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Coalgebraic formal curve spectra and spectral jet spaces

ERIC PETERSON

We import into homotopy theory the algebrogeometric construction of the cotangent
space of a geometric point on a scheme. Specializing to the category of spectra local
to a Morava K–theory of height d , we show that this can be used to produce a
choice-free model of the determinantal sphere as well as an efficient Picard-graded
cellular decomposition of K.Zp; dC1/ . Coupling these ideas to work of Westerland,
we give a “Snaith’s theorem” for the Iwasawa extension of the K.d/–local sphere.

55N22; 55P20, 55P60

1 Introduction

Much of modern chromatic homotopy theory is underpinned by a process that converts
spaces to formal schemes: given an even-periodic cohomology theory E and a space X ,
if E�X is suitably nice we can define a formal scheme XE by the formula

XE WD Spf E0X;

where the formal topology can be taken to come from the finite subcomplexes of a
cellular structure on X . The very definition of complex-orientability is designed so
that this construction carries CP1 to the formal affine line:

Spf E0CP1 D fSpec E0CPn
gn Š fSpec E0Œx�=xnC1

gn DW
yA1
=Spec E0 :

The H –group structure of CP1 then endows the formal scheme CP1
E

with the
structure of a formal Lie group, which history has shown to encode quite a lot of
information about E itself. In fact, many familiar values of X are carried to other
familiar schemes — for instance, BU.n/E models the scheme of effective Weil divisors
on CP1

E
of rank n, HP1

E
is sent to a formal curve, and the symplectification map is

sent to a degree-2 isogeny CP1
E
!HP1

E
. The reach of this construction is maximized

when E DE� is taken to be the Morava E–theory associated to a formal group � of
finite height d over a perfect field k of positive characteristic p . This cohomology
theory is designed so that the formal Lie group CP1

E�
is a versal deformation of � ,

but a great many additional theorems have been proven about its assignment from
spaces to formal schemes, as partially tabulated in Figure 1. The most remarkable
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2 Eric Peterson

X XE�

one-point space Lubin–Tate deformation space for �

CP1 versal deformation z� of �

BU.n/ effective Weil divisors of rank n on z�

BU �Z stable Weil divisors on z�

BU stable Weil divisors on z� of virtual rank 0

BS1Œpj � the pj –torsion subgroup z�Œpj �

BA� the mapping scheme FORMALGROUPS.A; z�/

Bq.S1/ the qth exterior power of z�

Bq.S1Œpj �/ the pj –torsion subgroup of z�^q

BA� (mod annihilators of x.a/) level–A structures on z�

B†n (mod transfers) subgroup divisors of rank n on z�

BSU special stable Weil divisors on z� of virtual rank 0,
equivalently, C2.z�/ WD Sym2

Div z�
Div0

z�

BU Œ6;1/ C3.z�/

HP1 a formal curve x� double-covered by z�

BSp stable Weil divisors on x�

BO Div x� �Div x�Œ2� Div z�Œ2�

BSO Div x� �Div x�Œ2� SDiv z�Œ2�

Spin=SU C2.z�/=.Œa;�a�/

BSpin (when ht� � 2) C2.z�/=.Œa; b�C Œ�a;�b�/

BString (when ht� � 2) C3.z�/=.Œa; b;�a� b�/
:::

:::

Figure 1: Assignments from spaces to formal schemes via Morava E –theory.

feature of this table is that when � varies and the space X is fixed, the same family
of formal schemes appears as output. This inspires us to consider X itself as playing
some scheme-like role at the level of homotopy theory and to study algebrogeometric
operations on X intrinsically.

The goal of the present work is to use a spectrum-level construction analogous to that
of Hopf algebra homology to define the “tangent spectrum” of certain extremely nice
spaces X . We first build up to this definition and then justify its utility by demonstrating
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Coalgebraic formal curve spectra and spectral jet spaces 3

that it has the expected behavior in E� –homology. The details of this computation
inform us at what homotopical level we expect our construction to behave well: we find
that it lives naturally in the category of spectra localized at E� –cohomology, which we
abbreviate to the category of �–local spectra.1 With this established, we then use the
computational apparatus to extract further interesting constructions within the �–local
category. The main result of this paper is thus:

Theorem 1 (Definition 2.4.5 and Theorem 3.3.12) For X any pointed space and �
any finite-height formal group over a perfect field k , there is a sequence of �–local
spectra, functorial in X ,

C1
0

C1
1

C1
2

� � �

C 0
0

C 1
1

C 2
2

� � �

fiber fiber fiber

with natural equivalences

C 0
0 ' S; C10 '†

1
CX; C11 '†

1X:

If XE� is a formal curve (ie E0
�

X is abstractly isomorphic to a univariate formal
power series E0

�
–algebra) and p� ht�,2 then

T �0 .XE� /ŠE0
�.C

1
1 /;

where T �
0

indicates the cotangent space at the origin. Moreover, C k
k
D .C 1

1
/^k for

finite k , and C11 D �.

In the case that XE� is a formal curve, we are thus motivated to take C 1
1

as a definition
of TCX , the tangent space of X at its natural pointing S0!†1CX . Drawing from
the algebrogeometric interpretation, we refer to the generic procedure as the jet-space
decomposition.

The known collection of candidate curves to which to apply this result is quite sparse:
in the table above, we have already noted that X DCP1 has the required property, as
does BdS1, the top exterior power of z� . In the first case, this procedure recovers the
cellular decomposition of CP1 into even spheres, attached along homotopy classes

1Readers familiar with chromatic homotopy theory will better recognize “�–local spectra” as “K.d/–
local spectra”, where K.d/ is Morava’s d th extraordinary K –theory. This localization, therefore, does
not truly depend on � but rather only on its height d ; see Hopkins and Smith [22, Proposition 1.9].

2This hypothesis comes from our proofs in the appendix and seems likely to be unnecessary for the
identification of C 1

1
, where Lemma A.2.8 requires p > 2 and d2 > 2.p� 1/ . However, it may indeed be

necessary for the identification of C k
k

for general k , where the same bound appears in Theorem 3.3.4.
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4 Eric Peterson

graded by †�1.CP1/^k . This second case is particularly interesting because of its
coupling to the �–local category via the integer d . We will show the following result,
which is highly specific to Morava E–theory and to the choice of � :

Lemma 2 (Theorem 3.3.9; cf Westerland [41, Proposition 3.21]) Setting X D

†1CBdS1 for d D ht�, then XE� is a formal curve and Aut� acts on the tangent
space through the determinant representation.

Corollary 3 (Corollary 3.3.10) For p� ht� , the �–local spectrum TC†
1
CBdS1

gives a choice-free3 model of Sdet , the determinantal sphere of Gross and Hopkins
(cf Goerss, Henn, Mahowald and Rezk [15, Remark 2.5] and Hopkins and Gross
[19, Theorem 6 and Corollary 3]).

Corollary 4 (Definition 2.4.5 and Theorem 3.3.12) For p � ht� , the spectrum
†1CBdS1 has a �–local Picard-graded cellular decomposition, with one cell of the
form C k

k
' .Sdet/^k for each k � 0. This decomposition is efficient in the sense that

the associated Atiyah–Hirzebruch spectral sequence collapses at E2 .

Alternatively, the cellular decomposition of CP1 can also be interpreted as the skeletal
filtration for the bar construction B.C�/. This, too, admits generalization:

Corollary 5 (Theorem 2.5.6) There is an A1–ring structure on .†�1Sdet/C and a
�–local equivalence

B..†�1Sdet/C/
'
�!†1CBdS1:

Additionally, in Section 3.4 we explore the direct connections between these computa-
tions and results obtained by Westerland [41].

Notational forewarnings With a fixed formal group � in mind, we will often ab-
breviate the associated Morava K– and E–theories from K� and E� to simply K

and E . We will be especially interested in the behavior of limits taken in different
categories, and so we will write lim ˛

C.S˛/ to denote the limit in the category C of the
˛–indexed pro-system S˛ .

Acknowledgements The paper covers the original results of my PhD thesis, completed
in 2015 at the University of California, Berkeley, under the direction of Constantin
Teleman and with the support of the department’s NSF grant for the geometry and

3Specifically, all previous constructions of Sdet avail themselves of a generator of Z�p .
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Coalgebraic formal curve spectra and spectral jet spaces 5

topology group, DMS-0838703. The germ of this project came from an unpublished
note of Neil Strickland [36], and work on it (in particular, Theorem 3.3.5) began at the
University of Illinois, Urbana–Champaign, under Matthew Ando and with the support
of UIUC’s NSF grant for graduate students pursuing research projects, DMS-0838434.

This project was boosted considerably by two visits to the Max Planck Institut für
Mathematik in Bonn, which was facilitated by Peter Teichner. I benefited significantly
from many conversations with Michael Hopkins, with Hal Sadofsky, and especially
with Tobias Barthel on the inverse limit spectral sequence presented here. I also very
much enjoyed discussing possible extensions of this work with Craig Westerland, whose
insights and good humor sharpened and buoyed this whole enterprise (including the
publication of this document). Rune Haugseng’s anonymous referee for his paper on
Morita categories [16] insisted that he include exactly the 1–categorical results I
needed to underpin this paper — so, I also extend a hearty thank you to this mysterious
benefactor. My own anonymous referee provided many helpful comments that greatly
improved the quality of this paper, for which I am very grateful. Finally, I would like
to thank Samrita Dhindsa for her love and support throughout.

2 Homotopical coalgebras and comodules

2.1 Motivation: coalgebraic formal schemes

To set the stage, we expand on our discussion from the introduction of treating a space
as a scheme-like object, starting with a more careful description of “XE ”.

Definition 2.1.1 Let E be an even-periodic cohomology theory, and let X be a
CW–space, so that X D colim˛fX˛g can be written as the colimit over the lattice
of inclusions of its compact subspaces X˛ . Suppose further that the system of finite
E�–algebras fE�X˛g is equivalent to a sub-pro-system of even-concentrated finite
E�–algebras fE0X˛0 ˝E0 E�g. We then set

XE WD Spf E0X WD fSpec E0X˛0g:

Remark 2.1.2 [38, Section 8.2, Definition 8.15] A sufficient condition on X to
ensure that XE exists is for H�X to be torsion-free and even, in which case there is a
skeletal structure on X whose subskeleta form a cofinal subsystem of fX˛g and have
the desired evenness property. For instance, this covers the cases of X D CP1 and
X D BU . It does not, however, cover X D BS1Œpj �, to which the definition given
here nonetheless applies for E DE� a Morava E–theory.
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Remembering our goal of studying X directly, we would now like to identify a
topological system underlying this construction. The compactness of X˛ , hence
dualizability of the suspension spectrum, gives

E�X˛ D ���F.†
1
CX˛;E/D ���

�
F.†1CX˛;S/^E

�
;

from which we are inspired to consider the pro-E1–ring-spectrum

yDX D fF.†1CX˛;S/g:

This pro-spectrum depends only on X and not on E , and the system appearing in
Definition 2.1.1 then arises as the homotopy of the base change

�� yDX ' fE ^F.†1CX˛;S/g;

where �W S!E is the unit map for the ring spectrum E . Hence, yDX plays something
of a role of a universal object for these constructions.

