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Remarks on Ekedahl-Oort stratifications

Chao Zhang

Abstract: This short paper is a continuation of the author’s Ph.D thesis, where Ekedahl-Oort

strata are defined and studied for Shimura varieties of Hodge type. The main results here are as

follows.

1. The Ekedahl-Oort stratification is independent of the choices of symplectic embeddings.

2. Under certain reasonable assumptions, there is certain functoriality for Ekedahl-Oort strati-

fications with respect to morphisms of Shimura varieties.

0 Introduction

Let (G,X) be a Shimura datum of Hodge type, and ShK(G,X) be the Shimura variety attached to

a compact open subgroup K ⊆ G(Af ). We assume that K = KpK
p, where Kp is hyperspecial, i.e.

there is a reductive group G/Zp such that GQp = GQp and that Kp = G(Zp). By works of Deligne,

ShK(G,X) is defined over a number field E. Let v be a place of E over p, then Kisin proved in

[2] that ShK(G,X) has a smooth model SK(G,X) over OE,(v). Moreover, SK(G,X) is uniquely

determined by the Shimura datum in the sense that lim
←−Kp SK(G,X) satisfies a certern extension

property (see [2] 2.3.7 for a precise statement).

Ekedahl-Oort stratifications for good reductions of Shimura varieties of Hodge type were defined

and studied in [14] using [2] and [8]. Let κ = OE,(v)/(v) and S0 (resp. G0) be the special fiber

of SK(G,X) (resp. G). The Shimura datum determines a cocharacter µ : Gm,κ → G0,κ which

is unique up to G0(κ)-conjugacy. We constructed in [14] a morphism ζ : S0 → G0-Zip
µ
κ, where

G0-Zip
µ
κ is the stack of G0-zips of type µ (see [8] or § 1.2 of this paper). Fibers of ζ are Ekedahl-Oort

strata. Note that to construct ζ, we need to fix a symplectic embedding.

There are many basic questions that were not solved in [14]. Here we mention two of them.

1. Whether the Ekedahl-Oort stratification (namely, the morphism ζ) is independent of the

choices of symplectic embeddings.

2. How to study behavior of stratifications under morphisms of Shimura varieties.

The motivation for the first question is the observation that both the reduction of the Shimura

variety and the “list” of Ekedahl-Oort strata are independent of choices of symplectic embeddings.

While the second one is a question that can not be more natural.

The first question is solved by the following theorem.
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Theorem 0.1. The morphism ζ is uniquely determined by (G,X) and µ, and hence independent

of choices of symplectic embeddings.

The first section is devoted to a proof of the above result.

The second question is too general and too inexplicit to study, so we raise the following question.

Let f : (G,X) → (G′,X ′) be a morphism of Shimura data of Hodge type. Let E and E′ be their

reflex fields. Then E ⊇ E′. Let K ⊆ G(Af ) and K ′ ⊆ G′(Af ) be such that Kp and K ′
p are

hyperspecial. Assume that f(K) ⊆ K ′, then there is a morphism f : ShK(G,X) → ShK ′(G′,X ′)E .

Let v′ be a place of E′ over p with residue field κ′ and v be a place of E over v′ with residue

field κ, then there is a morphism SK(G,X) → SK ′(G′,X ′)OE,(v)
extending f . Still write f for the

morphism on special fibers S0,K(G,X) → S0,K ′(G′,X ′)κ. Let G0 (resp. G′
0) be the reduction of G

(resp. G′), and let µ (resp. µ′) be the cocharacter unique up to conjugacy. Then there is a morphism

ζ : S0,K(G,X) → G0-Zip
µ
κ (resp. ζ ′ : S0,K ′(G′,X ′) → G′

0-Zip
µ′

κ′) giving the Ekedahl-Oort strata

on S0,K(G,X) (resp. S0,K ′(G′,X ′)).

The question is, whether there is any compatibility between f , ζ and ζ ′. We have the following

result.

Theorem 0.2. Assume that fQp extends to a morphism of reductive group schemes over Zp, then

there is a canonical commutative diagram

S0,K(G,X)

ζ

��

f
// S0,K ′(G′,X ′)κ

ζ′⊗κ
��

G0−zip
µ
κ

α
// G′

0−zip
µ′

κ′ ⊗ κ.

The proof to the above result will be given in the second section.

As we have seen, the second question is not yet totally solved. More questions will be raised

and studied in the author’s future research.

1 Independence of symplectic embeddings

Let (G,X) be a Shimura datum of Hodge type with good reduction at a prime p > 2. Let E be

the reflex field and v be a place of E over p. The residue field at v will be denoted by κ. Let

Kp ⊆ G(Qp) be a hyperspecial subgroup, and Kp ⊆ G(Ap
f ) be a compact open subgroup which is

small enough. Let K be Kp ×K
p. Then by [2], the Shimura varieties ShK(G,X) has an integral

canonical model SK(G,X) which is smooth over OE,(v).

Let S0 be the special fiber of SK(G,X). By the main results of [14], there is a theory of Ekedahl-

Oort stratification on S0. To define the stratification, we need to fix a symplectic embedding, while

the variety S0 is independent of symplectic embeddings. A natural question is whether different

symplectic embeddings give the same stratification.

The above question is not yet precise enough to work with. Let us first recall how Ekedahl-Oort

stratifications are defined and raise precise questions.
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1.1 Integral canonical models

Let Kp and G be as above, then by [9] Proposition 3.1.2.1 c) and e), GQp extends uniquely to a

reductive group Ĝ/Zp such that Kp = Ĝ(Zp). More precisely, for any two extensions e1 : GQp → Ĝ1
and e2 : GQp → Ĝ2 such that e1(Kp) = Ĝ1(Zp) and e2(Kp) = Ĝ2(Zp), there is an unique isomorphism

f : Ĝ1 → Ĝ2 such that f ◦ e1 = e2 and that f(Ĝ1(Zp)) = Ĝ2(Zp).

