar purpose, taennince a
signaler’s social status and thus mating success (Bird, Smith, & Bira 2001) More
generally, costly, public signals can lead to improved status and/ ep» . ‘ional standing
(Power, 2017), reproductive success (Smith et al., 2003) or inc hased “ocial support
(Bird, Scelza, Bird, & Smith, 2012). Beyond latent propert. = of t e individuals, signals
can evolve to indicate persistent group memberships w iich « come the basis for
cooperative assortments. Especially in multi-ethnie-opuic tions ethnic marker theory
has become substantial to understand how indivi us s crordinate their norms and
behaviors with others using identity or group me. hership signals (Boyd & Richerson,
1987). These signals referred to as ethi. a2 have evolved to prevent individuals
from interacting with others with different noi ns in coordination games (Granito et al.,

2019; McElreath, Boyd, & Richerstn, »211; Moffett, 2013).

As a medium of commur.ie ‘on, numan art might reflect fitness-relevant qualities
and capacities (e.g., preferenc.* ski.s or personality traits such as patience, creativity,
commitment) as well ag.nromi < social standing and mating qualities (e.g., health and
fertility) (Davies, 202"+ Gras eni, 2018). The signal is manifested as the aesthetic
appeal or value ¢ th: artw. 'k and as such, it makes sense to see artists compete with
each other in »xoc <in the most appealing and aesthetically pleasing artwork
(Grasseni, 2 18; G’ stafsson, 2018; Varella & Fernandez, 2015) that reflects their
qualitie’ and ¢»cial status. Information on an artist’s capacities, their social standing or
mating qua..ues are judged by the apparent costs of the artistic production reflected in

its =o' aplexity (Grasseni, 2018; Varella & Ferndndez, 2015).

A number of quantitative approaches have been used to measure cultural diversity

on some distribution of traits. In economics and anthropology, a popular distributional
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ENTROPY TRADE-OFFS IN ARTISTIC DESIGN 5

measure is the Gini index of inequality (Ravallion, 2014; Zoli, 1999). A Gini index value
of 0 represents a state of total equality, while a value of 1 represents total inequa’ity. In
ecology, three common methods of biological diversity are the richness (the numher ot
unique variants present), evenness (the relative abundance of variants) ard Si. anon
information entropy, which weights richness by the relative abundance. F<  a
low-entropy, low-diversity state, the representation of alternative varia»*s 1s “ighly
unequal, and in the limiting case in which only one variant is present entro yy is 0. At
the other extreme, all n variants are represented equally, maxim zine _ enness, and so
the entropy is also maximized to the value of log(n) (Jost, 200 7. 2067, Entropy has
also been used in several recent papers quantifying artistic < versi'y, where an artwork
can be represented by an empirical probability distribi cion «‘variants (Miiller &
Winters, 2018; Pavlek, Winters, & Morin, 2019; Wisters ¢ »Morin, 2019).

Although the Gini index in economicsand civi rsit 7 in ecology quantify the
relative abundance in a very similar way, to o v n awledge no systematic relationship
has been described between the Gini inc ¥ a..JoS hannon information entropy, richness,
or evenness. If we define evennessias v =1 — ¢, for a given Gini index g, numerical
simulations show the relationship " etwe n Shannon information entropy, richness and
evenness is quite strict, so that the . ==’ .num entropy H is given by evenness v and

richness n as

— a

«p(H)=n—(n-— 1>U1+2+%+a+n (1)

where a =/ xp/1.51390.28) (see SM for more details). This approximation allows
us to detect < rop, ade-offs between evenness and richness, which we use as analog to

fitness trade- ffs ar d can be applied to the study of any well-defined artistic system.

Kolam . ' of Southern India

Kolam drawings are geometric art practiced by women in the Kodaikanal region of
Tamil Nadu, Southern India (Layard, 1937). A kolam consists of one or more loops

drawn around a grid of dots (in Tamil called pulli). On a typical morning, a Tamil
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ENTROPY TRADE-OFFS IN ARTISTIC DESIGN 6

