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Abstract: In this article, we present a novel spectroscopy technique that improves the signal-to-
shot-noise ratio without the need to increase the laser power. Detrimental effects by technical noise
sources are avoided by frequency-modulation techniques (frequency up-shifting). Superimposing
the signal on non-classical states of light leads to a reduced quantum noise floor. Our method
reveals in a proof-of-concept experiment small signals at Hz to kHz frequencies even below
the shot noise limit. Our theoretical calculations fully support our experimental findings. The
proposed technique is interesting for applications such as high-precision cavity spectroscopy,
e.g., for explosive trace gas detection where the specific gas might set an upper limit for the laser
power employed.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Successful blue-sky experiments, such as the first direct detection of gravitational waves (GWs)
in 2015 [1] require an intimidatingly high measurement sensitivity. In a GW detector the signal
originates from the relative differential distance change caused by a GW, as measurable with a
Michelson-type interferometer [1]. In this particular case of the GW event GW150914 a strain
sensitivity of ∆L/L ≈ 10−23 was required. Other types of high-precision metrology experiments
detect other types of signals, but they have one requirement in common: All call for high
sensitivity and detection with a sufficiently large signal-to-noise ratio (SNR).

As an example, in laser absorption spectroscopy [2,3] the concentration of a gas phase can be
determined by measuring the interaction of a laser field with the gas molecules. The challenge
here often lies in the fact that the spectroscopic signal to be detected is inordinately small - this
makes its detection inherently difficult, but it additionally makes the signal highly susceptible to
noise. These challenges can be generalized to the detection of any small signal.

The obvious way to maximize the SNR is to increase the signal and to decrease the noise. At
low measurement frequencies, active feedback control often serves to suppress the dominant
technical noise sources down to the fundamental shot noise limit [4–7]. In addition to noise
reduction, the achieved signal-to-shot-noise ratio can be improved by increasing the laser power,
as relative shot noise falls with the square root of the laser power.

In spectroscopic applications, amplifying the laser power increases the interaction strength
and hence amplifies the signal. In some cases, however, the signal strength cannot be increased:
for technical reasons such as damage thresholds [8,9], or for fundamental reasons, e.g. if the
origin of the signal is astrophysical [10]. In other cases, the intrinsic noise of the measurement
apparatus is already governed by quantum shot noise, making a further reduction of the noise
floor seem initially unfeasible.

Technical noise is always present in experiments, in particular at low measurement frequencies
in the Hz and kHz regions. Typical examples of technical noise sources include seismic noise
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and mechanical vibrations, electronic noise, laser intensity and frequency noise, or fluctuations
of air currents leading to variations in the index of refraction of the air through which light
propagates. In principle, technical noise sources can be suppressed to arbitrarily low noise levels,
depending on the time, effort, energy, cost, and corresponding technical sophistication invested
in the experimental setup. Quantum noise, however, poses a more fundamental limit, which
is expressed in the Heisenberg Uncertainty Relation. Quantum shot noise occurring in laser
experiments originates from the Poissonian photon statistics of the coherent state [11], which is
emitted by a technically well-stabilized laser.

The application of squeezed light [12] can reduce the relative shot noise and thus improve the
SNR [13–15]. In this regard it acts like an increase in laser power, but without the drawbacks
associated with higher optical power, such as increased absorption, higher thermal load, excess
scattering, etc. Squeezed light first was experimentally demonstrated in 1985 [16] and has
gained increasing relevance over the last decades. While the first squeezing experiment reduced
the shot noise only by 0.3 dB, the highest achieved squeezing level to date lies at more than
15 dB [17]. The number of possible applications is too numerous to list, ranging from GW
detection [14] over continuous variable quantum computing [18] to quantum imaging [19,20]
and teleportation [21,22]. Squeezing generated at low frequencies (LFs) [23,24] always comes at
the cost of considerable technical effort; in comparison, high-frequency (HF) squeezing [25–27]
can drastically reduce these efforts.

Squeezing at base-band has been utilized to improve spectroscopic measurements [28,29],
e.g. on atomic cesium [30]. Recently, a quantum enhancement of the SNR of 3.6 dB relative
to the shot noise limited SNR was demonstrated in stimulated Raman spectroscopy [31]. In
these experiments [28–31], a squeezed probe beam was transmitted through samples and then
detected. However, an even higher signal strength can be achieved by enhancing the probe field
in an optical resonator.

