
Geometric Particle-in-Cell Simulations of the
Vlasov–Maxwell System in Curvilinear Coordinates∗

Benedikt Perse1,2, Katharina Kormann1,2, and Eric Sonnendrücker1,2
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Abstract

Numerical schemes that preserve the structure of the kinetic equations can provide
stable simulation results over a long time. An electromagnetic particle-in-cell solver
for the Vlasov–Maxwell equations that preserves at the discrete level the non canon-
ical Hamiltonian structure of the Vlasov–Maxwell equations has been presented in
[Kraus et al. 2017]. While the original formulation has been obtained for Cartesian
coordinates, we extend the formulation to curvilinear coordinates in this paper. For
the discretisation in time, we discuss several (semi) implicit methods either based
on a Hamiltonian splitting or a discrete gradient method combined with an anti-
symmetric splitting of the Poisson matrix and discuss their conservation properties
and computational efficiency.

1 Introduction

Particle-in-cell (PIC) simulations of the Vlasov–Maxwell system are an important tool
to understand the evolution of a plasma in its self-consistent field. Structure-preserving
PIC discretisations of the Vlasov–Maxwell system have been an active area of research
in recent years (see the review [29] and references therein). The conservation proper-
ties of the Vlasov–Maxwell system can be related to the symmetry in its variational or
Hamiltonian structure. Squire, Qin & Tang [32] have derived a fully discrete geometric
PIC method for the Vlasov–Maxwell system based on a discrete action principle applied
to Low’s Lagrangian [25]. Based on this work, a systematic framework, called the geo-
metric electromagnetic particle-in-cell method (GEMPIC), has been presented by Kraus,
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grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of
the European Commission. B. P. has also been supported by Deutsche Forschungsgemeinschaft (DFG)
through the TUM International Graduate School of Science and Engineering (IGSSE).
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Kormann, Morrison & Sonnendrücker [22], where the fields are discretised based on finite
element exterior calculus [2] and the equations of motions are derived from a discretisation
of the Poisson bracket introduced by Morrison in [27] and corrected in [37, 26, 28]. A
similar formulation has been obtained simultaneously by He, Sun, Qin & Liu [18].

So far, the work on geometric methods for the Vlasov equation has been limited to Carte-
sian geometry. However, in magnetic fusion, the geometry of the problem is usually given
by a tokamak or stellerator device. This motivates the research reported in this paper
that aims at an extension of the GEMPIC framework to curvilinear coordinates.

A number of curvilinear PIC codes have been proposed in the literature. The first electro-
magnetic PIC code for non orthogonal grids was already presented by Eastwood, Arter,
Brealey & Hockney [13] in 1995 based on a finite element description of the fields and a
particle pusher in logical coordinates. This method is charge-conserving. Following up on
this work, Wang, Kondrashov, Liewer & Karmesin [34] presented a 3D3V electromagnetic
particle-in-cell code, called EMPIC, with a finite volume discretisation of Maxwell’s equa-
tions on a deformable grid. The particles are pushed with a hybrid pusher, i.e. the position
in configuration space is updated in logical coordinates while the velocity is updated in
physical coordinates. Fitchtl, Finn & Cartwright [14], on the other hand, proposed an
electrostatic PIC code in 2D2V with a particle pusher that uses again logical coordinates
for the whole phase-space. The field solver is based on finite differences and the model
preserves momentum. Delzanno et al. use a hybrid particle pusher in their electrostatic
curvilinear code CPIC [11]. Their field solver is based on finite differences and allows for
mesh refinement.

In a more recent work [8], Chacón & Chen proposed a curvilinear electromagnetic 2D3V
PIC code that conserves both charge and energy for the Vlasov–Darwin system. The
algorithm is fully implicit and based on finite differences for the fields and a hybrid
particle pusher. In order to speed up the non linear iterations, the authors propose a
fluid preconditioner of the system. Numerical experiments are shown for simulations on
a sinusoidally deformed mesh with periodic boundaries. The authors have extended their
work to perfect conductor boundary conditions in [9].

