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ABSTRACT
Formal languages are widely studied, taught and used in computer
science. However, only a small part of this domain is brought to a
broader audience, and students often have no practical experience
in their curriculum. In this tool paper, we introduce Pyformlang, a
practical and pedagogical Python library for formal languages. Our
library implements the most common algorithms of the domain,
accessible by an easy-to-use interface. The code is written exclu-
sively in Python3, with a clear structure, so as to allow students to
play and learn with it.

CCS CONCEPTS
• Theory of computation→Grammars and context-free lan-
guages; Regular languages; • Applied computing → Educa-
tion; • Software and its engineering→ Software libraries and
repositories.
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1 INTRODUCTION
The range of applications of formal languages is infinite: They
include information extraction with regular expressions for knowl-
edge base construction as in Yago [24] or Quasimodo [21], code
parsing with context-free grammars, video game artificial intel-
ligence using finite-state automata [16], or even query rewriting
using complex manipulations of context-free grammars and regular
expressions as in [20].
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Formal languages are part of most computer science programs,
and many students learn about it early in their studies. For ex-
ample, in France, this subject is the first topic taught in “classe
préparatoire”1 (two first years of university for engineer students).

Although formal languages are quite old, teaching this discipline
is still a complicated task. The reason is that traditional teaching
methods involve much mathematics: Students must learn the proofs
and the algorithms to be able to reproduce them on paper. Therefore,
they generally have issues visualising the concept introduced, and
some authors suggested that more interactive methods should be
used [14, 15]. Some textbooks [11] also contain many exercises with
no solution. An automatic tool to manipulate formal language can
come in handy when the teacher does not have enough time to go
through all exercises, or when the student is self-taught. Moreover,
more interactive and easy-to-use methods to manipulate formal
languages open the field of project-based learning: Having a tool
that is close to the course material and that is of practical usage
would help students apply the concepts learnt in class.

Besides, when teaching formal languages applications, one gen-
erally gives a brief overview of the core concepts without enter-
ing into details. However, some students might not have learnt
about formal languages before. So, to better understand the more
advanced and specialised algorithms, specific tools that can decom-
pose them are very useful. For example, regular expressions are
often used in Information Extraction. Their equivalent representa-
tion using finite-state automata can be more comfortable in some
situation, as it is more visual. However, the transition between the
two representations is quite rare in libraries. In particular, it is not
possible to obtain directly a finite-state automaton from a Python
regular expression (mainly because Python regular expressions are
strictly more expressive than regular expressions used in formal
language theory).

Python has become one of the most popular programming lan-
guages over the past few years (https://insights.stackoverflow.com/
survey/2019), and particularly among students. However, there are
few tools to manipulate formal languages with Python.

In this paper, we present Pyformlang, a Python3 library for ma-
nipulating formal languages. In Section 2, we will discuss other
libraries for manipulating formal languages. Then, in Section 3, we
introduce Pyformlang, its components and how to use them.

2 PREVIOUS WORK
We survey libraries that allow students to learn formal languages.

The most used part of formal languages is surely regular ex-
pressions. Most programming languages implement them natively.

1https://eduscol.education.fr/sti/textes/programme-option-informatique-cpge-mp
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Text processing is the primary use case. In Python, the re library 
provides many possibilities to use regular expressions. However, 
it is restricted to regular expressions, and therefore it lacks more 
advanced formal language manipulation tools. For example, finite-
state automata are missing from the standard library. Thus, one 
cannot transform a Python regular expression into its equivalent 
finite-state automaton (which does not always exists, as Python 
regular expressions are strictly more general than formal language 
theory ones). More operations like concatenation, union or Kleene 
stars are not available at the level of regular expressions.

For parsing natural language, the most common tools are context-
free grammars. Some libraries are specialised in language parsing, 
such as Lark (https://pypi.org/project/lark-parser/) or more gen-
erally NLTK [13]. However, they are focused on parsing natural 
language, make no link with the rest of the theory, and often rely 
on an external file format (.lark for instance). As an example, none 
of the existing libraries allows the intersection between a context-
free grammar and a regular expression or a finite-state automaton 
(which is also a context-free language).