We now immediately set our eyes on the main theorem. Recall the diagram of A–
modules which defines the cotangent space for a geometric point Spec A=m of an
affine scheme Spec A:

A m m2

A=m m=m2 D T �
0

Spec A

Each angle in the diagram is a cokernel sequence of A–modules. Our goal is to lift
this diagram of cokernel sequences of modules to a diagram of cofiber sequences of
spectra, so that the original diagram is recovered upon applying E–cohomology. A
candidate replacement for A itself is the pro-spectrum yDX , and a pointing of the
space X induces an augmentation map yDX ! S to the constant pro-spectrum S .

However, working with yDX is prohibitively complicated: the Spanier–Whitehead
duals and pro-system in its definition are designed to mitigate what would be the
difference between the cohomology of the limit and the limit of the cohomology of
the components, which we may eventually find undesirable and which we would be
obligated to thread through our entire discussion. To avoid this conceptual overhead and
potential pitfall, we take inspiration from a corresponding purely algebraic situation: for
a field k , pro-finite k –algebras are equivalent to ind-finite k –coalgebras by k –linear
duality, and all k –coalgebras are equivalent to ind-finite ones. Hence, the theory of
formal schemes (over Spec k ) can be taken to be underpinned by coalgebras instead,4

as in the following definition.

4This perspective is recorded by Demazure [10] in the case of a field and by Strickland [38, Section 4.8]
more generally.

Geometry & Topology, Volume 24 (2020)



Coalgebraic formal curve spectra and spectral jet spaces 7

Definition 2.1.3 A coalgebra C engenders a formal scheme Sch C via the following
dual formula for its functor of points:

.Sch C /.T /D fx 2 C ˝k T j�.x/D x˝x; ".x/D 1g:

Returning to spectra, we find the following analogies: pro-finite spectra are equivalent to
ind-finite spectra by Spanier–Whitehead duality, and spectra themselves are equivalent
to ind-finite spectra. Hence, the analogous coalgebraic spectral object to the “profinite
ring spectrum” yDX is C D†1CX itself, which we will work with directly. We need
only firmly record the sense in which C is a coalgebra before we can start doing
coalgebraic geometry with it.

2.2 Definitions and constructions

The theory of derived algebraic geometry and spectral schemes is only now coming into
view through work of Lurie and others, but the core of affine derived algebraic geometry
has been laid out for some time now via the theory of structured ring spectra. One of the
first hurdles to clear in this arena is to produce a definition of a ring spectrum (ie affine
derived scheme) that has an associated 1–category of module spectra (ie category of
quasicoherent sheaves); such a definition is found in that of an A1–ring spectrum. The
precise definition is fairly elaborate, and the reader is better off consulting a textbook
for a full account [26, Chapter 4], but the constituent pieces are:

� The 1–category SPECTRA and the category � of combinatorial simplices.
� A monoidal structure on SPECTRA , which can be encoded as a cocartesian

fibration qW SPECTRA˝! ASS˝ of operads.
� A particular functor CutW �op! ASS˝ to be used to control concatenation of

labels for combinatorial simplices.
� A functor AW �op! SPECTRA˝ respecting the pair of functors to ASS˝ and

sending “inert” morphisms to inert morphisms. We refer to such morphisms as
�op –algebras in SPECTRA .

Collectively, these amount to a choice of labelings of the combinatorial simplices,
identifications AŒn�'AŒ1�^n, a unit map AŒ0�!AŒ1�, a multiplication AŒ2�!AŒ1�,
and a sea of compatibilities encoding associativity, unitality, and ^–composability.

Since we are interested in coassociative coalgebras rather than associative algebras, we
tweak this definition only very slightly:

Definition 2.2.1 (cf [16, Definition 4.12] and [26, Proposition 4.1.2.15]) A co-
associative coalgebra in a monoidal 1–category C is a �op –algebra in Cop , ie an
associative algebra in the opposite category Cop .
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Lemma 2.2.2 A pointed space X determines an associative algebra object in the
monoidal 1–category SPECTRAop and in its homological Bousfield localization
SPECTRA

op
E

for a homology theory E .

Proof Pointed spaces (using the underlying diagonal map of sets) already determine
strictly coassociative algebra objects on the 1–categorical level. By localizing away
from the weak equivalences and passing to the associated 1–category, we recover an
associative algebra object in SPACES

op
� . Because the stabilization functor

†1C W SPACES�! SPECTRA

respects the Cartesian monoidal structure on SPACES� and the smash monoidal structure
on SPECTRA [26, Propositions 4.8.2.9 and 4.8.2.18] and because the monoidal structure
on �–local spectra is defined so that the localization functor L� is monoidal, it follows
that L�†

1
CX is a coaugmented coassociative coalgebra in SPECTRA� .

Our spectral analogue of the first fiber sequence in the diagram defining the algebraic
tangent space is thus given by the diagram

C M ?

S ?

�

where C D †1CX is a coalgebraic spectrum and �W S! C is the coaugmentation
map. In order to construct the second fiber sequence, we would like to interpret
this diagram as a sequence of C –comodules, and we would like access to a coal-
gebraic analogue of the product of ideals. Here, again, we can lean on the already-
developed theory of modules for associative algebra spectra: there is a nonsymmetric
1–operad �op

=Œ1�
[16, Definition 4.2] whose algebras in C amount to C–labeled com-

binatorial simplices with one edge labeled by a fixed spectrum M (the bimodule),
all edges indexed below it labeled by a fixed spectrum A (the left algebra), all edges
indexed above it labeled by a fixed spectrum B (the right algebra), together with maps
describing the associative algebra structures of A and of B , the left action of A on M ,
the right action of B on M , and compatibilities encoding associativity, unitality, and
^–composability.

Definition 2.2.3 ([16, Definition 4.12] and [26, Definition 4.3.1.6]) For a coassocia-
tive coalgebra C in a monoidal 1–category C, the category of C –comodules is the
subcategory of bimodules in Cop whose left- and right-algebras are equivalent to C .

Geometry & Topology, Volume 24 (2020)



Coalgebraic formal curve spectra and spectral jet spaces 9

Even with this technology, a product of ideals is too much to ask: the missing theory
of ideals for structured ring spectra remains, to date, a thorn in homotopy theorists’
sides.5 However, in the classical case that two A–ideals I and J are principal with
generators that have no annihilators, there is a natural isomorphism I ˝A J Š I �J .
This includes our primary case of interest, where AD kŒŒx�� and I D J DmD .x/ is
the ideal of functions vanishing at x D 0.6 Motivated by this observation, we, again,
borrow a definition from Haugseng and Lurie:

Definition 2.2.4 ([16, Definition 4.13 and Lemma 4.14]; cf [26, Definition 4.4.1.1 and
Proposition 4.4.1.11]) There is a nonsymmetric 1–operad ƒop

=Œn�
which arises as the

gluing of n face maps in from �
op
=Œ1�

along .n�1/ shared instances of �opD�
op
=Œ0�

in a
chain. Accordingly, a ƒop

=Œn�
–algebra in Cop selects a family of Ci�1 –Ci –cobimodule

objects Mi for 1� i � n: this is a length n chain of compatible comodules. A length n

cotensor witness is then a �op
=Œn�

–algebra in Cop :

ƒ
op
=Œn�

�
op
=Œn�

C

In particular, �op
=Œn�

has
�
n
2

�
face maps �op

=Œ1�
! �

op
=Œn�

, ie a Ci –Cj –cobimodule for
every choice of i and j . A cotensor product of the chain is the C0 –Cn –cobimodule
extracted from a witness in this way.

Lemma 2.2.5 ([16, Lemma 4.19 and Corollary 4.20]; cf [26, Theorem 4.4.2.8])
Let P W ƒ

op
=Œn�
! Cop be a length n chain of compatible cobimodules in C , and let

F W �
op
=Œn�
!Cop be a filling of P to a length n tensor witness. The spectrum underlying

the cotensor product comodule witnessed by F is necessarily weakly equivalent to the
limit of the cobar construction on the compatible cobimodules. Conversely, suppose

5The present situation here is a bit complicated. It is known that a ring spectrum can be localized
away from any homotopy element, but that quotienting some ring spectra by certain homotopy elements
can yield nonassociative or even nonunital spectra (eg respectively, S=p for odd primes p and S=2).
Meanwhile, the intended collection of ideals of S is considered well-known: the theory of ideals at
the level of perfect S–modules is understood through the nilpotence and periodicity theorems, and the
reflection of those results in the homotopy elements of S is extremely indirect. However, there is an
S–algebra M U which does, in a certain stacky sense, reveal this ideal structure at the level of homotopy
elements (but which still does not admit all the ring spectrum quotients that one might naively expect). At
any rate, the reader must temper their expectations about the theory being developed here, as it serves our
immediate purposes but not much more.

6The augmentation ideal of a higher-dimensional power series algebra is not principal.

Geometry & Topology, Volume 24 (2020)
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that nD 2 and only P is given. If the natural Cop –map

jX ˝B.M IS IN /˝Y j !X ˝jB.M IS IN /j˝Y

is an equivalence for all objects X and Y , then there must exist a filler F .

Remark 2.2.6 Haugseng’s filling result is not specific to cotensor products of length 2,
and it is functorial as the ƒop

=Œn�
–algebra varies. However, we will be content with the

weakened result stated here.

The primary obstacle for us now is the natural equivalence hypothesis in the lemma.
In our setting of C D SPECTRA or C D SPECTRA� , totalizations of cosimplicial
objects do not typically commute with the (local) smash product of (local) spectra.
So, while we can use the cobar construction to define a cotensor product and various
maps concerning it, essentially no good properties can be deduced for the construction
without first manually checking this condition about commuting limits and smash
products. For the moment, we content ourselves with constructing the maps, leaving
the question of properties for the next section.

Lemma 2.2.7 For a right C –comodule M , there is a natural retraction

M !M �C C !M;

and dually for a left C –comodule N .

Lemma 2.2.8 Let M be a C –C –cobimodule equipped with a map � W C !M of
cobimodules. There is then a diagram

C M

C �C C M �C C M �C M

C M

�

�C  R

z�R

��C C M�C�

where the vertical sequences are retractions. Alternatively, there is also a map z�L

using the left C –comodule structure of M .

Proof The arrow �C could just as well be called  C , and by this name the top square
commutes because � is a homomorphism of cobimodules. The arrow z�R is then
defined by either composite.

Geometry & Topology, Volume 24 (2020)



Coalgebraic formal curve spectra and spectral jet spaces 11

Classically, if � is surjective, then �R and �L will agree on points exactly if M

is taken to be a coideal. The word “coideal” is too bold in our homotopical context,
since it suggests that the quotient is again a coalgebra. We instead adopt the following
terminology.

Definition 2.2.9 Let M be a C –C –cobimodule spectrum equipped with a cobimodule
map � W C !M . Such a cobimodule spectrum is a symmetric cobimodule (for C )
when z�R and z�L are homotopic, in which case we will use z� as an abbreviation for
either.7

Lemma 2.2.10 Let f W D! C be a map of coalgebras, and suppose that there is a
splitting of the cofiber

D C cofibf
f �

The cofiber of f , considered as a C –C –cobimodule, is then a symmetric cobimodule.

Proof We enlarge the diagram of Lemma 2.2.8 to include z�L and z�R :

D C cofibf

cofibf ^C cofibf ^ cofibf C ^ cofibf

C ^C

f �

�

 R

z�L
z�R

 L

1^�

�^1
�^1

�^�

1^�

We see that the two maps z�L and z�R agree upon precomposition to C . Since cofibf
splits off of C , they agree on cofibf as well.