woman will prepare a grid of dots on the threshold of her home, and then draw a kolam
with rice powder or chalk. During the day the drawing weathers away, and a nev:.k»lam
is created the next day. Kolam drawings are historically traditions of matrilines. hut
more recently are also a topic of cultural education in Tamil schools. Gir's in“" amil
Nadu begin practicing kolam-making from an early age, and competency (i tn art .
considered necessary for the transition into womanhood (Nagarajan, 20'8). " Although
the primary medium is the threshold of the home, women practice k¢ 'am-m Kking in
notebooks, and it is common for artists to share, copy and emb¢.lish< " <h other’s kolam
designs. Such unrestrained artistic exchange is fostered by the “act ut kolam designs
are not, considered to belong to any one person, but rather <. be ¢ type of community
knowledge (Nagarajan, 2018). However, the ability to ucce. fully draw aesthetically
pleasing (i.e., diverse, complex, large) kolam drawiz = is s.id to reflect certain qualities
of a woman (e.g., her degree of traditionalnass or pa 1en :e), and as such her capacity to

run a household and become a good wife and moer (Laine, 2013; Nagarajan, 2018).

Kolam drawings further broadcast 1. aningiul information about a household to
neighbors and visitors. Nagarajan (2018) argues that the presence or absence of kolam
drawings help mark important evc ats an. the emotional or physical state of the artist
and its household. AuspiciousCve ts, such as weddings or community festivals, warrant
unusually large and comnlex i am./.rawings, while inauspicious events such as death or
illness are marked by the absc <7 of kolam drawings, and might communicate the
inability to receive ot host viitors or the need for social support (Laine, 2013;

Nagarajan, 2018

Overal' kolam-imaking plays an integral role in Tamil community and is deeply
embedded.in" e Tamil culture with playful or even large-scale competitions among
women ' Nagar jan, 2018, p. 179-203). Women often come together to carefully examine
CUG oewe each others kolam drawings in terms of aesthetic qualities (e.g., geometric
cow: lexity or density Nagarajan, 2018, p. 189) or consult each other on designs to
optimally showcase their skills (Nagarajan, 2018, p. 182). Contemporary interpretations

of the kolam in Tamil movies even use “the motif of the heroine’s beautiful kolam in
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ENTROPY TRADE-OFFS IN ARTISTIC DESIGN 7

attracting the male gaze of the hero. The romance is either initiated by a strikingly
beautiful kolam or sustained during the nocturnal hours when a kolam is being nace by

the heroine [....].", (Nagarajan, 2018, p. 179-267)

Current Study

Kolam drawings are highly diverse, and contain multiple distin/ ¢ artic“ic families.
Here we study the ner pulli nelevu or sikku kolam family because{ its _l..que form.
Because sikku kolam drawings represent an unusually strict svste.. of 7 ctistic
expression, kolam drawings can be mapped onto a small identifia. » set of gestures and
are therefore well-suited to systematic, quantitative ana’ "os as « naturalistic model
system of cultural evolution. A given kolam’s gesture s ~uence can be characterized by
a number of informative summary statistics whic'. ca v e aspects of kolam itself: the
sequence length (i.e., the total number of ge. v 2s)," ' discrete canvas size (measured
by the grid of dots, or pulli), the gestvwdensit « per unit canvas area, and gesture
diversity as measured by evenness (here, tii Gini index), richness, and Shannon
information entropy.

With the ability to calculate :tand: rd measures and properties to describe
artworks derived from inform‘.tio: theory, we can explore the possible functions of
signaling in kolam drawi.~ Spoi“lally, we wish to understand better the social and
strategic landscape wit'....whica artists work. Moreover, we seek to understand how
realized kolam drawing .resv t from the conflicting pressures of the need to
communicate so¢ al £igials, aad various constraints on artistic production, among them
the skill and<“aperic..ce of the artist, and the social system she lives within.

Since ti. «e t ade-offs are properties of the design space of the art itself, a
substarn ial an Hunt of variation may be explained simply by understanding strategic

‘oCuo. o conscious or unconscious, made by the artist. Thus, two major research
que 1ons arise: first, can a trade-off model explain the pattern of variation among
kolam drawings, as is commonly done in behavioural ecology? And second, can we

relate structural and information-theoretic properties of kolam designs to underlying
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social and cognitive constraints operating on individual artists?

Methods
Kolam Dataset

We (TW) interviewed 312 artists in the Kodaikanal region in Tami. Madu iu 2009,
collecting a total of 6,393 kolam drawings from the ner pulli nelevu ¢ - sikk( kolam
family, along with details of each woman’s education, kolam-maki.J expo.ence, place of
origin and household demographic background, including caste.