FAdo [17] is a library that focuses mainly on finite-state au-
tomata, with few other functionalities. The language of FAdo is 
Python2, a deprecated language (https://www.python.org/dev/peps/
pep-0373/) which is not compatible with Python3. The library im-
plements regular expressions, deterministic, non-deterministic and 
general automata and the transformations to go from one to the 
other. One can also perform standard operations such as union, 
intersection, concatenation or emptiness. However, FAdo does not 
go further than finite-state automata. For example, there is no link 
with context-free grammars.

JFLAP [18] is a tool written in Java to manipulate formal lan-
guages and it is the most advanced tool available. It implements 
regular expressions, deterministic and non-deterministic automata, 
context-free grammars, push-down automata, and Turing Machines. 
A user can also perform transformations between these structures. 
Besides, it provides roughly the same basic operations as FAdo 
for manipulating finite-state automata. However, many advanced 
operations are missing: For example, one cannot compute the inter-
section of context-free grammar and a regular expression. Further-
more, the usage of Java can be a limiting factor for fresh computer 
science students, and it makes prototyping harder. Finally, JFLAP is 
a graphical tool that does not provide an easy-to-access program-
matic API for students. Therefore, it cannot be used outside its 
graphical interface and, in particular, it cannot be easily integrated 
into other applications.

Forlan [22, 23] is a toolkit designed to run experiments with for-
mal languages. It is written in Standard ML, a barely used language. 
Forlan comes with JForlan, a graphical editor for automata and 
trees.

OpenFST [3] is a library to manipulate weighted finite-state 
transducers written in C++. Some Python wrappers were also im-
plemented. OpenFST does not support operations beyond the realm 
of transducers.

Vaucanson [6] is an open-source C++ platform dedicated to the 
manipulation of finite weighted automata. The usage of C++ makes 
it very fast. It has bindings for Python3, but it cannot be installed 
directly from PyPi, making its usage more complex. The content on 
automata and transducers is very advanced (going beyond a first

class on formal languages), but there is no link with non-regular
languages.

Some other tools exist to manipulate formal languages but they
are either no longer available or very specialised. For example,
Covenant [7] specialises in the intersection of context-free gram-
mars (which are not necessary context-free) but is no longer acces-
sible.

3 PYFORMLANG
Pyformlang is a Python3 library specialised in formal language ma-
nipulation. It is freely available on PyPI (https://pypi.org/project/py
formlang/) and the source code is onGithub (https://github.com/Aun
siels/pyformlang). The full documentation can also be accessed on
ReadTheDocs (https://pyformlang.readthedocs.io).

We chose to implement Pyformlang in Python3 in order to make
it easily accessible. The implementation of each algorithm follows
the one presented in the relevant textbooks. This way, a student
can easily follow every detail of the lectures in Pyformlang. Un-
less otherwise mentioned, we used Hopcroft [11] as the source of
most algorithms, since it is the most popular textbook for formal
languages.

Pyformlang is composed of sixmodules. In Section 3.1, we present
how regular expressions are handled. Then, we introduced their
equivalent representation using finite state automata in Section 3.2.
Next, we present finite-state transducers in Section 3.3. In Sec-
tion 3.4, we take a look to context-free grammars before treating
the equivalent class of push-down automata in Section 3.5. Finally,
we talk about indexed grammars in Section 3.6.

3.1 Regular Expressions
All courses on formal languages generally start with regular expres-
sions. Pyformlang implements the operators of textbooks, which
deviate slightly from the operators in Python.

• The concatenation can be represented either by a space or a
dot (.)

• The union is represented either by | or +
• The Kleene star is represented by *
• The epsilon symbol can either be epsilon or $

It is also possible to use parentheses. All symbols except the space,
., |, +, *, (, ), epsilon and $ can be part of the alphabet. All other
common regex operators (such as [])) are syntactic sugar that can
be reduced to our operators.

