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Some Remarks on Ekedahl–Oort Stratifications

Chao Zhang

Abstract. We study independence of symplectic embeddings of the theory of Ekedahl–

Oort stratifications on Shimura varieties of Hodge type, by comparing two different

embeddings with a third one. The main results are as follows.

1. The Ekedahl–Oort stratification is independent of the choices of symplectic

embeddings.

2. Under certain reasonable assumptions, there is certain functoriality for Ekedahl–

Oort stratifications with respect to morphisms of Shimura varieties.

1. Introduction

Let (G,X) be a Shimura datum of Hodge type, and ShK(G,X)C be the complex Shimura

variety attached to a compact open subgroup K ⊆ G(Af ). We fix a prime number p > 2

and assume that K = KpK
p, where Kp is hyperspecial, i.e., there is a reductive group

GZp over Zp such that GZp ⊗ Qp = GQp and that Kp = GZp(Zp). By works of Shimura

and Deligne, ShK(G,X)C is defined over a number field E, denoted by ShK(G,X). It is

the Shimura variety attached to (G,X,K). Let v be a place of E over p, Kisin proved

in [1] that ShK(G,X) has a smooth model SK(G,X) over OE,(v). Moreover, SK(G,X)

is uniquely determined by the Shimura datum as lim←−Kp SK(G,X) satisfies a certain ex-

tension property (see [1, (2.3.7)] for the precise statement).

Ekedahl–Oort stratifications for good reductions of Shimura varieties of Hodge type

were defined and studied in [8] (see also [7]) using technics developed in [1, 3]. Let

κ = OE,(v)/(v) and G0 (resp. S0,K(G,X) or simply S0) be the special fiber of GZp

(resp. SK(G,X)). The Shimura datum determines a cocharacter µ : Gm,κ → G0,κ which

is unique up to G0(κ)-conjugacy. We constructed in [8] a morphism ζ : S0 → G0 -zipµκ,

where G0 -zipµκ is the stack of G0-zips of type µ (see [3] or the paragraph before §2.3

in this paper). Fibers of ζ are the Ekedahl–Oort strata of S0. We emphasize that the

construction of ζ in [8] (as we recalled right before §2.4 here) depends on a symplectic

embedding.

There are many questions that we can ask about ζ. Here we mention two of them.
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1. Whether the morphism ζ is independent of the choices of symplectic embeddings?

2. How to study behavior of stratifications under morphisms of Shimura varieties?

The philosophy behind the first question is as follows. The scheme S0 should have a

moduli interpretation in terms of motives depending only on (G,X,Kp), and one could

obtain the morphism ζ by taking (geometric) isomorphism types of de Rham realizations

of those motives. This would give an intrinsic construction for ζ. Unfortunately, no

moduli interpretation is known so far for reductions of general Shimura varieties of Hodge

type, let alone an intrinsic one. A reasonable candidate for de Rham realizations of

those motives is given in [3, Definition 7.1], and we constructed a morphism ζ by fixing

a symplectic embedding. It would be a great evidence if one could conclude that ζ is

actually independent of the choices of symplectic embeddings.

The first question is solved by the following theorem.

Theorem 1.1. The morphism ζ is independent of choices of symplectic embeddings.

Section 2 of this note is devoted to a proof of the above statement, by comparing the

ζs induced by different symplectic embeddings.

The second question is too general and too inexplicit to study, so we raise the fol-

lowing question. Let f : (G,X) → (G′, X ′) be a morphism of Shimura data of Hodge

type. Let E and E′ be their reflex fields. Then E ⊇ E′. Let K ⊆ G(Af ) and

K ′ ⊆ G′(Af ) be such that Kp and K ′p are hyperspecial. Assume that f(K) ⊆ K ′,

then there is a morphism f : ShK(G,X) → ShK′(G
′, X ′)E . Let v′ be a place of E′

over p with residue field κ′ and v be a place of E over v′ with residue field κ, then

there is a morphism SK(G,X) → SK′(G
′, X ′)OE,(v) extending f . Still write f for the

morphism on special fibers S0,K(G,X) → S0,K′(G
′, X ′)κ. Let G0 (resp. G′0) be the re-

duction of G (resp. G′), and let µ (resp. µ′) be the cocharacter determined by the Shimura

datum unique up to conjugacy. Then there is a morphism ζ : S0,K(G,X) → G0 -zipµκ
(resp. ζ ′ : S0,K′(G

′, X ′) → G′0 -zipµ
′

κ′) giving the Ekedahl–Oort strata on S0,K(G,X)

(resp. S0,K′(G
′, X ′)).

The question is, whether there is any compatibility between f , ζ and ζ ′. We have the

following result.

Theorem 1.2. Assume that fQp extends to a morphism of reductive group schemes over

Zp, then there is a canonical commutative diagram

S0,K(G,X)

ζ

��

f // S0,K′(G
′, X ′)κ

ζ′⊗κ
��

G0 -zipµκ
α // G′0 -zipµ

′

κ′ ⊗κ.
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The proof of this result will be given in Section 3.