Using the lexicon of 29 kolam gestures developed in Waring 2012b), each kolam
was digitally transcribed into a sequence of gestures, ar . »ansicrred into a database
using the kolam R package (see http://github.com/n.. »ran93/kolam for more details).

An example of transcribed kolam drawings :an'oe w»en in Figure 1. The geometry
of the kolam can be divided into three geom 1. spacts (orthogonal, diagonal,
transitional) with their specific corresp’ ='ino gustures. Each set of gestures is

\_while special variations of these moves

represented by a letter (O, D, T, respectiver,
are given special letters (C, H, P). '+ »ologically, diagonal and transitional gestures are
chiral with distinct left and right 1 »rsion: because rotations of these gestures in space
cannot yield their exact mirr/r ip age (Waring, 2012b). The detailed lexicon of gestures
can be consulted in the o

We excluded 674 nuw m drawings that could not be matched to an artist, 695
kolam drawings becaus the  included non-lexical gestures and another 17 kolam
drawings due to| raz sci otion errors. We further excluded 120 women because their
survey data /. as incowplete with substantial missing data in key variables: age, GPS,
duration of ponctic: or caste membership. In total, 3,139 kolam drawings (on average
16 kola:» per v oman) from 192 artists were included in the analysis (age: M = 31.83,
4 — 022 years, range = 15 — 60; married: 75%). The artists are from 19 different
cas. s, spanning from low-, middle- to high-castes. Of the 3,139 kolam drawings, 1801

kolam drawings came from artists of a low-caste, 593 kolam drawings from artists of a

middle-caste and 745 kolam drawings from artists of a high-caste.
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sequence: sequence 1:
04 01 04 o1 04 01 03 02 03 02 03 02 03 o1
04 o1 04 o1 sequence 2:

02 o1 02 01 02 01 02 o1

Figure 1. Example of two orthogonal kolam drawings and their corresy ».ng encoding

using a lexicon of gestures.

Information-theoretic measures

We use Shannon information entropy H(p)/as /. . easure of artistic complexity or
diversity for each kolam drawing j and prob. v “ities ‘or each possible, discrete gesture
i, computed as the average log-probabit*: H(;); = — Y7 p; log(p;). Entropy as a
measure for complexity is continuous, addi. e and increases as the number of possible
gestures increases. While the lexico. of 29 gestures (Waring, 2012b) decomposed the
diagonal and transitional gesture ' vpes ii vo distinct left and right versions, we did not
distinguish between them beg.us¢ chey are a property of the transcription and not of
the artist. Thus, inform. “5n-v. 2ox vic measures were computed based on 18 distinct
gestures (with each chiz=nair “unted as only one) and the theoretical upper bound of
the entropy in our anc vses i ;% 1¢ log(55)) = 2.89 log units. In contrast, the
theoretical lower bov 1diof e iropy is 0 for a kolam that consists only of one gesture (see

2).

Richnes ireniesents the number of unique gestures (accounting for chirality)
present. n a k¢ am drawing and evenness represents the relative abundance of each

_2svw - We computed evenness v using the Gini index of inequality g: v = 1 — g, where
gl ==t T ;fi)'pi_pjl, where n is the richness and p the frequency of specific variants or

gestures. Figure 2 illustrates how these properties or information-theoretic measures

correspond to specific kolam drawings.
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Entropy = 0

Total Gestures = 16
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Density = 1
Canvas Size = 4

Entropy = 1.4¢
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Density = 19

Canvas Size = 9

Figure 2. Structy.ai nd 1. “armation-theoretic properties of kolam drawings. The
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Richness = 11
Evenness = 0.65
Density = 0.42
Canvas Size = 9

10

Figure shows fani -olo<, examples and their respective information-theoretic measures

and structu.»l proj crties.

Statistic »1_Aaalysis

To investigate the scope for viewing kolam art as a signaling system for aesthetic

value, we modeled five information measures of each kolam in our sample using a

variety of predictor variables. The five properties used as dependent variables to
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ENTROPY TRADE-OFFS IN ARTISTIC DESIGN 11

describe a kolam drawing were the canvas size, the gesture density per unit canvas area,
evenness, richness, and Shannon information entropy. The canvas size of a kolan' isa
discrete count variable measured by the grid of dots, or pulli, and captures the
dimension of the kolam. Since kolam drawings always start with an initia! squ. e grid of
dots, the canvas size is equal to the width or length of this initial dot mat ix, . oara ss
of whether the resulting kolam is not maximally spanning both the width a. 4 length of
this grid. The gesture density reflects the number of gestures by can' s are: :

sequence length -~ A ge - duration of practice and caste were use< s predictor
canvas size )

density =
variables to explain individual variation. Age and duration o1 ~acti"C were

standardized to be centered on zero with a standard deviat. = of ¢ ne.