Let i : (G,X) →֒ (GSp(V, ψ),X ′) be a symplectic embedding. Then by [2] Lemma 2.3.1, there

exists a Zp-lattice LZp ⊆ VQp , such that iQp : GQp ⊆ GL(VQp) extends uniquely to a closed em-

bedding Ĝ →֒ GL(LZp). So there is a Z-lattice L ⊆ V such that G, the Zariski closure of G in

GL(LZ(p)
), is reductive, as the base change to Zp of G is Ĝ. Moreover, we can assume L is such

that L∨ ⊇ L. Let d = |L∨/L| and g = 1
2dim(V ), then the integral canonical model SK(G,X)

of ShK(G,X) is constructed as follows. We can choose K ′ ⊆ GSp(V, ψ)(Af ) small enough such

that K ′ ⊇ K and that ShK ′(GSp(V, ψ),X) affords a moduli interpretation. There is a finite

morphism f : ShK(G,X) → ShK ′(GSp(V, ψ),X)E . Let Ag,d,K ′/Z(p)
be the moduli scheme of

abelian schemes over Z(p)-schemes with a polarization of degree d and level K ′ structure. Then

Ag,d,K ′/Z(p)
⊗ Q = ShK ′(GSp(V, ψ),X). The integral canonical model SK(G,X) is the normaliza-

tion of the Zariski closure of ShK(G,X) in Ag,d,K ′/Z(p)
⊗ OE,(v). Here the word “normalization”

make sense. As ShK(G,X) is regular, and on each open affine, OSK(G,X) is obtain by taking

elements in OShK(G,X) that is integral over OAg,d,K′/OE,(v)
.

Note that we didn’t assume that K ′ is such that the morphism f is a closed embedding. Because

if we take K ′′ ⊆ K ′ small enough such that the induced morphism

g : ShK(G,X)→ ShK ′′(GSp(V, ψ),X)E

is a closed embedding, then f factors through g. The natural morphism Ag,d,K ′′/Z(p)
→ Ag,d,K ′/Z(p)

is finite, so the normalization gives the same SK(G,X). The special fiber of SK(G,X) will be

denoted by S0.

1.2 G-zips

Let G0 (resp. L0) be the special fiber of G (resp. LZp). We remark that G0 is uniquely determined

by (G,Kp), as it is also the special fiber Ĝ which is uniquely determined by (G,Kp). But L0 is not

unique, there might be many choices. By [14], the Shimura datum (G,X) determines a cocharacter

µ : Gm,W (κ) → ĜW (κ) which is unique up to Ĝ(W (κ))-conjugacy. The special fiber of µ will still be

denoted by µ.

Setting 1.3. We start with G0 and µ : Gm,κ → G0,κ. For an Fp-scheme S, let σ : S → S be

the absolute Frobenius. For an S-scheme T , we will write T (p) for the pull back of T via σ. In

particular, we will write µ(p) for the pull back via Frobenius of µ. Note that it is a cocharacter of

G0,κ.

Let P+ (resp. P−) be the unique parabolic subgroup of G0,κ such that its Lie algebra is the

sum of spaces with non-negative weights (resp. non-positive weights) in Lie(G0,κ) under Ad ◦ µ.

Let U+ (resp. U−) be the unipotent radical of P+ (resp. P−), and L be the common Levi

subgroup of P+ and P−. Note that L is also the centralizer of µ.
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Definition 1.4. Let S be a scheme over κ. A G0-zip of type µ over S is a tuple I = (I, I+, I−, ι)

consisting of a right Gκ-torsor I over S, a right P+-torsor I+ ⊆ I, a right P
(p)
− -torsor I− ⊆ I, and

an isomorphism of L(p)-torsors ι : I
(p)
+ /U

(p)
+ → I−/U

(p)
− .

A morphism (I, I+, I−, ι) → (I ′, I ′+, I
′
−, ι

′) of G0-zips of type µ over S consists of equivariant

morphisms I → I ′ and I± → I ′± that are compatible with inclusions and the isomorphisms ι and ι′.

The category of G0-zips of type µ over a κ-scheme S will be denoted by G0-Zip
µ
κ(S). They

form a fibered category G0-Zip
µ
κ over the category of κ-schemes if we only consider isomorphisms

as morphisms.

Pink, Wedhorn and Ziegler proved the following result.

Theorem 1.5. The fibered category G0-Zip
µ
κ is a smooth algebraic stack over κ of dimension 0.

Proof. This is [8] Corollary 3.12.

1.6 Ekedahl-Oort strata

Now we will explain how to construct Ekedahl-Oort stratification follow [14]. Note that we will

NOT follow [14] strictly, as it seems more natural to compare L∨ with cohomologies, see also [3] and

[13]. Our theory of Ekedahl-Oort stratification is base on the theory of G0-zips of type µ defined

and studied by Pink, Wedhorn and Ziegler in [8].

Let A be the pull back to SK(G,X) of the universal abelian scheme on Ag,d,K ′/Z(p)
, and V be

H1
dR(A/SK(G,X)). Let L ⊆ V and G be as in 1.1. Then by [2] Proposition 1.3.2, there is a tensor

s ∈ L⊗

Z(p)
defining G ⊆ GL(LZ(p)

). Corollary 2.3.9 of [2] implies that the tensor s ∈ L⊗

Z(p)
induces a

section sdR ∈ V
⊗. By [14] Lemma 2.3.2 1), the scheme

I = IsomSK(G,X)

(
(L∨

Z(p)
, s)⊗OSK(G,X), (V, sdR)

)

is a right G-torsor.

The first main result of [14] is as follows.

Setting 1.7. Still write V, s, sdR and I the reduction mod p of V, s, sdR and I. Let F : V(p) → V

and V : V → V(p) be the Frobenius and Verschiebung on V respectively. Let δ : V → V(p) be the

semi-linear map sending v to v ⊗ 1. Then we have a semi-linear map F ◦ δ : V → V. There is a

descending filtration V ⊇ ker(F ◦ δ) ⊇ 0 and an ascending filtration 0 ⊆ im(F ) ⊆ V. The morphism

V induces an isomorphism V/im(F )→ ker(F ) whose inverse will be denoted by V −1. Then F and

V −1 induce isomorphisms

ϕ0 : (V/ker(F ◦ δ))
(p) → ker(F )

and

ϕ1 : (ker(F ◦ δ))
(p) → V/(im(F )).