This note was written and posted on ArXiv in early 2014, during the author’s stay

in the Max Planck Institute (Bonn). It was not intended to be published at first, and

most of the main results here are recovered 3 years later in our work [4], based on Tom

Lovering’s conceptual but very difficult works which uses highly non-trivial p-adic theories.

We finally decided to get it published, as the arguments in this note is more elementary

and direct, and hence is completely different from the one in [4]. Moreover, we believe

that the ideas and methods here could be helpful for considerations on other questions.

2. Independence of symplectic embeddings

Notations as in the introduction, let S0 be the special fiber of SK(G,X). By [8], there is

a theory of Ekedahl–Oort stratification on S0. To define the stratification, we need to fix

a symplectic embedding, while the variety S0 is independent of symplectic embeddings. A

natural question is whether different symplectic embeddings give the same stratification.

Let us first recall the construction of the integral models and Ekedahl–Oort stratifica-

tions on their special fibers.

2.1. Integral canonical models

Notations as before, by [5, Proposition 3.1.2.1(e)], GZp is the unique reductive group

extending GQp such that Kp = GZp(Zp). Let i : (G,X) ↪→ (GSp(V, ψ), S±) be a symplectic

embedding. Then by [1, Lemma 2.3.1], there exists a Zp-lattice VZp ⊆ VQp , such that

iQp : GQp ⊆ GL(VQp) extends uniquely to a closed embedding GZp ↪→ GL(VZp). So there

is a Z-lattice VZ ⊆ V such that GZ(p)
, the Zariski closure of G in GL(VZ(p)

), is reductive, as

the base change to Zp of GZ(p)
is GZp . Moreover, we can assume VZ is such that V ∨Z ⊇ VZ.

Let d = |V ∨Z /VZ| and g = 1
2 dim(V ), then the integral canonical model SK(G,X) of

ShK(G,X) is constructed as follows. We can choose K ′ ⊆ GSp(V, ψ)(Af ) small enough

such that K ′ ⊇ K and that ShK′(GSp(V, ψ), S±) affords a moduli interpretation. There

is a finite morphism f : ShK(G,X)→ ShK′(GSp(V, ψ), S±)E .

Let Ag,d,K′ be the moduli scheme of abelian schemes over Z(p)-schemes with a polariza-

tion of degree d and level K ′ structure. Then ShK′(GSp(V, ψ), S±) is a closed subscheme

of Ag,d,K′ ⊗Q. Let us write Ag,d,K′ for its base extensions to E for simplicity, the integral

canonical model SK(G,X) is the normalization of the Zariski closure of ShK(G,X) in

Ag,d,K′ . Here the word “normalization” makes sense. As ShK(G,X) is regular, and on

each open affine, OSK(G,X) is obtained by taking elements in OShK(G,X) that is integral

over OAg,d,K′
.

Note that we didn’t assume that K ′ is such that the morphism f is a closed em-

bedding. Because if we take K ′′ ⊆ K ′ small enough such that the induced morphism
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g : ShK(G,X) → ShK′′(GSp(V, ψ), S±)E is a closed embedding, then f factors through

g. The natural morphism Ag,d,K′′ → Ag,d,K′ is finite, so the normalization gives the same

SK(G,X).

2.2. G0-zips

Let G0 (resp. V0) be the special fiber of GZ(p)
(resp. VZ(p)

). We remark that G0 is

uniquely determined by (G,Kp). But V0 is not uniquely determined by (G,Kp), there

might be many choices. As in [8, 3.2.2], the Shimura datum (G,X) determines a cochar-

acter µ : Gm,W (κ) → GW (κ) which is unique up to GZp(W (κ))-conjugacy. This cocharacter

is of weights 0 and 1 on V ∨W (κ). The special fiber of µ will still be denoted by µ.

Setting 2.1. We start with G0 and µ : Gm,κ → G0,κ. For an Fp-scheme S, let σ : S → S

be the absolute Frobenius. For an S-scheme T , we will write T (p) for the pull back of T

via σ. In particular, we will write µ(p) for the pull back via Frobenius of µ. Note that it

is a cocharacter of G0,κ.

Let P+ (resp. P−) be the parabolic subgroup of G0,κ whose Lie algebra is the subspace

of non-negative weights (resp. non-positive weights) in Lie(G0,κ) under Ad ◦µ. Let U+

(resp. U−) be the unipotent radical of P+ (resp. P−), and M be the common Levi subgroup

of P+ and P−. Note that M is also the centralizer of µ.

Definition 2.2. [3, Definition 3.1] Let S be a scheme over κ. A G0-zip of type µ over S is

a tuple I = (I, I+, I−, ι) consisting of a right Gκ-torsor I over S, a right P+-torsor I+ ⊆ I,

a right P
(p)
− -torsor I− ⊆ I, and an isomorphism of M (p)-torsors ι : I

(p)
+ /U

(p)
+ → I−/U

(p)
− .

A morphism (I, I+, I−, ι) → (I ′, I ′+, I
′
−, ι
′) of G0-zips of type µ over S consists of

equivariant morphisms I → I ′ and I± → I ′± that are compatible with inclusions and the

isomorphisms ι and ι′.