Lemma 2.2.11 For M a symmetric cobimodule admitting cotensor powers M �C k

and M �C .kC1/, all of the following maps are homotopic:

M �C k 1�����1�z��1�����1
���������������!M �C .kC1/:

7This is not the robust definition that a party setting out to build up a theory of spectral coalgebraic
algebra would choose. They would probably prefer to include coherence conditions on this symmetry. We,
however, are only setting out to support Definition 2.2.12.

Geometry & Topology, Volume 24 (2020)



12 Eric Peterson

Proof The definition of the cobar construction gives a homotopy between the following
two maps:

M �C M M �C C �C M:

 R�C 1

1�C L

Using the symmetric cobimodule property of M , we can trade z�L for z�R , and hence
we can transfer the z� to any coordinate.

We are now poised to properly state our construction:

Definition 2.2.12 Given a pointed coalgebra spectrum �W S! C , we define C 1
1

by
the chain of fiber sequences

C M M �C M

S C 1
1

z�

�

Remark 2.2.13 If C is merely a pointed coalgebra spectrum, this is as much of
the diagram as we can form at this time. After all, we have not yet shown that
M �C M is a C –C –cobimodule, and hence we cannot guarantee the existence of
“M �C .M �C M /”. However, if we start with a space X and follow Lemma 2.2.2,
then we can form the sequence of iterated cobar diagrams in the 1–category of spaces

XC!X !�.X IXCIX /!�.X IXCIX IXCIX /! � � � :

Pushing these diagrams forward along †1 and along the localizer L� then pro-
duces inverse diagrams of (�–local) spectra. Thus, we are at least assured that, for
C D†1CX , the diagrams determining the higher cotensor powers (and hence the
jet-space decomposition) are well-defined. We are still obligated to justify their utility
by computing the value of E� on their limits.

2.3 Computational tools

We would like to justify Definition 2.2.12 above by calculating E0
�

C 1
1

and checking
that it gives the desired cotangent module, and then we would also like to extend it
to the full sequence presented in the main theorem. In view of Lemma 2.2.5, this
rests directly on having tools available to compute the homology and cohomology of
a cotensor product of comodule spectra. With a computational task ahead, it is now
convenient to introduce Morava K–theory.

Geometry & Topology, Volume 24 (2020)
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Definition 2.3.1 The coefficient ring �0E� is a power series ring over Wp.k/, itself
a complete local ring with maximal ideal generated by p . The Morava K–theory
spectrum, K� , is the quotient of E� in E� –modules by a generating regular sequence
of the maximal ideal of �0E� .

As a result, ��K� D kŒu˙� is a graded field. This makes it extremely valuable for
computations — especially ones such as ours, where large smash products arise, since
K� has Künneth isomorphisms. Remarkably, despite being defined as a quotient,
“K� carries the same information as E� ” in the precise sense that K� –acyclics, homo-
logical or cohomological, agree with cohomological E� –acyclics [24, Proposition 2.5].
Hence, any of E� –cohomology, K� –cohomology, or K� –homology are equally good
for testing �–local equivalences.8 We will favor the last option, both for technical
reasons (cf [3] and the appendix) and because it covariantly converts the coalgebraic
spectrum C into the .K�/�–coalgebra .K�/�C , then into the coalgebraic formal
scheme Sch.K�/�C . To save on notational overhead, we will often write “K” alone
when some fixed � is understood.

We now turn back to the task at hand: given C –C –cobimodules M and N , we want
to study the natural map

X ^ lim
C
�.M IC IN /^Y ! lim

C
.X ^�.M IC IN /^Y /

and to find conditions under which it becomes a K–homology equivalence. The
presentation of M �N as the totalization of a cosimplicial object equips it with a
coskeletal filtration and hence a spectral sequence approximating its homology. We
might hope to use this to gain a foothold on our problem, but the homology of an inverse
limit of spectra typically compares poorly with the inverse limit of the homologies
of the individual spectra in the system. Remarkably, a result of Sadofsky shows that
K–homology does not suffer too badly from this.

Theorem 2.3.2 (cf Theorem A.0.1 and [3]) Take p � ht�, and let fX˛g˛ be a
pro-system of �–local spectra such that fK�X˛g˛ is a Mittag-Leffler system of K�–
modules. There is then a convergent spectral sequence of signature

R� lim ˛

COMODK�K

fK�X˛g˛)K� lim ˛

SPECTRA�
fX˛g˛;

where the right-derived inverse limit forming the input to the spectral sequence is taken
in the category of K�K–comodules.

8Remarkably, E� –homology does not belong to this list, essentially for the same reason that Zp˝ZZp

is not p–complete. We will address this further in Definition 3.3.2.

Geometry & Topology, Volume 24 (2020)



14 Eric Peterson

In order to make use of this spectral sequence, we need to compute some of its inputs.
The homologies of the finite stages of the filtration are accessible because homology
does pass through finite limits, and these admit the following uniform description:

Theorem 2.3.3 Let C be a coalgebra spectrum, M a right C –comodule spectrum,
and N a left C –comodule spectrum. Writing F for the fiber of the counit map
"W C ! S , there is an n–indexed system of spectral sequences

E1
�;� ŠK�M ˝K� .K�F /

˝.��n/
˝K� K�N;

E2
�;.�<n/ Š CotorK�C

�;� .K�M;K�N /

)
)K� Totn�.M IC IN /;

whose inverse limit in the category of K�–modules is the spectral sequence

E1
�;� ŠK�M ˝K� .K�F /

˝�
˝K� K�N;

E2
�;� Š CotorK�C

�;� .K�M;K�N /

)
) lim n

MODULESK�

K� Totn�.M IC IN /:

The spectral sequences in the system are strongly convergent, and the full spectral
sequence is conditionally convergent.

Proof This is an aggregation of several standard results in the literature. Ravenel and
Wilson [31, Section 2] provide a convenient summary of the bar spectral sequence, and
these spectral sequences arise as its dual. Ravenel [29, Appendix A1] also provides a
collection of results on the homological algebra of comodules and in particular gives
a definition and lists properties for “Cotor”. Finally, Boardman [6, Theorem 7.1]
provides tools for analyzing the convergence of the spectral sequences.

We now sew these together to analyze Sadofsky’s inverse limit spectral sequence in the
case at hand. This is mostly an exercise in elementary homological algebra, so requires
substantial bookkeeping but is otherwise straightforward.

Theorem 2.3.4 Continue to assume p� ht�. Assume that the natural map

Ks Tott �.M IC IN /!Ks Tott�1�.M IC IN /

is injective when sC t is odd and surjective when sC t is even.9 There then is an
additional convergent spectral sequence

R� lim t

COMODK�K

fK� Tott �.M IC IN /gt )K�.M �C N /;

where the derived inverse limit is taken in the category of K�K–comodules.

9In particular, this is satisfied if M , N and C have even-concentrated K –homology.
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Proof Throughout, we will consider the degree sC t part of the t –cochains C t
sCt ,

coboundaries Bt
sCt , and cocycles Zt

sCt of the normalized cobar complex

�.K�M IK�C IK�N /:

With an induction beginning at t D 0 and t D 1, we claim the K–homology of the t th

level of the tower (ie the target of the t th partial spectral sequence) is

Ks Tott �.M IC IN /DD1
s;t D

(
D1

s;t�1
˚ .C t

.sCt/=2
=Bt

.sCt/=2
/ if sC t is even,

D1
s;t�2

˚H t�1
.sCt�1/=2

if sC t is odd,

where D1
�;� denotes the rear of the exact couple of the full spectral sequence. In

particular, this formula will show that the inverse limit tower is Mittag-Leffler on
K–homology, so that Sadofsky’s hypotheses are satisfied. The theorem then follows.

Induction proceeds by considering one triangle in that exact couple:

Ks Tott�1�.M IC IN / Ks Tott �.M IC IN /

Ks�
t .M ^C^t ^N /

Œ�1�
D

D1
s;t�1

D1
s;t

E1
s;t

Œ�1�

The bottom vertex in the triangle is the K�–module of cochains, and we take s to be a
degree in which KsCt .M ^C ^ � � � ^C ^N / is nonvanishing, ie sC t is even. Then,
the triangle unrolls into an exact sequence which, using the inductive hypothesis, takes
the form

0 D1
sC1;t

D1
sC1;t�1

E1
s;t D1

s;t D1
s;t�1

0

0 H t�1
.sCt/=2

˚X
C t�1
.sCt/=2

Bt�1
.sCt/=2

˚X C t
.sCt/=2

C t
.sCt/=2

Bt
.sCt/=2

˚Y Y 0
i˚1 @˚0 �˚0 0˚1

for some modules X and Y to be determined. We then splice three of these long
sequences together to form Figure 2, which is labeled in terms of the cobar cohomology
groups in Figure 3. The action lies in the zigzag containing D1

s;tC1
through D1

s;t�2
:

if D1
s;t�1

and D1
s;t�2

are assumed to be as claimed, then the observation involving Y

shows that D1
s;t�1 is as well, which in turn determines D1

s;tC1
as the kernel of the

map D1
s;t !E1

s�1;tC1
, ie as the cocycle subgroup of the cochain group, taken modulo

the coboundaries. This proves the inductive claim.
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0

D1
s;tC1

0

0 D1
sC1;t

D1
sC1;t�1

E1
s;t D1

s;t D1
s;t�1

0

0 D1
s�1;t

D1
s�1;tC1

E1
s�1;tC1

D1
s;t�2

0 D1
s�1;t�2

D1
s�1;t�1

E1
s�1;t�1

Figure 2: Three interacting exact sequences.

0

H t
.sCt/=2

˚D1
s;t�1

0

0 D1
sC1;t

D1
sC1;t�1

C t
.sCt/=2

C t
.sCt/=2

Bt
.sCt/=2

˚D1
s;t�1

D1
s;t�1

0

0 D1
s�1;t

D1
s�1;tC1

C tC1
.sCt/=2

D1
s;t�2

0 D1
s�1;t�2

D1
s�1;t�1

E1
s�1;t�1

Figure 3: The interacting sequences with cobar complex names.

2.4 Computation in the case of a formal curve

In general, it is very hard to control the spectral sequence of Theorem 2.3.4. Even
computing these derived functors is prohibitively complicated in almost any non-
degenerate case — for instance, Hopkins (see [27, Section 14] and [3]) has recommended
them in an approach to analyzing the chromatic splitting conjecture.10 This moves us
to consider progressively more specialized situations where we can fully determine

10Computing these derived functors can be compared to computing certain local cohomology groups
and to certain “noncontinuous” forms of the group cohomology of the Morava stabilizer group. These are
both very difficult invariants.
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this spectral sequence, beginning with the case that the coalgebraic formal scheme
Sch K0C (see Definition 2.1.3) is a formal variety.

Definition 2.4.1 A k –coalgebra C over a field k will be called a formal variety
(of dimension n) when, for any augmented nilpotent k –algebra A with maximal
ideal m, there is a natural isomorphism between the group-like elements of C ˝A

and m�n .11 A spectral coalgebra C will be called a formal coalgebraic variety
spectrum (local to � ) when K�C is even-concentrated and K0C is a formal variety
in coalgebras. In both settings, we use formal curve as a synonym for a formal variety
of dimension 1.

For the rest of this section, we take �W S!C to be a pointed coalgebraic formal curve
spectrum local to �, and we write M for the cofiber of �. Supposing that M �C j has
been shown to support the structure of an even C –C –cobimodule spectrum, we now
inductively pursue an even C –C –cobimodule structure on M �C .jC1/ .