In this paper, we show in a proof-of-concept experiment the application of HF squeezing for
cavity enhanced phase-sensitive spectroscopy. We report on a novel method that circumvents
technical noise sources and improves the SNR without the need to increase the laser power and
enables more advanced techniques such as noise-immune cavity-enhanced optical-heterodyne
molecular spectroscopy (NICE-OHMS) [32]. We benefit from the advantages of HF squeezing
by shifting the signal of interest (at Hz or kHz frequencies) to 200 MHz. We apply a small
cavity length modulation as a signal that would conventionally be masked by quantum shot
noise at HF. With our approach this signal can be revealed in a 6 dB squeezed noise floor. The
results of our research are very promising for applications in high-precision metrology as in
quantum spectroscopy, in particular for frequency modulation spectroscopy (FMS) [33] or trace
gas detection [34,35] where the potentially explosive gas sets an upper limit for the employed
laser power.

In Sec. II we provide a theoretical description of the effect of a cavity length modulation
on a phase modulated laser field. We derive the variances, if the modulated field’s amplitude
quadrature is squeezed in an optical parametric oscillator (OPO) before it senses the cavity length
modulation. Sec. III gives a detailed description of our experimental setup. In Sec. IV we
present our results including the measurements that show cavity length modulation signals in the
reduced noise floor around 200 MHz. In Sec. V we discuss our results, identify drawbacks and
benefits of our method and give a brief outlook. We end with a conclusion in Sec. VI.

2. Theory

We detect artificial length variations of a cavity that are generated with a piezoelectric actuator at
LFs. If we send a probe field through this cavity, a phase modulation (PM) is imprinted on the
field that can be detected in transmission. In this section, we first calculate the variance of such a
field. Second, we look at the case of a probe field that is phase modulated at the free spectral
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range (FSR)-frequency. Third, we determine the output variance when using a probe field that is
additionally squeezed. This allows an improvement of the SNR, when the classical measurement
was shot-noise-limited.

2.1. Detecting a cavity length modulation

We start with the simple case of a Fabry-Perot (FP) cavity shown in Fig. 1. From the left, a
classical laser field Âin is sent into the impedance matched cavity with two loss-less mirrors with
equal reflectivities R and detuning ∆. We want to determine the output field Âout in transmission.

Fig. 1. Schematic of the length modulated FP cavity.

For the calculations we are following the approach in [11]. We can express the circulating
cavity mode amplitude âfp after one cavity round-trip time τfp by

âfp(t + τfp) = exp(i∆)
(︂
Râfp(t) +

√︁
Tτfp

(︁
Âin(t) + Âvac(t)

)︁ )︂
. (1)

The circulating mode amplitude after one cavity round-trip time depends on the initially
circulating mode âfp(t) and on the two input rates Âin(t) and Âvac(t). Next, we consider the
cavity length modulation as phase modulation for the intra-cavity field. Therefore, we set
∆ = d sin(ωst) where ωs is the modulation frequency. After separating DC and fluctuating terms
with â(t) = ā + δâ(t) and linearizing then, we can focus on the fluctuating part of Eq. (1) and find
that

δâfp(t + τfp) = −āfp

(︂
1 − exp(id sin(ωst))

)︂
+ exp(id sin(ωst))

(︂√︁
Tτfp

(︁
δÂin(t) + δÂvac(t)

)︁
+ Rδâfp(t)

)︂ (2)

The exponential expressions in Eq. (2) can be approximated using Bessel functions of the first
kind. For small cavity length changes d ≪ 1 we can approximate

exp(id sin(ωst)) ≈ 1 +
d
2

(︂
exp(iωst) − exp(−iωst)

)︂
(3)

and call the exp(±iωst) terms sidebands. Next, we can transform Eq. (2) to Fourier space analog
to [25] by substituting â(t + τ) ⇌ ã(ω) exp(iωτ). We can solve for the fluctuating part

δãfp(ω) =
2(δÃin + δÃvac)

√︁
Tτfp + āfpd(δω+ωs − δω−ωs )

2(exp(iτfpω) − R)
. (4)

The cavity length modulation sidebands are now represented by the Dirac delta functions
δω±ωs : = δ(ω ± ωs), both scaling with the modulation amplitude d and with the cavity mean
field āfp.
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We use the input-output theory from [36], including the quantum boundary conditions, to
derive the field fluctuations leaving the FP cavity as

δÃout,fp =
√︂

T/τfpδãfp −
√

RδÃvac. (5)

If we detect the output field, we can measure the amplitude (+) or phase quadrature (-)
fluctuations

δX̃+(ω) = δÃ(ω) + δÃ(−ω)†, (6)
δX̃−(ω) = i

(︁
δÃ(ω) − δÃ(−ω)†

)︁
, (7)

where δã†(ω) = δã(−ω)† [37]. Finally, we are interested in the variances V±(ω) =
⟨︁
|δX̃±(ω)|2

⟩︁
.