The outline of this paper is as follows: In the next section, we review the Vlasov–Maxwell
system and introduce our notation for the curvilinear coordinates. Section 3 introduces
the structure-preserving semi discretisation based on the transformation of the de Rham
complex from logical to physical coordinates. The structure of this semi discretisation
is analysed in Section 4. Various options for the discretisation of the time variable are
discussed in Section 5 and numerical experiments that confirm the good conservation
properties of our methods are shown in Section 6, followed by some concluding remarks
in Section 7.
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2 The Vlasov–Maxwell system and curvilinear coor-

dinates

The Vlasov equation in physical phase-space coordinates (x,v) for a species s with charge
qs and mass ms reads

∂fs(x,v, t)

∂t
+ v · ∇xfs(x,v, t) +

qs
ms

(E(x, t) + v ×B(x, t)) · ∇vfs(x,v, t) = 0, (2.1)

where E and B denote the electromagnetic fields, which are evolved according to Maxwell’s
equations. The system couples through the first two moments of the particle distribution
function fs, the charge and current density,

ρ(x, t) =
∑
s

qs

∫
fs(x,v, t) dv, J(x, t) =

∑
s

qs

∫
fs(x,v, t)v dv.

The equations of motion can be obtained by a bilinear, antisymmetric Poisson bracket
that satisfies Leibniz’ rule and the Jacobi identity and was introduced in [27] and corrected
in [37, 26, 28]. It is defined as

{F ,G}[fs,E,B] =
∑
s

∫ [
δF
δfs

,
δG
δfs

]
dxv

+
∑
s

qs
ms

∫
fs

(
∇v

δF
δfs
· δG
δE
−∇v

δG
δfs
· δF
δE

)
dxv

+
∑
s

qs
m2
s

∫
fsB ·

(
∇v

δF
δfs
×∇v

δG
δfs

)
dxv

+

∫ (
curl

δF
δE
· δG
δB
− curl

δG
δE
· δF
δB

)
dx,

where [f, g] = ∇xf · ∇vg −∇xg · ∇vf.
The time evolution of a functional F [fs,E,B] is given by

d

dt
F [fs,E,B] = {F ,H}, (2.2)

where the Hamiltonian H is given by the sum of the kinetic energy of the particles and
the electric and magnetic field energies,

H =
∑
s

ms

2

∫
|v|2fs(x,v) dx dv +

1

2

∫ (
|E(x)|2 + |B(x)|2

)
dx. (2.3)

2.1 Differential forms and the structure of Maxwell’s equations

Maxwell’s equations for the electric and magnetic field are given as

∂E(x, t)

∂t
= ∇x ×B(x, t)− J(x, t),

∂B(x, t)

∂t
= −∇x × E(x, t),

∇x · E(x, t) = ρ(x, t), ∇x ·B(x, t) = 0.
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The structure of Maxwell’s equations can be understood by interpreting the fields as
differential forms following [5, 4, 19, 35]. The spaces of electromagnetics form a de Rham
complex, which in terms of Sobolev spaces can be expressed as

H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)
grad curl div (2.4)

and is accompanied by the dual de Rham complex

L2?(Ω) H?(div,Ω) H?(curl,Ω) H1?(Ω)
grad curl div (2.5)

The notation ? is used to denote the dual of the corresponding spaces.
The complex must have the property that in each step the image of the operator is in the
kernel of the next operator. This complex property is satisfied, since curl grad Φ = 0 for
all Φ ∈ H1(Ω) and div curl A = 0 for all A ∈ H(curl,Ω).
In the interpretation of the field equations, there are two options: Either we choose
E ∈ H(curl,Ω) and B ∈ H(div,Ω) and then, interprete the two equations of the first
column, Ampère’s law and the electric Gauss law, in the weak sense, and the two equations
of the second column, Faraday’s law and the magnetic Gauss law, in the strong sense, or
vice versa. We use the first option and consider the following mixed form of Maxwell’s
equation:

∫
Ω

ϕ(x) · ∂E(x, t)

∂t
dx =

∫
Ω

∇x ×ϕ(x) ·B(x, t) dx− J?(ϕ)(t),

∂B(x, t)

∂t
= −∇x × E(x, t),

−
∫

Ω

∇xψ(x) · E(x, t) = ρ?(ψ)(t),

∇x ·B(x, t) = 0,

where J? ∈ H?(div,Ω) and ρ? ∈ L2?(Ω) are linear functionals. Note that we have assumed
that the boundary terms vanish.

2.2 Curvilinear coordinates

2.2.1 Notation

Let us first define the notation for the curvilinear coordinates before discussing how these
can be consistently combined with differential forms. We consider a bijective coordinate
transformation from the logical space [0, 1]3 to the physical space Ω. The transformation
map is denoted by

F : [0, 1]3 =: Ω̃→ Ω ⊂ R3, F (ξ) = x,

and ξ = (ξ1, ξ2, ξ3)> and x = (x1, x2, x3)> are the variables on the logical and physical
mesh, respectively. The matrix of the partial derivatives, the Jacobi matrix, and its
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determinant, the Jacobian, are defined as

(DF (ξ))ij =
∂Fi(ξ)

∂ξj
=
∂xi
∂ξj

, JF (ξ) = det(DF (ξ)).