Theorem 2.4.2 The system fKn
��.M IC IM

�C j /gn is pro-constant.

Proof This system appears as the rear of the exact couple in Theorem 2.3.4, where
we showed that it was presented levelwise as direct sums of two sorts of groups: Cotor
groups and cochain groups modulo coboundaries. These groups are then linked together
by appropriate projections (away from a direct sum factor) and inclusions (of cocycles
modulo coboundaries — ie Cotor groups — into cochains modulo coboundaries). Our
conclusion will follow from a direct calculation of these Cotor groups.

This problem may be addressed by standard tools in homological algebra and in local
cohomology, which is perhaps more visible after taking linear duals and passing to
profinite algebras:

Cotor�;�
K�C

.K�M;K�N /Š Tor�;�
K�C_

.K�M
_;K�N

_/_:

Under our hypotheses, we may choose isomorphisms

K�C
_
ŠK�ŒŒx��; K�M

_
D hxi:

This shows .K�M /_ to be a free .K�C /_–module, hence the higher Tor groups
vanish.12

11Equivalently, the dual profinite algebra C� is isomorphic to a power series ring.
12For C of higher dimension, these Cotor groups are bounded above, and so we may draw a similar

conclusion. However, they fail to be even, which stymies the application of Theorem 2.3.4, which in
turn irreparably harms the overall induction. Another avatar of the same computational failure is that the
comparison between K�M

_˝K�C_ K�M
_ and K�M

_ �K�M
_ supposed in Section 2.1 no longer

holds, as K�M
_ is no longer cyclic.
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We now return to the original problem of pro-constancy. Because so many Cotor groups
themselves vanish, we find that the maps in the pro-system are zero except on those
nonvanishing factors, where the maps are instead the respective identity morphisms. It
follows that, for each fixed s , the tower D1

s;t is pro-constant.

Corollary 2.4.3 There is an isomorphism

K�.M �C M �C j /ŠK�M
�K�C .jC1/:

Proof Because the tower is pro-constant, the higher derived inverse limit functors
of Theorem 2.3.4 vanish, and hence we need only contend with the higher derived
functors of cotensoring itself. These also vanish, again because the maximal ideal in a
one-dimensional power series algebra is a free module.

Corollary 2.4.4 The spectrum M �C .jC1/ is a C –C –cobimodule spectrum.

Proof Tensoring the pro-constant towers of Theorem 2.4.2 with K�X and K�Y does
not disturb their pro-constancy. It follows that the natural map

K�X ˝K�M
�K�C .jC1/

˝K�Y !K� lim n

SPECTRA�
Totn.X ^�.M IC IM �C j /^Y /

is an isomorphism, and hence the conditions of Lemma 2.2.5 are satisfied.

This completes the induction and shows that M �C j is a C –C –cobimodule spectrum
for all values of j . We use this to justify the following definition.

Definition 2.4.5 Writing C1n for M �C n, there are natural projection (or “pinch”)
maps C1n ! C1

n0C1
for n0 � n. We define spectra C n0

n by the fiber sequence

C n0

n ! C1n ! C1n0C1

and the jet-space decomposition is the sequential system

C1
0

C1
1

� � � C1n C1
nC1

� � �

C 0
0

C 1
1

� � � C n
n C nC1

nC1
� � �

Our computational tools have been explicit enough that we can now also deduce that
K–cohomology takes the correct value on C 1

1
. By Corollary 2.4.3, we have that K0C 1

1
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indeed belongs to the exact sequence

K0C 1
1

K0C1
1

K0C1
1
˝K 0C K0C1

1

K0C1
1
�K0C1

1

�

Definition 2.4.6 In the case where C is a coalgebraic formal curve spectrum, we
write T�C for the spectrum C 1

1
, so that the isomorphism of Definition 2.4.6 reads as

an interchange law
K�T�C D T ��K

CK :

2.5 Koszul duality

We now give an alternative interpretation of the jet-space decomposition,13 which we
first motivate by example. In Section 3.2 below, we will show for C D†1CCP1 that
T�C ' S2 '†1CP1 and that the jet-space decomposition of C is into one sphere of
each even dimension. This familiar cellular filtration of CP1 also arises from a second
avenue that, at a glance, appears completely separate. By appealing to the equivalence

CP1 ' BU.1/;

we may use the bar filtration on BU.1/ to produce a filtration on CP1 which has
filtration quotients .†U.1//^n ' S2n . Moreover, there is a tool for mechanically
recognizing this phenomenon: the input U.1/ to the functor B may be recovered as
the based loopspace

U.1/'�CP1;

which is a specific example of the familiar equivalence of categories

CONNECTEDSPACES� GROUPLIKEA1SPACES:
�

B

Koszul duality (or “co/bar duality”) captures this phenomenon in maximum generality,
and the jet-space decomposition may be viewed as a specific instance of it: any coalge-
braic formal curve spectrum C can be written as “BG ” for an A1 ring spectrum G

extracted from the 1–jets T�C .

Our starting point is a second presentation of T�C , arising as follows.

13The ideas in this subsection will not recur, and an uninterested reader may safely skip ahead.
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Lemma 2.5.1 Given a fiber sequence of C –C –cobimodule spectra M 00!M !M 0

and a fourth cobimodule spectrum N , the sequence

M 00�C N !M �C N !M 0�C N

is also a fiber sequence.

Proof Because ��C N is defined by taking the inverse limit of a diagram constructed
from smashing the input with the fixed spectra C^n ^N , this functor preserves fiber
sequences.

Corollary 2.5.2 There is a natural equivalence S�C M ' C 1
1

.

Proof By applying Lemma 2.5.1, one can construct the jet-space decomposition by
iteratively cotensoring the fiber sequence

C M

S

�

with cotensor powers of M and sewing together the overlapping nodes:

C M M�C C M�C M M �C 2�C C M �C 2�C M � � �

S M�C S M �C 2�C S � � �

� M�C� M �C 2�C�

In particular, C 1
1

appears as M �C S .

Lemma 2.5.3 When S! C is a pointed coalgebra spectrum such that Sch K�C is a
formal variety, the spectrum S�C S has a split filtration of the form

†�1C 1
1 ! S�C S! S:

Proof Using Lemma 2.5.1, we cotensor the resolution sequence S! C !M with
the C –comodule S to get the new fiber sequence

� � � !†�1S�C M ! S�C S! S�C C ! S�C M ! � � � :

We can use the method of Theorem 2.3.4 to identify S�C C with S , and we can use
Corollary 2.5.2 to identify S�C M with C 1

1
. This yields the split fiber sequence

†�1C 1
1 ! S�C S! S:
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The object S�C SD�.SIC IS/ is the subject of Koszul duality. There is the following
general result:

Theorem 2.5.4 ([9, Proposition 7.26] and [13, Theorem 2.1.11]) Let O be an operad
in k –module spectra, where k is some algebra spectrum, and let A be a left module for
the operad O (ie an O–algebra). The arboreal bar construction B.kIOI k/ provides
a co-operad O_ for which B.AIOI k/ is a left comodule, and, dually, the arboreal
cobar construction �.kIO_I k/ provides an operad .O_/_ for which �.C IO_I k/ is
a left module. Additionally, the operad produced in this way from the coassociative
co-operad is the associative operad, and the co-operad produced from the associative
operad is the coassociative co-operad.

Corollary 2.5.5 The spectrum S�C SD .T�C /C is an associative algebra spectrum.

There is always a natural map of algebras

Tot�.kI jB.kIAI k/jI k/!A;

and when O and A are suitably of finite type (eg O the associative operad and A

a finitely generated polynomial algebra), then this map is an isomorphism (ie co/bar
duality is involutive) [9, Proposition 6.4]. It is not clear that such a theorem applies
directly here: the category of �–local spectra does not have good finiteness properties,
nor do power series algebras. Instead, we prove the relevant special case of this family
of theorems by hand:

Theorem 2.5.6 For C a �–local coalgebraic formal variety spectrum, the natural map

jB.SIS�C SIS/j ! C

is a �–local equivalence.

Proof The two coalgebraic formal schemes

Sch K�C; Sch K�jB.SIS�C SIS/j

are both formal varieties, and the natural map is both a map of coalgebraic schemes
and an isomorphism on tangent spaces. The inverse function theorem for formal
varieties thus applies, so that the map is an isomorphism of formal varieties, ie a
K�–equivalence.
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Remark 2.5.7 We can use Theorem 2.5.6 to think of the attaching map H in

†�1C 2
2

C 1
1

C 2
1

†�1.T�C /
^2 T�C C 2

1
H

as a kind of “Hopf map for S�C S”.

3 Projective spaces, formal curves, and Picard elements

In this section, we shift attention from theory-building to examples and computations.

3.1 General features

We continue to assume that C is a coalgebraic formal curve spectrum, ie K0C is
abstractly isomorphic to a 1–dimensional power series ring. In addition to the results
of the previous Section, the main consequences of this specialization stem from the
following definition and theorem.

Definition 3.1.1 A spectrum L is said to be �–locally invertible if there is some
other spectrum L�1 with L^L�1 ' S in the �–local category. The collection of
isomorphism classes of such spectra forms an abelian group, called the Picard group
of the �–local stable category.

Theorem 3.1.2 [21, Theorem 1.3] A spectrum L is �–locally invertible if and only
if K�L is a K�–line (ie a 1–dimensional K�–vector space, or a ˝–invertible object
in the category of K�–vector spaces).

Corollary 3.1.3 When C is a pointed coalgebraic formal curve spectrum, T�C (and,
indeed, any stratum C n

n of the jet-space decomposition) gives an element of the Picard
group of the �–local stable category.

This corollary can be viewed in two ways. First, it can be used to construct elements
of the Picard group of the �–local stable category by finding examples of pointed coal-
gebraic formal curve spectra. Second, given such a coalgebraic formal curve spectrum,
the jet-space decomposition can be used to give a kind of cellular decomposition of C ,
by considering the dual sequence
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� C 0
0

C 1
0

C 2
0

� � �

C1
0

C1
0

C1
0

C1
0

� � �

C1
0

C1
1

C1
2

C1
3

� � �

where each vertical sequence is a fiber sequence. Using Corollary 3.1.3, and thinking of
Picard elements as “generalized spheres”, this gives a �–local cellular decomposition
of C in terms of �–local Picard elements which are perhaps not standard spheres.

3.2 Classical projective spaces

We now work through the examples where C is taken to be a classical projective
space. In light of Theorem 3.3.12, we will be especially interested in determining the
homotopy type of T�C .

Let C D†1CCP1, with �W S!†1CCP1 its natural pointing. In this case, we apply
the version of Definition 2.2.12 in the global stable category. However, the global
stable category is not local for a field spectrum, so we appeal to the auxiliary spectra
K DHQ and K DHFp in order to analyze the coskeletal tower. Here, we find

HQ�TC†
1
CCP1 Š†2Q; .HFp/�TC†

1
CCP1Š†2Fp:

It follows from Sullivan’s adelic reconstruction [40, Proposition 3.20] that the integral
homology is

HZ�TC†
1
CCP1 Š†2Z;

and since TC†
1
CCP1 is a connective spectrum,14 it follows furthermore that its

homotopy type is
TC†

1
CCP1 ' S2:

To verify that the jet-space decomposition records the cellular decomposition of CP1 ,
we transfer to the dual of the jet-space decomposition as in Section 3.1. By connectivity,
it again follows that C n

m ' CPn
m . The global analysis of C D †1CHP1 proceeds

similarly. We may also perform an identical rational analysis of K.Q; 2n/ to produce
TC†

1
CK.Q; 2n/' S2n

Q .