Since the Dirac delta function δ is only an idealization and its square is not defined mathematically,
below we replace them by Dirac delta-like functions δ̃ with finite width, which are later defined
in Eq. (23). Physically, the width of those sidebands corresponds to the technical noise present in
the modulation sidebands. Assuming uncorrelated input fields Ãvac and Ãin, the output variances
read

V+fp(ω) =
|︁|︁A(ω)|︁|︁2V+in(ω) +

|︁|︁B(ω)|︁|︁2V+vac(ω) + V+n (ω), (8)

V−
fp(ω) =

|︁|︁A(ω) |︁|︁2V−
in(ω) +

|︁|︁B(ω) |︁|︁2V−
vac(ω)

+

|︁|︁|︁|︁ iāfpd
√

T
√
τfp(exp(iτfpω) − R)

(δ̃ω+ωs − δ̃ω−ωs )

|︁|︁|︁|︁2 + V−
n (ω),

(9)

where A(ω) and B(ω) are cavity related pre-factors specified as

A(ω) =
T

exp(iτfpω) − R
(10)

B(ω) = −
√

R +
T

exp(iτfpω) − R
. (11)

Evidently, the two sidebands oscillating withω±ωs originate from the cavity length modulation.
They will only appear in the phase quadrature output variance V−

fp. We use the term Vn to
describe uncorrelated noise sources that add to the measured variance, e.g. electronic noise.
Noise that is initially on the probe beam or noise sources that affect the probe beam at any
point in the experiment (e.g. mechanical cavity resonances or an unstable cavity lock) are more
comprehensive to describe and would overcomplicate the calculations shown here. We therefore
neglect these noise terms but want to empathize that our approach is not immune to this type
of noise. However, we elaborate on this in Sec. 5 and extend our idea to suppress these noise
sources in Sec. 5.1.

2.2. Frequency up-shifting the signal

Typical noise sources occur primarily at LFs (<10 MHz). To circumvent the noise Vn(ω), we
measure our signal at HFs. Therefore, we extend our setup according to Fig. 2. A PM at HF
(Ω ≫ ωs) is imprinted by an electro-optic modulator (EOM) on the input field Âin, before the
field enters the cavity. To maximize the transmission of the modulation sidebands, the modulation
frequency Ω should correspond to the FSR of the FP cavity (Ω = FSRfp = 1/τfp).

Again, we assume a small modulation index β and use the Bessel approximation from Eq. (3).
For the fluctuating part we get in frequency domain for the new input field

δ̃Ãin(ω) =
(︁
δ̃Ãmod(ω) +

β

2
Āmod(δ̃ω−Ω − δ̃ω+Ω)

)︁
exp(iθ), (12)

where Ãmod corresponds to the field before the EOM. Here, we have dropped the dδ̃Ã terms
assuming dδ̃Ã ≪ dāfp. Then, the output variances of the cavity can be calculated analogously to
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Fig. 2. Schematic of the length modulated FP cavity, with a phase modulated input field.

Sec. 2.1 yielding

V+fp,pm(ω) = V+fp(ω) +
|︁|︁|︁|︁ ĀmoddTβ
2(exp(iτfpω) − R)

|︁|︁|︁|︁2
×
|︁|︁(δω+Ω−ωs + δω−Ω+ωs − δω+Ω+ωs − δω−Ω−ωs )

|︁|︁2,
(13)

V−
fp,pm(ω) = V−

fp(ω) +

|︁|︁|︁|︁ iĀmodTβ
exp(iτfpω) − R

(δω+Ω − δω−Ω)

|︁|︁|︁|︁2 (14)

where V±
fp corresponds to the results from the previous section derived in Eqs. (8) and (9). The

terms oscillating with ω ± ωs and ω ± Ω can be only seen in the phase quadrature V−. The
intermodulation terms oscillating with ω ±Ω ± ωs can be detected only in the output amplitude
quadrature V+, which is an important result. This result means that the cavity length modulation
can also be resolved at HFs. External noise Vn, introduced in Eqs. (8) and (9) may still couple
into the measurement. However, we can assume that there is negligible noise at hundreds of
MHz.

Fundamentally, this measurement will be limited by the shot noise when technical noise
sources on the probe beam are suppressed sufficiently. The relative shot noise level might be
reduced by increasing the used laser power. However, this is often only possible in the limits of
available and permissible power.

2.3. High-frequency phase modulated squeezing

One approach to further reduce noise and thereby improve the shot-noise-limited SNR is the
usage of a squeezed probe field. In the following section we explain how such a field is generated
and how its variances can be derived. The following calculations were similarly done for an
unmodulated seed in [25].

