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S1 Approximation of entropy using richness and21

the Gini index22

Figure S1: High-resolution simulations showing the entropy distribution of a given

richness and evenness. The black lines show the maximum entropy for a given num-

ber of variant. The differently coloured points represent the entropy distribution

corresponding to the different number of variants. Equation 3 defines the curve for

n = 2.

For any discrete probability distribution with n possible outcomes, each i of which23
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occurs with probability pi, we can calculate a number of information measures. In24

ecology, Shannon information entropy is a popular measure of biological diversity25

because it contains two different aspects: richness and evenness. The Shannon infor-26

mation entropy is a measure of the expected “surprise” or uncertainty, given in the27

discrete case by28

H(p) = −
n∑

i=1

pi log(pi) (1)

for each outcome i. In economics, the Gini index (Zoli, 1999; Ravallion, 2014) is29

used to describe relative inequality in the probability distribution, calculated as the30

mean absolute difference between all pair of variants,31

g(n) =

∑n
i=1

∑n
j=1 |pi − pj|

2(n− 1)
(2)

where n is the richness (the number of unique variants) and p the frequency of32

specific variants.33

Entropy and the Gini index capture variation in the relative abundance of each34

outcome following the focal probability distribution. That is, when one outcome35

pj → 1 and all p
j
→ 0, the Shannon entropy goes to its lower asymptote of 0, and36

the Gini index goes to its upper asymptote of 1. Likewise, when pj = 1
n

for all j, the37

entropy is maximized at log(n) and the Gini index is minimized at 0.38

In the special case of n = 2 with two variant frequencies p and q = 1 − p, such39

that p > q, the Gini index simplifies to g2 = p− q. Using the fact that p+ q = 1, we40

can rewrite each as: p = 1−g2
2
, q = 1+g2

2
. Thus, there is an exact relationship between41

H2 and g2, such that entropy is maximized when the Gini index is minimized, and42

vice versa.43

H2 =

(
1 + g

2

)
log

(
2

1 + g

)
+

(
1− g

2

)
log

(
2

1− g

)
(3)

.44

Equation 3 defines the curve for n = 2 in Figure S1.45
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However, the relationship between a Gini index and an entropy is indefinite if46

n > 2 because multiple distributions with the same n with different entropy could47

take the same Gini index value. Figure S1 illustrates the relationship between the48

entropy and Gini index calculated for 100,000 simulated probability distributions.49

To understand the relationship between entropy, the Gini index and the richness50

further, the location of the minimum and maximum entropy within this wing-shaped51

“envelope” are important. Given any particular value of g, and number of variants n,52

we can describe the range of possible distributions between a maximum and minimum53

entropy. Although analytic solutions for the minimum or maximum entropy are54

elusive for n > 3, numerical solutions are readily available using simulation and non-55

linear optimization algorithms. In the supplementary codebase, we use the Rsolnp56

package to run the non-linear optimization algorithm and find maximum-entropy57

solutions for the cases in Figure S1.58

The lower “tips” of each distribution in Figure S1 represent the minimum-entropy59

limits at which the least-common non-zero variant tends to a zero frequency. In60

the case of n = 3, the minimum-entropy boundary can be approximated by noting61

that the minimum entropy (i.e., the “tip”) occurs when g = 1
2
. At a closer look at62

Figure S1, the minima of the entropy distribution lie at { 0
n−1

, 1
n−1

, . . . , n−1
n−1
}, following63

a limiting boundary described by the equation:64

Hmin = log (n− (n− 1)g) . (4)

More precisely, the minimum entropy boundaries can be defined by generalizing the65

entropy equation for n = 2 in equation 3 to: p = y−a
b−a

, q = b−y
b−a

, where v = 1− g in the66

special case of n = 2, a = 0 and b = 2. Empirical exploration of the entropy envelope67

by the simulation of 100,000 gesture distributions indicates that no distribution can68

occupy a lower entropy than defined by this boundary. This can be used to decompose69

entropy using g and n because if g is known, Hn,g varies between boundaries defined70

by the equation:71

exp(Ĥ) ≈ n− (n− 1)v1+b = n− (n− 1)v1+
2

2+a
+ a

a+n , (5)
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where evenness is v = 1 − g. If b = 0, this equation gives the lower theoretical72

boundary on entropy for any given g and n described by equation 4 and the “tips” in73