14Similar considerations may be used to describe the entire Picard group of the stable category; see
[37, Theorem 2.2].
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We can also address C D†1CRP1 and KDK.1/DK yGa
DHF2 (where we use the

more general hypothesis available to Theorem 2.3.4, rather than the even-concentration
shortcut). By similar reasoning to the complex projective case, performing the tangent
space construction in the 2–adic stable category (in fact, because our objects are
connective, it suffices to consider the yGa –local category over F2 ) yields

TC†
1
CRP1 ' .S1/^2 ;

and the jet-space decomposition again recovers the cellular decomposition of RP1 .

Finally, it’s worth remarking that the ambient category chosen to perform the tangent
space construction is very important. It can neither be too localized nor too delocalized:

� Passing to the yGm –local category (or, generally, the �–local category for �
defined over k of characteristic 2) factors through 2–completion.15 Ravenel
[28, Theorem 9.1] has shown that for any j there is an equivalence

L yGm
RP18jC1 'L yGm

S�1:

Taking j D 0, one sees L yGm
RP1'L yGm

S�1, so its K.1/–cohomology is not
a power series ring, and it is furthermore too small to have the correct Cotor
groups. Letting j range, it’s also plain that the bar filtration looks wildly different
from the behavior of any sort of expected jet-space decomposition.

� On the other hand, RP1 is p–locally acyclic for p ¤ 2. It follows that the
integral homology of TC†

1
CRP1, as computed in the global stable category,

will not be a Z–line.

3.3 Determinantal projective space

We dedicate this subsection to a particularly interesting set of examples, stemming
from a calculation of Ravenel and Wilson.

Theorem 3.3.1 (Ravenel–Wilson [31]; see also Johnson–Wilson [25, Appendix] and
Hopkins–Lurie [20, Section 2]) Take the ambient prime p to satisfy p � 3.16 There
is a Hopf ring isomorphism

1M
qD0

K�B
qS1Œpj �Š

1M
qD0

.K�BS1Œpj �/^q;

15 : : : but not through HF2 –localization.
16The version of this result due to Hopkins–Lurie does not impose this constraint.
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where the target is the free alternating Hopf ring on K�BS1Œpj �. Moreover, for fixed
q � 1, the system fB1S1Œpj �K gj has the structure of a connected p–divisible group of
dimension

�
d�1
q�1

�
, where B1S1Œpj �K is the pj –torsion subgroup. The corresponding

formal group is given by .BqS1/K .

Of these examples, the value of qD1 corresponds to the interesting spectrum †1CCP1,
to which the tools from Section 2 apply. In this other extreme case, TC†

1
CBdS1 has

1–dimensional K–homology, and hence Corollary 3.1.3 and Theorem 3.3.12 can again
be applied.17 In order to determine the Picard element given by Corollary 3.1.3, we
need a finer invariant than the mere detection property provided by Theorem 3.1.2. We
find what we seek in the K.n/–local version of Morava E–homology:

Definition 3.3.2 ([24, Definition 8.3] and [39, Theorem 12]) The continuous Morava
E–homology or �–local Morava E–homology functor is defined by

E_� .X / WD ��L�.E� ^X /:

It is valued in topologized modules over E�� equipped with a continuous coaction
of E_

�
E� . Equivalently, it can be taken to have values in sheaves on the Lubin–Tate

stack for � . As with the noncontinuous version, we will abbreviate E_
�

to E_ when
the fixed formal group � need not be emphasized.

Remark 3.3.3 [24, Proposition 8.4(e–f)] The notation E_
�

stems from the following
result: if E�

�
.X / is pro-free and even-concentrated, then

E_� .X /D .E
�
�.X //

_

is its continuous linear dual. It follows that the acyclics for E_
�

–homology agree
with the acyclics for K� –homology [24, Proposition 2.5], completing the collection
mentioned in Section 2.3. The main point is that there is a Bockstein spectral sequence
taking K� –homology as input and converging to E_

�
–homology. If the K� –homology

is even-concentrated, this spectral sequence collapses and the E_
�

–homology is pro-free
on any basis lifting a basis of the K� –homology.18

17It is interesting to revisit the ideas of Section 2.5 in the context of this example: Bq�1S1 is the un-
stable based loopspace of BqS1, which has very complicated K –homology, but S�†1

C
BqS1 S recovers

a “delooping” of BqS1 in the �–local category with simple K –homology. One might also compare this
situation with that of BU.n/ , where the K –homology of S�†1

C
BU.n/ S agrees with K�U.n/ .

18This explains the notation: for favorable X , E_
�
.X / is the continuous linear dual of E�

�
.X / .
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Theorem 3.3.4 [21, Proposition 7.5] There is a factorization

SPECTRA� MODULESE��;Aut.�/ MODULESK��

Pic.SPECTRA�/ LINESE��;Aut.�/ LINESK��

E_
�

K�

E_
�

K�

=m

Both squares are pullback squares: a �–local spectrum is invertible if and only if its
continuous E–homology is a line, which is true if and only if its K–homology is a
line. Additionally, for p� d the map labeled E_

�
in the lower left is an injection on

objects.19

We are moved by this theorem to understand the Morava E–homology of Eilenberg–
Mac Lane spaces, together with the Aut� action. By Theorem 3.3.1 K�B

qS1Œpj � is
even-concentrated for any choice of q , and hence by Remark 3.3.3 E_BqS1Œpj � is
a pro-free module. We pursue the Hopf ring structure on these objects, in the hopes
that this can be used to extract the Aut� action. Taking a cue from the proof of
Remark 3.3.3, we begin by considering the short exact sequence of coefficients:

0!
M

t0;:::;td�1�0
tCDr

K�fŒp
t0 � � �u

td�1

d�1
�g !E�=m

rC1
!E�=m

r
! 0:

Because we know that E_BqS1Œpj � is a pro-free (and thus flat [24, Theorem A.9])
E�–module deforming the original K�B

qS1Œpj �, we tensor against E_BqS1Œpj � to
get a new short exact sequence appearing as the top row in Figure 4. We can also build
the free alternating Hopf ring .E_BS1Œpj �/^�, and tensoring the above short exact
sequence of coefficients with any graded piece of this ring gives the exact sequence
(which is not, a priori, left exact) on the bottom row of Figure 4. Finally, the cup
product map .BS1Œpj �/^q! BqS1Œpj � induces a map on homology

.E_BS1Œpj �/˝t
! .E_BS1Œpj �/^q ı

�!E_BqS1Œpj �:

Bifunctoriality of the tensor product induces the map between these rows by ı–product.

19Specifically: 2p� 2� d2 and p ¤ 2 .
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L
t0;:::;td�1�0

tCDr

.K�BS1Œpj �/^qfŒpt0 � � �u
td�1

d�1
�g

.E_BS1Œpj �/^q

˝E�

E�=m
rC1

.E_BS1Œpj �/^q

˝E�

E�=m
r

0

0
L

t0;:::;td�1�0
tCDr

.K�B
qS1Œpj �/fŒpt0 � � �u

td�1

d�1
�g

E_BqS1Œpj �
˝E�

E�=m
rC1

E_BqS1Œpj �
˝E�

E�=m
r

0

Figure 4: Diagram of short exact sequences in Theorem 3.3.5.

Theorem 3.3.5 (cf [20, Section 3.4]) There is an isomorphism of Hopf rings

1M
qD0

.E_BS1Œpj �/^q
Š

1M
qD0

E_BqS1Œpj �:

Proof We perform an induction on r . In the base case of r D 1, Theorem 3.3.1 gives
a chain of isomorphisms

.E_BS1Œpj �/^q
˝E� E�=m

1
D .K�BS1Œpj �/^q (Remark 3.3.3)

Š�!K�B
qS1Œpj � (Theorem 3.3.1)

DE_BqS1Œpj �=m1 (Remark 3.3.3):

This also tells us that the left-hand vertical map in Figure 4 is always an isomorphism. In
particular, this map is injective, as is the first nontrivial horizontal map on the second row,
so their composite is injective. It follows that the first horizontal map on the first rowM

t0;:::;td�1�0
tCDr

.K�BS1Œpj �/^q
fŒpt0 � � �u

td�1

d�1
�g ! .E_BS1Œpj �=mrC1/^q

is also injective, and thus that the top sequence is short exact.

Then, assume that ı–multiplication induces an isomorphism modulo mr for some
fixed r , ie that the right-hand vertical map in the above diagram is an isomorphism of
modules. As the left-hand and right-hand vertical maps are isomorphisms, the center
map must be as well. As t varies, the center maps additionally assemble into a map
of graded Hopf rings, and so furthermore induce an isomorphism of such. Induction
provides isomorphisms for all r , and the Milnor sequence finishes the argument:
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E_BqS1Œpj �D lim r

MODULESE�

.E_BqS1Œpj �/=mr

D lim r

MODULESE�

.E_BS1Œpj �=mr /^q

D .E_BS1Œpj �/^q:

Remark 3.3.6 Given this calculation of the Hopf algebra structure on E_BqS1Œpj �,
one might be led to wonder whether this translates into a presentation of .BqS1Œpj �/E
as the q th exterior power of the pj –torsion of z� . This turns out to be true, but making
sense of the statement is quite complicated: Buchstaber and Lazarev [8] and Goerss [14]
showed that Dieudonné theory admits a notion of exterior power, Hedayatzadeh [18; 17]
showed that alternating powers of 1–dimensional p–divisible groups can be constructed
intrinsically in special cases (and are compatible with the Dieudonné theory model),
and Hopkins and Lurie [20, Section 3.5] give another manual (but coordinate-free!)
construction relevant to the case at hand.

For the remainder of this section, we will need access to only two values of j :

Hq DL�†
1
CBdS1; TqDL�†

1
CBdS1Œp�:

We are now in a position to identify the Aut� –representation structure of the E�–line
E_TCHd , using the Aut� –equivariant map

E_T �d
1

ı
�!E_Td :

It will be helpful to have access to a presentation of the group Aut� , which arises
as the group of units of the algebra End� . Writing S for the Frobenius endomor-
phism of � , one can take the set f1;S; : : : ;Sd�1g as a W .k/–basis for End� ; see
[29, Theorem A2.2.17].

Lemma 3.3.7 Let ˇ1 2E_H1 be an element dual to a coordinate on z� . The algebro-
geometric cotangent space of .Hd /E is spanned by the dual to the element

ˇ� D S0ˇ1˝S1ˇ1˝ � � �˝Sd�1ˇ1 2E_H�d
1

pushed forward along the ı–product map.

Proof In K–theory, this is a rephrasing of Ravenel and Wilson [31, Theorems 5.7.(d)
and 9.2.(a)]. We then couple these to the lifting methods used elsewhere in this section
to conclude the same result for E–theory.
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Definition 3.3.8 Left multiplication gives a map

Aut�! GLW .k/.End�/

and postcomposing with the determinant map defines the determinant representation

Aut�! GLW .k/.End�/ det
�!W .k/�:

Theorem 3.3.9 (cf [41, Proposition 3.21]) Aut� acts on E_TCHd as the determi-
nant representation.