Setting 1.8. Let L0 be the special fiber of LZ(p)
. The cocharacter

µ : Gm,κ → G0,κ ⊆ GL(L0,κ) ∼= GL(L∨
0,κ)
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induces an F -zip structure on L∨
0,κ as follows. Let (L∨

0,κ)
0 (resp. (L∨

0,κ)
1) be the subspace of L∨

0,κ of

weight 0 (resp. 1) with respect to µ, and (L∨
0,κ)0 (resp. (L∨

0,κ)1) be the subspace of L∨
0,κ of weight

0 (resp. 1) with respect to µ(p). Then we have a descending filtration L∨
0,κ ⊇ (L∨

0,κ)
1 ⊇ 0 and

an ascending filtration 0 ⊆ (L∨
0,κ)0 ⊆ L∨

0,κ. Let ξ : L∨
0,κ → (L∨

0,κ)
(p) be the isomorphism given by

l ⊗ k 7→ l ⊗ 1⊗ k, ∀ l ∈ L∨
0 , ∀ k ∈ κ. Then ξ induces isomorphisms

φ0 : (L
∨
0,κ)

(p)/((L∨
0,κ)

1)(p)
pr2→ ((L∨

0,κ)
0)(p)

ξ−1

−→ (L∨
0,κ)0

and

φ1 : ((L
∨
0,κ)

1)(p)
ξ−1

−→ ((L∨
0,κ)1 ≃ L

∨
0,κ/(L

∨
0,κ)0.

Theorem 1.9.

1) Let I+ ⊆ I be the closed subscheme

I+ := IsomS0

(
(L∨

0,κ, s, (L
∨
0,κ)

1)⊗OS0 , (V, sdR, ker(F ◦ δ))
)
.

Then I+ is a P+-torsor over S0.

2) Let I− ⊆ I be the closed subscheme

I− := IsomS0

(
(L∨

0,κ, s, (L
∨
0,κ)0)⊗OS0 , (V, sdR, im(F ))

)
.

Then I− is a P
(p)
− -torsor over S0.

3) Let ι : I
(p)
+ /U

(p)
+ → I−/U

(p)
− be the morphism induced by

I
(p)
+ → I−/U

(p)
−

f 7→ (ϕ0 ⊕ ϕ1) ◦ gr(f) ◦ (φ
−1
0 ⊕ φ

−1
1 ),∀ S/S0 and ∀ f ∈ I

(p)
+ (S).

Then ι is an isomorphism of L(p)-torsors.

Hence the tuple (I, I+, I−, ι) is a G0-zip of type µ over S0.

Proof. This is [14] Theorem 2.4.1.

The G0-zip of type µ over S0 constructed above induces a morphism ζ : S0 → G0-Zip
µ
κ. As

we have seen, to construct ζ, we need to choose a Z(p)-model G of G, a symplectic embedding

i : (G,X) →֒ (GSp(V, ψ),X ′), a Z(p)-lattice LZ(p)
⊆ V , and a tensor s ∈ LZ(p)

defining G. So, by

independence of symplectic embeddings, we mean that ζ is independent of the choices of G, i, LZ(p)

and s.

1.10 Uniqueness of G

The Z(p)-model G of G we obtained is actually unique.

Proposition 1.11. Let V1 and V2 be two finite dimensional Q-vector spaces. Let i1 : G→ GL(V1)

and i2 : G → GL(V2) be two closed embeddings of reductive groups. Assume that there is a Z(p)-

lattice L1 ⊆ V1 (resp. L2 ⊆ V2) such that the Zariski closure G1 (resp. G2) of G in GL(L1) (resp.

GL(L2)) is reductive. Then G1 ∼= G2.
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Proof. Let V = V1 ⊕ V2 be the direct sum of the two representations i1 and i2, let L = L1 ⊕ L2.

The we have a sequence of closed embeddings G1 × G2 ⊆ GL(L1)×GL(L2) ⊆ GL(L). Let Ĝ/Zp be

the reductive model of GQp and G3 be the Zariski closure of G in GL(L). Then G1,Zp = Ĝ = G2,Zp .

Flat base-change implies that G3,Zp is the diagonal subgroup of Ĝ × Ĝ = G1,Zp × G2,Zp . So G3 is

reductive. Note that the morphism G3 → G1 ×G2
p1
−→ G1 is an isomorphism, so G3 ∼= G1. Similarly,

G3 ∼= G2.

Let G/Z(p) be a reductive model of G. Then there exists a free Z(p)-module M of finite rank

such that there is a closed embedding G →֒ GL(M). The generic fiber of this embedding satisfies

the condition of the above proposition. So two reductive models over Z(p) of G must be isomorphic.

1.12 Comparing G0-zips (I)

We will first show that the morphism ζ does not depend on the choices of s, once G, i and LZ(p)

are fixed. Let us recall our notations and constructions in 1.1.

For the symplectic embedding i : (G,X) ⊆ (GSp(V, ψ),X ′) and a the chosen reductive model

G/Z(p) of G, there is a Z-lattice L ⊆ V such that the Zariski closure of G in GL(LZ(p)
) is G and that G

is defined by a tensor s ∈ L⊗

Z(p)
. One can choose L such that L∨ ⊇ L. Let d = |L∨/L|, g = 1

2dim(V ),

Kp = G(Zp) and K = KpK
p with Kp ⊆ G(Ap

f ) small enough. Then the integral canonical model

SK(G,X) of ShK(G,X) is constructed as follows. We can choose K ′ ⊆ GSp(V, ψ)(Af ) small

enough such that K ′ ⊇ K and that ShK ′(GSp(V, ψ),X) affords a moduli interpretation. There

is a finite morphism f : ShK(G,X) → ShK ′(GSp(V, ψ),X)E . Let Ag,d,K ′/Z(p)
be the moduli

scheme of abelian schemes over Z(p)-schemes with a polarization of degree d and level K ′ structure.

Then Ag,d,K ′/Z(p)
⊗ Q = ShK ′(GSp(V, ψ),X), and the integral canonical model SK(G,X) is the

normalization of the Zariski closure of ShK(G,X) in Ag,d,K ′/Z(p)
⊗OE,(v).