Since our data contains repeated observations fer artists and castes (i.e., multiple
kolam drawing from an artist or from any given ¢ v we partially pooled information
across these two units using hierarchical m<¢ »ling it or/ er to account for imbalances in
sampling and to yield more reliable and precis. esv. nates (Efron & Morris, 1977).
While information was pooled across arti. 2 to a.oid over-dispersed parameter
estimates, we estimated a randoni ‘ntercept (i.e., offset) for each artist. Caste is
comprised of 19 different categori¢ ;s and  as modeled as a varying effect to estimate

individual offsets for each casteriitego.y.

Evenness and rich.nes ar rel<ied to entropy by a mathematical identity (shown
in the derivation in the“™\ anc . ubject to an optimization process. This theoretical
guide motivates the s, xcific / noice of predictor variables in our statistical models, which
is why we would/ 1ot/ nslude e.g. canvas size as predicted by richness. Including these
predictors word 1o wadress our larger question of modeling information entropy or
mapping its' otent al trade-offs, nor would such an analysis add an adequate potential
alterna’ ve ex} lanation of the invariance in entropy and the richness/ evenness

“ode-offs because the system does not prevent artists from drawing kolams with

mi i al or maximum entropy.

T'he statistical models were implemented in the probabilistic programming

language Stan (v2.18) (Carpenter et al., 2017), using 6000 samples in four independent
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chains. We applied an iterative process of model building, inference, model checking
and evaluation, and model expansion to ensure a principled and robust Bayesian
workflow (Gabry, Simpson, Vehtari, Betancourt, & Gelman, 2019; Talts, Betancourt,
Simpson, Vehtari, & Gelman, 2018). Prior predictive simulations and fitted n. dels tc
simulated data were used to determine reasonable and regularizing priors/ or v. =
parameters that respects the parameter type’s bounds. We present a compic 2
description of the statistical models and the priors in the SI. Analyse  were >erformed
in R (R Core Team, 2019). Data and analyses can be found her':
http://github.com/nhtran93/kolam_signaling. All R valie welt iess than 1.01,
and visual inspection of trace plots, rank histograms and pe« =s plc s indicated

convergence of all models. Visual MCMC diagnostics ¢an be found in the SI.

Results

Consistent with the entropy trad< =ffs im} 'ied by equation 1, we find that as
kolam drawings concentrate around an enti av of 1.17 log units regardless of their size,
they systematically vary in evenness and richness as they increase in size (see Figure 3).
Larger kolam drawings employ a ¢ eater ichness of gestures, on average, but also have
greater inequality between ge' cur s in such a way that entropy remains tightly bounded
between 1.1 and 1.4. As Vastic o< iurther in Panel A and C in Figure 4, evenness
decreases with increasiz’ anve. size, while richness increases with increasing canvas
size.

In characte “izi* g “he ar.ist-level variation, we also find similar patterns. Figure 4
illustrates ar’.sv’s onocts on the different structural and information-theoretic properties
on kolam dra sings  Artist means cluster between an entropy of 1.1 and 1.4 log-units.
Thus, v ry pla a (entropy < 1) as well as highly complex kolam drawings (entropy >

o, wavery rare. Individuals who draw larger kolam drawings tend to use more
difi ‘ent gestures but in turn repeat a few gestures disproportionately (Figure 4, panel
B).

As indicated by Figure 5, there is also some small distinct variation between
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Figure 3. Trade-off between the Il -enness and the Richness. The grey lines measure
maximum entropy isoclines. The 1aw ko. »n data are jittered and illustrated in blue
(light blue = low density, dark-*=e —“igh density). The (90%, 75%, 50%)
kernel-density of the average i< ines . and evenness for each canvas size of the data are

depicted in the orange area \ '=h* orange to dark orange).

artists on the avicage entro, = of their kolam drawings o445 = 0.04, 90% CI [0.02,
0.05]). This batwel o' dist variability is most pronounced in canvas size (0445 = 0.15,
90% CI [0.1..0.171 and in density (45 = 0.10, 90% CI [0.08, 0.11]) with individuals
showing differ’ nces in the average canvas size and density of their kolam drawing.
Potween-1aividual variation the evenness (0445 = 0.05, 90% CI [0.04, 0.06]) and in
thor chness (044 = 0.01, 90% CI [0.00, 0.03]) were estimated with high certainty to

be no -zero, but very small (see right panel in Figure 5).