Proof The cup product map

E_T �d
1

ı
�!E_Td

is surjective and respects the action of Aut� , as it is induced by a map of spaces. There
is a Künneth formula

E_T �d
1 Š .E_T1/

˝d ;

and the stabilizer group intertwines with Künneth maps

E_A˝E� E_B
�
�!E_.A�B/ as g ��.a˝ b/D �..g � a/˝ .g � b//:

In turn, an element g 2 Aut� acts on ˇ� by the formula

g � .ıˇ�/D ı.g �ˇ�/D ı.g � .S
0ˇ1˝ � � �˝Sd�1ˇ1//

D ı.g � .S0
˝ � � �˝Sd�1/ˇ1/

D ı.det g.S0
˝ � � �˝Sd�1/ˇ1/

D .det g/.ıˇ�/:

Corollary 3.3.10 For p� d , TCHd models the determinantal sphere Sdet .

Proof Couple the above with the last part of Theorem 3.3.4.

Remark 3.3.11 Sdet is a familiar sight for chromatic homotopy theorists. Its first
appearance was in work of Hopkins and Gross on describing the �–local homotopy
type of the Brown–Comenetz dualizing spectrum [19, Theorem 6]. It has subsequently
played a prominent role in the study of chromatic homotopy theory at the height 2.
For instance, taking � to be a formal group of height 2, it has been shown to span the
rest of the torsion-free part of the �–local Picard group [5, Theorem 8.1]. It also has
been used to study duality phenomena relating to topological modular forms; see for
example work of Behrens [4, Proposition 2.4.1] and of Stojanoska [35, Corollary 13.3].

Still assuming p� d , Theorem 3.3.4 allows us to determine the �–local homotopy
type of C n

n as well. We begin with a general result:

Geometry & Topology, Volume 24 (2020)



30 Eric Peterson

Theorem 3.3.12 For C a coalgebraic formal curve spectrum and p� d , there is a
�–local equivalence C n

n ' .T
�
� C /^n .

Proof We take as inspiration the sequence of maps of k –modules

hxi

hx2i
˝k

hxn�1i

hxni
!
hxi

hx2i
˝kŒŒx��

hxn�1i

hxni

!
hxi˝kŒŒx�� hx

n�1i

hx2i˝kŒŒx�� hx
n�1iC hxi˝kŒŒx�� hx

ni
D
hxni

hxnC1i
:

The coalgebraic spectral analogue of the left-most map is the natural truncation

C 1
1 �C C n�1

n�1 D Tot�.C 1
1 IC IC

n�1
n�1 /! Tot0�.C 1

1 IC IC
n�1
n�1 /D C 1

1 ^C n�1
n�1 :

The sum in the denominator complicates the other map, which can no longer be an
isomorphism:

C n
n D fiber.C1n ! C1nC1/D fiber.C11 �C C1n�1! C11 �C C1n /

D C11 �C C n�1
n�1  C 1

1 �C C n�1
n�1 :

Nonetheless, upon applying continuous E–homology the zigzag

E_C n
n  E_.C 1

1 �C C n�1
n�1 /!E_.C 1

1 ^C n�1
n�1 /

determines the Aut� –representation structure of E_C n
n to be that of

E_C 1
1 ˝E� E_C n�1

n�1 :

Corollary 3.3.13 For C DHd and p� d , there is an equivalence C n
n ' .S

det/^n.

Remark 3.3.14 It follows from Theorems 3.3.9 and 3.3.12 that there is no global
finite complex with a map to BdS1 which in E–cohomology projects to precisely the
1–jets. Namely, .E�/�BdS1 admits a filtration whose associated-graded is a product
of powers of the determinant representation, and any nontrivial map in from a power
of the standard representation is obstructed by Schur’s lemma.

The reader should compare with the situation with CP1 and ordinary homology, where
CP1 ' S2 performs this selection of the 1–jets, but selecting the second annulus is
obstructed by � 2 �1S , available only after coning off CP1 or localizing away from 2.
By localizing at �, we have enlarged the variety of spheres available and thus given
ourselves more tools by which we can carefully select certain individual homology
classes in �–local spectra.
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The rest of the jet-space decomposition gives a remarkable filtration of the �–local
homotopy type of BdS1, as though it were a cell complex built out of Picard-graded
cells with a simple inductive structure. The global homotopy type BdS1 of course
also comes with a cellular decomposition by global cells — after all, it is presented
simplicially by an iterated bar construction — but this information is dramatically more
complex. Morally, passing to the �–local category has simultaneously enlarged our
notion of “cell” and simplified the homotopy type of a complicated space, at once
resulting in a simple pattern not globally visible.

3.4 Comparison of K det with Westerland’s Rd

Prompted by the entirety of Section 3.3, we are moved to consider the following:

Meta-question Given a spectrum X with a relationship to CP1C DWH1 , a determi-
nantal analogue of X is a �–local spectrum with an analogous relationship to

XP1C WDHd WDL�†
1
CBdS1:

Which classically interesting spectra appearing in chromatic homotopy theory have
determinantal analogues? What are they good for?

So far, we have found the following determinantal analogues:

� The subspectra CPn
C �CP1C have analogues XPn

C �XP1C .

� The strata CPn
C=CPn�1

C ' S2n have analogues XPn
C=XPn�1

C ' .Sdet/^n .

� The A1 ring S1
C has an analogue .†�1Sdet/C .

Finding determinantal analogues is no easy feat, and so for this section we limit
ourselves to searching for direct consequences of those above. In the classical case, the
indicated composite

S0 CP1
C CP2

C � � � CP1C

S0 S2 S4 � � �

ˇ

is known as the Bott class, and a theorem of Snaith ties this class to complex K–theory:

Theorem 3.4.1 [34] There is an equivalence

†1CCP1Œˇ�1� '�!KU:
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Using the determinantal analogue of the cellular decomposition as in

S0 XP1
C XP2

C � � � XP1C

S0 Sdet .Sdet/^2 � � �

ˇdet

we can construct a determinantal analogue of complex K–theory by taking Snaith’s
theorem as a definition.

Definition 3.4.2 We set determinantal K–theory to be

Kdet
WDXP1C Œ.ˇ

det/�1�:

Remark 3.4.3 When d D 1, the spectra Hd and H1 agree, as do the homotopy
classes ˇdet and ˇ , hence Kdet agrees with p–adic K–theory KU^p .

We’re left with the harder part of the meta-question: what use is Kdet ? Toward this
end, Craig Westerland has recently considered a closely related spectrum:

Definition 3.4.4 [41, Definition 3.11] Consider the action of Z=p� on Td by field
multiplication. Averaging this action gives rise to an idempotent in K–homology which
splits the suspension spectrum as

Td '
Wp�1

kD0
Z^k ;

where Z is a (nonuniquely specified) spectrum with the property Z^p ' Z . The
spectrum Rd is defined by inverting the element of Picard-graded homotopy determined
by the composite

˛W Z!
Wp�1

kD0
Z˝k

' Td !Hd

Bockstein
�����!L�†

1
CBdC1Zp:

Upon picking a coordinate on CP1
K

and applying K–homology to this composite, one
sees that it selects the dual of an induced coordinate on .BdC1Zp/K .

Theorem 3.4.5 There is an equivalence Kdet 'Rd .

Proof We mimic the style of one of Westerland’s proofs [41, Corollary 3.18], where
he shows that inverting the class ˛ above is equivalent to inverting another class � ,
which participates in a �–local diagram

†1CBdC1Zp †1CBdC1Zp

Sdet †1CBdC1Zp Œ˛
�1� †1CBdC1Zp Œ˛

�1�

 g�g

�

ı  g�g
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Here g is a generator of Z�p m  g encodes the natural action of Z�p on L�†
1
CBdC1Zp

(via the multiplicative action of Z�p on Zp ), and ı is defined as the indicated push-
forward. He constructs isomorphisms [41, Propositions 3.10 and 3.12]

K�B
dC1Zp C.Zp;K�/

K�.†
1
CBdC1Zp Œ˛

�1�/ C.Z�p ;K�/

'

restrict

'

which he uses to calculate that the two maps

†1CBdC1Zp Œ˛
�1� '�!†1CBdC1Zp Œ˛

�1�Œı�1� ' �†1CBdC1Zp Œ�
�1�

are both equivalences, essentially by calculating the images of ı and � in the ring
C.Z�p ;K�/.

Similarly, we will investigate the two maps

†1CBdC1Zp Œ.ˇ
det/�1�!†1CBdC1Zp Œ�

�1; .ˇdet/�1� †1CBdC1Zp Œ�
�1�:

Using the identification above of K�B
dC1Zp as a ring of functions, ˇdet has been

handcrafted so that a generator of K�Sdet is sent by ˇdet according to

K�B
dC1Zp

'
�! C.Zp;K�/; K�ˇ

det
7! .w 7! w .mod p//:

Westerland denotes this element of C.Zp;K�/ as f0 , and he shows that inverting either
of ˛ or � has the effect of inverting exactly this element [41, proof of Proposition 3.17].
It follows that both of our two maps are equivalences.

Remark 3.4.6 [41, Section 3.9] Westerland exposes a variety of remarkable features
of Kdet, the grandest of which is the E1–equivalence

Kdet
'E

hSG˙
�

�
:

Here � is specifically taken over k D Fpd , the group G� is the extension of Aut�
by Gal.Fpd =Fp/, and SG˙

�
is the subgroup of “special” elements [41, Section 2.2] —

ie it lies in the fiber sequence

1! SG˙� !G�
det˙
��! Z�p ! 1;

where det˙ acts by the determinant on Aut� and by Frob 7! .�1/d�1 on the Galois
component. It follows that there is a short resolution

L�S!Kdet  �1
��!Kdet;
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where  is a certain Adams-type operation inherited from the action of Z�p on
BdC1Zp (or, equivalently, the lingering action of Z�p on the fixed point spectrum); see
[41, Proposition 3.14] and [12, Theorem 2]. This spectrum has been investigated before,
under the names “Iwasawa extension of the K.d/–local sphere” and “Mahowald’s
half-sphere”.

Remark 3.4.7 [41, Corollary 4.21] Westerland also describes a cellular filtration of
†1CBdC1Zp which bears resemblance to the jet-space decomposition described here,
but which is accessed by wholly different means. He constructs an analogue for Kdet of
the classical complex J –homomorphism, and he then checks that the Thom spectrum
of the canonical bundle on BdC1Zp has the homotopy type of .Sdet/�1^†1BdC1Zp .
This mirrors the following classical fact about projective spaces [1, Proposition 4.3]:

Thom.L� 1 #CP1/'†�2†1CP1;

and more generally

Thom.m.L� 1/ #CPn�m/' .CP1/^.�m/
^CPn

m:

It would be interesting to know if these filtrations coincide.

4 Some open questions

Before closing, we record some research avenues left open by the present work.

4.1 Gross–Hopkins dualizing object

As remarked on in the introduction, the determinantal sphere has previously arisen in
connection with the Gross–Hopkins dualizing object yIQ=Z in the �–local category.
Our identification of XP1 with yIQ=Z rests on working at a prime p satisfying p� d ,
so that we can avail ourselves of Theorem 3.3.4. At small primes, the picture is murkier:
we conjecture that XP1 disagrees with yIQ=Z , just as the Goerss–Henn–Mahowald–
Rezk SŒdet� does, but we do not have a proof that this is so — and we furthermore have
neither a proof that XP1 agrees with SŒdet� in the small prime regime nor one that it
disagrees.20 Understanding the relationship between these spectra has the opportunity
either to shed light on Gross–Hopkins duality or to shed light on exotic Picard groups
at greater heights, both of which are interesting prospects.