Let G0 -zipµκ(S) be the category of G0-zips of type µ over a κ-scheme S. They form

a fibered category G0 -zipµκ over the category of κ-schemes. By [3, Corollary 3.12], it is a

smooth algebraic stack of dimension 0.

2.3. Ekedahl–Oort strata

Now we explain how to construct Ekedahl–Oort stratification following [8]. Let A be the

pull back to SK(G,X) of the universal abelian scheme on Ag,d,K′ , and V be

H1
dR(A/SK(G,X)). Let VZ ⊆ V and GZ(p)

be as in §2.1. Then by [1, Proposition 1.3.2],

there is a tensor s ∈ V ⊗Z(p)
defining GZ(p)

⊆ GL(LZ(p)
), i.e., GZ(p)

is the subgroup of

GL(VZ(p)
) acting trivially on s. By [1, Corollary 2.3.9], the tensor s ∈ V ⊗Z(p)

induces a

section sdR ∈ V⊗. Moreover, the scheme

I = IsomSK(G,X)

(
(V ∨Z(p)

, s)⊗OSK(G,X), (V, sdR)
)
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is a right GZ(p)
-torsor.

We remark that, one can also work with a collection of tensors sα ∈ V ⊗Z(p)
such that

GZ(p)
is the subgroup of GL(VZ(p)

) acting trivially on each sα. All the above constructions

work in this situation.

Setting 2.3. Still write V, s, sdR and I for its reduction mod p. Let ϕ : V(p) → V and

υ : V → V(p) be the Frobenius and Verschiebung on V respectively. Let δ : V → V(p) be the

semi-linear map sending v to v⊗1. Then we have a semi-linear map ϕ◦δ : V → V. There is

a descending filtration V ⊇ ker(ϕ ◦ δ) ⊇ 0 and an ascending filtration 0 ⊆ im(ϕ) ⊆ V. The

morphism υ induces an isomorphism V/ im(ϕ)→ ker(ϕ) whose inverse will be denoted by

υ−1. Then ϕ and υ−1 induce isomorphisms

ϕ0 : (V/ ker(ϕ ◦ δ))(p) → im(ϕ) and ϕ1 : (ker(ϕ ◦ δ))(p) → V/(im(ϕ)).

Setting 2.4. Let V0 be the special fiber of VZ(p)
. The cocharacter

µ : Gm,κ → G0,κ ⊆ GL(V0,κ) ∼= GL(V ∨0,κ)

induces an F -zip1 structure on V ∨0,κ as follows. Let (V ∨0,κ)0 (resp. (V ∨0,κ)1) be the subspace

of V ∨0,κ of weight 0 (resp. 1) with respect to µ, and (V ∨0,κ)0 (resp. (V ∨0,κ)1) be the subspace

of V ∨0,κ of weight 0 (resp. 1) with respect to µ(p). Then we have a descending filtration

V ∨0,κ ⊇ (V ∨0,κ)1 ⊇ 0 and an ascending filtration 0 ⊆ (V ∨0,κ)0 ⊆ V ∨0,κ. Let ξ : V ∨0,κ → (V ∨0,κ)(p)

be the isomorphism given by v ⊗ k 7→ v ⊗ 1⊗ k for all v ∈ V ∨0 and k ∈ κ. Then ξ induces

isomorphisms

φ0 : (V ∨0,κ)(p)/((V ∨0,κ)1)(p) pr2−→ ((V ∨0,κ)0)(p) ξ−1

−→ (V ∨0,κ)0

and

φ1 : ((V ∨0,κ)1)(p) ξ−1

−→ ((V ∨0,κ)1 ' V ∨0,κ/(V ∨0,κ)0).

The first main result of [8] is as follows.

Theorem 2.5. [8, Theorem 3.4.1]

(1) Let I+ ⊆ I be the closed subscheme

I+ := IsomS0

(
(V ∨0,κ ⊇ (V ∨0,κ)1, s)⊗OS0 , (V ⊇ ker(ϕ ◦ δ), sdR)

)
.

Then I+ is a P+-torsor over S0.

(2) Let I− ⊆ I be the closed subscheme

I− := IsomS0

(
((V ∨0,κ)0 ⊆ V ∨0,κ, s)⊗OS0 , (im(ϕ) ⊆ V, sdR)

)
.

Then I− is a P
(p)
− -torsor over S0.

1We are not going to recall what are F -zips but just referring to [2]. It should be fine, as we are using

them in explicit ways.
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(3) Let ι : I
(p)
+ /U

(p)
+ → I−/U

(p)
− be the morphism induced by

I
(p)
+ → I−/U

(p)
−

f 7→ (ϕ0 ⊕ ϕ1) ◦ gr(f) ◦ (φ−1
0 ⊕ φ

−1
1 ) for all S/S0 and f ∈ I(p)

+ (S).

Then ι is an isomorphism of M (p)-torsors.

Hence the tuple (I, I+, I−, ι) is a G0-zip of type µ over S0.