We consider a singly resonant OPO that is operating below threshold at the fundamental
frequency ω0 as shown in Fig. 3. For simplification, we assume a cavity consisting of a partially
reflective (PR) input mirror with R1<1, a highly reflective (HR) mirror with R2 ≈ 1 and an ideal
non-lossy mirror R3 = 1 surrounding a non-linear χ(2) medium. It is convenient to include the

Fig. 3. Schematic of an OPO with a phase modulated seed as input.
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effect of all intra-cavity losses in the reflectance of mirror 2. The nonlinear medium is pumped
with the field B̂in at the second harmonic frequency ωpump = 2ω0. The cavity round-trip time is
τopo and, ideally, should be identical to the round-trip time in the FP cavity (FSRopo = FSRfp). A
vacuum field Âvac is impinging on mirror 1 and the phase modulated seed field Âin, identical to
Eq. (12), is sent into the cavity on mirror 2. We are dealing with a single mode as we do not
discriminate in frequency between the upper and lower sidebands. Thus we assume a single-mode
interaction Hamiltonian with an undepleted pump field:

H =
iℏχ
2

(︂
a2 − a†2

)︂
. (15)

As in subsections 2.1 and 2.2, the fundamental cavity mode âopo after a single cavity round-trip
with round-trip time τopo can be expressed on resonance by

âopo(t + τopo) = −χτopoâ†opo(t) +
√︁

R1R2âopo(t)

+
√︁

R1T2τopoÂin(t) +
√︁

T1τopoÂvac(t).
(16)

The solution for the fluctuating part δã(ω)opo of the intra-cavity field in frequency domain can
be computed similarly as above. Since the OPO is seeded with a phase modulated field, δÃin is
defined as in Eq. (12). To derive the desired fluctuations for the output field of the OPO, the
boundary condition

δÃout,opo =
√︂

T1/τopoδãopo −
√︁

R1δÃvac (17)

needs to be applied. We can now use δÃout,opo for the OPO’s output to substitute the FP cavity’s
input δÂin in Eq. (5). Then, the output variances of the FP cavity can be computed similarly to
Eqs. (8) and (9)

V±
fp(ω) = V±

cav(ω) +
|︁|︁C±(ω)

|︁|︁2 + V±
n , (18)

but become rather complex. The variance V±
cav is specified as

V±
cav =

|︁|︁|︁|︁A(ω)(︁ − √
R +

T1

exp(iτfpω) −
√

R1R2 ± τopo χ

)︁
+ B(ω)

|︁|︁|︁|︁2V±
vac(ω)

+

|︁|︁|︁|︁ √
R1T1T2T

(exp(iτfpω)) − R)(exp(iτfpω) −
√

R1R2 ± τopo χ)

|︁|︁|︁|︁2V±
in(ω).

(19)

It shows how the variances of the impinging vacua and the seed are transformed by the two
cavities and thus defines the shot noise level. In fact, it is important to take a closer look onto
C+. The situation is similar as before in Eqs. (13) and (14). C+ represents the intermodulation
sidebands we are interested in. We find

C+(ω) =
ĀmoddTβ

√
R1T1T2

2(exp(iτfpω) − R)(exp(iτopo) −
√

R1R2 − τopo χ)

× (δω+Ω−ωs + δω−Ω+ωs − δω+Ω+ωs − δω−Ω−ωs ).
(20)

The sidebands oscillating with ω ± ωs and ω ±Ω can be found in C−(ω):

C−(ω) =
iĀmodTβ

√
R1T1T2

(exp(iτfpω) − R)(exp(iτopo) −
√

R1R2 − τopo χ)
(δω+Ω − δω−Ω)

+
iāfpd

√︁
T/τfp

exp(iτfpω) − R
(δω+Ω − δω−Ω).

(21)

Choosing amplitude quadrature squeezing by setting the phase of the seed θ = 0 in Eq. (12),
we achieve a reduced noise floor in the amplitude quadrature and an increased noise floor in
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the phase quadrature in Eq. (18). Thereby, we improve the SNR measuring the cavity length
modulation.

The variance in Eq. (18) is only an idealization. If the field is measured with a homodyne
detector (HD) to access the phase quadrature, phase fluctuations between the signal and the local
oscillator (LO) need to be taken into account. For small standard deviations of the normally
distributed phase fluctuations, phase jitter with a root mean square of ϕ will affect the detection
angle at the HD. Including the total efficiency η and thus optical loss, we can write the measured
variances behind the FP cavity as [38]

V±
fp,det(ω) = η

(︁
V±

fp(ω) cos2(ϕ) + V∓
fp(ω) sin2(ϕ)

)︁
+ (1 − η). (22)

Hence, the output variance will be a mixture of the amplitude and phase quadrature V+ and V−.
In consequence, the squeezing level will be reduced and all existent sidebands, to some degree,
will be visible in both measured variances. We will use Eq. (22) for fitting our experimental data
in Sec. 4. However, we will first present our experimental setup in the next section.