Let A be the pull back to SK(G,X) of the universal abelian scheme on Ag,d,K ′/Z(p)
, and V be

H1
dR(A/SK(G,X)). Then the tensor s ∈ L⊗

Z(p)
induces a section sdR ∈ V

⊗. For a different choice

of s′ ∈ L⊗

Z(p)
, we have another section s′dR ∈ V

⊗. We have two G-torsors

I = IsomSK(G,X)

(
(L∨

Z(p)
, s)⊗OSK(G,X), (V, sdR)

)

and I = IsomSK(G,X)

(
(L∨

Z(p)
, s′)⊗OSK(G,X), (V, s

′
dR)

)
.

Lemma 1.13. The two G-torsors I and I ′ are canonically isomorphic.

Proof. We will show that I and I ′ are the same closed subscheme of IsomSK(G,X)(L
∨⊗OSK(G,X),V).

Let

I ′′ := IsomSK(G,X)

(
(L∨

Z(p)
, s, s′)⊗OSK(G,X), (V, sdR, s

′
dR)

)
.

Then it is a closed subscheme of both I and I ′. But I ′′ is also a G-torsor over SK(G,X), so

I = I ′′ = I ′.

Let S0,K(G,X) (resp. G0) be the special fiber of SK(G,X) (resp. G). The construction in 1.6,

especially Theorem 1.9, gives a G0-zip of type µ (I, I+, I−, ι) on S0,K(G,X), using L∨
Z(p)

, s,V, sdR
and the F -zip structure on V. Similarly, there is a G0-zip (I ′, I ′+, I

′
−, ι

′) attached to L∨
Z(p)

, s′,V, s′dR.
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Corollary 1.14. The two G0-zips of type µ (I, I+, I−, ι) and (I ′, I ′+, I
′
−, ι

′) on S0,K(G,X) are

canonically isomorphic.

Proof. By Lemma 1.13, the torsors I and I ′ are canonically isomorphic. Noting that (I+, I−, ι) and

(I ′+, I
′
−, ι

′) are constructed using Frobenius and Verschiebung on V, the two G0-zips are canonically

isomorphic.

1.15 Symplectic embeddings

Let i1 : (G,X) →֒ (GSp(V1, ψ1),X1) and i2 : (G,X) →֒ (GSp(V2, ψ2),X2) be two symplectic

embeddings. We can construct another symplectic embedding as follows.

By definition of symplectic similitude groups, there is a character χ1 : GSp(V1, ψ1)→ Gm, such

that GSp(V1, ψ1) acts on ψ1 via χ1. Note that changing χ1 to a power of it will not change the

symplectic similitude group. Similarly, we have χ2 : GSp(V2, ψ2) → Gm. Let w : Gm → G be the

weight cocharacter of G. Then χ1 ◦w and χ2 ◦w are two characters Gm → Gm of weights m1 and

m2 respectively. After changing χ1 to χm2
1 and χ2 to χm1

2 , we see that G acts on ψ1 and ψ2 via the

same character.

Let V = V1 ⊕ V2 and ψ : V × V → Q be such that

ψ
(
(v1, v2), (v

′
1, v

′
2)
)
= ψ1(v1, v

′
1) + ψ2(v2, v

′
2), ∀ v1, v

′
1 ∈ V1 and ∀ v2, v

′
2 ∈ V2.

Then G ⊆ GSp(V, ψ), and this embedding induces an embedding of Shimura data

(G,X) ⊆ (GSp(V, ψ),X ′).

1.16 Comparing G0-zips (II)

Now we will show that the morphism ζ : S0,K(G,X) → G0−zip
µ
κ is independent of choices of

symplectic embeddings, reductive models and lattices. Note that ζ is independent of K. More

precisely, for K ⊆ K ′, there is a commutative diagram

S0,K(G,X)

ζ
((P

PP
PP

PP
PP

PP
P

// S0,K ′(G,X)

ζ′

��

G0−zip
µ
κ

,

inducing a G(Ap
f )-equivariant morphism

S0,Kp(G,X) = lim
←−
Kp

SKpKp(G,X) −→ G0−zip
µ
κ.

Here the G(Ap
f )-action on G0−zip

µ
κ is the trivial action, and that on S0,Kp(G,X) is the unique one

induced by the action on ShKp(G,X). So, we can shrink Kp if necessary.

Let i1 : (G,X) →֒ (GSp(V1, ψ1),X1) and i2 : (G,X) →֒ (GSp(V2, ψ2),X2) be two symplectic

embeddings. Let G be the reductive model of G over Z(p) such that G(Zp) = Kp.

7



There are lattices Lt ⊆ Vt, t = 1, 2, such that

1. ψt takes integral value on Lt.

2. The Zariski closure of G in GL(Lt,Z(p)
) is G.

Let dt = |L
∨
t /Lt|, gt =

1
2dim(Vt), and n ≥ 3 be an integer such that (n, p) = 1. Let Agt,dt,n/Z(p)

be the moduli scheme of abelian schemes over Z(p)-schemes of relative dimension gt with a po-

larization λt of degree dt and a level n structure τt. We write (At, λt, τt) for the universal fam-

ily on Agt,dt,n/Z(p)
. Let Kp ⊆ G(Ap

f ) be small enough such that there are natural morphisms

ShK(G,X) → Ag1,d1,n/E and ShK(G,X) → Ag2,d2,n/E. Then by the construction of the inte-

gral canonical model, there are natural finite morphisms i1 : SK(G,X) → Ag1,d1,n/OE,(v)
and

i2 : SK(G,X)→ Ag2,d2,n/OE,(v)
.

Let V be V1 ⊕ V2, L be L1 ⊕ L2 and ψ : V × V → Q be such that

ψ
(
(v1, v2), (v

′
1, v

′
2)
)
= ψ1(v1, v

′
1) + ψ2(v2, v

′
2), ∀ v1, v

′
1 ∈ V1 and ∀ v2, v

′
2 ∈ V2.

Then by 1.15, there is an embedding of Shimura data i : (G,X) → (GSp(V, ψ), Y ). Consider the

diagram

Ag1,d1,n/Z(p)
×Ag2,d2,n/Z(p)

p1
uu❦❦❦

❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

p2
))❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚

Ag1,d1,n/Z(p)
Ag2,d2,n/Z(p)

.