We deviate in one important point from the standard implemen-
tation of regular expressions. Usually, the alphabet consists of all
single characters (minus special ones), thus creating a concatena-
tion when encountering consecutive characters. In Pyformlang,
we consider that consecutive characters are a single symbol. We
wanted to have a more general approach not bound to text process-
ing. As an example, in normal Python, na* will be interpreted as
all words starting by n and ending by an indeterminate amount of
a (like naaa). In Pyformlang it represents all strings composed of
zero or more repetitions of the letter na (like nanananana). This
deviation allows expressing a wider variety of symbols in our alpha-
bet, and thus more words (i.e. combinations of alphabet symbols)
in a regular language. Still, our library also allows the standard
semantics though a wrapper of Python regular expressions.
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Asmost users are familiar with the implementation in the Python
standard library (which follows Perl’s standard), our library can
transform a Python regular expression into a regular expression
compatible with our implementation. This transformation gives
access to a more diversified function set for manipulating regular
expressions and also makes it possible to have additional represen-
tations (such as finite automata, see Section 3.2) that are missing
from the standard library. The transformation modifies the initial
regular expression to reduce it to the fundamental operators pre-
sented above. Then, our parser can take the transformed regular
expression and turn it into the internal representation.

As is the case in most systems, we used a tree structure to repre-
sent the regular expressions, where each node is an operator, and
each leaf is a symbol in the alphabet. This tree structure is often
presented to explain how regular expression work and Pyformlang
is able to print it.

Pyformlang contains the fundamental transformations on regu-
lar expressions, which produce again regular expressions: concate-
nation, Kleene star and unions. The transformation of a regular
expression into an equivalent non-deterministic automaton with
epsilon transitions gives access to additional operations.

Example 3.1. We show here an example of how to use the regular
expressions in our library:

1 from pyformlang.regular_expression import Regex

2

3 regex = Regex("abc|d")

4 # Check if the symbol "abc" is accepted

5 regex.accepts (["abc"]) # True

6 # Check if the word composed of the symbols

7 # "a", "b" and "c" is accepted

8 regex.accepts (["a", "b", "c"]) # False

9 # Check if the symbol "d" is accepted

10 regex.accepts (["d"]) # True

11

12 regex1 = Regex("a b")

13 regex_concat = regex.concatenate(regex1)

14 regex_concat.accepts (["d", "a", "b"]) # True

15

16 print(regex_concat.get_tree_str ())

17 # Operator(Concatenation)

18 # Operator(Union)

19 # Symbol(abc)

20 # Symbol(d)

21 # Operator(Concatenation)

22 # Symbol(a)

23 # Symbol(b)

24

25 # Give the equivalent finite -state automaton

26 equivalent_enfa = regex_concat.to_epsilon_nfa ()

27 equivalent_enfa.accepts (["d", "a", "b"]) # True

28

29 # Python regular expressions wrapper

30 from pyformlang.regular_expression import PythonRegex

31

32 p_regex = PythonRegex("a+[cd]")

33 p_regex.accepts (["a", "a", "d"]) # True

34 # As the alphabet is composed of single characters , one

35 # could also write

36 p_regex.accepts("aad") # True

37 p_regex.accepts (["d"]) # False

Listing 1: Regular Expression Example

3.2 Finite-State Automata
Finite-state automata are an equivalent representation of regular
expressions. They have the advantage of being more visual and
many algorithms (such as the intersection with a context-free gram-
mar) rely on them directly. Pyformlang contains the three main
types of non-weighted finite-state automata: deterministic, non-
deterministic and non-deterministic with epsilon transitions.

All possible transformations are implemented. First, it is possible
to transform any non-deterministic finite-state automaton with
epsilon transitions into a non-deterministic finite without epsilon
transitions. Then, it is possible to turn a non-deterministic finite
automaton into a deterministic one. Besides, as finite-state automata
and regular expressions are equivalent, we offer the possibility to
go from one to the other.

We implemented the fundamental operations on automata:
• Get the complementary, the reverse and the Kleene star of
an automaton.

• Get the difference, the concatenation and the intersection
between two automata.