3. Experimental setup

Our experimental setup shown in Fig. 4 can be divided into three subsystems. The first part is
the preparation stage and consists of the OPO, our non-classical light source. Here, our probe
beam is generated which is a phase modulated but amplitude quadrature squeezed field. This
field is sent into our second subsystem, the FP cavity. Here, we apply a cavity length modulation
to mimic a spectroscopic signal. Finally, our third subsystem consists of a balanced HD where
we resolve the length modulation signal in a squeezed sub-shot-noise floor at HFs.

Fig. 4. The experimental setup consisting of the three subsystems: squeezed state preparation,
spectroscopy and homodyne detection.

3.1. Non-classical light source

Our non-classical light source consists of a sub-threshold OPO, shown in the upper block of
Fig. 4. In this block, all shown laser fields are s-polarized. The OPO has a comparably long
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round-trip length of Lopo ≈ 1.5m. This leads to a relatively small FSR of 199.66 MHz. Two
curved mirrors with radius of curvature of −100 mm create a cavity eigenmode with beam waist
of 25.6 µm in the crystal. The OPO is seeded with a phase modulated classical laser field through
an HR mirror (transmission T = 0.01%) that is attached to a piezoelectric element (PZT2) from
the left side. The PM frequency of 199.733 MHz is chosen to match the FSR of the OPO and, in
particular, of the FP cavity (see Sec. 3.2 and Table 1). This ensures that the PM sidebands are
transmitted by the two cavities. The singly-resonant OPO cavity is held on resonance with PZT2
for 1064 nm using a field in counter-propagating direction of the cavity. This field is not depicted
in the Fig. 4 for simplicity. The 1mm × 2mm × 10mm nonlinear PPKTP crystal is pumped
with 170 mW at 532 nm. To reach a stable production of amplitude quadrature squeezing in the
probe beam, the squeezing angle needs to be locked: First, we modulate the phase of the seed
with 73 kHz, by dithering the PZT1 attached to a steering mirror. Second, 0.3 % of the probe’s
power are detected on the photodiode (PD1) behind a PR mirror. Then, the detected signal is
demodulated to generate an error signal which is sent back to PZT3. The full characterization
of our non-classical light source ("squeezing comb") and its performance is given in detail in a
publication currently under preparation. The most important parameters characterizing the OPO
are given in Table 1.

Table 1. Important parameters of OPO and FP cavity.

OPO Value Error Unit

linewidth (FWHM) 4.5 ±0.1 MHz

FSR 199.66 ±0.01 MHz

pump power 170 ±12 mW

escape efficiency 97 ±1 %

FP cavity Value Error Unit

linewidth (FWHM) 200 ±7 kHz

FSR 199.733 ±0.01 MHz

finesse 998 ±33

round-trip-loss 90 ±10 ppm

3.2. Fabry-Pérot cavity for spectroscopy

The second subsystem is shown in the right bottom block of Fig. 4 including the FP cavity as
the spectroscopic device. In the FP cavity the artificial signal is created by actuating PZT4
which corresponds to a cavity length modulation. The FP cavity consists of two PR mirrors
(R = 99.69%, ROC = 2m) attached to an aluminum spacer in a distance of roughly 37.5 cm. The
intra-cavity loss per round-trip is 90 ppm and the exact FSR of the FP cavity is 199.733 MHz.
Hence, the cavity finesse is 998 and the linewidth at the full width at half maximum (FWHM) is
200 kHz. The output mirror is attached on PZT4 to modify the cavity length.

We stabilize the FP cavity with the p-polarized lock beam, so that it is resonant for our
s-polarized probe beam. This is possible because the cavity is radially symmetric and therefore
degenerated for s- and p-polarization. The lock field is phase modulated with EOM2 at 2 MHz
and sent into the FP cavity. The part that is reflected is detected on PD2, demodulated, low-pass-
filtered and fed back to PZT4 [39]. The s-polarized amplitude quadrature squeezed probe field
coming from the OPO is reflected at PBS1 and it is also injected into the resonant FP cavity.
PBS2 is used to separate the lock field from the signal field in transmission of the FP cavity.

In our approach we show that small phase signals created in the FP cavity can be resolved
by the use of amplitude quadrature squeezing. In order to generate these signals, we can apply
tiny length modulations with a) 20 kHz (amplitude (9.8±1.0) pm) and b) 100 Hz (amplitude
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(25.4±1.0) pm) on PZT4. The corresponding PZT amplitudes are obtained from the fits in Fig. 6,
see Sec. 4.2, via the fitting parameter d. Both modulation frequencies are smaller than the
linewidth of the FP cavity. We can easily modify the modulation strength by changing the voltage
applied to the PZT4. We summarize all important parameters in Table 1.

