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In Section S1, we review the shape equations as originally derived in Ref. [1] and previ-
ously applied to the engulfment of nanoparticles in Ref. [2]. In addition, we describe the
scheme that we used to regularize these shape equations close to the south and north
pole of the vesicle, where the radial coordinate r vanishes. The shape is parametrized
by the arc length s of the shape contour. The south pole is located at s = 0, the
north pole at s = s1 which defines the total arc length s1. The regularization scheme is
based on Taylor expansions for small arc length s around the south pole and for small
deviations ε = s1 − s around the north pole.

In Section S2, we introduce rescaled and dimensionless variables which involve two
different length scales. The arc length s is rescaled by the total arc length s1 which
leads to the dimensionless arc length s̄ ≡ s/s1 while all other quantities that have
the dimension of a length or a curvature are rescaled using the the vesicle size Rve as
introduced in eqn (3) of the main text. We then express both the shape equations and
the regularization scheme in terms of these rescaled variables, which now involve the
dimensionless ratio f ≡ s1/Rve as an additional parameter. Finally, in Section S3,
we describe the protocol for the numerical solution of the rescaled shape equations.
This protocol combines the Taylor expansions at the two poles with the solution for
intermediate values of the arc length. The details of our computational procedure, as
described in Sections S2 and S3, have not been published before but should be useful
for future studies.

S1 Shape equations for axisymmetric shapes

Contour parametrization and principal curvatures. We consider an axisym-
metric vesicle shape and denote the Cartesian coordinate along the rotational symme-
try axis by z. The shape of such a vesicle is completely determined by its 1-dimensional
shape contour as displayed in Fig. S1. We parametrize the contour line by its arc length
s and choose the contour point with s = 0 to be the south pole of the vesicle. The shape
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Figure S1: Contour line of an axisym-
metric shape that is rotationally sym-
metric with respect to the z-axis. The
shape of this line is parametrized in
terms of the arc length s, the tilt an-
gle ψ = ψ(s), and the radial coordinate
r = r(s). The arc length s measures
the distance along the contour line from
the south pole with s = 0 and attains its
maximum value s = s1 at the north pole.
The tilt angle ψ describes the angle be-
tween the radial coordinate r and the
tangent to the contour. The two shape
parameters r(s) and ψ(s) are related via
dr/ds = cos(ψ), a constraint that is im-
posed by the Lagrange multiplier func-
tion γ(s).

of the contour is then described by the tilt angle ψ = ψ(s) and the radial coordinate
r = r(s), both of which vary with s. [1] The two principal curvatures, C1 and C2, are
given by

C1 =
dψ

ds
≡ ψ̇ and C2 =

sinψ

r
(S1)

which implies the mean curvature

M =
1

2
(C1 + C2) =

1

2

(
ψ̇ +

sinψ

r

)
. (S2)

Here and below, a dot indicates the derivative with respect to the dimensionful arc
length s.

Bending energy and shape energy. Using this contour parametrization, we now
rewrite the bending energy Ebe as given by eqn (1) in the main text which leads to

Ebe = 2πκ

∫ s1

0
ds

r

2

(
ψ̇ +

sinψ

r
− 2m

)2

. (S3)

where s1 denotes the total arc length of the contour line. The shape energy F in eqn (2)
of the main text now becomes [1]

F = 2πκ

∫ s1

0
dsL(ψ, ψ̇, r, ṙ, γ) (S4)

where we defined the ‘Lagrange function’

L(ψ, ψ̇, r, ṙ, γ) = Lbe(ψ, ψ̇, r)−
∆P

2κ
r2 sinψ +

Σ

κ
r + γ(ṙ − cosψ) (S5)
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with the bending energy density

Lbe(ψ, ψ̇, r) ≡
r

2

(
ψ̇ +

sinψ

r
− 2m

)2

. (S6)

To take into account that the radial coordinate r and the tilt angle ψ are not indepen-
dent but related via ṙ = cosψ, the Lagrange multiplier function γ has been added to
the shape energy F via the contribution

∆F = 2πκ

∫ s1

0
ds γ(ṙ − cosψ) (S7)

which implies that γ has the dimension of an inverse length or curvature.