• Check if an automaton is deterministic.
• Check if an automaton is acyclic.
• Check if an automaton produces the empty language.
• Minimize an automaton using the Hopcroft’s minimization
algorithm for deterministic automata [10, 25].

• Check if two automata are equivalent.
Internally, the automaton is implemented using dictionaries and

these dictionaries are accessible to the user who wants to manipu-
late them.

An advantage of finite-state automata is that they offer a nice
visual representation (at least for smaller automata). Fundamentally,
a finite-state automaton can be represented as a directed graph with
two kinds of special nodes: Starting nodes and final nodes. We offer
the possibility to turn a finite automaton into a NetworkX [9] Mul-
tiDiGraph. This library is the most popular one for graph manipula-
tion in Python. Besides, the user can also save the finite-automaton
into a dot file (https://graphviz.org/doc/info/lang.html) to print it
in a GUI. An example is given in Figure 1.

Example 3.2. We show here an example of how to use the finite
automata in our library:

1 from pyformlang.finite_automaton import EpsilonNFA

2

3 enfa = EpsilonNFA ()

4 enfa.add_transitions(

5 [(0, "abc", 1), (0, "d", 1), (0, "epsilon", 2)])

6 enfa.add_start_state (0)

7 enfa.add_final_state (1)

8 enfa.is_deterministic () # False

9

10 dfa = enfa.to_deterministic ()

11 dfa.is_deterministic () # True

12 dfa.is_equivalent_to(enfa) # True

13

14 enfa.is_acyclic () # True

15 enfa.is_empty () # False

16 enfa.accepts (["abc", "epsilon"]) # True

17 enfa.accepts (["epsilon"]) # False

18

19 enfa2 = EpsilonNFA ()

20 enfa2.add_transition (0, "d", 1)
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Figure 1: Visualisation of a Finite-State Automaton

21 enfa2.add_final_state (1)

22 enfa2.add_start_state (0)

23 enfa_inter = enfa.get_intersection(enfa2)

24 enfa_inter.accepts (["abc"]) # False

25 enfa_inter.accepts (["d"]) # True

Listing 2: Finite-State Automata Example

3.3 Finite-State Transducer
Finite-state transducers look like finite-state automata. The main
difference is that they take as input a word and translate it into
another word. Finite-state transducers are more rarely introduced
in the first class on formal languages, but rather in more advanced
lectures such as natural language processing [12]. Pyformlang im-
plements non-weighted finite-state transducers and operators on
them: the concatenation, the union and the Kleene star. Besides, we
offer an intersection function to intersect a finite-state transducer
with an indexed grammar (see Section 3.6).

Just like finite-state automata, it is possible to turn a finite-state
transducer into a NetworkX graph and to save it into a dot file.
Figure 2 shows the finite-state transducer used in Example 3.3.

Example 3.3. We show here an example of how to use the finite-
state transducers in our library:

1 from pyformlang.fst import FST

2

3 fst = FST()

4 fst.add_transitions(

5 [(0, "I", 1, ["Je"]), (1, "am", 2, ["suis"]),

6 (2, "happy", 3, ["content"]),

7 (2, "happy", 3, ["bien", "content"]),

8 (0, "you", 4, ["tu"]), (4, "are", 2, ["es"]),

9 (0, "you", 5, ["vous"]), (5, "are", 2, ["etes"])])

10 fst.add_start_state (0)

11 fst.add_final_state (3)

12 list(fst.translate (["you", "are", "happy"]))

13 # [['vous ', 'etes ', 'bien ', 'content '],

14 # ['vous ', 'etes ', 'content '],

15 # ['tu', 'es', 'bien ', 'content '],

16 # ['tu', 'es', 'content ']]

Listing 3: Finite-State Transducer Example

0

1

"I" -> ["Je"]

4

"you" -> ["tu"]

5

"you" -> ["vous"]

2

"am" -> ["suis"]

3

"happy" -> ["content"] "happy" -> ["bien", "content"]

"are" -> ["es"] "are" -> ["êtes"]