3.3. Balanced homodyne detection

The detection stage is the third subystem of our setup, depicted in the bottom left corner of
Fig. 4. In this stage we measure the phase and amplitude quadratures of the signal field. We
use a balanced HD where the signal is interfered with the s-polarized LO. The detector has a
low-noise AC output to access the signal’s fluctuations. The detector’s DC output is used to lock
the detection angle. The relative phase information between LO and signal is encoded in the beat
signal. The DC slope can be taken as error signal to lock the detection angle on phase quadrature.
For an amplitude quadrature readout, we need to stabilize at an interference maximum. Therefore,
we demodulate the signal at 73 kHz and low-pass filter it to obtain the corresponding error signal.
In both cases, the error signal is applied to PZT5. In the next section we present measurements of
the signal’s phase and the amplitude quadratures.

4. Results

In this section, we present, characterize and discuss our measurements. First, we quantify the
performance of our non-classical light source after integration into the setup, behind the FP
cavity. Second, we detect two different cavity length modulation signals. Finally, we discuss our
approach and give a brief outlook.

4.1. Squeezing performance behind the FP cavity

We measured the noise spectrum of our amplitude quadrature squeezed state in transmission
of the FP cavity with an unmodulated probe field (EOM1 turned off in Fig. 4). For a full
characterization, we measured squeezing (sqz) in the amplitude quadrature (blue trace) and
anti-squeezing in the phase quadrature (red trace) in Fig. 5. The measurements are normalized
to the shot noise which is measured classically when the pump of the OPO is turned off. Thus,
the 0 dB level corresponds to the quantum shot noise limit. All presented measurements in this
section are taken with a Keysight N9020a MXA signal analyzer.

Table 2. Fitting parameters plugged in Eq. (22) for
creating the fits in Fig. 5.

Parameter Value

R1 90 %

R2 99.99 %

FSRopo 199.66 MHz

χ 7.39 MHz

R 99.69 %

FSRfp 199.733 MHz

Āmod 0

η 86 %

φ 38 mrad

On cavity resonance, we detected 6.7 dB squeezing and 14.7 dB anti-squeezing after subtracting
the electronic DN, which is approximately 14.2 dB below the shot noise. For comparison, without
the FP cavity 8.2 dB of squeezing and 15.1 dB of anti-squeezing were measured. This vertical
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Fig. 5. Spectrum of the amplitude quadrature squeezed state behind the FP cavity. The
simulation was obtained with Eq. (22). For the measurement, the detection angle is locked
onto amplitude quadrature to observe squeezing and onto phase quadrature to see anti-
squeezing. The spectrum was taken around the center frequency of 199.733 MHz which
is equal to the FSR of the FP cavity, see Table 2. The dark noise (DN) of the HD was
subtracted from the raw data. Further, it was normalized to the shot noise level, which was
14.2 dB above the dark noise (DN). Span 1 MHz, resolution bandwidth (RBW) 5.1 kHz,
video bandwidth (VBW) 20 Hz, avg 10. For comparison, without the FP cavity 8.2 dB of
squeezing and 15.1 dB of anti-squeezing with a phase noise of 30 mrad were measured.

asymmetry depends on the amount of optical loss and phase noise [17,40] and can be explained
by Eq. (22). The FSRs of the OPO and the FP cavity were not perfectly matched and differed
by 73 kHz (see Table 1), which corresponds to an optical round-trip length difference of 55 µm.
Notwithstanding, the maximal squeezing degradation due to this mismatch is only 0.01 dB.

Our measured data agrees well with our theoretical model from Eq. (22), fitted by the dashed
traces in Fig. 5. Table 2 gives an overview of the fitting parameters. The most relevant parameters
to characterize the performance are the total efficiency η = 86% and the root mean square phase
noise ϕ = 38mrad. For comparison, without the FP cavity 30 mrad of phase noise was measured.
In further measurements we determined the composition of η. The escape efficiency of our OPO
was ηesc = 97 ± 1%. The total propagation efficiency including all optics and FP cavity was
ηprop = 94 ± 1%. The efficiency of the detection process is determined by the homodyne visibility
ηvis = 98.5 ± 0.5%. Thus the quantum efficiency ηqe = 96 ± 1% of the HD was obtained as in
[17], by using η = ηescηpropηvisηqe.