Figure S1. The numerically-calculated maximum entropy values are described by the74

equation b = 2
2+a

+ a
a+n

with a ≈ exp(0.5139). Thus, if we assume that a distribution75

tends towards maximum entropy (Frank, 2009), we can calculate a distribution’s76

entropy knowing only its richness n and the evenness v = 1− g.77

As evenness and richness are now related to entropy by a mathematical identity78

(and so have no single causal direction to their relationship), we can aspire to un-79

derstand what actually could explain why the observed kolam patterns follow the80

entropy isoclines.81

S2 Kolam Data82

S2.0.1 Lexicon of Gestures83

One specific class of kolam are those with loop patterns, called square loop kolam84

drawings (i.e., the ner pulli nelevu or sikku kolam family) (Waring, 2012). These85

kolam drawings are composed of an initial grid of dots (pulli) that reflect the canvas86

size. Lines consisting of multiple gestures are sequentially drawn around the dots to87

form loops. We only focus on these square loop kolam drawings because the patterns88

can be mapped onto a small identifiable set of gestures which is suitable for analyses.89

The geometry of the kolam can be divided in two fundamental geometric spaces90

and a transitional geometric space with their specific corresponding positions, orienta-91

tions and gestures. All gestures are always located in relation to the neighboring dots,92

called pulli. For a detailed description of the sequential encoding of kolam drawings93

with the gestural lexicon, please consult Waring (2012).94
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Figure S2: The Lexicon of Kolam Gestures. The Figure illustrates the gestures

and the corresponding code to encode kolam drawings. Taken and adapted with

permission from Waring (2012)
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S2.1 Database95

S2.1.1 Survey Information96

Information on individuals’ kolam drawing abilities and behaviour were gathered as97

well as demographic information. Demographic information entailed data such as98

GPS data of the current residency, marriage status, native places and measures of99

socio-economic status. To investigate individual’s kolam practice, survey questions100

included information on individual’s frequency of drawing kolam drawings in front of101

their doorstep or in their practice book and the age of initial learning.102

S2.1.2 GPS103

The geographical position of each individual’s current residency was measured. A104

GPS tracker of type Garmin GPSmap 60 CSx was used. The interviewer only asked105

for the name of the native place and during data pre-processing the name of the native106

place and if needed other demographic information was then used to manually map107

the name of the native place to a GPS position. All GPS positions of the current108

residency and the native place were recorded allowing distances between points to109

be calculated by applying the distance formula to the x-y-z coordinates of the two110

points.111

S2.1.3 Kolam Drawings112

A corpus of kolam drawings was compiled by soliciting individual’s to draw kolam113

drawings as part of the survey. Each individual was asked to draw a minimum of a114

total of 20 kolam drawings.115
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S3 Statistical Analyses116

S3.1 Random Intercept Models117

S3.1.1 Statistical Model118

Density ∼ Log-Normal(µi, σ)

µi = αdensity + αj + βcaste + βage × age + βpractice duration × practice duration

βcaste = σcaste × zcaste
αj = σartist × zartist

αdensity ∼ Normal(1, 2)

σcaste ∼ Normal(0.5, 1)

σartist ∼ Normal(0, 0.5)

σ ∼ Normal(0.5, 0.5)

βcaste ∼ Normal(0, 1)

βage ∼ Normal(0, 1)

zcaste ∼ Normal(0, 1)

zartist ∼ Normal(0, 1)

(6)
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Evenness ∼ Truncated Normal(µi, σ)[0, 1]

µi = αevenness + αj + βcaste + βage × age + βpractice duration × practice duration

βcaste = σcaste × zcaste
αj = σartist × zartist

αevenness ∼ Normal(1, 2)

σcaste ∼ Normal(0.5, 1)

σartist ∼ Normal(0, 0.5)

σ ∼ Normal(0.5, 1)

βcaste ∼ Normal(0, 1)

βage ∼ Normal(0, 1)

zcaste ∼ Normal(0, 1)

zartist ∼ Normal(0, 1)

(7)

Richness ∼ Poisson(λi)

log(λi) = αrichness + αj + βcaste + βage × age + βpractice duration × practice duration

βcaste = σcaste × zcaste
αj = σartist × zartist

αrichness ∼ Normal(1, 2)

σcaste ∼ Normal(0.5, 1)

σartist ∼ Normal(0, 0.5)