Euler-Lagrange equations of shape energy. The shape equations are now ob-
tained as the Euler-Lagrange equations of the shape energy in eqn (S4). Using the
definition C1 = ψ̇(s) ≡ u(s) for the contour curvature, one obtains the shape equations
in the form [1]

ṙ = cosψ , (S8)

ψ̇ = u , (S9)

u̇ =
sinψ cosψ

r2
− cosψ

r
u− ∆P

2κ
r cosψ +

sinψ

r
γ , (S10)

and

γ̇ =
1

2
(u− 2m)2 − sin2 ψ

2r2
− ∆P

κ
r sinψ +

Σ

κ
, (S11)

which represent four ordinary differential equations of first order. Note that these shape
equations depend on the spontaneous curvature m as well as on the parameter com-
binations ∆P/κ and Σ/κ. Physically meaningful vesicle shapes correspond to smooth
solutions of these differential equations which fulfill certain boundary conditions at the
south pole with s = 0 and at the north pole with s = s1.

Boundary conditions at south and north pole. The parametrization of the con-
tour line as displayed in Fig. S1 implies the obvious boundary conditions

r(s = 0) = 0 and r(s = s1) = 0 (S12)

for the radial coordinate r(s) as well as

ψ(s = 0) = 0 and ψ(s = s1) = π (S13)

for the tilt angle ψ(s). The boundary values of the contour curvature C1 = ψ̇ = u at
the two poles are denoted by

u(s = 0) = U0 and u(s = s1) = U1 . (S14)
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Finally, using the fact that the ‘Hamilton function’

H ≡ ψ̇
∂L

∂ψ̇
+ ṙ

∂L

∂ṙ
− L (S15)

is conserved along the contour, we obtain the additional boundary conditions [1]

γ(s = 0) = 0 and γ(s = s1) = 0 (S16)

for the Lagrange multiplier function γ(s).

Partial membrane area and vesicle volume. We now introduce the partial mem-
brane area ∆A(s) via

∆A(s) ≡ 2π

∫ s

0
ds′ r(s′) (S17)

and the partial vesicle volume

∆V (s) ≡ π

∫ s

0
ds′ r2(s′) sinψ(s′) . (S18)

The partial area satisfies the evolution equation and boundary conditions as given by

d∆A(s)

ds
= 2πr with ∆A(0) = 0 and ∆A(s1) = A (S19)

with the total membrane area A as introduced in the main text. Likewise, the partial
volume satisfies

d∆V (s)

ds
= πr2 sinψ with ∆V (0) = 0 and ∆V (s1) = V (S20)

with the total vesicle volume V as in the main text.

Regularization of shape equations close to the poles. The shape eqns S10 and
S11 for u̇ and γ̇ contain several terms proportional to 1/r and 1/r2. In particular, each
of the first two terms on the right hand side of eqn S10 diverges individually close to
the poles with r = 0. Even though these two singularities cancel, they do impede the
numerical integration of the shape equations in the vicinity of the poles. To facilitate
this integration, it is convenient to regularize the equations by using Taylor expansions
for the parameter functions r(s), ψ(s), and γ(s) around the two poles. [1, 2]

Regularization close to south pole. The expansion around the south pole with
s = 0 corresponds to an expansion in powers of s and has the general form

r(s) =
∑
k=1

rk
k!
sk and ψ(s) =

∑
k=1

ψk

k!
sk (S21)

as well as

u(s) = ψ̇(s) =
∑
k=1

ψk

(k − 1)!
sk−1 and γ(s) =

∑
k=1

γk
k!
sk . (S22)
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The boundary condition in eqn (S14) then implies that

u(s = 0) = U0 = ψ1 . (S23)

When we insert these expansions into the shape eqns S8 - S11 and equate the polynomial
coefficients, the boundary conditions at the south pole imply that all coefficients of the
Taylor series can depend on the contour curvature U0 at this pole as well as on the
three parameters m, ∆P/κ, and Σ/κ. By matching the coefficients of the expansions
on both sides of the shape equations, we find the Taylor coefficients

r1 = 1 , r2 = r4 = 0, and r3 = −U2
0 (S24)

for the radial coordinate r(s) as well as the coefficients

ψ1 = U0 , ψ2 = ψ4 = 0 , (S25)

and

ψ3 =
3

8

[
−∆P

κ
+ 2U0γ1

]
=

3

8

[
4mU0(m− U0)−

∆P

κ
+ 2U0

Σ

κ

]
(S26)

for the tilt angle ψ(s). The Taylor coefficients for the Lagrange multiplier function γ
have the form