The linewidths of squeezing and anti-squeezing become unequal behind the FP cavity, see
again Fig. 5. This linewidth asymmetry can be explained by the smaller linewidth of the
FP cavity compared to the OPO. Frequency contributions outside of the linewidth of the FP
cavity experience a significantly higher loss which degrades the squeezing far more than the
anti-squeezing, see Eq. (22). To our knowledge, this created asymmetry has not been shown in
previous publications.
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4.2. Measuring a cavity length modulation

We turned on the PM applied on EOM1 to acquire the length modulation signals of the FP cavity
at the first FSR. As before, we generate an amplitude quadrature squeezed state, but additionally
it is phase modulated at 199.733 MHz. The frequency is tuned to match the FSR of the FP
cavity. We first demonstrate the general feasibility of our method by injecting a kHz cavity length
modulation. Since external noise often increases with decreasing frequency, we secondly push
the experiment to the LF limit. In each case we compare our results with the classical (class)
case which corresponds to shot noise, when the pump of the OPO is turned off.

First, we apply a cavity length modulation at 20 kHz with an amplitude of 9.8 pm and measure
the output variances plotted in Fig. 6(a)). We see two peaks in a frequency distance of 20 kHz to
the EOM peak corresponding to the length modulation. The peaks maxima are located 2.9 dB
below shot noise in the 5.7 dB squeezed noise floor. Again, the turquoise dashed trace was
plotted with Eq. (22) and agrees well with the measured data. For comparison, we repeated
the measurement for the classical case when the OPO’s pump is blocked. This measurement is
shown in red in Fig. 6. Here, we effectively cannot reveal the cavity length modulation. Our
simulation (dashed orange trace) predicts a peak size of 0.08 dB above shot noise which would
require significantly more averaging to resolve experimentally. In conclusion we see an effective
SNR improvement of 5.7 dB. The parameters needed for the simulation can be found in Table 3.
To plot the Dirac delta-like function from Eq. (22), we used a normalized Gaussian distribution,
with

δ̃ω = δ̃(ω) = exp
(︂
−
ω2

2σ2

)︂
and σ = RBW. (23)

Table 3. Parameters plugged in Eq. (22) for creating the fits in
Fig. 6. Missing parameters are identical to Table 2.

Parameter a) b)

ωs 20 kHz 100 Hz

Ω 199.733 MHz

Āmod 3.3×106 √Hz

β 3.3×10−5 9.1×10−5

d 5.8×10−5 1.5×10−4

φ 49 mrad 51 mrad

Finally, we demonstrate that our method can even resolve sub-kHz signals, that are presumably
more affected by LF external noise. We have chosen a cavity length modulation of 100 Hz with
an amplitude of 25.4 pm. The measured spectrum can be found in Fig. 6(b). We get similar
results as in a): the two peaks originating from the length modulation have a maximum of 2.8 dB
below shot noise in a 6.0 dB squeezed noise floor. Thereby, we improved the signal to noise ratio
by 6.0 dB at this frequency compared to the classical case, where the length modulation cannot
be effectively resolved. Again, the experimental data can be well fitted with our derived theory,
shown by the dashed traces.

For the given set of seed power and modulation index of the EOM, we could resolve displacement
signals with an amplitude down to 4 pm at 20 kHz and 14 pm at 100 Hz with signals 1 dB larger
than the squeezed noise floor.
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Fig. 6. Resolved cavity length modulation signals applied at a) 20 kHz and b) 100 Hz in the
squeezed noise floor. The center frequency corresponds to Ω = 199.733MHz. The peaks
located at this frequency are related to the PM sideband of the EOM and mainly originate
from phase quadrature to amplitude quadrature coupling via phase noise, see Eq. (22). For
the squeezed case, the peaks are enhanced compared to the classical case since the phase
quadrature is amplified due to anti-squeezing. In a), the peaks at a distance of 2.6 kHz to
the center peak originate from a FP cavity resonance. Parameters of the signal analyzer: a)
two distinct measurements: span 400 kHz: RBW 1 kHz, VBW 10 Hz, avg 50; span 50 kHz:
RBW 5.1 kHz, VBW 20 Hz, avg 10 (DN and SN avg 50), b) span 500 Hz: RBW 5.1 Hz,
VBW 1 Hz, avg 300.



Research Article Vol. 29, No. 4 / 15 February 2021 / Optics Express 6065

5. Discussion

We have demonstrated that our method is capable of resolving tiny signals otherwise masked by
quantum shot noise, by using HF squeezed light and sophisticated modulation techniques. In
comparison to previous spectroscopic experiments in literature employing base-band squeezed
light [28–30], we have significantly improved the squeezing level while sending our probe beam
through an optical resonator.