βcaste ∼ Normal(0, 1)

βage ∼ Normal(0, 1)

zcaste ∼ Normal(0, 1)

zartist ∼ Normal(0, 1)

(8)

S9



Canvas Sizei ∼ NegBinom(µi, φ)

log(µi) = αsize + αj + βcaste + βage × age + βpractice duration × practice duration

βcaste = σcaste × zcaste
αj = σartist × zartist
αsize ∼ Normal(1, 2)

σcaste ∼ Normal(0.5, 1)

σartist ∼ Normal(0, 0.5)

φ ∼ Normal(1.5, 3)

βcaste ∼ Normal(0, 1)

βage ∼ Normal(0, 1)

zcaste ∼ Normal(0, 1)

zartist ∼ Normal(0, 1)

(9)

Entropyi ∼ Truncated Normal(µi, σ)[0, 1]

µi = αentropy + αj + βcaste + βage × age + βpractice duration × practice duration

βcaste = σcaste × zcaste
αj = σartist × zartist

αentropy ∼ Normal(1, 2)

σcaste ∼ Normal(0.5, 1)

σartist ∼ Normal(0, 0.5)

φ ∼ Normal(1.5, 3)

βcaste ∼ Normal(0, 1)

βage ∼ Normal(0, 1)

zcaste ∼ Normal(0, 1)

zartist ∼ Normal(0, 1)

(10)
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S3.1.2 Visual MCMC Diagnostics119

Figure S3: Traceplot for the random intercept model on density showing mixing

across chains and convergence.

Figure S4: Traceplot for the random intercept model on evenness showing mixing

across chains and convergence.
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Figure S5: Traceplot for the random intercept model on richness showing mixing

across chains and convergence.

Figure S6: Traceplot for the random intercept model on canvas size showing mixing

across chains and convergence.
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Figure S7: Traceplot for the random intercept model on entropy showing mixing

across chains and convergence.
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Figure S8: Pairs plot for the random intercept model on density showing correlation

among parameters and no sampling problems.
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Figure S9: Pairs plot for the random intercept model on gini showing correlation

among parameters and no sampling problems.
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Figure S10: Pairs plot for the random intercept model on richness showing correlation

among parameters and no sampling problems.
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Figure S11: Pairs plot for the random intercept model on canvas size showing corre-

lation among parameters and no sampling problems.
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Figure S12: Pairs plot for the random intercept model on entropy showing correlation

among parameters and no sampling problems.
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S3.1.3 Intraclass Correlation (ICC)120

The intraclass-correlation coefficient (ICC) can be calculated for Gaussian models121

to determine the variance explained by random and fixed effects (Gelman and Hill,122

2006, p.258). Since our five models are non-Gaussian, we approximated the ICC123

using variance decomposition based on the posterior predictive distribution. We first124

drew from the posterior predictive distribution not conditioned on our fixed (i.e.,125

age and duration of practice) and random effect (i.e., caste and individual variation)126

terms and then drew from the posterior predictive distribution conditioned on all127

fixed and random effects. Subsequently, we calculated the variances for both draws.128

The pseudo-ICC is then the ratio between these two variances. Occasionally, the129

variance ratio can be negative due to very large variance of the posterior predictive130

distributions.131
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Figure S13: Intraclass Correlation Coefficients (ICC) for individual random-effect

variances for the four outcome variables. The variance decomposition is based on the

posterior predictive distribution, which is the correct way for Bayesian non-Gaussian

models.
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S3.1.4 Illustration of Random Effect Estimates for Caste132
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Figure S14: Caste random effect offsets for each outcome variable. The red line

reflects zero offset. Each violin probability density plot displays the variation within

each caste on the corresponding outcome variable (i.e., richness, canvas size, density,

evenness and entropy). The posterior mean offset is illustrated in blue. The range of

the violin plots reflect the 90% HPDI.
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S3.2 Gaussian Process Models133

