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We investigate entanglement growth for a pair of coupled kicked rotors. For weak coupling, the
growth of the entanglement entropy is found to be initially linear followed by a logarithmic growth.
We calculate analytically the time after which the entanglement entropy changes its profile, and a
good agreement with the numerical result is found. We further show that the different regimes of
entanglement growth are associated with different rates of energy growth displayed by a rotor. At
a large time, energy grows diffusively, which is preceded by an intermediate dynamical localization.
The time-span of intermediate dynamical localization decreases with increasing coupling strength.
We argue that the observed diffusive energy growth is the result of one rotor acting as an environment
to the other which destroys the coherence. We show that the decay of the coherence is initially
exponential followed by a power-law.

Entanglement, as characterized by the von Neumann
entropy, has recently emerged as an indispensable tool to
distinguish phases and phase transitions in many-body
quantum systems and reveals highly non-local informa-
tion [1–3]. Many-body localization, which emerges due
to ergodicity breaking, is known to exhibit a logarith-
mic growth of the entanglement entropy [4–9]. On the
other hand, systems showing thermalization show a sat-
uration of entanglement growth [10]. Logarithmic slow
down is also observed in a system with long-range interac-
tion along with a quench [11–13] and also in many-body
system with non-ergodic dynamics arising due to glassy
behavior [4, 14].

On the other hand, systems with interactions, for
which a finite speed of correlation spreading is gener-
ally observed [9, 11, 15, 16], show a linear growth of the
entanglement entropy before saturating. Linear growth
is also observed in open quantum systems [17–19], for in-
stance, an inverted harmonic oscillator weakly coupled to
a thermal bath [18]. It is further conjectured in Ref. [18],
that the rate of linear growth equals the sum of positive
Lyapunov exponents of the system. Similar correspon-
dence between entropy production and the Lyapunov ex-
ponent has been shown for a kicked rotor coupled to a
thermal bath [19]. However, coupled kicked tops show
a violation of this conjecture and it is observed that the
rate depends on the coupling strength rather than on the
Lyapunov exponents [20, 21].

In addition to many-body and open quantum systems,
even isolated two-body systems are capable of showing
a non-trivial and often unexpected dynamics. For in-
stance, coupled kicked rotors (CKR) have been found to
display localization-delocalization behavior depending on
the coupling potential. For example, a CKR studied in
Ref. [22] displays Anderson type of localization. A sim-
ilar result is also seen in CKR with different coupling
potential [23]. A CKR with a point interaction exhibits
dynamical localization of the center-of-mass momentum,
which is destroyed for the relative momentum [24]. In
contrast, there are systems displaying the destruction of
localization: For example, a CKR with a certain cou-

pling potential shows a diffusive growth of the width of
evolved state [25]. Similarly, for spatially confined pair
of δ-kicked rotors the center-of-mass motion displays de-
struction of localization [26]. Moreover, for CKR either
localization or diffusion is reported, depending on the
strength of coupling [27]. Experimentally realized CKR
shows a localization-delocalization transition [28]. Thus,
the dynamics displayed by CKR depending on the cou-
pling potential is not yet fully understood and in partic-
ular the connection to entropy production has not been
elucidated.

In this paper we report on a surprising phenomenon in
the entanglement production of a pair of coupled kicked
rotors on a cylinder, which shows two distinct regimes
of entanglement growth, i.e. linear and logarithmic, as
time progresses. We show that this is tightly connected
to a localization-delocalization cross-over of time-evolved
states with an intermediate dynamical localization. We
also show that the logarithmic growth of the entangle-
ment entropy commences once the system displays nor-
mal diffusion at large times, while before that a linear
growth is found. We further show that however weak the
coupling is, the rotor will eventually display normal diffu-
sion at large times. Analytically we calculate the growth
of the linear entropy which shows an initial linear behav-
ior followed by a saturation. The rate of linear growth
is shown to depend quadratically on the ratio of scaled
Planck’s constant to the coupling strength rather than
on the Lyapunov exponent. Furthermore, we provide an
analytical expression for the time beyond which the log-
arithmic growth of the entanglement entropy starts.