In contrast to base-band experiments, we need significantly less effort locking the squeezing
angle. Even though it is possible to control the squeezing angle using a noise dither technique
without a carrier [23,41], more stable locks can be achieved using bright optical fields that
co-propagate with the squeezed vacuum [42,43]. However, for base-band measurements these
fields need to be frequency shifted [24] to avoid excess noise caused by the LF laser noise. In our
case of measuring at HFs, we can avoid this effort and use our seed field to control the squeezing
angle.

Our experiment is sensitive to some types of noise and immune to others. It is not immune
to any disturbances that act as phase or amplitude noise coupling into our laser field, similar to
[30]. These disturbances cannot be differentiated from the cavity modulation signal we want to
detect. This kind of noise might be caused by e.g. temperature fluctuations or vibrations that
are affecting the stability of the laser resonator or optical components. These sources have in
common that they will also appear around the EOM sideband at HF, since they all experience
the modulation process. Contrariwise, any noise sources coupling into the measurement that do
not add coherently on our laser field, are circumvented because they do not occur on the EOM
sideband at HF. Those noise sources are predominantly at LFs. Examples for these kind of noises
are electric or post processing noise, incoherent stray light like ambient light or infrared thermal
radiation.

Our demonstrated approach has a number of advantages. Technical laser noise typically
occurs at frequency ranges from Hz to 100 kHz and drops off for higher frequencies (∼ MHz).
Therefore our LO does not exhibit technical noise around 200 MHz and is thus shot noise
limited. Imperfections like a non-ideal common-mode rejection at the HD will have a much
lower impact than at LF, where technical noise is present. Since our high-frequency squeezer
is built in a bow-tie topology, back-scattered light is significantly suppressed in comparison to
linear squeezers [44]. Furthermore, in our case of perfect frequency matching (FSRfp = Ω) all
PM sidebands are transmitted by the cavity symmetrically in frequency. Therefore all sidebands
experience frequency noise identically, such that frequency-to-amplitude noise coupling in the
cavity is strongly suppressed. This feature is often referred to as laser frequency noise immunity
[45] and is used e.g. in NICE-OHMS [32].

Our technique is not fundamentally limited to the detection of preferably LF signals. However,
to resolve the cavity length modulation sidebands with high precision, two technical requirements
need to be fulfilled: The spectrum analyzer needs a sufficiently high resolution, and the EOM
must produce sufficient narrowband and stable sidebands. We used a network analyzer [Keysight
E5061B] to generate the signal at 199.733 MHz. The generated signal has a measured bandwidth
of <1Hz, which is limited by the RBW of our spectrum analyzer. For further improvement
towards measurements at lower cavity length modulation frequencies a better RBW is hence
required.

5.1. Outlook

With our approach we have demonstrated the detection of small sub-shot-noise phase signals. In
order to measure amplitude signals, merely the detection angle at the HD needs to be adjusted
for readout of the orthogonal quadrature. For an improved common-mode rejection of phase
fluctuations on LO and probe beam the two beams have to co-propagate in the FP cavity. This will
lead to a significant reduction of phase noise imprinted by the FP cavity on the probe beam. To
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achieve this, the LO has to be orthogonally polarized to the probe beam. The common-mode phase
fluctuations do not affect our final measurement in transmission, where the probe’s amplitude
quadrature can be measured with a polarization based HD scheme [46].

As discussed before, our approach is still sensitive to technical noise sources that couple into
our probe beam. We therefore propose to implement the spectroscopic FP cavity in one arm
of a Michelson interferometer. A HF phase modulated field similar to our seed is coupled into
the interferometer’s input port. The HF squeezed field is sent into the interferometer’s output
port. For a specific interferometer design, the LF cavity length modulation sidebands will exit
the interferometer at HF in the squeezed noise floor and will interfere with a coherent field at
DC. This technique is similar to a gravitational wave detector operated with DC readout [47]. To
reduce technical noise on the probe beam this is a promising approach which deserves further
investigation.

6. Conclusion

We have presented a new method to significantly improve the signal-to-shot-noise level in
high-precision spectroscopic measurements without increasing the laser power. Our approach
circumvents technical noise sources such as low-frequency detection noise by applying a high-
frequency PM. Additionally, the shot noise of the probe beam is squeezed by a sub-threshold OPO.
With this prepared phase modulated, amplitude quadrature squeezed probe, we demonstrated a
sub-shot-noise limited detection of small spectroscopic phase signals. In our experiment, we
were able to resolve tiny cavity length modulations at 20 kHz (100 Hz) on a squeezed noise floor
of 5.7 dB (6.0 dB). The derived theory confirms the measurements very well.

Our approach is interesting for spectroscopic applications, e.g. for FMS [33]. Experiments
where the probe under investigation (e.g. a gas) may set a certain laser power limit can also
benefit from our technique, since it allows to increase the SNR without the need for higher laser
power.
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