We detected very small effects of caste membership on density, evenness, richness,
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and entropy, with varying-effect deviations estimated near zero with high certainty as

illustrated in Figure 5 (density o5 = 0.02, 90% CI [0.00, 0.04]; evenness o qse = 2.03,
90% CI [0.02, 0.05]; and richness 045 = 0.01, 90% CI [0.00, 0.03]; entropy oegst—=.0.U2
90% CI [0.01, 0.05] respectively). However, evidence for caste differencesin ca vas siz s

of kolam drawings was more pronounced (cqqse = 0.11, 90% CI [0.06, 0.17)).

Evidence for an effect of age and an effect of duration of practice=a ti. five
outcomes is also very weak. Figure 5 shows that both predictor varia les h# ve a very
small effect on the five outcome variables. Age and the duratior of +".« tice are
estimated with high uncertainty to be close to zero across the ."we n.odels.

Only a small amount of variation in the information su. “isti<s we employed can be
accounted for by variation in artists, their age, years o pracv. 2 and caste membership:
about 15% for canvas size, 13% of the evenness, 11 »f thi variation in the gesture
density, 0.01% for the richness and 0.03% f« »entiop 7 as measured by the Interclass
Correlation Coefficient (Gelman & Hill, 2006) ‘sec ™M for more details). Residential
proximity and regional origin of artists 1. =dly «¢ ounts for any variation in the
structural and information-theoretic properties (see SM). In contrast, the residual
variance of the outcomes is large ¢ 1d dc »inates model inference more than the

variation explained by our fixed.ana “wdom effects combined.

Discussion

Viewed at the po,lat’on scale, the complexity of kolam drawings is quite
invariant, sugges ing th exisvence of an entropy “sweet spot” at which most artists and
most kolam /rawings center around, regardless of the design’s size or gesture richness.
The observea ‘mer<ase in gesture richness in bigger kolam drawings is compensated for
almost ' xactly by a corresponding decrease in gesture evenness, such that as kolam

‘Tavw . oincrease in size, richness is traded off against evenness so as to maintain nearly
coli ant entropy. Our findings are consistent with the general view of signaling in
behavioural ecology as an attempt at optimization under constraints and lend support

that entropy is optimized through an observable and apparently unconscious trade-off
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Figure 4. Scatter plot of posterior estimates of individua ots (sum of individual
offsets and population mean). The posterior estimaté. »f individual variation of two
models are plotted against each other to illustrats the arrelation between outcomes.
The blue colour gradient reflects the poster. . »stimi te® of individual variation of
entropy. Pearson’s correlation r between the pcaterior estimates of the two variables is
shown on the upper left for each panel. A. "he canvas size and the evenness model. B.

1

The evenness and the richness moc ' C. The canvas size and the richness model.

between richness and evenness s, »wn theoretically and empirically).

In this interpretati. = ko. = rawings that are generally more diverse are more
valuable art products (M rarajcia, 2018, p. 189). For this reason, we see very few kolam
drawings with an enti »y be ow one, which would be unusually simplistic or repetitive,
regardless of the' sirc.«Cony rsely, artists seem to hit an upper entropy constraint
around 1.5 le; uniu “cgardless of the size of the kolam, which suggests some form of

constraint o more complex (and more valuable) artwork.