The G0-zip (I, I+, I−, ι) as above induces a morphism ζ : S0 → G0 -zipµκ. As we have

seen, to construct ζ, we need to choose a Z(p)-model GZ(p)
of G, a symplectic embedding

i : (G,X) ↪→ (GSp(V, ψ), S±), a Z(p)-lattice VZ(p)
⊆ V , and a tensor s ∈ V ⊗Z(p)

defining

GZ(p)
. So, by independence of symplectic embeddings, we actually mean that ζ is inde-

pendent of the choices of GZ(p)
, i, VZ(p)

and s.

2.4. Uniqueness of GZ(p)

We should point out, before getting started, that to analyse Ekedahl–Oort strata, the

uniqueness of GZp , which follows from [5, Proposition 3.1.2.1(e)], would be enough. But

we prefer to work with GZ(p)
here. The Z(p)-model GZ(p)

of G is independent of the choices

made above. More precisely, we have the followings.

Lemma 2.6. The group scheme GZ(p)
is the unique reductive model of G over Z(p) such

that GZ(p)
(Zp) = Kp.

Proof. Let G1 and G2 be two reductive models such that G1(Zp) = G2(Zp) = Kp. We

consider the morphism G→ G1 × G2 which is the diagonal embedding over Q. Let G3 be

the Zariski closure of the image. By [5, Proposition 3.1.2.1(e)], G1,Zp = G2,Zp , and hence

flat base-change implies that G3,Zp is the diagonal subgroup of G1,Zp×G1,Zp . In particular,

the morphism G3 → G1 × G2
p1−→ G1 is an isomorphism and hence G3

∼= G1. Similarly,

G3
∼= G2.

2.5. Comparing G0-zips (I)

We will first show that the morphism ζ does not depend on the choices of s, once i and

VZ(p)
are fixed. As in §2.3, for a different choice of s′ ∈ V ⊗Z(p)

, we have another section

s′dR ∈ V⊗, and hence two GZ(p)
-torsors

I = IsomSK(G,X)

(
(V ∨Z(p)

, s)⊗OSK(G,X), (V, sdR)
)

and

I ′ = IsomSK(G,X)

(
(V ∨Z(p)

, s′)⊗OSK(G,X), (V, s′dR)
)
.
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Lemma 2.7. The two GZ(p)
-torsors I and I ′ are canonically isomorphic.

Proof. I and I ′ are both closed subscheme of IsomSK(G,X)(V
∨
Z(p)
⊗ OSK(G,X),V). Let

I ′′ := IsomSK(G,X)

(
(V ∨Z(p)

, s, s′)⊗ OSK(G,X), (V, sdR, s
′
dR)

)
, then it is a closed subscheme

of both I and I ′. But I ′′ is also a GZ(p)
-torsor over SK(G,X), so I = I ′′ = I ′.

Let us still write I (resp. I ′) for its special fiber. The construction in §2.3, especially

Theorem 2.5, gives a G0-zip (of type µ) (I, I+, I−, ι) on S0, using V ∨Z(p)
, s,V, sdR and the

F -zip structure on V. Similarly, there is a G0-zip (I ′, I ′+, I
′
−, ι
′) attached to V ∨Z(p)

, s′, V,

s′dR.

Corollary 2.8. The G0-zips (I, I+, I−, ι) and (I ′, I ′+, I
′
−, ι
′) on S0,K(G,X) are canonically

isomorphic.

Proof. By Lemma 2.7, the torsors I and I ′ are canonically isomorphic. Noting that

(I+, I−, ι) and (I ′+, I
′
−, ι
′) are constructed using Frobenius and Verschiebung on V, the

two G0-zips are canonically isomorphic.

2.6. Sum of symplectic embeddings

Let i1 : (G,X) ↪→ (GSp(V1, ψ1), S±1 ) and i2 : (G,X) ↪→ (GSp(V2, ψ2), S±2 ) be two sym-

plectic embeddings. We can construct another symplectic embedding as follows. By the

definition of symplectic similitude groups, there is a character χ1 : GSp(V1, ψ1) → Gm,

such that GSp(V1, ψ1) acts on ψ1 via χ1. Note that changing χ1 to a power of it will not

change the symplectic similitude group. Similarly, we have χ2 : GSp(V2, ψ2) → Gm. Let

w : Gm → G be the weight cocharacter attached to (G,X). Then χ1 ◦w and χ2 ◦w are two

characters Gm → Gm of weights, say m1 and m2, respectively. After changing χ1 to χm2
1

and χ2 to χm1
2 , we see that G acts on ψ1 and ψ2 via the same character. Let V = V1⊕ V2

and ψ : V × V → Q be such that

ψ
(
(v1, v2), (v′1, v

′
2)
)

= ψ1(v1, v
′
1) + ψ2(v2, v

′
2) for all v1, v

′
1 ∈ V1 and v2, v

′
2 ∈ V2.

Then G ⊆ GSp(V, ψ), and this embedding induces an embedding of Shimura data

(G,X) ⊆ (GSp(V, ψ), S±).

2.7. Comparing G0-zips (II)

Let ζ : S0,K(G,X)→ G0 -zipµκ be as before, we will show that it is independent of choices

of symplectic embeddings and lattices. Note that ζ is independent of Kp. More precisely,
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for K ⊆ K ′, there is a commutative diagram

S0,K(G,X)

ζ ((

// S0,K′(G,X)

ζ′

��
G0 -zipµκ

inducing a G(Apf )-equivariant morphism

S0,Kp(G,X) = lim←−
Kp

SKpKp(G,X)→ G0 -zipµκ .