To investigate whether the observed variation in structural and information-theoretic134

properties of kolam drawings is structured by the residential or native place proximity135

between individuals, we used a Gaussian process (GP) model to estimate a function136

for the covariance between pairs of individuals at different spatial distances of their137

residency as well as their native place. We fit the GP model on the five outcome138

variables entropy, canvas size, gesture density, richness and evenness. To foreshadow139

the conclusions drawn from the GP model, results from the GP model are in line with140

our main results from the random-intercept models. The GP model further indicates141

no major differentiation between artists originally from the community and those who142

emigrated from other parts of India, and no spatial association between artist’s kolam143

drawings.144

S3.2.1 Statistical Model145

We estimated unique intercepts for each individual with a varying effects approach146

to continuous categories using a Gaussian process (GP) model. A GP can be seen as147

a distribution of nonlinear functions. Placing a GP prior over the covariance, allows148

us to estimate a function for the covariance between pairs of individuals at different149

variable distances (McElreath, 2016). The individual-level covariance matrix αi was150

modeled using an exponentiated quadratic kernel. This covariance function implies151

that the covariance between any two individuals j and k declines exponentially with152

the squared distance between them. No variation between individuals would corre-153

spond to a covariance of zero or close to zero. The parameter ρ2, also referred to154

as length scale, determines the rate of decline. If ρ2 is large, then the covariance155

decreases slowly with squared distance, while if ρ2 is small it decreases rapidly with156

squared distance. This length-scale ρ2 prior is constrained to be between zero and157

one because the distances were normalized to be between zero and one. η2 is the max-158

imum covariance between any two individuals. Automatic relevance determination159

(Neal, 1996) was performed where multiple predictors with corresponding length-scale160

parameters for each dimension were merged into the GP.161
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Statistical models on the five structural and information-theoretic properties of162

kolam drawings were implemented. The predictor variables to investigate the parti-163

tion of variation across individuals and the population was the same in all models.164

Age, duration of practice, caste, and residential and native place proximity between165

individuals were used as predictor variables to explain individual variation on the166

structural and information-theoretic properties. The residential and native place dis-167

tances as well as age and practice duration were normalized, such that the minimum168

value was zero and the maximum value was one. The pairwise Euclidean distances169

between each pair of individuals along each predictor variable dimension was then170

computed for age, duration of practice and residential and native place proximity171

between individuals. GPS coordinates were used to compute residential and na-172

tive place distance matrices between individuals. Distances correspond to Euclidean173

distance between individuals for the specific variable dimension. For example, the174

residence or native place distance matrix are spatial distances. Caste was modeled as175

a hierarchical non-centred categorical variable with 19 categories.176
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Density ∼ Log-Normal(µi, σ)

µi = αdensity + αj + βcaste

αj ∼ MVNormal(0, K(x))

Kjk = η2exp

[
−
(

Residence2

2× ρ2R
+

Native Place2

2× ρ2N
+

Age2

2× ρ2A
+

Duration2

2× ρ2D

)]
+ δjk × 0.001

βcaste = σcaste × z

η2 ∼ Normal(5, 2)

ρ2R ∼ Beta(1, 2)

ρ2N ∼ Beta(1, 2)

ρ2A ∼ Beta(1, 2)

ρ2D ∼ Beta(1, 2)

σ ∼ Normal(0.5, 0.5)

αdensity ∼ Normal(0.5, 1)

σcaste ∼ Normal(0.5, 0.5)
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Evenness ∼ Truncated Normal(µi, σ)[0, 1]

µi = αevenness + αj + βcaste

αj ∼ MVNormal(0, K(x))

Kjk = η2exp

[
−
(

Residence2

2× ρ2R
+

Native Place2

2× ρ2N
+

Age2

2× ρ2A
+

Duration2

2× ρ2D

)]
+ δjk × 0.001

βcaste = σcaste × z

η2 ∼ Normal(5, 2)

ρ2R ∼ Beta(1, 2)

ρ2N ∼ Beta(1, 2)

ρ2A ∼ Beta(1, 2)

ρ2D ∼ Beta(1, 2)

σ ∼ Normal(0.5, 0.5)

αevenness ∼ Normal(0.5, 1)

σcaste ∼ Normal(0.5, 0.5)
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Richness ∼ Poisson(λi)

log(λi) = αrichness + αj + βcaste

αj ∼ MVNormal(0, K(x))

Kjk = η2exp

[
−
(

Residence2

2× ρ2R
+

Native Place2

2× ρ2N
+

Age2

2× ρ2A
+

Duration2

2× ρ2D

)]
+ δjk × 0.001

βcaste = σcaste × z

η2 ∼ Normal(5, 2)

ρ2R ∼ Beta(1, 2)

ρ2N ∼ Beta(1, 2)