A pair of coupled kicked rotors is a prototypical system
for studying the dynamics and entanglement between two
particles. Its Hamiltonian is given by

H =
p21
2

+
p22
2

+ [K1 cos(x1) +K2 cos(x2)

+ ξ12 cos(x1 − x2)]
∑
n

δ(t− n)

= H1 +H2 +H12,

(1)
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where Hj =
p2j
2 + Kj cos(xj)

∑
n δ(t − n) represents the

Hamiltonian of each kicked rotor and H12 = ξ12 cos(x1−
x2)
∑
n δ(t − n) describes the coupling between the two

rotors. Here pj is the momentum and xj the position of
the j-th rotor. The kicking strengths of the kick received
by j-th kicked rotor is Kj and ξ12 represents the coupling
strength. Considering the dynamics stroboscopically, i.e.
at multiple integer times, one obtains a four-dimensional
symplectic map on a cylinder with periodic boundary
conditions in the position coordinates. Note that as-
suming in addition periodic boundary conditions in the
momentum coordinates one obtains the four-dimensional
coupled standard map [29–31].

For ξ12 = 0, the system represents two uncoupled
kicked rotors. If the kicking strengths Kj of the in-
dividual rotors are sufficiently large, their dynamics is
chaotic with a Lyapunov exponent of approximately
ln(Kj/2) [32]. In the following numerical investigations
we use K1 = 9.0 and K2 = 10.0 so that the classical
dynamics is chaotic. In this chaotic case, the single or
uncoupled kicked rotors display normal diffusion, i.e. a
linear growth of the mean energy for an ensemble of ini-
tial conditions, 〈E〉 = Dclt [33, 34], where Dcl is the
classical diffusion coefficient.

For the quantum dynamics of CKR, the time evolution
is given by the unitary operator U = (U1⊗U2)U12, where

Uj = e−i
p2j
2~s e−i

Kj
~s

cos(xj) and U12 = e−i
ξ12
~s

cos(x1−x2), such
that |Ψ(t)〉 = U t|Ψ(0)〉 is the time-evolved state at dis-
crete time t of the initial state |Ψ(0)〉. In the following,
we consider as initial state product states of the form
|Ψ(0)〉 = |ψ1(0)〉 ⊗ |ψ2(0)〉, where |ψj(0)〉 is a coherent
state of the j-th rotor. For the numerical calculations,
the fast Fourier transform is employed by expressing mo-
mentum and position values of each rotor evaluated on
discrete grids of the same size N = 2l with l = 11.
Note that in contrast to the normal diffusion displayed
by a classical single kicked rotor, its quantum dynamics
shows a suppression of the diffusion. This phenomenon
is called dynamical localization, which is a phase coher-
ent effect analogous to Anderson localization observed in
disordered lattices [35]. Also note, similar to the classi-
cal case, the pair of quantum kicked rotors can also be
considered with periodic boundary conditions in momen-
tum [31, 36, 37] and the spectral properties and entan-
glement generation in this case has been investigated in
detail in Refs. [38–41].

The entanglement between the sub-systems given by
the two kicked rotors can be characterized by the von
Neumann entropy

SvN(t) = −Tr1 (ρ1(t) log ρ1(t)) , (2)

where ρ1(t) = Tr2(ρ(t)) is the reduced density matrix
obtained by tracing out the contribution of second sub-
system and ρ(t) = |Ψ(t)〉〈Ψ(t)| is the total density matrix
of the time-evolved state |Ψ(t)〉.