Here G(Apf ) acts on G0 -zipµκ trivially. So, we can shrink Kp if necessary.

Let GZ(p)
be the reductive model of G over Z(p) such that GZ(p)

(Zp) = Kp. Notations

as in §2.6, there are lattices Vt,Z ⊆ Vt, t = 1, 2, such that

1. ψt takes integral value on Vt,Z;

2. the Zariski closure of G in GL(Vt,Z(p)
) is GZ(p)

.

Let dt = |V ∨t,Z/Vt,Z|, gt = 1
2 dim(Vt), and n ≥ 3 be an integer such that (n, p) = 1. Let

Agt,dt,n be the moduli scheme of abelian schemes over Z(p)-schemes of relative dimension

gt with a polarization λt of degree dt and a level n structure τt. We write (At, λt, τt) for

the universal family on Agt,dt,n. Let Kp ⊆ G(Apf ) be small enough such that there are

morphisms ShK(G,X) → Ag1,d1,n and ShK(G,X) → Ag2,d2,n. Then by the construction

of the integral canonical model, there are finite morphisms i1 : SK(G,X)→ Ag1,d1,n and

i2 : SK(G,X)→ Ag2,d2,n.

Let (V, ψ) be as in §2.6, and VZ be V1,Z⊕V2,Z. There is an embedding of Shimura data

i : (G,X)→ (GSp(V, ψ), S±). Consider the diagram

Ag1,d1,n Ag1,d1,n ×Ag2,d2,n
p1oo p2 // Ag2,d2,n.

The universal family p∗1(A1, λ1, τ1) × p∗2(A2, λ2, τ2) on Ag1,d1,n × Ag2,d2,n is an abelian

scheme of dimension g3 := g1 + g2 with a polarization of degree d3 := d1d2 and level n

structure. There is a unique morphism

i′ : Ag1,d1,n ×Ag2,d2,n → Ag3,d3,n

such that

i′∗(A, λ, τ) = p∗1(A1, λ1, τ1)× p∗2(A2, λ2, τ2),

where (A, λ, τ) is the universal family on Ag3,d3,n.
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By the construction of SK(G,X), we have a commutative diagram

Ag2,d2,n

SK(G,X)
(i1,i2) //

i1

&&

i2
88

Ag1,d1,n ×Ag2,d2,n
i′ //

p1

vv

p2
hh

Ag3,d3,n

Ag1,d1,n

such that the generic fiber of i′ ◦ (i1, i2) is induced by i. We will write i for i′ ◦ (i1, i2). The

pull back via i of the universal family on Ag3,d3,n is precisely i∗1(A1, λ1, τ1)× i∗2(A2, λ2, τ2).

For simplicity, let’s write A1, A2, A for the pull back to SK(G,X) of the universal

abelian schemes on Ag1,d1,n, Ag2,d2,n and Ag3,d3,n respectively. Then A = A1 × A2. Let

Vt = H1
dR(At/SK(G,X)), t = 1, 2, and V = H1

dR(A/SK(G,X)). Then V = V1 ⊕ V2. A

tensor s1 ∈ V ⊗1,Z(p)
(resp. s ∈ V ⊗Z(p)

) defining GZ(p)
⊆ GL(V1,Z(p)

) (resp. GZ(p)
⊆ GL(VZ(p)

))

induces a section s1,dR ∈ V⊗1 (resp. sdR ∈ V⊗).

Let I be IsomSK(G,X)

(
(V ∨Z(p)

⊇ V ∨1,Z(p)
, s1, s)⊗OSK(G,X), (V ⊇ V1, s1,dR, sdR)

)
.

Lemma 2.9. The scheme I is a right GZ(p)
-torsor over SK(G,X).

Proof. Let I3 = IsomSK(G,X)

(
(V ∨Z(p)

, s)⊗OSK(G,X), (V, sdR)
)
, then I ⊆ I3. To prove the

statement, we only need to check that V1 = V ∨1,Z(p)
×GZ(p) I3, and that s1,dR : OS → V⊗1 is

the same as (Z(p)
s1→ V ⊗1,Z(p)

)×GZ(p) I3. Noting that V1 and V ∨1,Z(p)
×GZ(p) I3 are both locally

direct summands of V, and that S is integral, it suffices to work over the generic fiber,

and everything follows from the first three paragraphs of [1, §2.2].

We remark that the proof above also implies that I = I3. We write i1, i2, p1, p2, i for

the morphisms of the special fibers. To prove that the Ekedahl–Oort stratifications are

independent of choices of symplectic embedding, it suffices to prove that the stratifications

induced by i1 and i coincide. By Corollary 2.8 and the proof of Lemma 2.9, the special

fiber of I is precisely the G0-torsor in the G0-zip over S0,K(G,X) constructed using i.

Let us write I for this special fiber and (I, I+, I−, ι) for the G0-zip constructed using i.