ρ2A ∼ Beta(1, 2)

ρ2D ∼ Beta(1, 2)

σ ∼ Normal(0.5, 0.5)

αrichness ∼ Normal(0.5, 1)

σcaste ∼ Normal(0.5, 0.5)
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Canvas Sizei ∼ NegBinom(µi, φ)

log(µi) = αsize + αj + βcaste

αj ∼ MVNormal(0, K(x))

Kjk = η2exp

[
−
(

Residence2

2× ρ2R
+

Native Place2

2× ρ2N
+

Age2

2× ρ2A
+

Duration2

2× ρ2D

)]
+ δjk × 0.001

βcaste = σcaste × z

η2 ∼ Normal(5, 2)

ρ2R ∼ Beta(1, 2)

ρ2N ∼ Beta(1, 2)

ρ2A ∼ Beta(1, 2)

ρ2D ∼ Beta(1, 2)

σ ∼ Normal(0.5, 0.5)

αsize ∼ Normal(0.5, 1)

σcaste ∼ Normal(0.5, 0.5)
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Entropy ∼ Truncated Normal(µi, σ)[0, ]

µi = αentropy + αj + βcaste

αj ∼ MVNormal(0, K(x))

Kjk = η2exp

[
−
(

Residence2

2× ρ2R
+

Native Place2

2× ρ2N
+

Age2

2× ρ2A
+

Duration2

2× ρ2D

)]
+ δjk × 0.001

βcaste = σcaste × z

η2 ∼ Normal(5, 2)

ρ2R ∼ Beta(1, 2)

ρ2N ∼ Beta(1, 2)

ρ2A ∼ Beta(1, 2)

ρ2D ∼ Beta(1, 2)

σ ∼ Normal(0.5, 0.5)

αentropy ∼ Normal(0.5, 1)

σcaste ∼ Normal(0.5, 0.5)

S3.2.2 Estimation of Variation177

The five statistical models were implemented in the probabilistic programming lan-178

guage Stan 2.18 (Carpenter et al., 2017), using 6000 samples from four chains. Anal-179

yses were performed in R (R Core Team, 2019). Data and analyses can be found here:180

http://github.com/nhtran93/kolam_signaling. All R-hat values were less than181

1.01, and visual inspection of trace plots and rank histograms indicated convergence182

of all models.183

Between-individual variation in entropy (η2 = 0.00, 90% CI [0.00, 0.00]), density184

(η2 = 0.01, 90% CI [0.01, 0.01]), the evenness (η2 = 0, 90% CI [0, 0]), and in the185

richness (η2 = 0.00, 90% CI [0, 0.01]) were estimated with high certainty to be very186

small and close to zero (see left panel in Figure S15). The between-artist variability187

is most pronounced in canvas size ((η2 = 0.03, 90% CI [0.02, 0.03]), while kolam188

drawings show only small distinct variation between artists in the other structural and189
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information-theoretic properties. Our results further show no evidence that variation190

in structural and information-theoretic properties of kolam drawings covary with the191

spatial structure, age or practice duration (see Figure S15).192

Prior-posterior plots of all five models show that the priors updated for all param-193

eters except the length scale parameters ρ because there is barely any information to194

explain individual variation with no individual variation present. We detected very195

small effects of caste membership on the entropy, density, evenness, and richness, with196

varying-effect deviations estimated near zero with high certainty (entropy: σcaste =197

0.03, 90% CI [0.01, 0.05]; density: σcaste = 0.04, 90% CI [0.01, 0.07]; evenness: σcaste198

= 0.03, 90% CI [0.01, 0.04]; and richness: σcaste = 0.01, 90% CI [0.00, 0.03] respec-199

tively). We detected more pronounced effects of caste membership on canvas size200

(canvas size: σcaste = 0.09, 90% CI [0.05, 0.14]) as illustrated in Figure S15.201
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Figure S15: Prior-Posterior Coefficient Plots of Individual variation and Caste Vari-

ation. All panels have the same y-axis indicating the five models. The left panel

(eta squared) illustrates the estimated individual variation (dark blue) in comparison

to the prior (light blue) for each model. The right panel illustrates the estimated

population-level standard deviation for the effect of caste (dark blue) in comparison

to the prior (light blue) for each model. The 90% Highest Posterior Density Interval

(HPDI) was computed for each posterior; however, the interval is very narrow.
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