Figure 1(a) shows that the growth of SvN has two
distinct regimes, linear and logarithmic. Initially, SvN
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FIG. 1. (a) Entanglement entropy SvN as function of time.
The blue vertical dashed line represents the crossover time
t∗ at which the transition from linear to logarithmic occurs.
Inset captures the linear regime. The orange dash dotted
lines are linear fits to SvN. (b) Mean energy growth 〈E1〉
of the first kicked rotor as a function of time. The orange
dash dotted line indicates the break-time tb. Inset shows 〈E1〉
for different coupling strengths, ξ12 = 0.0, 0.01, 0.03, 0.07, 0.1
from bottom to top. (c) and (d) represent momentum and
position distributions at two different times, t = 150 (blue
symbols) and t = 10000 (orange symbols). The solid lines
in (c) are Gaussian (green) and exponential (black) fits. All
plots are for K1 = 9.0, K2 = 10.0, ξ12 = 0.05 (for green solid
line), and ~s = 1.0.

grows linearly up to a cross-over time t∗, see the in-
set of Fig. 1(a) represented by a blue vertical dashed
line. We find that the rate of this linear growth de-
pends on the coupling strength following the relation

SvN ∼ ξβ12. The value of the exponent β is numerically
found to be approximately 1.85. In this regime of linear
growth, the rate turns out to be independent of the kick-
ing strengths when both rotors display classically chaotic
dynamics. After the break-time t∗, the growth of SvN

slows down and shows a logarithmic dependence on time,
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i.e, SvN = 1
2 ln t+ const. The value of SvN at the onset of

logarithmic growth, i.e. SvN(t∗), depends on the quantum
diffusion coefficient which in turn depends on the kicking
strength. Additionally, it is found that SvN(t∗) barely
depends on the coupling strength (not shown). Thus,
the key finding is that the production of entanglement
between the rotors does not follow a single functional
form and, remarkably, in the two regimes a different de-
pendency on the system parameters, i.e. ξ12 and Kj , is
found.

To obtain a qualitative understanding of the observed
entanglement growth in terms of the underlying quan-
tum dynamics, let us consider the behavior of mean en-

ergy growth 〈E1〉 = 〈Ψ(t)|p
2
1

2 |Ψ(t)〉 and the distributions

g(x1) = |〈Ψ|x1〉|2 in position space and f(p1) = |〈Ψ|p1〉|2
in momentum space of the first rotor. Figure 1(b) shows
that there are three different regimes: Initially, 〈E1〉
grows linearly until the break time tb, which is indicated
by a orange vertical dash dotted line in Fig. 1(b). The
break-time is the time until which the quantum energy of
a single kicked rotor follows the classical energy growth
[34, 42]. Until this time the system builds up its quan-
tum correlations, which after tb leads to the emergence of
an intermediate dynamical localization (IDL) for which
〈E1〉 is essentially constant. This IDL extends up to the
cross-over time t∗, indicated by a blue vertical dashed
line in Fig. 1(b). Beyond t∗, the system displays nor-
mal diffusion, 〈E1〉 ∼ t. Moreover, it can be seen from
the inset of Fig. 1(b), that the temporal extent of the
IDL increases with decreasing coupling ξ12. An impor-
tant consequence of this observation is that the system
will always show normal diffusion at large times for any
non-vanishing coupling ξ12 > 0.

Another significant observation is that the normal dif-
fusion seen in Fig. 1(b) is similar to classical diffusion.
This can be seen from Fig. 1(c) which shows that the mo-
mentum distribution at time t = 10000 is well described
by a Gaussian. Also the position distribution becomes
very uniform with only small quantum fluctuations, see
Fig. 1(d). In contrast, the momentum distribution is ex-
ponentially localized in the IDL, as illustrated at t = 150
in Fig. 1(c) and the corresponding position distribution
shows much larger fluctuations as seen in Fig. 1(d).

The Gaussian momentum and uniform position distri-
butions are typical features of a corresponding classical
diffusive regime [34]. Thus, the appearance of normal dif-
fusion suggests that the rotors provide noise to each other
which destroys quantum coherence. Quantum coherence
is the origin of the appearance of dynamical localization
for a single kicked rotor. As a result, classical-like be-
havior emerges which in turn gives rise to a slow growth
of SvN. Thus, we can conclude that the linear regime of
SvN appears when the system has quantum correlations.
On the other hand, for t > t∗, where normal diffusion
dominates, complete loss of correlations gives rise to the
logarithmic growth.