Let (I1, I1,+, I1,−, ι1) be the G0-zip over S0,K(G,X) constructed using i1.

There is a natural morphism ε : I → I1 given by

f ∈ I(S) 7→ f |V ∨1,κ⊗OS ∈ I1(S) for all S0,K(G,X)-scheme S.

Theorem 2.10. ε induces an isomorphism (I, I+, I−, ι) → (I1, I1,+, I1,−, ι1) of G0-zips.

In particular, i1 and i give the same Ekedahl–Oort stratification.
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Proof. The morphism ε : I → I1 is clearly G0-equivariant, and hence an isomorphism of

G0-torsors. For any S/S0,K(G,X), and any f ∈ I+(S) ⊆ I(S), f maps the weight 1

subspace of V ∨κ ⊗ OS to ker(ϕ), where ϕ is the Frobenius on V. Let ϕ′ be the Frobenius

on V1, then ker(ϕ′) = ker(ϕ) ∩ V1, as V1 ⊆ V is induced by a morphism of abelian

schemes and hence compatible with Frobenius. So ε(f) = f |V ∨1,κ⊗OS maps the weight 1

subspace of V ∨1,κ ⊗ OS to ker(ϕ) ∩ V1 = ker(ϕ′), and hence lies in I1,+(S). But then ε|I+
will automatically be an isomorphism of P+-torsors. Similarly, ε|I− is an isomorphism of

P
(p)
− -torsors.

Now we check the compatibility between ι and ι1. We apply the constructions in

Settings 2.3 and 2.4 to V1 and V ∨1,κ respectively, and denote the obtained morphisms by

ϕ′0, ϕ′1, φ′0 and φ′1. Let (V ∨1,κ)0 (resp. (V ∨1,κ)1) be the subspace of V ∨1,κ of weight 0 (resp. 1)

with respect to µ, and (V ∨1,κ)0 (resp. (V ∨1,κ)1) be the subspace of V ∨1,κ of weight 0 (resp. 1)

with respect to µ(p). Then φ′0 and φ′1 are compatible with φ0 and φ1, in the sense that

φ0|(V ∨1,κ)(p)/((V ∨1,κ)1)(p) = φ′0 : (V ∨1,κ)(p)/((V ∨1,κ)1)(p) → (V ∨1,κ)0

and

φ1|((V ∨1,κ)1)(p) = φ′1 : ((V ∨1,κ)1)(p) → V ∨0,κ/(V
∨

1,κ)0.

Let ϕ′ : V(p)
1 → V1 and υ′ : V1 → V(p)

1 be the Frobenius and Verschiebung on V1 respectively.

Then they are the restrictions of ϕ and υ to V1. Notations as in Setting 2.3, we then have

ϕ0|(V1/ ker(ϕ′◦δ))(p) = ϕ′0 : (V1/ ker(ϕ′ ◦ δ))(p) → ker(ϕ′)

and

ϕ1|(ker(ϕ′◦δ))(p) = ϕ′1 : (ker(ϕ′ ◦ δ))(p) → V1/(im(ϕ′)).

Now we first how ι and ι′ are defined in Theorem 2.5. Notations as above, ι : I
(p)
+ /U

(p)
+ →

I−/U
(p)
− is the morphism induced by

I
(p)
+ → I−/U

(p)
−

f 7→ (ϕ0 ⊕ ϕ1) ◦ gr(f) ◦ (φ−1
0 ⊕ φ

−1
1 ) for all S/S0 and f ∈ I(p)

+ (S),

and similarly for ι′. Then for all S/S0 and f ∈ I(p)
+ (S), we have

ι′ ◦ ε(f) = ι′(f |V ∨1,κ⊗OS ) = (ϕ′0 ⊕ ϕ′1) ◦ gr(f |V ∨1,κ⊗OS ) ◦ (φ′−1
0 ⊕ φ′−1

1 ) = ε ◦ ι(f).

This shows that ε is an isomorphism of G0-zips.

Remark 2.11. Bruhat stratifications are defined and studied by Wedhorn in [6] (actually,

we need the morphism ζ to define the Bruhat stratification on S0,K(G,X)). In the case of

Siegel modular varieties, the Bruhat stratification is precisely the a-number stratification.

Theorem 2.10 also implies that the Bruhat stratification is independent of choices of

symplectic embeddings.
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3. Functoriality

Let p ≥ 3 be a prime, and (G,X) and (G′, X ′) be two Shimura data of Hodge type such

that they both have good reduction at p. Let E (resp. E′) be the reflex field of (G,X)

(resp. (G′, X ′)). Let K (resp. K ′) be a compact open subgroup of G(Af ) (resp. G′(Af ))

such that Kp (resp. K ′p) is hyperspecial. Let f : (G,X) → (G′, X ′) be a morphism of

Shimura data, then E ⊇ E′. If K and K ′ are such that f(K) ⊆ K ′, then f induces a

morphism of Shimura varieties f : ShK(G,X)→ ShK′(G
′, X ′)E .