A hougl the nature and origin of these constraints are unclear, our analysis can
ue oe few possibilities. Almost no meaningful information about caste stratification
is v_ible in the information metrics we employ. Members of different caste categories

tended to create distinct kolam drawings of different canvas sizes, but no clear

differences in other major structural or information-theoretic properties. Indeed, our
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mean (90% HPDI)

Figure 5. Prior-Posterior Coefficient Plots. All panels have the ame y-axis indicating
the five models. The left panel (beta coefficients) illustrates (he e timated beta
coefficients for the two predictors, duration of practice (dark . 'ue) and artist’s age
(light blue) for each model. The right panel (varia®.c \\ illiotrates the estimated
population level standard deviation for the{ Fect of/ ast > (dark green) and the
estimated individual variation (light green) foi eac.:model. The 90% Highest Posterior

Density Interval (HPDI) was computed 1 = eacw ', osterior.

findings are consistent with ethno_raphic tccounts of kolam as a form of community
knowledge, and suggest that, <5 a public art form drawn on a home’s threshold, kolam
drawings enjoy a relativilvieg.” tarin information flow even in a stratified, multiethnic

society (Waring, 2012a)

Based on the abc = _w believe that complexity in kolam design is more likely
constrained by a stF:tii pretcrences and cognitive limitations, rather than by
information /.evworks or social hierarchies. Although we were able to observe variation
in average en. anv petween artists, with some highly complex kolam above an entropy
score ot 1.5 log units, we were not able to map this variation to patterns of age or

Xpo. nae This could reflect cultural selection pressures to make traditional practices
of ¢ istic ornamentation and design, such as kolam art more learnable or transmissable
(Kirby, Cornish, & Smith, 2008; Miiller & Winters, 2018; Ravignani, Delgado, & Kirby,

2017; Tamariz & Kirby, 2015; Tylén et al., 2020) or limitations in procedural and
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working memory capacities (Oberauer, 2010; Oberauer & Kliegl, 2006) unrelated to the

action of experiential memory or cognitive senescence (Gurven et al., 2017).

An overly complex and large kolam with rich and diverse gestures might e v
difficult, time-consuming or too risky to execute successfully because options fo.
revisions and corrections are limited. Artists might want to avoid highly.« omple. kolam
drawings because they draw them in front of their house and hesitati®n, pauscs or
corrections could be interpreted by the audience as imperfection or as  1a<| of skill
(Nagarajan, 2018, p. 53; p.156). This avoidance of maximally cu = .ex wrtistic designs
due to increased risk of deficiency and failure might also be relev it to other practices
of ornamentation or decorations where mistakes often last anc 22 inot be rectified easily
(e.g, polychrome bowl designs, Bowser, 2000 or Ango. 2 sona drawings, Gerdes, 1990).
Alternatively, it might also be that more diverse 'ola ~drawings are simply not as
aesthetically appealing to artists and their « . 'ience besause individuals often tend to
prefer a certain extent of regularity and repetivon 1 ther than complete randomness
and thus highly complex kolam drawings “Tnang et al., 2018; Voloshinov, 1996). Other
artistic design such as loop patteri.. for decorations in Japan or Angolan sand drawings
have already been known to be inf nencec by the aspiration for symmetry (Gerdes, 1990;

Nagata, 2015). Therefore, the v t’s aesthetic preferences are the final constraint.

In fact, geometric a like ."7um displays structural properties (e.g., symmetry,
rotation, and repetitio.) . can correspond to distinct complexity measures (Sigaki et
al., 2018). Aesthetic p: feres ces can determine these distinct structural properties and
reflect shared at’ »nt’on’ ind rearning (Tomasello, Kruger, & Ratner, 1993). Artists can
deliberately <i100se wu 1mpose structural constraints according to their and consumers’
preferences 0. to <0 artwork. For instance, artists can strive for symmetry, only use the
same ty e of v riants (i.e., gesture types) or decide to primarily use the same two

el fie, gestures) and only add very low frequencies of other, special variants as
dec ation. All these decisions underlie the time, skills and the aesthetic preferences of
the arcist and can profoundly shape the distribution of information-theoretic properties

of the resulting artwork (Grasseni, 2018; Gustafsson, 2018). Beyond measures of
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entropy, we do not have direct ratings of the aesthetic quality of kolam drawings or
whether the artist has employed a particularly appealing style. Other informatio
metrics, such as bilateral or rotational symmetry, or fractal scaling, might reveal snecii.

details beyond diversity or complexity and should be an endeavor for futazre sc dies.