γ1 = −2U0m+ 2m2 +
Σ

κ
= 2m(m− U0) +

Σ

κ
, γ2 = 0 (S27)

and

γ3 =
2

3
(U0 − 3m)ψ3 − 2

∆P

κ
U0 (S28)

or

γ3 = mU0(m− U0)(U0 − 3m)− 1

4
(9U0 − 3m)

∆P

κ
+

1

2
U0(U0 − 3m)

Σ

κ
. (S29)

Likewise, the expansion of the partial area ∆A(s) and the partial volume ∆V (s) for
small s leads to

∆A(s) ≈ πs2 − π

12
U2
0 s

4 and ∆V (s) ≈ π

4
U0s

4 (S30)

up to order s4.

Regularization close to north pole. The expansion around the north pole with
s = s1 can be performed in an analogous manner using the expansion parameter

ε ≡ s1 − s with 0 ≤ ε� s1 , (S31)

which represents the arc length measured from the north pole. It will be convenient to
define the functions

rno(ε) ≡ r(s) , ψno(ε) ≡ π − ψ(s) and γno(ε) ≡ γ(s) with s = s1 − ε (S32)
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as well as the contour curvature

uno(ε) ≡ dψno(ε)

dε
=

dψ(s)

ds
= u(s) with s = s1 − ε . (S33)

The expansion around the north pole then has the form

rno(ε) =
∑
k=1

rnok
k!
εk and ψno(ε) =

∑
k=1

ψno
k

k!
εk (S34)

as well as

uno(ε) =
dψno

dε
=

∑
k=1

ψno
k

(k − 1)!
εk−1 and γno(s) =

∑
k=1

γnok
k!
εk . (S35)

The boundary condition in eqn (S14) now implies that

u(s = s1) = U1 = uno(ε = 0) = ψno
1 . (S36)

By again equating coefficients on the two sides of the shape equations, we now find

rno1 = 1 , rno2 = rno4 = 0 , and rno3 = −U2
1 , (S37)

for the radial coordinate rno(ε) and the coefficients

ψno
1 = U1 , ψno

2 = ψno
4 = 0 , (S38)

and

ψno
3 = −3

8

[
∆P

κ
+ 2U1γ

no
1

]
=

3

8

[
4mU1(m− U1)−

∆P

κ
+ 2U1

Σ

κ

]
(S39)

for the tilt angle ψno(ε). The coefficients for the Lagrange multiplier function γno(ε)
are now given by

γno1 = 2m(U1 −m)− Σ

κ
, γno2 = γno4 = 0 , (S40)

and

γno3 =
2

3
(3m− U1)ψ

no
3 + 2

∆P

κ
U1 (S41)

or

γno3 = mU1(m− U1)(3m− U1) +
1

4
(9U1 − 3m)

∆P

κ
+

1

2
U1(3m− U1)

Σ

κ
. (S42)

Likewise, we define the partial area and volume functions close to the north pole ac-
cording to

∆Ano(ε) ≡ ∆A(s1 − ε) and ∆V no(ε) ≡ ∆V (s1 − ε) . (S43)

These partial functions behave as

∆Ano(ε) ≈ A− πε2 +
π

12
U2
1 ε

4 and ∆V no(ε) ≈ V − π

4
U1ε

4 (S44)

for small ε = s1 − s up to up to O(ε4) with the total membrane area A and the total
vesicle volume V as in the main text.
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S2 Rescaled parameters and shape equations

Rescaled parameters. Because the total arc length s = s1 is an unknown, shape-
dependent parameter, it is convenient to introduce the rescaled arc length

s̄ ≡ s

s1
which implies s̄1 = 1 . (S45)

The other quantities that have the dimension of a length or curvature are rescaled by
the vesicle size Rve =

√
A/(4π) as defined in eqn (3) of the main text, which leads to

the rescaled variables

r̄(s̄) ≡ r(s)

Rve
, ū(s̄) ≡ Rveu(s) , and γ̄(s̄) ≡ Rveγ(s) with s = s1s̄ . (S46)

For the tilt angle which is dimensionless, we use the analogous notation

ψ̄(s̄) ≡ ψ(s) with s = s1s̄ . (S47)

The resulting shape equations for these rescaled variables then depend on another
dimensionless parameter, the length scale ratio

f ≡ s1
Rve

with f ≥ π (S48)

where the lowest possible value f = π corresponds to a spherical vesicle shape.