Figure 2: A Finite-State Transducer

3.4 Context-Free Grammars
Context-free languages are strictly more powerful than regular
languages, i.e. all regular expressions can be expressed as a context-
free grammar, but the inverse is not true. Pyformlang implements
context-free grammars and the essential operations on them. One
can construct a context-free grammar in two different ways. The
first one consists of using internal representation objects to repre-
sent variables, terminals and production rules. This initialisation
process can be quite wordy, and in most cases, it is not necessary.
However, it is close to textbooks representations and allows a better
understanding of context-free grammars. Besides, it is easier to use
in a computer program. The other way, used by most libraries, uses
a string representation of the context-free grammar. Example 3.4
shows how this construction looks.

As many algorithms use the Chomsky Normal Form (CNF), our
library offers the possibility to transform a context-free grammar
into its CNF.

Context-free grammars are equivalent to push-down automata.
So, our library allows transforming a context-free grammar into its
equivalent push-down automaton accepting by empty stack.

Our context-free grammar implementation also contains several
operations linked to the closure properties: The concatenation, the
union, the (positive) closure, the reversal and the substitution of
terminals by another context-free grammar. In general, the intersec-
tion of two context-free grammars is not a context-free grammar,
except if one of them is a regular expression or a finite automa-
ton. Hopcroft [11] presents an algorithm that first transforms the
grammar into an equivalent push-down automaton accepting by
empty stack, and then into an equivalent push-down automaton
accepting by final state. Next, it performs the intersection with
the regular expression (or finite automaton) and transforms the
resulting push-down automaton back into a context-free grammar
(by transiting through a push-down automaton accepting by empty
stack). However, this solution is costly, and we preferred the solu-
tion given by Bar-Hillel [4, 5], which does not require push-down
automata and is much more efficient. The algorithm of Bar-Hillel
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Figure 3: Parsing Tree

directly creates new non-terminals and the transitions between
them from the context-free grammar and the regular expression.

We implemented various other operations, such as:
• Checking if a given context-free grammar produces a word
• Checking if a word is part of the language generated by the
grammar

• Generate words in the grammar (through a generator as the
language associated with the grammar is not necessarily
finite)

• Checking whether a grammar is finite or not
Finally, we also added parsers such as the recursive decent parser

(that might not terminate for some left-recursive grammars) and
the LL(1) parser [2] (that only works for some types of grammars),
which allows us to obtain parsing trees and derivations. Figure 3
shows an example of a parsing tree from the grammar defined in
Example 3.4.

Example 3.4. We show here an example of how to use context-free
grammars in our library:

1 from pyformlang.cfg import CFG

2 from pyformlang.cfg.llone_parser import LLOneParser

3 from pyformlang.regular_expression import Regex

4

5 cfg = CFG.from_text("""

6 S -> NP VP PUNC

7 PUNC -> . | !

8 VP -> V NP

9 V -> buys | touches | sees

10 NP -> georges | jacques | leo | Det N

11 Det -> a | an | the

12 N -> gorilla | dog | carrots """)

13 regex = Regex("georges touches (a|an) (dog|gorilla) !")

14

15 cfg_inter = cfg.intersection(regex)

16 cfg_inter.is_empty () # False

17 cfg_inter.is_finite () # True

18 cfg_inter.contains (["georges", "sees",

19 "a", "gorilla", "."]) # False

20 cfg_inter.contains (["georges", "touches",

21 "a", "gorilla", "!"]) # True

22

q0

q2

"epsilon" -> "Z1" / [] q1

"0" -> "Z0" / ["Z1", "Z0"]

"1" -> "Z1" / []

Z0

Figure 4: Visualisation of a Push-Down Automaton

23 cfg_inter.is_normal_form () # False

24 cnf = cfg.to_normal_form ()

25 cnf.is_normal_form () # True

26

27 llone_parser = LLOneParser(cfg)

28 parse_tree = llone_parser.get_llone_parse_tree(

29 ["georges", "sees", "a", "gorilla", "."])