Let v′ be a place of E′ over p with residue field κ′ and v be a place of E over v′

with residue field κ. Let SK(G,X) (resp. SK′(G
′, X ′)) be the integral canonical model of

ShK(G,X) (resp. ShK′(G
′, X ′)). Then f extends uniquely to a morphism SK(G,X) →

SK′(G
′, X ′)OE,(v) whose special fiber S0,K(G,X) → S0,K′(G

′, X ′)κ will still be denoted

by f .

By “functoriality”, we mean a certain kind of compatibility of Ekedahl–Oort stratifi-

cations with respect to f . But it seems that we need some extra assumptions. The reason

is as follows. For a morphism f : GQp → G′Qp such that f(Kp) ⊆ K ′p, it is NOT always

possible to extend f to a morphism GZp → G′Zp (see [5, Proposition 3.1.2.1(b)]). So there

is NO natural morphism G0 → G′0, and hence there is NO direct way to compare G0-zips

and G′0-zips.

3.1. Basic settings

Let G/Z(p) (resp. G′/Z(p)) be the reductive model of G (resp. G′) with special fiber G0

(resp. G′0). Let E, E′, κ and κ′ be as at the beginning of this section. Then by [8, 3.2.2],

the Shimura datum (G,X) (resp. (G′, X ′)) determines a cocharacter µ (resp. µ′) of GW (κ)

(resp. G′W (κ′)) which is unique up to conjugacy. The reduction of µ (resp. µ′) will still be

denoted by µ (resp. µ′).

Besides the conditions stated at the beginning of this section, we make the following

assumption on f : (G,X)→ (G′, X ′).

Assumption 3.1. There exists a homomorphism GZp → G′Zp extending fQp . This homo-

morphism will be denoted by f .

3.2. The morphism α

The morphism f induces a natural morphism

α : G0 -zipµκ → G′0 -zipµ
′

κ′ ⊗κ

which we will now explain. Still write µ for the cocharacter Gm,κ → G0,κ → G′0,κ, then µ

and µ′ are G′0(κ)-conjugate.
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There is a natural morphism α1 : G0 -zipµκ → G′0 -zipµκ as follows. The cocharacter µ

induces homomorphisms P+ → P ′+, P− → P ′− and M → M ′. For any κ-scheme S and

any S-point (I, I+, I−, ι) of ∈ G0 -zipµκ,

α1(I, I+, I−, ι) :=
(
I ×G0,S G′0,S , I+ ×P+,S P ′+,S , I− ×

P
(p)
−,S P

′(p)
−,S , ι

′),
where ?1×?2?3 is the quotient of ?1×?3 equalizing the ?2-action on ?1 given by the torsor

structure and that on ?3 induced by f , and ι′ is the composition of M ′(p)-equivariant

isomorphisms

(I+ ×P+,S P ′+,S)(p)/U
′(p)
+

'−→ (I
(p)
+ /U

(p)
+ )×L

(p)
S L

′(p)
S ,

(I
(p)
+ /U

(p)
+ )×L

(p)
S L

′(p)
S

ι×id−→ (I−/U
(p)
− )×L

(p)
S L

′(p)
S

and

(I−/U
(p)
− )×L

(p)
S L

′(p)
S

'−→ (I− ×P
(p)
−,S P

′(p)
−,S)/U

′(p)
− .

Let µ′ ⊗ 1 be the base change to κ of the cocharacter µ′, then by [7, Remark 5.16(1)],

there is an obvious isomorphism α2 : G′0 -zipµ
′

κ′ ⊗κ→ G′0 -zipµ
′⊗1
κ given by base change. Let

g ∈ G′0(κ) be such that int(g) ◦ (µ′ ⊗ 1) = µ, then g induces an isomorphism of algebraic

stacks

αg3 : G′0 -zipµ
′⊗1
κ → G′0 -zipµκ

(I, I+, I−, ι) 7→ (I ′, I ′+, I
′
−, ι
′) := (I, (I+) · g−1, (I−) · σ(g)−1, rσ(g)−1 ◦ ι ◦ rσ(g)),

where rσ(g) and rσ(g)−1 are the obvious morphisms I
′(p)
+ /U

′(p)
+ ' I

(p)
+ /U

(p)
+ and I−/U

(p)
− '

I ′−/U
′(p)
− given by multiplication with σ(g) and σ(g)−1 on the right respectively.

Remark 3.2. The morphism αg3 is canonical, in the sense that it is uniquely determined

by µ and µ′ ⊗ 1 and does not depend on the choices of g. For an h ∈ G′0(κ) such that

int(h) ◦ (µ′ ⊗ 1) = µ, there exists an l ∈ M ′(κ), such that h = gl. Here M ′ is, as before,

the centralizer in G′0,κ of µ′. Then

αh3(I, I+, I−, ι)

= (I, (I+) · h−1, (I−) · σ(h)−1, rσ(h)−1 ◦ ι ◦ rσ(h))

= (I, (I+) · l−1g−1, (I−) · σ(l)−1σ(g)−1, rσ(g)−1 ◦ rσ(l)−1 ◦ ι ◦ rσ(l) ◦ rσ(g))

= (I, (I+) · g−1, (I−) · σ(g)−1, rσ(g)−1 ◦ ι ◦ rσ(g)).