Rescaled shape equations. Indeed, in terms of the rescaled variables, the first three
shape eqns (S8) - (S10) become

dr̄

ds̄
= f cos ψ̄ , (S49)

dψ̄

ds̄
= fū , (S50)

and
dū

ds̄
= f

(
sin ψ̄ cos ψ̄

r̄2
− cos ψ̄

r̄
ū− 1

2
∆P̄ r̄ cos ψ̄ +

sin ψ̄

r̄
γ̄

)
(S51)

with the rescaled pressure difference

∆P̄ ≡ ∆P
R3

ve

κ
. (S52)

Likewise, the fourth shape eqn (S11) becomes

dγ̄

ds̄
= f

[
1

2
(ū− 2m̄)2 − sin2 ψ̄

2r̄2
−∆P̄ r̄ sin ψ̄ + Σ̄

]
(S53)

with the rescaled membrane tension

Σ̄ ≡ Σ
R2

ve

κ
. (S54)
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Rescaled partial area and volume. The rescaled partial area ∆Ā of the membrane
is defined by

∆Ā(s̄) ≡ ∆A(s)

4πR2
ve

=
f
2

∫ s̄

0
ds̄′ r̄(s̄′) (S55)

which implies the evolution equation

d∆Ā(s̄)

ds̄
=

f
2
r̄ . (S56)

On the other hand, the rescaled partial volume ∆V̄ is taken to be

∆V̄ (s̄) ≡ ∆V (s)
4π
3 R

3
ve

=
3f
4

∫ s̄

0
ds̄′ r̄2(s̄′) sin ψ̄(s̄′) (S57)

and satisfies the evolution equation

d∆V̄ (s̄)

ds̄
=

3f
4
r̄2 sin ψ̄ . (S58)

Boundary conditions for rescaled variables. The boundary conditions for the
rescaled shape functions are

r̄(s̄ = 0) = 0 and r̄(s̄ = 1) = 0 , (S59)

ψ̄(s̄ = 0) = 0 and ψ̄(s̄ = 1) = π , (S60)

ū(s̄ = 0) = Ū0 and ū(s = s1) = Ū1 (S61)

with the rescaled contour curvatures

Ū0 ≡ U0Rve and Ū1 ≡ U1Rve (S62)

at the two poles as well as

γ̄(s̄ = 0) = 0 and γ̄(s̄ = 1) = 0 . (S63)

In addition, the boundary values for the rescaled membane area are

∆Ā(s̄ = 0) = 0 and ∆Ā(s̄ = 1) = 1 , (S64)

those for the rescaled vesicle volume are

∆V̄ (s̄ = 0) = 0 and ∆V̄ (s̄ = 1) = v (S65)

with the dimensionless volume-to-area ratio v as defined in eqn (4) of the main text.

Dimensionless parameters. The shape equations and boundary conditions for the
rescaled variables as described in the previous paragraphs depend on seven dimension-
less parameters: the shape parameters v and m̄, the contour curvatures Ū0 and Ū1 at
the two poles, the pressure ∆P̄ = ∆PR3

ve/κ, the tension Σ̄ = ΣR2
ve/κ, and the length

scale ratio f = s1/Rve. When we consider certain fixed values of the shape parameters
v and m̄, see main text, the different branches of solutions then correspond to different
values of the five parameters Ū0, Ū1, ∆P̄ , Σ̄, and f. In order to construct such solutions
in practise, we need to deal with the numerical difficulties close to to two poles and to
regularize the rescaled equations as well.
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Regularization of rescaled equations close to south pole. Close to the south
pole, the expansion of the rescaled radial coordinate r̄ in powers of s̄ leads to

r̄ = r̄1s̄+
1

6
r̄3 s̄

3 +O(s̄5) (S66)

with the Taylor coefficients

r̄1 = fr1 = f and r̄3 = f3r3 = −f3U2
0 . (S67)