30 parse_tree.get_leftmost_derivation (),

31 # [[ Variable ("S")],

32 # [Variable ("NP"), Variable ("VP"), Variable ("PUNC")],

33 # ...,

34 # [Terminal (" georges "), Terminal ("sees"),

35 # Terminal ("a"), Terminal (" gorilla "), Terminal (".")]]

Listing 4: Context-Free Grammar Example

3.5 Push-Down Automata
Push-down automata are an equivalent representation of context-
free grammars. They have a more visual representation as they look
like a finite-state automaton with a stack. Pyformlang implements
push-down automata accepting by final state or by empty stack.
It also adds the possibility to go from one acceptance to the other.
As context-free grammars are equivalent to push-down automata
accepting by empty stack, we implemented the transformation
to go from one to the other. Push-down automata have the same
closure properties as context-free grammars. We implemented the
intersection with a regular language using the native algorithm in
Hopcroft [11].

Just like finite-state automata and finite-state transducers, push-
down automata can be visualised as a graph with NetworkX. Fig-
ure 4 shows the push-down automaton used in Example 3.5.

Example 3.5. We show here an example of how to use the push-
down automata in our library:

1 from pyformlang.pda import PDA

2

3 pda = PDA()

4 pda.add_transitions(

5 [

6 ("q0", "0", "Z0", "q1", ("Z1", "Z0")),

7 ("q1", "1", "Z1", "q2", []),

8 ("q0", "epsilon", "Z1", "q2", [])

9 ]

10 )
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11 pda.set_start_state("q0")

12 pda.set_start_stack_symbol("Z0")

13 pda.add_final_state("q2")

14

15 pda_final_state = pda.to_final_state ()

16 cfg = pda.to_empty_stack ().to_cfg ()

17 cfg.contains (["0", "1"]) # True

Listing 5: Context-Free Grammar Example

3.6 Indexed Grammar
Aho [1] introduced indexed grammars, and they are an excellent
example of non-context-free grammars. For instance, they have
application in natural language processing [8]. To the best of our
knowledge, no library provides an implementation for this class of
grammars. As indexed grammars are less constrained, they do not
allow as many operations as context-free grammars: They can rep-
resent more languages but the languages are harder to manipulate.
Still, Pyformlang implements essential functions such as checking
if the grammar is empty or intersecting with a regular expression or
a finite automaton. Indeed, indexed grammars are stable by this last
operation. However, the complexity of the operations is in general
exponential, so we observe long computation times.

As indexed grammars are not well documented, we give here
more explanations about how they work. Indexed grammars [1]
include the context-free grammars, but are strictly less expressive
than context-sensitive grammars.

They generate the class of indexed languages, which contains all
context-free languages. A nice feature of this class of languages is
that it conserves closure properties and decidability results. In addi-
tion to the set of terminals and non-terminals from the context-free
grammars, the indexed grammars introduce the set of index sym-
bols. Following [11], an indexed grammar is a 5-tuple (N ,T , I , P, S)
where:

• N is a set of variables or non-terminal symbols
• T is a set of terminal symbols
• I is a set of index symbols
• S ∈ N is the start symbol, and
• P is a finite set of productions.

Each production in P takes one of the following forms:

A[σ ] → a (end rule)
A[σ ] → B[σ ]C[σ ] (duplication rule)
A[σ ] → B[f σ ] (production rule)

A[f σ ] → B[σ ] (consumption rule)
Here, A, B, and C are non-terminals, a is a terminal, and f is an
index symbol. The part in brackets [...] is the so-called stack. The
left-most symbol is the top of the stack. σ is a special character that
stands for the rest of the stack. For example, the duplication rule
states that a non-terminal with a certain stack gives rise to two
other non-terminals that each carry the same symbols on the stack.