The abelian scheme p∗1(A1, λ1, τ1)×p
∗
2(A2, λ2, τ2) on Ag1,d1,n/Z(p)

×Ag2,d2,n/Z(p)
is an abelian scheme

of dimension g1 + g2 with a polarization of degree d1d2 and level n structure. There is a unique

morphism

i′ : Ag1,d1,n/Z(p)
×Ag2,d2,n/Z(p)

−→ Ag1+g2,d1d2,n/Z(p)

such that

i′∗(A, λ, τ) = p∗1(A1, λ1, τ1)× p
∗
2(A2, λ2, τ2),

where (A, λ, τ) is the universal family on Ag1+g2,d1d2,n/Z(p)
.

By the construction of SK(G,X), we have a commutative diagram

SK(G,X)
i1×i2

//

i1

''❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖

i2

��
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄
❄

Ag1,d1,n/OE,(v)
×Ag2,d2,n/OE,(v)

i′
//

p1

tt✐✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐✐
✐

p2

yytt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
t

Ag1+g2,d1d2,n/OE,(v)

Ag1,d1,n/OE,(v)

Ag2,d2,n/OE,(v)

such that the generic fiber of i′ ◦ (i1 × i2) is induced by i. We will write i for i′ ◦ (i1 × i2). The pull

back via i of the universal family on Ag1+g2,d1d2,n/OE,(v)
is precisely i∗1(A1, λ1, τ1)× i

∗
2(A2, λ2, τ2).

Let A1,A2,A be the pull back to SK(G,X) of the universal abelian schemes on Ag1,d1,n, Ag2,d2,n

and Ag1+g2,d1d2,n respectively. Then A = A1 × A2. Let Vt = H1
dR(At/SK(G,X)), t = 1, 2, and

V = H1
dR(A/SK(G,X)). Then V = V1 ⊕ V2.
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Let L = L1 ⊕ L2 and V = V1 ⊕ V2 be as before. Let st ∈ L⊗

t,Z(p)
be a tensor defining

G ⊆ GL(Lt,Z(p)
), for t = 1, 2. By our construction, we have a sequence of closed embeddings

(1.17) G ⊆ G × G ⊆ GL(L1,Z(p)
)×GL(L2,Z(p)

) ⊆ GL(LZ(p)
).

Here the first embedding is the diagonal embedding.

By [2] Proposition 1.3.2, G ⊆ GL(LZ(p)
) is defined by a tensor s ∈ L⊗

Z(p)
. We need some explicit

conditions that cut out G×G ⊆ GL(LZ(p)
). First note that GL(L1,Z(p)

)×GL(L2,Z(p)
) is the subgroup

of GL(LZ(p)
) respecting the splitting LZ(p)

= L1,Z(p)
⊕ L2,Z(p)

. So the group scheme G × G is such

that for any Z(p)-algebra R,

G × G(R) = {g ∈ GL(LZ(p)
)(R) | g(Lt ⊗R) = Lt ⊗R and g(st ⊗ 1) = st ⊗ 1 for t = 1, 2}.

But then G will be the group scheme such that for any Z(p)-algebra R,

G(R) = {g ∈ GL(LZ(p)
)(R) | g(Lt⊗R) = Lt⊗R and g(st⊗1) = st⊗1 for t = 1, 2, g(s⊗1) = s⊗1}.

Clearly, if we remove the conditions on L2 and s2, we get the same group scheme.

Let s1,dR ∈ V
⊗
1 (resp. sdR ∈ V

⊗) be the section corresponding to s1 (resp. s). Let

I = IsomSK(G,X)

(
(L∨

Z(p)
, L∨

1,Z(p)
, s1, s)⊗OSK(G,X), (V,V1, s1,dR, sdR)

)
.

where L∨
1,Z(p)

⊆ L∨
Z(p)

is given by taking dual of the surjection p1 : LZ(p)
։ L1,Z(p)

.

Lemma 1.18. The scheme I is a right G-torsor over SK(G,X).

Proof. By [2], the direct summand L∨
1,Z(p)

⊆ L∨
Z(p)

induces a direct summand L∨
1,dR ⊆ V. To prove

the lemma, it suffices to prove that L∨
1,dR = V1. But then it suffices to prove that

L∨
1,dR|ShK(G,X) = V1|ShK(G,X).

As if we denote by Grass2g1
V

the SK(G,X)-scheme of locally direct summands of V with rank 2g1.

Then Grass2g1
V

is proper over SK(G,X). The sub-bundles L∨
1,dR ⊆ V and V1 ⊆ V induce an

SK(G,X)-morphism i : SK(G,X) → Grass2g1
V
× Grass2g1

V
. That L∨

1,dR|ShK(G,X) = V1|ShK(G,X)

means that the restriction to ShK(G,X) of i factors through the diagonal. But the diagonal is

closed and SK(G,X) is reduced, so i factors through the diagonal, which means that L∨
1,dR = V1.

But L∨
1,dR|ShK(G,X) = V1|ShK(G,X) follows from the construction of these two bundles. We will

follow [2] 2.2 and work with L1,dR|ShK(G,X) and V
∨
1 |ShK(G,X). They are both closed subschemes of

V∨|ShK(G,X), so to prove that they are equal, it suffices to prove that

L1,dR|ShK(G,X) = L1,dR|ShK(G,X) + V
∨
1 |ShK(G,X) = V

∨
1 |ShK(G,X).

But then one can pass to ShK(G,X)C and use descent. Let ˜V∨1 |ShK(G,X) be the pull back to

X × G(Af )/K of V∨1 |ShK(G,X)C . Then by the de Rham isomorphism, ˜V∨1 |ShK(G,X) equals to the

vector bundle attached to the variation of Hodge structures given by X and G→ GL(V1). Note that

the quotient by G(Q) of these two bundles give L1,dR|ShK(G,X)C and V∨1 |ShK(G,X)C on ShK(G,X)C
respectively, so L1,dR|ShK(G,X)C = V∨1 |ShK(G,X)C .
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We write i1, i2, p1, p2, i for the morphisms of the special fibers. To prove that the Ekedahl-

Oort stratifications are independent of choices of symplectic embedding, it suffices to prove that

the stratifications induced by i1 and i coincide. By Corollary 1.14 and the proof of Lemma 1.18,

the special fiber of I is precisely the G0-torsor in the G0-zip over S0,K(G,X) constructed using

i. Let us write I for this special fiber and (I, I+, I−, ι) for the G0-zip constructed using i. Let

(I1, I1,+, I1,−, ι1) be the G0-zip over S0,K(G,X) constructed using i1.