20The reader may also find the recent paper of Barthel, Beaudry, Goerss, and Stojanoska [2] of interest,
where they give yet another construction of an object they call Shdeti .
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4.2 Chromatic splitting

The chromatic splitting conjecture describes the homotopy groups of such objects as
Q˝LK.d/S , and the Gross–Hopkins dualizing object induces a kind of Poincaré
duality among these groups. Westerland has noticed that there is a factorization �0 of
the fundamental class as in

SdC1 LK.d/†
1
CBdC1Zp

XP1

�dC1

�0
ˇdet

which at large primes can be interpreted as follows:

�0 2 ŒSdC1;XP1�D ŒSdC1; †d�d2bIQ=Z�D ŒS
1Cd2

; yIQ=Z�

D Hom.��1�d2MdS0;Qp=Zp/:

Conjecture 4.2.1 The class �0 is nonzero. It is dual to the top-dimensional class (ie the
Poincaré dualizing class) predicted by the rational chromatic splitting conjecture.

A positive resolution of this conjecture could give a foothold on a topological explanation
for the chromatic splitting conjecture.

The reader should beware that the validity of this line of questioning is quite shaky
at small primes. It is directly affected by the preceding question: it is unclear how
to account for the possibility that Sdet ^yI�1

Q=Z is a nontrivial exotic Picard element.
Furthermore, Beaudry has shown the splitting conjecture to be false at a small prime
(viz d D 2 and p D 2), and an adjusted version has not yet been set out.

4.3 Validity at small primes

Several of the utility theorems in this paper required the large prime assumption in the
proofs presented here, but it is not clear that this assumption is necessary. In particular,
it would be extremely desirable — and not just for the purposes of this paper! — to
have a version of Theorem 2.3.2 (cf Theorem A.0.1) that does not distinguish between
the large and small prime cases.

4.4 Analogues of BU.n/

The construction of XP1 and XP1 given here, as well as Westerland’s construction
of determinantal analogues of LK.1/BU , of LK.1/M U , and of a kind of “J –map”,
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may well be a premonition of a much more extensive story of “determinantal homotopy
theory”. The most enticing and impactful facet of this would be to find determinantal
analogues of the intermediate spaces BU.n/, to understand these as classifying some
manner of geometric object, and to be able to interpret them as spaces in some kind of
unstable determinantal context. Several more questions along these lines can be found
at the end of Westerland’s work [41, Sections 5.2 and 7].

Appendix The homology of inverse limits of local spectra

In this section we describe a result, attributed to Hal Sadofsky and expressed in a talk
by Mike Hopkins [27, Section 14], concerning the homology of inverse limits of certain
local systems.21 None of the material in this section is original; all of it was known
to (at least) Hal Sadofsky and Mike Hopkins, and is of “folk lore” status among the
experts who might be interested. Sadofsky’s theorem is stated as follows:

Theorem A.0.1 [32; 33] Let k be a field spectrum, ie let k be a ring spectrum
with k� a graded field. .In the case that k is a Morava K–theory for �, we require
p� ht� ./ Furthermore let X˛ be a pro-system of k –local spectra such that k�X˛
is a Mittag-Leffler system of k�–modules. There is then a conditionally convergent
spectral sequence of signature

R� lim ˛

COMODk�k

k�X˛) k� lim ˛

SPECTRA
X˛;

where the derived inverse limit on the left is taken in an appropriate category of
comodules.

Remarks A.0.2 (1) There is room for improvement in this result: the author sees
no reason to require p� d except for his own ineptness. It is quite likely that it holds
without this assumption, and a proof of this would strengthen many of the results in
this paper.

(2) Locality is the essential assumption. For instance, set k DHQ and consider the
system fS0=pj gj , with maps the natural projections. The constituent spaces in this
system are all rationally acyclic, but the inverse limit is given by the p–adic sphere
.S0/^p . Its rational homology is HQ�.S0/^p Š Qp , and hence no such convergent
spectral sequence can exist. On the other hand, first rationalizing this system produces
the trivial system of zero spectra, and thus the rational homology of the system (which
is empty) compares well to the rational homology of the inverse limit (which is also

21The interested reader can also find related results in a paper of Hovey [23].
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empty). Noting that S0=pj is also known as the Moore spectrum M0.p
j /, similar

systems can also be constructed for any Morava K–theory by employing the generalized
Moore spectra of Hopkins and Smith [22, Proposition 5.14].

(3) In the case k DHQ, the algebra of cooperations is trivial, ie HQ�HQŠQ. It
follows that the categories of Q–modules and .HQ�HQ/–comodules are equivalent,
and so Sadofsky’s spectral sequence becomes

R� lim ˛

MODULESQ

HQ�X˛) k� lim ˛

SPECTRA
X˛:

Because of the Mittag-Leffler condition the higher derived inverse limits vanish, and
hence we have the isomorphism

lim ˛

MODULESQ

HQ�X˛ Š k� lim ˛

SPECTRA
X˛

familiar from the Milnor sequence. In general, we will work to control the first step in
this argument (ie the derived inverse limits of comodules), while retaining hypotheses so
that the second step in the argument (ie the derived inverse limits of modules) remains
trivial.

(4) For any sequence of spectra .X˛/, the inverse system fY˛ WD
Q
ˇ�˛ Xˇg with

maps given by projections is Mittag-Leffler. Then, using the fiber sequence

lim ˛

SPECTRA
X˛!

Y
˛

X˛!
Y
˛

X˛;

applying k –homology gives

� � � ! k� lim ˛

SPECTRA
X˛! k�

�Y
˛

X˛

�
! k�

�Y
˛

X˛

�
! � � � :

The middle and right-hand terms of this sequence are calculable by Sadofsky’s theorem,
even if the inverse system fX˛g is itself not Mittag-Leffler, giving some foothold on
that case as well.

(5) We remark yet again that computations in the E2 –page of this spectral sequence
are exceedingly complex and promise to shed light on some of the most longstanding
conjectures in chromatic homotopy theory. Our purposes, however, only concern the
behavior of this spectral sequence in a maximally degenerate case.

A.1 Homological algebra for inverse systems of comodules

Before engaging in any algebraic topology, we will first make sense of the homological
algebra necessary to study derived inverse limits of pro-systems of comodules. The
homological algebra of comodules is well documented elsewhere [29, Appendix 1],
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but the homological algebra of diagrams of comodules is more scarce. Though we are
ultimately interested in the case of a Hopf algebroid .E�;E�E/, in this section we
will refer to this pair opaquely as .A; �/ with � flat over A. To begin, we recall some
classical results.

Lemma A.1.1 [29, Lemma A1.2.1–2] A comodule Y of the form Y D �˝A Y 0 for
an A–module Y 0 is said to be an extended comodule. Such comodules participate in
an adjunction22

MODULESA.M;Y 0/Š COMOD.A;�/.M;Y /:

Furthermore, if I is an injective A–module, then �˝A I is an injective �–comodule,
and hence COMOD.A;�/ has enough injectives.

Corollary A.1.2 If fM˛g˛ is a pro-system of A–modules and f� ˝A M˛g˛ is the
induced pro-system of extended �–comodules, then there is an isomorphism

�˝A lim ˛

MODULESA

M˛ Š lim ˛

COMOD�
.�˝A M˛/:

Now consider the category PROCOMOD.A;�/ of pro-systems of comodules.

Lemma A.1.3 (Sadofsky) The category PROCOMOD� has enough injectives. That
is, for X a pro-system of .A; �/–comodules, there is a levelwise injection to an
injective system J (which can additionally be taken to be Mittag-Leffler).

Proof First choose, for each ˛ in the indexing category, an injection j 0˛W X˛! J 0˛
with J 0˛ an injective comodule. We form a diagram J equipped with a levelwise
injection j W X ! J by setting J˛ D

Qn
ˇ�˛ J 0

ˇ
, with the structure map J˛

ˇ
W J˛! Jˇ

given by projection, and with j defined by

j˛W X˛

Q
ˇ�˛ j 0

ˇ
ıX ˛
ˇ

���������!

Y
ˇ�˛

J 0ˇ D J˛:

We now check that this diagram has the relevant lifting property

X J

Y

j

9k

22This adjunction should be thought of as geometrically analogous to the adjunction

SETS.X;Y /Š G–SETS.G �X;Y /:
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whenever the vertical arrow is a levelwise injection. We argue inductively: for an
index ˛ without predecessors, the diagram reduces to

X˛ J˛

Y˛

j 0˛

9k0˛

which is precisely the diagram describing the classical injectivity condition. Because
J˛ was selected to be an injective comodule under X˛ , such an extension exists. In
the case of a general index ˛ , we have the diagram

Q
ˇ<˛ Xˇ

Q
ˇ<˛ J 0

ˇ

X˛
Q
ˇ�˛ J 0

ˇ

Y˛

Q
ˇ<˛ Yˇ

Q
ˇ0�ˇ<˛ j 0

ˇ0
ıX

ˇ

ˇ0

Q
ˇ�˛ j 0

ˇ
ıX ˛
ˇ

Q
ˇ<˛ X ˛

ˇ
0˛�

Q
ˇ<˛ 1ˇ

Q
ˇ<˛ kˇ

The outer triangle exists and commutes by inductive assumption, and the connecting
arrows are part of the data of the pro-systems. The dashed map is specified by a pair of
morphisms Y˛!

Q
ˇ<˛ J 0

ˇ
and Y˛! J 0˛ . The former arrow is specified by restriction

to the outer triangle. For the latter arrow, we use the injectivity of J 0˛ to select an arrow

X˛ J 0˛

Y˛

j 0˛

9

Remark A.1.4 It is not true that a diagram whose objects consist of levelwise injec-
tive comodules is always an injective object in inverse systems of comodules. The
construction above is designed to skirt past questions of compatibility of levelwise lifts.

Because we have enough injectives, the general machinery of homological algebra
applies to produce right-derived functors of the left-exact inverse limit functor

lim
COMOD�

W PROCOMOD� ! COMOD� :
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Moreover, there is a cobar complex which performs this computation. To see this, we
first remark on a consequence of the adjunction of Lemma A.1.1.

Lemma A.1.5 (Sadofsky) If M˛ is a Mittag-Leffler pro-system of A–modules, then
the induced system M˛˝A � of extended �–comodules is flasque.

Proof We continue to analyze the adjunction of Lemma A.1.1, where it will now be
convenient to give these functors names:

U W COMOD��MODULESA WC:

Because U is exact, there exists a Grothendieck spectral sequence

E
s;t
2
Š
�
Rs lim ˛

COMOD�

�
.RtC /M˛)RsCt

�
C ı lim ˛

MODULESA

�
M˛:

Additionally, because we have assumed � to be flat as an A–module, C is furthermore
exact, ie R>0C D 0. The spectral sequence then specializes to an isomorphism�

Rs lim ˛

COMOD�

�
.M˛˝A �/ŠRs

�
C ı lim ˛

MODULESA

�
M˛:

By restricting attention to Mittag-Leffler pro-systems we have ensured that lim˛MODULESA

is exact, so that C ı lim˛MODULESA
is the composition of two exact functors and hence

has no higher derived functors. Using the isomorphism, we conclude that the higher
derived functors of lim˛COMOD�

also vanish on this system, ie the system is flasque.