Now, we provide a theoretical explanation of the emer-
gence of the two regimes of SvN growth in the case of weak

coupling ξ12 � 1. For this we consider the linear entropy
Slin(t) = Tr1ρ1(t)2 which is analytically easier tractable
than the von Neumann entropy SvN, but shows the same
characteristics. To treat the initial time-dependence, the
key point is to consider that one rotor acts as an environ-
ment to the other so that we can rewrite the Hamiltonian
in Eq. (1) as H = HS +HE +V (t), where HS (HE) repre-
sents the system (environment) Hamiltonian and V (t) is
the interaction. The evolution of the total density matrix
ρ(t) in the interaction picture is

dρ(t)

dt
= − i

~s
[V (t), ρ(t)] . (3)

As the initial state is a product state we have ρ(0) =
ρS(0) ⊗ ρE(0). Performing formal integration and itera-
tion and considering ξ12 � 1, we arrive at

ρ(t) =ρ(0)− iξ12
~s

t∑
r=1

[F(r), ρ(0)]

+

(
iξ12
~s

)2 t∑
r=1

r−1∑
s=1

[F(s), [F(r), ρ(0)]] ,

(4)

where F(r) = cos(x1(r) − x2(r)). The summation in-
stead of integration that appears in Eq. (4) is due to
the fact that coupling acts only at integer times, i.e.
V (t) = ξ12 cos(x1 − x2)

∑
n δ(t − n). The calculation

of ρ(t) is most conveniently done in position basis as the
interaction is in position space. With ρS(t) = TrEρ(t)
the computation of Slin = 1− TrS(ρS(t)2) leads to

Slin(t) =

(
ξ12
~s

)2

C(t), (5)

where C(t) =
∑t
r,s=1 C(r, s) and C(r, s) represents the

correlation function at two different time steps. If both
rotors display classically chaotic dynamics, then C(t) is
independent of the system parameters. Furthermore, it is
numerically found that for small coupling, C(t) depends
linearly on time. Thus Eq. (5) reveals that the rate Γ =
dSlin

dt depends only on the ratio ξ12
~s

rather than on the
kicking strengths Kj . This implies that for weak coupling
the initial temporal growth of Slin does not depend on the
strength of chaos of the individual rotors.

To determine the behavior of the linear entropy at large
times, i.e. for t > t∗, we employ that the time-evolved
initial state becomes on average Gaussian in momentum
and uniform in position space, see Fig. 1(c) and (d). Us-
ing the Husimi function H(x1, p1) one can express the
linear entropy as [43]

Slin = 1−
∫
H(x1, p1)2

dp1dx1
2π~s

. (6)

We approximate the Husimi distribution of the time-

evolved state by H(x1, p1) = ~s√
2πDqt

exp
(
− p21

2Dqt

)
,
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where Dq is the quantum diffusion coefficient. Inserting
H(x1, p1) in Eq. (6) gives

Slin = 1− ~s√
4πDq

t−1/2. (7)

Equation (7) reveals that Slin in the regime of linear
growth of SvN depends on Dq and shows that Slin satu-
rates at large times.

Equating the two expressions for Slin obtained in
Eq. (5) and Eq. (7) at t = t∗, at which the cross-over
occurs, and solving for t∗, we obtain

t∗ =
~2s

3ξ212

[
2 +

1

G(ξ12, Dq)
+ G(ξ12, Dq)

]
, (8)

where

G(ξ12, Dq) =

[
−1 +

27

8π

ξ212
Dq

+
3

3
2 ξ12
2

√
−1

πDq
+

27

16π2

ξ212
D2

q

] 1
3

.