Likewise, the tilt angle ψ becomes

ψ̄(s̄) = ψ̄1s̄+
1

6
ψ̄3 s̄

3 +O(s̄5) (S68)

with the coefficients

ψ̄1 = ψ1s1 = U0s1 = fŪ0 and ψ̄3 = ψ3s
3
1 (S69)

or

ψ̄3 =
3f3

8

[
4m̄Ū0(m̄− Ū0)−∆P̄ + 2Ū0Σ̄

]
(S70)

where we used the expressions for ψ1 and ψ3 in eqns (S25) and (S26) as well as the
rescaled pressure and tension in eqns (S52) and (S54). It then follows that the Taylor
expansion of the rescaled contour curvature

ū(s̄) = Rveu(s) = Rve
dψ(s)

ds
=

1

f
dψ̄(s̄)

ds̄
(S71)

has the form

ū(s̄) = Ū0 +
1

2

ψ̄3

f
s̄2 +O(s̄4) . (S72)

In addition, the expansion of the rescaled Lagrange multiplier function γ̄ is given by

γ̄(s̄) = Rveγ(s) = γ̄1s̄+
1

6
γ̄3 s̄

3 +O(s̄5) (S73)

with the coefficients
γ̄1 = Rves1γ1 = f

[
2m̄(m̄− Ū0) + Σ̄

]
(S74)

and
γ̄3 = Rves

3
1γ3 (S75)

or

γ̄3 = f3

[
m̄Ū0(m̄− Ū0)(Ū0 − 3m̄)− 1

4
(9Ū0 − 3m̄)∆P̄ +

1

2
Ū0(Ū0 − 3m̄)Σ̄

]
(S76)

where eqn (S29) for γ3 has been used.

Close to the south pole, the rescaled partial area ∆Ā and the rescaled partial volume
∆V̄ as defined in eqns (S55) and (S57) behave as

∆Ā(s̄) ≈ f2

4
s̄2 − f4

48
s̄4 and ∆V̄ (s̄) ≈ 3f4

16
s̄4 (S77)

for small s̄ up to O(s̄4).
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Regularization of rescaled equations close to north pole. Close to the north
pole, we use the dimensionless expansion parameter

ε̄ ≡ ε

s1
=
s1 − s

s1
= 1− s̄ with 0 ≤ ε̄� 1, (S78)

which measures the arc length from the north pole in units of s1. We now introduce
the functions

r̄no(ε̄) ≡ r̄(s̄) =
r(s)

Rve
=
rno(ε)

Rve
, (S79)

ψ̄no(ε̄) = π − ψ̄(s̄) = π − ψ(s) = ψno(ε) , (S80)

ūno(ε̄) ≡ ū(s̄) = Rveu(s) = Rveu
no(ε) (S81)

and
γ̄no(ε̄) = γ̄(s̄) = Rveγ(s) = Rveγ

no(ε) (S82)

where the different arc length are related, according to their definitions, via

s̄ = 1− ε̄ , s = s1s̄ = s1(1− ε̄) , and ε = s1ε̄ .

The expansion of the rescaled radial coordinate r̄no in powers of ε̄ is then given by

r̄no(ε̄) = r̄no1 ε̄+
1

6
r̄no3 ε̄

3 +O(ε̄5) (S83)

with the coefficients

r̄no1 = frno1 = f and r̄no3 =
s31
Rve

rno3 = −f3Ū2
1 . (S84)

The expansion of the tilt angle ψ̄no = π − ψ̄ has the form

ψ̄no(ε̄) = ψ̄no
1 ε̄+

1

6
ψ̄no
3 ε̄

3 +O(ε̄5) (S85)

with the coefficients

ψ̄no
1 = ψno

1 s1 = U1s1 = fŪ1 and ψ̄no
3 = ψno

3 s
3
1 (S86)

or

ψ̄no
3 =

3f3

8

[
4m̄Ū1(m̄− Ū1)−∆P̄ + 2Ū1Σ̄

]
(S87)

where eqns (S38) and (S39) for ψno
1 and ψno

3 have been used. It then follows that the
rescaled contour curvature

ūno(ε̄) = Rveu
no(ε) = Rve

dψno(ε)

dε
=

1

f
dψno(ε̄)

dε̄
(S88)

has the expansion

ūno(ε̄) = Ū1 +
1

2

ψ̄no
3

f
s̄2 +O(ε̄4) . (S89)
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Furthermore, the expansion of the Lagrange multiplier function γ̄no is found to be