There is a natural morphism ǫ : I → I1 given by

f ∈ I(S) 7→ f |L∨

1,κ⊗OS
∈ I1(S), for all S0,K(G,X)-scheme S.

Theorem 1.19. The morphism ǫ induces an isomorphism (I, I+, I−, ι)→ (I1, I1,+, I1,−, ι1) of G0-

zips. In particular, i1 and i give the same Ekedahl-Oort stratification.

Proof. The morphism ǫ : I → I1 is clearly G0-equivariant, and hence an isomorphism of G0-torsors.

For any S/S0,K(G,X), and any f ∈ I+(S) ⊆ I(S), f maps the weight 1 subspace of L∨
κ ⊗ OS to

ker(F ), where F is the Frobenius on V. Let F1 be the Frobenius on V1, then ker(F1) = ker(F )∩V1,

as V1 ⊆ V is induced by a morphism of abelian schemes and hence compatible with Frobenius. So

ǫ(f) = f |L∨

1,κ⊗OS
maps the weight 1 subspace of L∨

1,κ⊗OS to ker(F )∩V1 = ker(F1), and hence lies

in I1,+(S). But then ǫ|I+ will automatically be an isomorphism of P+-torsors. Similarly, ǫ|I− is an

isomorphism of P
(p)
− -torsors.

Now we check the compatibility between ι and ι1. We first recall how ι and ι′ are defined

in Theorem 1.9 3). Let ϕ0, ϕ1 be as in Setting 1.7, and φ0, φ1 be as in Setting 1.8. Then

ι : I
(p)
+ /U

(p)
+ → I−/U

(p)
− is the morphism induced by

I
(p)
+ → I−/U

(p)
−

f 7→ (ϕ0 ⊕ ϕ1) ◦ gr(f) ◦ (φ
−1
0 ⊕ φ

−1
1 ),∀ S/S0 and ∀ f ∈ I

(p)
+ (S).

We apply the constructions in Setting 1.7 and Setting 1.8 to V1 and L∨
1,κ respectively, and

denote the obtained morphisms by ϕ′
0, ϕ

′
1, φ

′
0 and φ′1. Let (L∨

1,κ)
0 (resp. (L∨

1,κ)
1) be the subspace

of L∨
1,κ of weight 0 (resp. 1) with respect to µ, and (L∨

1,κ)0 (resp. (L∨
1,κ)1) be the subspace of L∨

1,κ

of weight 0 (resp. 1) with respect to µ(p). Then φ′0 and φ′1 are compatible with φ0 and φ1, in the

sense that

φ0|(L∨

1,κ)
(p)/((L∨

1,κ)
1)(p) = φ′0 : (L

∨
1,κ)

(p)/((L∨
1,κ)

1)(p) −→ (L∨
1,κ)0

and

φ1|((L∨

1,κ)
1)(p) = φ′1 : ((L

∨
1,κ)

1)(p) −→ L∨
0,κ/(L

∨
1,κ)0.

Let F ′ : V
(p)
1 → V1 and V ′ : V1 → V

(p)
1 be the Frobenius and Verschiebung on V1 respectively. Then

V and F are compatible with V ′ and F ′. This implies that

ϕ0|(V1/ker(F ′◦δ))(p) = ϕ′
0 : (V1/ker(F

′ ◦ δ))(p) → ker(F ′)

and

ϕ1|ker(F ′◦δ))(p) = ϕ′
1 : (ker(F

′ ◦ δ))(p) → V1/(im(F ′)).
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Then ∀ S/S0 and ∀ f ∈ I
(p)
+ (S), we have

ι′ ◦ ǫ(f) = ι′(f |L∨

1,κ⊗OS
) = (ϕ′

0 ⊕ ϕ
′
1) ◦ gr(f |L∨

1,κ⊗OS
) ◦ (φ′−1

0 ⊕ φ′−1
1 ) = ǫ ◦ ι(f).

This shows that ǫ is an isomorphism of G0-zips.

Remark 1.20. The Ekedahl-Oort stratification does not depend on the choices of symplectic embed-

dings. So in particular, the theory of ordinariness is independent of symplectic embeddings. This

coincides with the expectation that the variety S0,K(G,X) should have an interpretation as mod-

uli space of “abelian motives with G-structure”. This moduli interpretation should be intrinsically

determined by the Shimura datum, and hence independent of symplectic embeddings.

Remark 1.21. A theory of Bruhat stratification has been defined and studied by Wedhorn in [12]

(actually, we need the morphism ζ to define the Bruhat stratification on S0,K(G,X)). In the

case of Siegel modular varieties, the Bruhat stratification is precisely the a-number stratification.

Theorem 1.19 also implies that the Bruhat stratification is independent of symplectic embeddings.
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2 Functoriality

Let p be a prime bigger than 2, and (G,X) and (G′,X ′) be two Shimura data of Hodge type such

that they both have good reduction at p. Let E (resp. E′) be the reflex field of (G,X) (resp.

(G′,X ′)). Let K (resp. K ′) be a compact open subgroup of G(Af ) (resp. G′(Af )) such that

Kp (resp. K ′
p) is hyperspecial. Let f : (G,X) → (G′,X ′) be a morphism of Shimura data, then

E ⊇ E′. If K and K ′ are such that f(K) ⊆ K ′, then f induces a morphism of Shimura varieties

f : ShK(G,X) → ShK ′(G′,X ′)E .

Let v′ be a place of E′ over p with residue field κ′ and v be a place of E over v′ with residue

field κ. Let SK(G,X) (resp. SK ′(G′,X ′)) be the integral canonical model of ShK(G,X) (resp.

ShK ′(G′,X ′)). Then f extends uniquely to a morphism SK(G,X) → SK ′(G′,X ′)OE,(v)
whose

special fiber S0,K(G,X)→ S0,K ′(G′,X ′)κ will still be denoted by f .