While the observed patterns in kolam art imply a certain degree ot . wariance in
complexity across different canvas sizes and only small traces of indiv dual \ »riation and
social stratification, they exhibit what has been called “equifinal””sehaviour (Barrett,
2018; von Bertalanffy, 1969). Equifinality means that inferrine tie ger rative processes
that might have given rise to the observed cultural frequercy date 5 difficult because
we only have cross sectional data (Barrett, 2018; Kand' i (s Powell, 2015). Temporal
data could allow us to narrow the subset of causal meci. nisms that underlie the
observed distribution of information-theoretic pr¢ oer ie. »Generative simulations could
approximate temporal data and provide mor 1. dep... understanding on how artistic
traditions could have theoretically eve’ -~ nsnec Geally in regards to the diversity or the
complexity and the stability of the kolam i e population across time. In order to
infer the underlying generative proc: s, a probabilistic model, in which the
hypothesized causal mechanisms (. =., cos nitive constraints, aesthetic preferences or
other potential constraints) & e e’ plicitly defined, needs to be built (Kandler & Powell,
2015). Such a probabilisy  moac™Can allow us to repeatedly simulate datasets with
known parameters and cu. »are the resulting distribution with observed data to infer
the most likely hypothized causal mechanisms. Furthermore, measuring the signaling
value of specific ol n Thotits for coordinating using classification tasks (Bell, 2020)
could be a promising endeavor to explain the role of kolam art for social coordination.
A comparisoi. of t'e signaling value of culturally salient kolam motifs between the
Tamil ¢ ypulat Hbn in South India and the Tamil diaspora in the U.S. could further reveal

ve. ot functions of kolam art for different communities. Another promising future
enc. wor could be to focus specifically on how kolam drawings are perceived and
whether the processing efforts of kolam drawings (visual complexity measured by

perimetric complexity or algorithmic complexity) (Miton & Morin, 2019; Pelli, Burns,
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Farell, & Moore-Page, 2006) are in alignment with the actual production efforts (e.g.,
gesture complexity measured by Shannon entropy) invested in kolams. These
perception and processing efforts of a consumer or learner of kolams could even hove
implications on the transmission of kolam knowledge in terms of learning.and

reproduction (Tamariz & Kirby, 2015).

Our results on entropy trade-offs and various constraints on com:uxiv, aperating
on kolam art encourage us to distance ourselves from underspecified « »d vag 1e attempts
to explain the evolution of art (Miller, 2011; Pinker, 2003) and fain'" < eply about
artistic traditions in terms of evolutionary signaling theories 0. =ons..ained
optimization. Further investigations of how evolutionary sig. »ling theories of
constrained optimization could be applied to other art ‘orms = other communities, such
as Vanuatuan sand art (Lind, 2017; Zagala, 2004) < ~oola.»sand drawings (Gerdes,
1988, 1993) or Islamic geometric art (Abdu'ahi & Fmb: 2013), could advance our
evolutionary understanding of investments in «na nstraints on art. A careful synthesis
of evolutionary signaling theory with eti. ogia;™  can help us understand individual’s
strategic investments into mastery. of specific a.tistic skills and how they optimize their
artistic displays (e.g., size, noveltics, co. r diversity) within certain constraints (e.g.,
aesthetic preferences, cognitive cons. s or motor constraints), allowing us to
elucidate properties of art. It o/ rtas ly, evaluating evolutionary constraints on cultural
productions beyond functio. ! sufficiency is integral to understand how cultural
productions have evol red (e. ., motor constraints in music production Miton, Wolf,
Vesper, Knoblich «“=Sper. or, 2020). All these future direction will be time consuming
and computatior. 1y cb .llenging, but we believe that the long-term gains for an

evolutionary undei tanding of artistic traditions will make this enterprise worthwhile.

Conclusion

Using quantitative measures to systematically study material art in a large-scale
anthropological dataset, our findings inform discussions on entropy trade-offs and

various constraints on complexity operating on artistic traditions.
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In the case study of the hand-drawn Tamil artistic tradition, our findings are
consistent with evolutionary signaling theories of constrained optimization and 1¢ad
support that artistic complexity, measured by Shannon information entropy, is
optimized through an observable, apparently unconscious trade-off between ti.
standard ecological and information-theoretic measures: richness and ever iess.This
trade off between richness and evenness can potentially be explained bwcog itive
constraints and aesthetic preferences. Variation in structural and infc smatic 1-theoretic
properties of kolam drawings are small, and evidence of social st uct= s reflected in the
information measures we employ, are weak. This corroborates 'ur v .erstanding of
kolam art as signal that does not primarily communicate sc ‘al st atification or
individual differences in age or practice, but rather aes hetic ~references, dedication,

time and skill, as well as constraints of human cog»"ion « < memory.
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