Example 3.6. We show here an example of how to use indexed
grammars in our library:

1 from pyformlang.indexed_grammar import Rules ,

2 ConsumptionRule , EndRule , ProductionRule ,

3 DuplicationRule , IndexedGrammar

4 from pyformlang.regular_expression import Regex

5

6 # Generate a single word: a b

7 all_rules = [ProductionRule("S", "D", "f"),

8 DuplicationRule("D", "A", "B"),

9 ConsumptionRule("f", "A", "Afinal"),

10 ConsumptionRule("f", "B", "Bfinal"),

11 EndRule("Afinal", "a"),

12 EndRule("Bfinal", "b")]

13 indexed_grammar = IndexedGrammar(Rules(all_rules))

14 indexed_grammar.is_empty () # False

15 i_inter = indexed_grammar.intersection(Regex("a.b"))

16 i_inter.is_empty () # False

Listing 6: Indexed-Grammar Example

4 CONCLUSION
In this tool paper, we introduced Pyformlang, a modern Python3
library to manipulate formal languages, especially tailored for prac-
tical and pedagogical purposes. It contains the main functionalities
to manipulate regular expressions, finite state automata, finite-
state transducers, context-free grammars, push-down automata
and indexed grammars. Pyformlang can easily be integrated into
an automatic rating system such as VPL [19] in Moodle thanks to
pip. The code is fully documented and is open-sourced on GitHub
(https://github.com/Aunsiels/pyformlang).

The next steps for Pyformlang will be centred around two di-
rections. The first one is to keep developing the core content, i.e.
adding advanced functionalities, algorithms and data structures.
The second direction is the creation of advanced visualisation tools
around the library, like it can be seen in other tools.

We hope that our library will help students, lecturers and practi-
tioners to discover and exploit the beauty of formal languages.

Acknowledgements. Partially supported by the grants ANR-16-
CE23-0007-01 (“DICOS”) and ANR-18-CE23-0003-02 (“CQFD”).

We thank Fabian Suchanek and Nicoleta Preda for their feedback,
and the reviewers for their constructive reviews.

REFERENCES
[1] Alfred V Aho. 1968. Indexed grammars—an extension of context-free grammars.

Journal of the ACM (JACM) 15, 4 (1968), 647–671.
[2] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles,

techniques. Addison wesley 7, 8 (1986), 9.
[3] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar

Mohri. 2007. OpenFst: A general and efficient weighted finite-state transducer
library. In International Conference on Implementation andApplication of Automata.
Springer, 11–23.

[4] Y. Ba-Hillel, M. Prles, and E. Shamir. 1965. On formal properties of simple
phrase structure grammars. Z. Phonetik, Sprachwissen. Komm. 15 (I961), 143-172.
Y. Bar-Hillel, Language and Information, Addison-Wesley, Reading, Mass (1965),
116–150.

[5] Richard Beigel and William Gasarch. .. A Proof that the intersection of a context-
free language and a regular language is Context-Free Which Does Not use push-
down automata. http://www.cs.umd.edu/~gasarch/BLOGPAPERS/cfg.pdf (.).

[6] Akim Demaille, Alexandre Duret-Lutz, Sylvain Lombardy, and Jacques
Sakarovitch. 2013. Implementation Concepts in Vaucanson 2. In Proceedings
of Implementation and Application of Automata, 18th International Conference
(CIAA’13) (Lecture Notes in Computer Science, Vol. 7982), Stavros Konstantinidis
(Ed.). Springer, Halifax, NS, Canada, 122–133. https://doi.org/10.1007/978-3-642-
39274-0_12

[7] Graeme Gange, Jorge A Navas, Peter Schachte, Harald Søndergaard, and Peter J
Stuckey. 2015. A tool for intersecting context-free grammars and its applications.
In NASA Formal Methods Symposium. Springer, 422–428.

[8] Gerald Gazdar. 1988. Applicability of indexed grammars to natural languages. In
Natural language parsing and linguistic theories. Springer, 69–94.

Paper Session: Systems A  SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

581

https://github.com/Aunsiels/pyformlang
http://www.cs.umd.edu/~gasarch/BLOGPAPERS/cfg.pdf
https://doi.org/10.1007/978-3-642-39274-0_12
https://doi.org/10.1007/978-3-642-39274-0_12


[9] Aric Hagberg, Dan Schult, Pieter Swart, D Conway, L Séguin-Charbonneau, C
Ellison, B Edwards, and J Torrents. 2013. Networkx. URL http://networkx. github.
io/index. html (2013).