By “functoriality”, we mean a certain kind of compatibility of Ekedahl-Oort stratifications with

respect to f . But it seems that we need some extra assumptions. The reason is as follows. For

a morphism f : GQp → G′
Qp

such that f(Kp) ⊆ K ′
p, it is NOT always possible to extend f to a

morphism G1 → G2 (see [9] Proposition 3.1.2.1 b)). So there is NO natural morphism G0 → G′
0,

and hence there is NO direct way to compare G0-zips and G
′
0-zips.

2.1 Basic settings

Let G/Z(p) (resp. G′/Z(p)) be the reductive model of G (resp. G′) with special fiber G0 (resp.

G′
0). Let E, E′, κ and κ′ be as at the beginning of this section. Then by [14] Proposition 2.2.4,

the Shimura datum (G,X) (resp. (G′,X ′)) determines a cocharacter µ (resp. µ′) of GW (κ) (resp.

G′W (κ′)) which is unique up to conjugacy. The reduction of µ (resp. µ′) will still be denoted by µ

(resp. µ′).

Besides the conditions stated at the beginning of this section, we make the following assumption

on f : (G,X) → (G′,X ′).

Assumption 2.2. There exists a morphism GZp → G
′
Zp

extending fQp . This morphism will be

denoted by f .

2.3 The morphism α

The morphism f induces a natural morphism α : G0−zip
µ
κ → G′

0−zip
µ′

κ′ ⊗ κ which we will now

explain. Still write µ for the cocharacter Gm,κ → G0,κ → G′
0,κ, then µ and µ′ are G′

0(κ)-conjugate.

There is a natural morphism α1 : G0−zip
µ
κ → G′

0−zip
µ
κ as follows. The cocharacter µ in-

duces homomorphisms P+ → P ′
+, P− → P ′

− and L → L′. For any κ-scheme S and any S-point

(I, I+, I−, ι) of ∈ G0−zip
µ
κ,

α1(I, I+, I−, ι) := (I ×G0,S G′
0,S , I+ ×

P+,S P ′
+,S , I− ×

P
(p)
−,S P

′(p)
−,S , ι

′),

where ?1×
?2?3 is the quotient of ?1×?3 equalizing the ?2-action on ?1 given by the torsor structure

and that on ?3 induced by f , and ι′ is the composition of L′(p)-equivariant isomorphisms
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(I+ ×
P+,S P ′

+,S)
(p)/U

′(p)
+

≃
−→ (I

(p)
+ /U

(p)
+ )×L

(p)
S L

′(p)
S ,

(I
(p)
+ /U

(p)
+ )×L

(p)
S L

′(p)
S

ι×id
−→ (I−/U

(p)
− )×L

(p)
S L

′(p)
S ,

and (I−/U
(p)
− )×L

(p)
S L

′(p)
S

≃
−→ (I− ×

P
(p)
−,S P

′(p)
−,S)/U

′(p)
− .

Let µ′⊗1 be the base change to κ of the cocharacter µ′, then by [13] Remark 5.16 1), then there

is an obvious isomorphism α2 : G′
0−zip

µ′

κ′ ⊗ κ → G′
0−zip

µ′⊗1
κ given by base change. Let g ∈ G′

0(κ)

be such that int(g) ◦ (µ′ ⊗ 1) = µ, then g induces an isomorphism of algebraic stacks

αg
3 : G′

0−zip
µ′⊗1
κ → G′

0−zip
µ
κ

(I, I+, I−, ι) 7→ (I ′, I ′+, I
′
−, ι

′) := (I, (I+) · g
−1, (I−) · σ(g)

−1, rσ(g)−1 ◦ ι ◦ rσ(g)),

where rσ(g) and rσ(g)−1 are the obvious morphisms I
′(p)
+ /U

′(p)
+ ≃ I

(p)
+ /U

(p)
+ and I−/U

(p)
− ≃ I ′−/U

′(p)
−

given by multiplication with σ(g) and σ(g)−1 on the right respectively.

Remark 2.4. The morphism αg
3 is canonical, in the sense that it is uniquely determined by µ and

µ′ ⊗ 1 and does not depend on the choices of g. For an h ∈ G′
0(κ) such that int(h) ◦ (µ′ ⊗ 1) = µ,

there exists an l ∈ L′(κ), such that h = gl. Here L′ is, as before, the centralizer in G′
0,κ of µ′. Then

αh
3 (I, I+, I−, ι) = (I, (I+) · h

−1, (I−) · σ(h)
−1, rσ(h)−1 ◦ ι ◦ rσ(h))

= (I, (I+) · l
−1g−1, (I−) · σ(l)

−1σ(g)−1, rσ(g)−1 ◦ rσ(l)−1 ◦ ι ◦ rσ(l) ◦ rσ(g))

= (I, (I+) · g
−1, (I−) · σ(g)

−1, rσ(g)−1 ◦ ι ◦ rσ(g)).

The last equality is because of that I+ (resp. I−) is L′ (resp. L′(p)) stable and that ι is L′(p)-

equivariant. We will simply write α3 for αg
3, as it is independent of g.

The morphism α is defined to be α−1
2 ◦ α

−1
3 ◦ α1.

2.5 Functoriality

We use the same notations as at the beginning of this section. Let ζ : S0,K(G,X) → G0−zip
µ
κ

and ζ ′ : S0,K ′(G′,X ′) → G′
0−zip

µ′

κ′ . Moreover, we assume that the morphism of Shimura data

f : (G,X)→ (G′,X ′) satisfies Assumption 2.2.

By functoriality, we mean the following.

Theorem 2.6. The diagram

S0,K(G,X)

ζ

��

f
// S0,K ′(G′,X ′)κ

ζ′⊗κ
��

G0−zip
µ
κ

α
// G′

0−zip
µ′

κ′ ⊗ κ

is commutative.
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Proof. The proof, which is a variation of that of Theorem 1.19, will be divided into several steps.