Corollary A.1.6 (Sadofsky) Write �.�I x�I �/ for the normalized one-sided cobar
cochain complex

�.�I x�I �/Œn�D �˝A
x�˝An

˝A�:

If X˛ is a Mittag-Leffler pro-system of comodules, then

Rs lim ˛

COMOD�
X˛ DH s lim ˛

COMOD�
�.�I x�IX˛/:

Proof The cobar complex gives a functorial source of relative injective resolutions of
the terms in the pro-system, hence gives a resolution of the pro-system itself. For a
fixed index n, the pro-system �.�I x�IM˛/Œn� is Mittag-Leffler, hence we may apply
Lemma A.1.5 and the theory of flasque resolutions to conclude the indicated formula.

A.2 Sadofsky’s theorem for finite height Morava K –theories

Now we will discuss a similar theorem communicated to the author by Mike Hopkins
[27, Section 14] as a stepping stone toward Sadofsky’s theorem for Morava K–theories.
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Theorem A.2.1 (Hopkins) Let E.d/ be a Johnson–Wilson spectrum and fX˛g˛ be
a system of E.d/–local spectra such that fE.d/�X˛g˛ is Mittag-Leffler. There is then
a convergent spectral sequence of signature

R� lim ˛

COMODE.d/�E.d/

E.d/�X˛)E.d/� lim ˛

SPECTRA
X˛:

The proof of this theorem relies on some shorter results, useful in their own right.
Our first subgoal is to show that the E.d/–homology of E.d/–modules results in an
extended comodule, which gives us access to the limit trick in Corollary A.1.2.

Lemma A.2.2 For M an E.d/–module spectrum, there is a natural isomorphism

E.d/�M ŠE.d/�E.d/˝E.d/� ��M:

Proof Since E.d/ is an A1–ring spectrum, there is a strongly convergent spectral
sequence describing the tensor of a right E.d/–module spectrum N and left E.d/–
module spectrum M :

TorE.d/�
�;� .N;M /) ��.N ^E.d/M /:

Taking N DE.d/^E.d/ and noting that ��N DE.d/�E.d/ is a flat right E.d/�–
module, the spectral sequence

TorE.d/�
�;� .E.d/�E.d/;E.d/�M /) ��..E.d/^E.d//^E.d/M /

is concentrated on the 0–line. Using the freeness of N , this collapse gives

E.d/�E.d/˝E.d/� ��M Š ��.E.d/^E.d/^E.d/M /

Š ��.E.d/^M /DE.d/�M:

Corollary A.2.3 If fM˛g˛ is a system of E.d/–module spectra which is Mittag-
Leffler on homotopy, then there is an isomorphism

E.d/� lim ˛

MODULESE.d/

M˛ Š lim ˛

COMODE.d/�E.d/

fE.d/�M˛g:

Proof We combine the preceding results in the following sequence:

E.d/� lim ˛

MODULESE.d/

M˛

ŠE.d/�E.d/˝E.d/� �� lim ˛

MODULESE.d/

M˛ (Lemma A.2.2)

ŠE.d/�E.d/˝E.d/� lim ˛

MODULESE.d/�

f��M˛g˛ (Mittag-Leffler)
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Š lim ˛

COMODE.d/�E.d/

.E.d/�E.d/˝E.d/� ��M˛/ (Corollary A.1.2)

Š lim ˛

COMODE.d/�E.d/

E.d/�M˛ (Lemma A.2.2).

Our next goal is to find a topological object to which we can apply Corollary A.1.6.
This will be a certain Adams-type spectral sequence, and because we have not really
used that tool in this paper, we quickly remind the reader of its construction.

Definition A.2.4 For a ring spectrum E and spectrum X , the following diagram
defines an E–Adams tower for X :

X xE ^X xE^2 ^X xE^3 ^X � � �

E ^X E ^ xE ^X E ^ xE^2 ^X E ^ xE^3 ^X � � �

where xE participates in the fiber sequence

xE! S
�E
�!E:

In good cases, this spectral sequence converges conditionally to homotopy of the E–
nilpotent completion of X [7, Proposition 6.3]. In the case of a smashing localization,
the homotopy of the E–nilpotent completion of X agrees with that of the Bousfield
E–localization of X [7, Corollary 6.13]. In better cases still, the E2 –page of the
spectral sequence can be identified [29, Theorem 2.2.11] as

E2
�;� Š CotorE�E

�;� .E�;E�X /:

We are now in a position to construct the spectral sequence in Hopkins’ inverse limit
theorem.

Definition A.2.5 Given an pro-system of spectra X˛ , we may construct a family of
interlocking fiber sequences

lim ˛

SPECTRA
X˛ lim ˛

SPECTRA
E.d/^X˛ lim ˛

SPECTRA
E.d/^2^X˛ � � �

lim ˛

SPECTRA
E.d/^X˛ lim ˛

SPECTRA
E.d/^E.d/^X˛ lim ˛

SPECTRA
E.d/^E.d/^2^X˛ � � �

which upon applying E.d/–homology gives a spectral sequence with E1 –page

E1
�;t DE.d/� lim ˛

SPECTRA
.E.d/^E.d/^t

^X˛/
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and with target E.d/� lim˛SPECTRA X˛ . If we additionally assume that the pro-system
consists of E.d/–local spectra such that the induced system fE.d/�X˛g˛ is Mittag-
Leffler, we may combine the preceding corollaries to compute

E.d/� lim ˛

SPECTRA
.E.d/^E.d/^t

^X˛/

ŠE.d/�E.d/˝E.d/� .E.d/�E.d//
˝E.d/� t

˝E.d/� lim ˛

MODULESE.d/�

E.d/�X˛

and hence, by Corollary A.1.6,

E2
�;� ŠR� lim ˛

COMODE.d/�E.d/

E.d/�X˛:

Lemma A.2.6 The E.d/–Adams resolution for the E.d/–local sphere LE.d/S
0 is

equivalent to a finite-dimensional cosimplicial resolution by E.d/–module spectra. (In
particular , the E.d/–Adams spectral sequence has a horizontal vanishing line.)

Proof We recall the following terminology: a spectrum is E–nilpotent if it belongs to
the thick ˝–ideal generated by E , and E–prenilpotent if it is E–locally equivalent to
an E–nilpotent spectrum [30, Definition 7.1.6]. Work of Ravenel [30, Lemmas 8.3.7
and 8.3.1] gives an LE.d/BP –prenilpotent finite spectrum F whose ordinary homology
is torsion-free. Since finite prenilpotent spectra form a thick subcategory, it follows
from their classification [22, Theorem 9] that S0 is LE.d/BP –prenilpotent. Since
LE.d/BP and E.d/ share a Bousfield class [30, Theorem 7.3.2b and Lemma 8.1.4],
it follows that LE.d/S

0 is thus E.d/–nilpotent and hence has a finite E.d/–Adams
resolution.

Corollary A.2.7 Every E.d/–local spectrum X has a functorial finite-dimensional
cosimplicial resolution by E.d/–module spectra. The length of the resolution is
independent of X and dependent only on the prime p and height d .

Proof Since LE.d/ is a smashing localization [30, Theorem 7.5.6], we can smash the
finite resolution for LE.d/S

0 guaranteed by Lemma A.2.6 with X .

Proof of Theorem A.2.1 Having constructed in Definition A.2.5 the relevant spec-
tral sequence, we need only address convergence. Corollary A.2.7 shows that the
homotopy inverse system in Definition A.2.5 is weakly equivalent to a finite inverse
system. It follows that, upon applying E.d/–homology, the resulting spectral se-
quence is concentrated in a finite horizontal band and hence is strongly convergent to
E.d/� lim˛SPECTRA X˛ .
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Lemma A.2.8 ([11, footnote 1]; cf [24, Proposition 6.5] and [21, Proposition 7.5])
For p� d , there exists an E.d/–local Smith–Toda complex V .d � 1/, which is a
finite complex with the property E.d/^V .d � 1/'K.d/.

Proof We actually demonstrate the existence of E.d/–local Smith–Toda complexes
V .j / for j < d , proceeding by induction from V .�1/D S . The homology groups
E.d/�V .j / are concentrated in degrees which are multiples of jv1j D 2.p�1/, and so
we may also take p > 2 and apply Ravenel’s sparseness result [29, Proposition 4.4.2]
to conclude that the E.d/–based Adams spectral sequence

E
s;t
2
D Exts;t

E.d/�E.d/
.E.d/�V .j /;E.d/�V .j //

is concentrated in degrees satisfying 2.p� 1/ j t , hence that the only nontrivial differ-
entials lie on page indices r satisfying 2.p� 1/ j r � 1. At the same time, the finite
resolution length stated qualitatively in Corollary A.2.7 can be shown quantitatively to
be d2 [29, Theorem 6.2.10(b)], so that if 2.p� 1/ > d2 there are then no r satisfying
2.p�1/ j r�1 with both the source and target of dr lying within the t –band 0� t �d2 .
It follows that the E.d/–based Adams spectral sequence collapses, hence that the
element

vjC1 2 ExtjvjC1j;0

E.d/�E.d/
.E.d/�V .j /;E.d/�V .j //

survives, and hence that the complex V .j C 1/D V .j /=vjC1 exists.

From here, we can conclude Sadofsky’s theorem for K.d/.

Proof of Sadofsky’s theorem for k D K.d/ Use Lemma A.2.8 to extract an E.d/–
local Smith–Toda complex V .d�1/. Replace the system fX˛g˛ by fX˛ ^V .d � 1/g˛
and apply Sadofsky’s result for E.d/–homology to yield the desired spectral se-
quence.23

Remark A.2.9 An odd wrinkle of this construction is that the inverse limit of the
system fK.d/�X˛g˛ is still taken in the category of E.d/�E.d/–comodules, not of
K.d/�K.d/–comodules. However, the E.d/�E.d/–comodule structure of K.d/�X˛
factors through the Hopf algebroid .K.d/�; � 0/, where � 0 is given by

� 0 DK.d/�˝BP�BP�BP˝BP�K.d/� DK.d/�Œt1; t2; : : :�=.vd t
pd

j �v
pj

d
tj j j > 0/

¨K.d/�K.d/D �
0
˝ƒŒ�1; : : : ; �d�1�:

The reader should compare these stray �� cooperations with the Bockstein operations
appearing in the proof of [24, Proposition 8.4(e–f)].

23For a while, the author thought that because K.d/ admits a finite resolution in E.d/–module
spectra, this proof would go through at all primes, but it seems to be a dead end.
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A.3 Sadofsky’s theorem for ordinary homology with field coefficients

In the case kDHK for a field K of positive characteristic, all of the above constructions
can be redone to produce a derived inverse limit spectral sequence for HK–homology.
However, our convergence argument fails badly, as the p–complete sphere is no
longer finitely resolvable by HK–module spectra — after all, the HK–Adams spectral
sequence has both an infinite tower and a vanishing line of slope 1, rather than the
horizontal vanishing line present in the E.d/–Adams spectral sequence. It follows
that the resulting spectral sequence is merely conditionally convergent, and additional
hypotheses on the system fX˛g˛ are required to do any better. In spite of the lack of
topological finiteness, Sadofsky has proven the following theorem whose proof we will
not recount:

Theorem A.3.1 [32] The HK–based inverse limit spectral sequence converges
strongly in the case that Rs lim˛MODULESA�

H�.X˛/D 0 for s� 0.
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