[10] John Hopcroft. 1971. An n log n algorithm for minimizing states in a finite
automaton. In Theory of machines and computations. Elsevier, 189–196.

[11] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. 2001. Introduction to
automata theory, languages, and computation. Acm Sigact News 32, 1 (2001),
60–65.

[12] Dan Jurafsky. 2000. Speech & language processing. Pearson Education India.
[13] Edward Loper and Steven Bird. 2002. NLTK: the natural language toolkit. arXiv

preprint cs/0205028 (2002).
[14] Mostafa Mohammed, Clifford A. Shaffer, and Susan H. Rodger. 2019. Using Inter-

active Visualization and Programmed Instruction to Teach Formal Languages. In
Proceedings of the 50th ACM Technical Symposium on Computer Science Education
(Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Machinery,
New York, NY, USA, 1263. https://doi.org/10.1145/3287324.3293795

[15] Mostafa Kamel Osman Mohammed. 2020. Teaching Formal Languages through
Visualizations, Simulators, Auto-Graded Exercises, and Programmed Instruction.
In Proceedings of the 51st ACM Technical Symposium on Computer Science Educa-
tion (Portland, OR, USA) (SIGCSE ’20). Association for Computing Machinery,
New York, NY, USA, 1429. https://doi.org/10.1145/3328778.3372711

[16] Steven Rabin. 2015. Game AI pro 2: collected wisdom of game AI professionals. AK
Peters/CRC Press.

[17] Rogério Reis and NelmaMoreira. 2002. FAdo: tools for finite automata and regular
expressions manipulation. https://www.dcc.fc.up.pt/ nam/publica/dcc-2002-2.pdf
(2002).

[18] Susan H Rodger and Thomas W Finley. 2006. JFLAP: an interactive formal
languages and automata package. Jones & Bartlett Learning.

[19] Juan Carlos Rodríguez-del Pino, Enrique Rubio Royo, and Zenón Hernán-
dez Figueroa. 2012. A Virtual Programming Lab for Moodle with automatic
assessment and anti-plagiarism features. (2012).

[20] Julien Romero, Nicoleta Preda, Antoine Amarilli, and Fabian Suchanek.
2020. Equivalent Rewritings on Path Views with Binding Patterns.
arXiv:2003.07316 [cs.DB] Extended version with proofs. https://arxiv.org/abs/
2003.07316.

[21] Julien Romero, Simon Razniewski, Koninika Pal, Jeff Z. Pan, Archit Sakhadeo, and
GerhardWeikum. 2019. Commonsense Properties from Query Logs and Question
Answering Forums. Proceedings of the 28th ACM International Conference on
Information and Knowledge Management - CIKM ’19 (2019). https://doi.org/10.
1145/3357384.3357955

[22] Alley Stoughton. 2008. Experimenting with formal languages using Forlan.
In Proceedings of the 2008 international workshop on Functional and declarative
programming in education. 41–50.

[23] Alley Stoughton. 2016. Formal Language Theory: Integrating Experimentation
and Proof.

[24] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on World
Wide Web. 697–706.

[25] Hang Zhou. 2009. Implementation of the Hopcroft’s Algorithm.
https://www.irif.fr/ carton//Enseignement/Complexite/ENS/Redaction/2009-
2010/hang.zhou.pdf (2009).

Paper Session: Systems A  SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

582

https://doi.org/10.1145/3287324.3293795
https://doi.org/10.1145/3328778.3372711
https://arxiv.org/abs/2003.07316
https://arxiv.org/abs/2003.07316
https://arxiv.org/abs/2003.07316
https://doi.org/10.1145/3357384.3357955
https://doi.org/10.1145/3357384.3357955

	Abstract
	1 Introduction
	2 Previous Work
	3 Pyformlang
	3.1 Regular Expressions
	3.2 Finite-State Automata
	3.3 Finite-State Transducer
	3.4 Context-Free Grammars
	3.5 Push-Down Automata
	3.6 Indexed Grammar

	4 Conclusion
	References