Step 1. Let i : (G,X) → (GSp(V, ψ),H) and i′ : (G′,X ′) → (GSp(V ′, ψ′),H ′) be symplectic

embeddings. Note that we do NOT assume that there is any compatibility between f and the

symplectic embeddings. The weight cocharacter w : Gm,Q → G induces a Gm,Q-action on V of

weight 1, and the composition f ◦w induces a Gm,Q-action on V ′ of weight 1. Let V1 = V ⊕V ′ and

ψ1 : V1 × V1 → Q be such that

ψ1

(
(v, v′), (w,w′)

)
= ψ(v,w) + ψ′(v′, w′), ∀ v,w ∈ V and ∀ v′, w′ ∈ V ′.

Then i and i′ ◦f induce a faithful representation of G on V1. Moreover, the argument in 1.15 shows

that G ⊆ GSp(V1, ψ1) and this embedding induces an embedding of Shimura data

i1 : (G,X) ⊆ (GSp(V1, ψ1),H1).

Step 2. There is a Z-lattice L ⊆ V (resp. L′ ⊆ V ′) such that the Zariski closure of G (resp.

G′) in GL(LZ(p)
) (resp. GL(L′

Z(p)
)) G (resp. G′) is reductive and such that Kp = G(Zp) (resp.

K ′
p = G

′(Zp)). Let L1 be L⊕ L′. Consider the sequence of closed embedings

(2.7) G × G′ ⊆ GL(LZ(p)
)×GL(L′

Z(p)
) ⊆ GL(L1,Z(p)

).

Let G1 be the Zariski closure of G in GL(L1,Z(p)
). Then G1 ⊆ G ×G

′. Flat base-change implies that

G1,Zp is the graph of f : GZp → G
′
Zp
. So G1 ∼= G and f is defined over Z(p).

Step 3. Let s ∈ L⊗

Z(p)
(resp. s′ ∈ L′⊗

Z(p)
, s1 ∈ L

⊗

1,Z(p)
) be a tensor defining G ⊆ GL(LZ(p)

) (resp.

G′ ⊆ GL(L′
Z(p)

), G ⊆ GL(L1,Z(p)
)). Then G × G′ ⊆ GL(L1,Z(p)

) is such that for all Z(p)-algebra R,

G × G′(R) = {g ∈ GL(L1,Z(p)
)(R) | g(L⊗R) = L⊗R, g(L′ ⊗R) = L′ ⊗R

and g(s⊗ 1) = s⊗ 1, g(s′ ⊗ 1) = s′ ⊗ 1}.

But then G is the group scheme such that for any Z(p)-algebra R,

G(R) ={g ∈ GL(L1,Z(p)
)(R) | g(L⊗R) = L⊗R, g(L′ ⊗R) = L′ ⊗R

and g(s ⊗ 1) = s⊗ 1, g(s′ ⊗ 1) = s′ ⊗ 1, g(s1 ⊗ 1) = s1 ⊗ 1}.

Step 4. By our constructions in 1.16, the symplectic embeddings i, i′ and i1 induce vector

bundles V, V ′ and V1 on S0,K(G,X). The tensor s, s′ and s1 induce tensors sdR ∈ V, s
′
dR ∈ V

′

and s1,dR ∈ V1 respectively. Note that we have V1 = V ⊕ V ′. Let (I, I+, I−, ι) be the G0-zip on

S0,K(G,X) constructed using i, and (I1, I1,+, I1,−, ι1) be the G0-zip over S0,K(G,X) constructed

using i1. Then by Theorem 1.19, (I, I+, I−, ι) ∼= (I1, I1,+, I1,−, ι1). We twist (I1, I1,+, I1,−, ι1) by

(G′
0,κ, µ) using constructions at the beginning of 2.3, and get a G′

0-zip of type µ over S0,K(G,X)

denoted by (I ′1, I
′
1,+, I

′
1,−, ι

′
1).

Step 5. Let (I ′, I ′+, I
′
−, ι

′) be the G′
0-zip of type µ′ over S0,K ′(G′,X ′) constructed using i′. Let

(I ′, I ′+, I
′
−, ι

′)κ be the pull back to S0,K(G,X) of (I ′, I ′+, I
′
−, ι

′). The construction before Remark 2.4,

(I ′, I ′+, I
′
−, ι

′)κ gives aG′
0-zip of type µ over S0,K(G,X) which will still be denoted by (I ′, I ′+, I

′
−, ι

′)κ.
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Let ǫ : I ′1 → I ′ be the morphism given by restriction to L∨
2,κ. Then ǫ is an isomorphism of G′

0-

torsors. By the proof of Theorem 1.19, ǫ induces an isomorphism of G′
0-zips of type µ. But this

means that the diagram

S0,K(G,X)

ζ

��

f
// S0,K ′(G′,X ′)κ

ζ′⊗κ
��

G0−zip
µ
κ

α
// G′

0−zip
µ′

κ′ ⊗ κ

is commutative.

2.8 Basic examples

Here we give some basic examples where Assumption 2.2 is satisfied.

Example 2.9. Let i : (G,X) → (GSp(V ′, ψ′),H ′) be a symplectic embedding. There exists a Z-

lattice L′ ⊆ V ′ such that the Zariski closure G of G in GL(L′
Z(p)

) is reductive. The polarization

ψ′ is not necessarily perfect pairing on L′
Z(p)

. But by Zarhin’s trick, we can take L = (L′ ⊕ L′∨)4,

then ψ′ induces a perfect paring on L which will be denoted by ψ. Then the Zariski closure of G

in GL(LZ(p)
) lies in GSp(LZ(p)

, ψ), and hence there is an embedding G →֒ GSp(LZ(p)
, ψ). So there

is a commutative diagram

S0,K(G,X)

ζ

��

// S0,K ′(GSp(LQ, ψ),H)κ

ζ′⊗κ
��

G0−zip
µ
κ

// GSp(LFp , ψ)−zip
µ′

Fp
⊗ κ.

Example 2.10. Let (G,X) be a Shimura datum of PEL type with good reduction at p. Let

i : (G,X) → (GSp(V, ψ),H) be the tautological symplectic embedding. Then there is again a

commutative diagram

S0,K(G,X)

ζ

��

// S0,K ′(GSp(LQ, ψ),H)κ

ζ′⊗κ
��

G0−zip
µ
κ

// GSp(LFp , ψ)−zip
µ′

Fp
⊗ κ.

15



References
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