Hence, t∗ depends on the coupling strength ξ12, the
scaled Planck’s constant ~s, and the quantum diffusion
coefficient Dq. Equation (8) shows that with decreasing
~s the value of t∗ decreases. This is because quantum
correlations vanish in the semi-classical limit. Also, with
increasing ξ12, the cross-over time t∗ decreases. This
relates to the fact that the coupling between the sub-
systems destroys the coherence in the system. Figure 2
compares the analytical result (8) with numerical result
and a very good agreement is found. This shows that,
however small the coupling is, the system will eventu-
ally show normal diffusion. It is also interesting to note
that for a noisy kicked rotor with noise strength ε, the

diffusion commences at a time-scale
~2
s

ε2 [44].
As discussed, coherence plays a central role in the

emergence of the different regimes of the entanglement
growth as characterized by SvN or Slin. To investigate
the decay of coherence and examine the nature of noise
provided by one rotor to the other, we study the de-
cay of the off-diagonal elements of ρ1. The off-diagonal
elements represent the interference between the system
and the environment and their decay indicates the loss
of coherence [45]. We quantify this decoherence by cal-

culating D(t) =
∑
i6=j ρ

ij
1 (t), which is shown in Fig. 3.

Initially D(t) is close to one and follows an exponential
decay until t < t∗. The exponential decay of coherence is
also observed in a kicked rotor system with random noise
[46, 47]. This suggests that one rotor provides random
noise to the other and thus effectively acts as an envi-
ronment. Now, around t = t∗ in Fig. 3, one observes an
extended transition and finally a power-law decay. The
exponent of the power-law is numerically found to be ap-
proximately 0.5. This slow decay of coherence implies
that the quantum system enters the classical-like regime
as illustrated in Fig. 1(b) and will require an arbitrary
large time to actually behave like a classical system.

A closer look at the initial time-dependence of the de-
coherence, as shown in the inset of Fig. 3, reveals an
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FIG. 2. Dependence of the cross-over time t∗ on the ratio
of the coupling strength ξ12 to the scaled Planck’s constant
~s. The analytical result (blue dashed line with crosses) is
compared to the numerical results (orange circles). The inset
sketches the procedure to calculate t∗ numerically. Parame-
ters are K1 = 9.0, K2 = 10.0, and ~s = 1.0.
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FIG. 3. Decay of coherence of the first kicked rotor for ξ12 =
0.05. The blue vertical dashed line represents t∗. The red,
yellow, and green curves in the inset show the decoherence
for ξ12 = 0.0, 0.01, 0.05, respectively. The orange vertical
dash dotted line indicates the break time tb. Parameters are
K1 = 9.0, K2 = 10.0, and ~s = 1.0.

initial production of coherence for uncoupled rotors (red
curve) until the break-time tb and then saturation to
a constant value. This initial increase can also be ob-
served in a weak coupling situation (yellow curve) for
which tb � t∗ and because of that, a signature of IDL
is observed as in Fig. 1(b) for t > tb. Even for coupling
ξ12 = 0.05, an initial increase in coherence for a small
time interval t < tb can be observed (green curve in the
inset of Fig. 3) which corresponds to the appearance of a
short IDL in Fig. 1(b). However, for strong coupling, the
cross-over time t∗ becomes so small that an initial pro-
duction of coherence is not possible. Thus, the coherence
decays from the very beginning.

To summarize, for a pair of coupled kicked rotors we
demonstrate that the entanglement entropy shows two
distinct regimes, initially linear growth followed by a log-
arithmic increase. The logarithmic regime sets in when
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the time-evolved state shows a Gaussian profile in mo-
mentum space and is uniform on average in position
space. This regime can be considered as a kind of classical
behavior caused by one rotor acting as a noisy environ-
ment to the other. This leads to an exponential decoher-
ence, which is clearly confirmed by the numerical results.
The cross-over time t∗ between linear and logarithmic
behavior of the von Neumann entropy is computed using
the linear entropy. Explicit expressions for Slin in both
regimes are obtained and excellent agreement of the pre-
diction for t∗ with numerics is found. Thus, we show

that entanglement entropy allows to distinguish two com-
pletely different dynamics, quantum and classical-like. It
would be very interesting to experimentally investigate
this CKR, for example using ultra-cold atoms.
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