The last equality is because of that I+ (resp. I−) is M ′ (resp. M ′(p)) stable and that ι is

M ′(p)-equivariant. We will simply write α3 for αg3, as it is independent of g.

The morphism α, at the beginning of this subsection, is then defined to be α−1
2 ◦α

−1
3 ◦α1.
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3.3. Functoriality

We use the same notations as at the beginning of this section. We have ζ : S0,K(G,X)→
G0 -zipµκ and ζ ′ : S0,K′(G

′, X ′) → G′0 -zipµ
′

κ′ . Moreover, we assume that the morphism of

Shimura data f : (G,X)→ (G′, X ′) satisfies Assumption 3.1.

By functoriality, we mean the following.

Theorem 3.3. The diagram

S0,K(G,X)

ζ

��

f // S0,K′(G
′, X ′)κ

ζ′⊗κ
��

G0 -zipµκ
α // G′0 -zipµ

′

κ′ ⊗κ

is commutative.

Proof. The proof, which is a variation of that of Theorem 2.10, will be divided into several

steps.

Step 1. Let i : (G,X) → (GSp(V, ψ), S±) and i′ : (G′, X ′) → (GSp(V ′, ψ′), S′±) be

symplectic embeddings. Note that we do NOT assume that there is any compatibility

between f and the symplectic embeddings. The weight cocharacter w : Gm,Q → G induces

a Gm,Q-action on V of weight 1, and the composition f ◦ w induces a Gm,Q-action on V ′

of weight 1. Let V1 = V ⊕ V ′ and ψ1 : V1 × V1 → Q be such that

ψ1

(
(v, v′), (w,w′)

)
= ψ(v, w) + ψ′(v′, w′) for all v, w ∈ V and v′, w′ ∈ V ′.

Then i and i′ ◦ f induce a faithful representation of G on V1. Moreover, the argument in

§2.6 shows that G ⊆ GSp(V1, ψ1) and this embedding induces an embedding of Shimura

data i1 : (G,X) ⊆ (GSp(V1, ψ1), S±1 ). In sum, we have a commutative diagram

ShK(G,X)
i×(i′◦f)//

f

��

Ag,d,n ×Ag′,d′,n
//

p2

��

Ag1,d1,n

ShK′(G
′, X ′)

i′ // Ag′,d′,n.

Step 2. There is a Z-lattice VZ ⊆ V (resp. V ′Z ⊆ V ′) such that the Zariski closure

of G (resp. G′) in GL(VZ(p)
) (resp. GL(V ′Z(p)

)) G (resp. G′) is reductive and such that

Kp = G(Zp) (resp. K ′p = G′(Zp)). Let V1 be VZ ⊕ V ′Z. Consider the sequence of closed

embeddings

G × G′ ⊆ GL(VZ(p)
)×GL(V ′Z(p)

) ⊆ GL(V1,Z(p)
).

Let G1 be the Zariski closure of G in GL(V1,Z(p)
). Then G1 ⊆ G × G′. Flat base-change

implies that G1,Zp is the graph of f : GZp → G′Zp . So G1
∼= G and f is defined over Z(p).
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Step 3. Let s ∈ V ⊗Z(p)
(resp. s′ ∈ V ′⊗Z(p)

, s1 ∈ V ⊗1,Z(p)
) be a tensor defining G ⊆ GL(VZ(p)

)

(resp. G′ ⊆ GL(V ′Z(p)
), G ⊆ GL(V1,Z(p)

)). Then the symplectic embeddings i, i′ and i1

induce vector bundles V, V1 on S0,K(G,X) and V ′ on S0,K′(G
′, X ′). The tensors s, s′

and s1 induce tensors sdR ∈ V⊗, s′dR ∈ V ′⊗ and s1,dR ∈ V⊗1 respectively. Note that we

have V1 = V ⊕ f∗V ′. Let (I, I+, I−, ι) be the G0-zip on S0,K(G,X) constructed using i,

and (I1, I1,+, I1,−, ι1) be the one constructed using i1. By Theorem 2.10, (I, I+, I−, ι) ∼=
(I1, I1,+, I1,−, ι1). Let (I ′1, I

′
1,+, I

′
1,−, ι

′
1) be the image of (I1, I1,+, I1,−, ι1) under α1 as at

the beginning of §3.2. It is a G′0-zip of type µ over S0,K(G,X).

Step 4. Let (I ′, I ′+, I
′
−, ι
′) be the G′0-zip of type µ′ over S0,K′(G

′, X ′) constructed

using i′, and (I ′, I ′+, I
′
−, ι
′)κ be its pull back to S0,K(G,X). One gets a G′0-zip of type µ

over S0,K(G,X) from it, still denoted by (I ′, I ′+, I
′
−, ι
′)κ, by first applying α2 and then

α3 as in the constructions before Remark 3.2. By the same arguments as in the proof of

Theorem 2.10, ε induces an isomorphism of G′0-zips of type µ. But this means that the

diagram

S0,K(G,X)

ζ

��

f // S0,K′(G
′, X ′)κ

ζ′⊗κ
��

G0 -zipµκ
α // G′0 -zipµ

′

κ′ ⊗κ

is commutative.
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