γ̄no(ε̄) = Rveγ
no(ε) = γ̄no1 ε̄+

1

6
γ̄no3 ε̄3 +O(ε̄5) (S90)

with the coefficients

γ̄no1 = Rves1γ
no
1 = f

[
2m̄(Ū1 − m̄)− Σ̄

]
(S91)

and
γ̄no3 = Rves

3
1γ

no
3 (S92)

or

γ̄no3 = f3

[
m̄Ū1(m̄− Ū1)(3m̄− Ū1) +

1

4
(9Ū1 − 3m̄)∆P̄ +

1

2
Ū1(3m̄− Ū1)Σ̄ .

]
(S93)

Close to the north pole, the rescaled partial area behaves as

∆Āno(ε̄) ≡ ∆Ano(ε)

4πR2
ve

= 1− 1

4
f2ε̄2 +

1

48
f4Ū2

1 ε̄
4 +O(ε̄6) (S94)

and the rescaled partial volume as

∆V̄ no(ε̄) ≡ ∆V no(ε)
4π
3 R

3
ve

= v − 1

16
f4Ū1ε̄

4 +O(ε̄6) (S95)

where the relationships in eqn (S44) have been used.

S3 Protocol for computation of axisymmetric shapes

To obtain a specific axisymmetric vesicle shape, we solve the rescaled shape equations
using the following protocol that consists of four steps.

First, to avoid the numerical instabilities at the south pole with s̄ = 0, we start from the
Taylor expansions close to this pole and choose a certain trial set of the five parameters
m̄, Ū0, ∆P̄ , Σ̄, and f that enter these expansions. We use the Taylor series for r̄(s̄)
as given by eqn (S66) and calculate the r̄-values for s̄ = s̄n = n∆s̄ with positive
integer n and increment ∆s̄ = 10−3 until we reach the smallest value n = n∗ for which
r̄(s̄n∗) > 10−2. The corresponding arc length s̄n∗ is taken to be the new initial value

s̄ini ≡ s̄n∗ > 0 of the arc length. (S96)

We then apply the Taylor expansions of all six shape functions r̄(s̄), ψ̄(s̄), ū(s̄), γ̄(s̄),
∆Ā(s̄), and ∆V̄ (s̄) for small s̄ to calculate the values of these functions at the initial arc
length s̄ = s̄ini. These expansions are provided by eqn (S66) for the radial coordinate
r̄(s̄), by eqn (S68) for the tilt angle ψ̄(s̄), by eqn (S72) for the contour curvature ū(s̄),
by eqn (S73) for the Lagrange multiplier function γ̄(s̄), and by eqn (S77) for the partial
membrane area ∆Ā(s̄) and the partial vesicle volume ∆V̄ (s̄). In this way, we determine
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the six initial values r̄(s̄ini), ψ̄(s̄ini), ū(s̄ini), γ̄(s̄ini), ∆Ā(s̄ini), and ∆V̄ (s̄ini) which are
located close to the south pole.

Second, for the given choice of the five parameters m̄, Ū0, ∆P̄ , Σ̄, and f, we start from
the six initial values and integrate the six shape eqns (S49), (S50), (S51), (S53), (S56),
and (S58) numerically up to the final value

s̄fin = 1− s̄ini of the arc length. (S97)

For this numerical integration, we use the same fixed integration-step ∆s̄ = 10−3 and
the Julia package DifferentialEquations.jl [3] with the Rodas4 algorithm, corresponding
to an implicit Runge-Kutta procedure. As a result of this computation, we obtain the
values of the six shape functions at s̄ = s̄fin close to the north pole, i.e., the numerical
values of r̄(s̄fin), ψ̄(s̄fin), ū(s̄fin), γ̄(s̄fin), ∆Ā(s̄fin), and ∆V̄ (s̄fin) .

Third, we calculate the values of the shape functions at s̄ = s̄fin by using the Taylor
expansions of these functions in powers of ε̄ = 1 − s̄, with ε̄ = 0 at the north pole.
The latter expansions are provided by eqn (S83) for the radial coordinate r̄no(ε̄), by
eqn (S85) for the tilt angle ψ̄no(ε̄), by eqn (S89) for the contour curvature ūno(ε̄), by
eqn (S90) for the Lagrange multiplier function γ̄no(ε̄), by eqn (S94) for the partial
membrane area ∆Āno(ε̄), and by eqn (S95) for the partial vesicle volume ∆V̄ no(ε̄).
These expansions close to the north pole depend on the six parameters m̄, Ū1, ∆P̄ , Σ̄,
f, and v.

Finally, we compare the numerical values of the shape functions obtained via the nu-
merical integration for s̄ = s̄fin with those obtained from the expansion in powers of
ε̄ = 1 − s̄ for ε̄fin = 1 − s̄fin. The six differences as given by r̄(s̄fin) − r̄no(ε̄fin) ...
∆V̄ (ε̄fin)−∆V̄ no(ε̄fin) provide the residuals for finding the five parameters Ū0, Ū1, ∆P̄ ,
Σ̄, and f for fixed values of the volume-to-area v and spontaneous curvature m̄. The
adjustment of the parameters was done with the non-linear trust-region root-finding
algorithm provided by the Julia package NLsolve.jl [4].
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Figure S2: Rescaled local spontaneous curvature m̄loc versus frame index i. The frame
i was taken at time t = (i−1)×7.61 s after the initial frame with index i = 1. The blue
data points correspond to up-down symmetric dumbbell shapes, the red data points
to asymmetric ones. The symmetry-breaking transformation in Fig. 1 corresponds to
i = 1, 2, and 3, the symmetry-restoring transformation in Fig. 2 to i = 68, 69, and 70.
The image i = 4 displays a slightly distorted version of i = 3 and is thus taken to
have the same m̄loc-value as i = 3. The image i = 71 displays a symmetric dumbbell
with an increased neck radius compared to i = 70. This increased radius implies the
local spontaneous curvature m̄loc = 1.17. The combined sequence of all eight images
represents one complete shape oscillation with an average time period of 55.9 s. The
error bars are obtained as in Fig. 9.
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Figure S3: Integrated mean curvature and different energy contributions as functions
of the local spontaneous curvature m̄loc for rigidity ratio κ∆/κ = 2. The symmetric and
asymmetric branches are displayed as blue and red lines, respectively: (a) Integrated
mean curvature ĪM as in eqn (16); (b) Nonlocal area-difference-elasticity term D̄ADE

as in eqn (26); (c) Local bending energy Ē′
be as in eqn (25); and (d) ADE energy

ĒADE which is equal to the sum of the local and nonlocal terms in panels b and c.
As in Fig. 11, the energy of the asymmetric branch is located below the energy of the
symmetric one. All quantities were computed for volume-to-area ratio v = 0.670 and
reference value ĪM,0 = 17.63 of the integrated mean curvature.
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Movie captions

Movie1. Active shape oscillations of a single GUV: The movie consists of 200 snapshots
or frames, each of which displays a different image of the same GUV as obtained by
differential interference contrast (DIC) microscopy. The movie was taken with the pre-
defined time interval ∆t = 7.61 s between successive frames and displays the whole series
of 200 frames within 20 s, corresponding to about 1500 s or 25 min real time. Apart from
a few frames at the beginning and at the end, the movie consists of 26 complete oscil-
lation cycles with an average period of 55.9 s. This movie corresponds to the DIC part
of Video S6 in https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.

1002%2Fanie.201808750&file=anie201808750-sup-0001-Video_S6.mp4 which is a Sup-
plement to Ref. [4] of the main text.

Movie2. Up-down symmetric and asymmetric dumbbells for fixed volume-to-area
ratio v = 0.670 and variable spontaneous curvature m̄: The left panel displays the
up-down symmetric dumbbells (blue) for 0.99 ≤ m̄ ≤ 2.27, the right panel the up-down
asymmetric ones (red), which are present in the restricted m̄-range with 1.89 ≤ m̄ <
1.94. For m̄ = 1.94, the branch of asymmetric dumbbells has merged with the branch
of symmetric ones. Both types of dumbbells are obtained as smooth solutions of the
shape equations for axisymmetric shapes. The rotational symmetry axis is parallel to
the z-axis as indicated by the broken vertical lines. The second Cartesian coordinate
is taken to be the x-axis.
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