We assume that the mapping is non singular, i.e. JF (ξ) 6= 0 for all ξ ∈ Ω̃, and therefore,
the Jacobi matrix is invertible.

Definition 2.1. The column vectors of the Jacobi matrix form the so-called covariant
basis of the tangent space

ti =
∂F (ξ)

∂ξi
=
∂x

∂ξi
, DF = (t1|t2|t3),

whereas the columns of the transposed inverse Jacobi matrix form the dual basis, which is
called the contravariant basis of the cotangent space,

DF (ξ)−> =: N(ξ) = (n1|n2|n3).

Definition 2.2. The coefficients of the metric Gm and its inverse are defined in the
following symmetric way:

Gm(ξ) = DF (ξ)>DF (ξ), G−1
m (ξ) = N(ξ)>N(ξ).

2.2.2 Transformation of differential forms

We introduce curvilinear coordinates to the differential forms and show how they are
transformed in a consistent way as can also be seen in [23].

Definition 2.3. For a scalar differential 0-form, g ∈ H1(Ω), we define g̃ ∈ H1(Ω̃) as

g̃(ξ) := g(F (ξ)) = g(x). (2.6)

Next, we consider the transformation of the other differential forms.

Proposition 2.4. 1. A vector function, E ∈ H(curl,Ω), corresponding to a differen-
tial 1-form, is transformed by the covariant Piola transform

E(x) = N(ξ)Ẽ(ξ) with Ẽ ∈ H(curl, Ω̃). (2.7)

2. A vector function, B ∈ H(div,Ω), corresponding to a differential 2-form, is trans-
formed by the contravariant Piola transform

B(x) =
DF (ξ)

JF (ξ)
B̃(ξ) with B̃ ∈ H(div, Ω̃). (2.8)

3. A scalar differential 3-form, h ∈ L2(Ω), is related to h̃ ∈ L2(Ω̃) via

h(x) =
1

JF (ξ)
h̃(ξ).

Proof. The proof can be found in [31, sec. 1.7] by considering the representation of the
fields through the electromagnetic potentials.
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2.3 Curvilinear Vlasov and Maxwell’s equations

We use the curvilinear transformation rules for the differential forms in order to transform
the Vlasov–Maxwell system.

Proposition 2.5. Under the coordinate transformation F (ξ) = x,

1. the Vlasov equation (2.1) transforms to

∂f̃s(ξ,v, t)

∂t
+N(ξ)>v · ∇ξf̃s(ξ,v, t)

+
qs
ms

N(ξ)
(
Ẽ(ξ, t) + (N(ξ)>v)× B̃(ξ, t)

)
· ∇vf̃s(ξ,v, t) = 0;

2. Faraday’s and magnetic Gauss’ law in strong form do not change, i.e.

∂B̃(ξ, t)

∂t
= −∇ξ × Ẽ(ξ, t), (2.9a)

∇ξ · B̃(ξ, t) = 0; (2.9b)

3. the weak formulation of Ampère’s law and Gauss’ law becomes for all ϕ̃ ∈ H(curl, Ω̃),
ψ̃ ∈ H1(Ω̃)

d

dt

∫
Ω̃

Nϕ̃ ·NẼ|JF | dξ =

∫
Ω̃

DF

JF
∇ξ × ϕ̃ ·

DF

JF
B̃|JF | dξ − J̃(Nϕ̃), (2.10a)

−
∫

Ω̃

N∇ξψ̃ ·NẼ|JF | dξ = ρ̃(ψ̃). (2.10b)

Proof. The equations can be derived by inserting the coordinate transformation into the
Vlasov and Maxwell equations and using Proposition 2.4.

We note that the advection coefficientN(ξ)>v for the ξ advection in the curvilinear Vlasov
equation depends on ξ. Therefore, f̃s is no longer a conserved quantity but instead JF f̃s
(cf. [8, 16]) and the curvilinear Vlasov equation in conservative form reads

∂t(JF f̃s) +∇ξ · (N>vJF f̃s) +∇v ·
(
qs
ms

N(Ẽ + (N>v)× B̃)JF f̃s

)
= 0.

3 Structure-preserving discretisation in curvilinear

geometry

In this section, we will introduce a particle discretisation for the distribution function
and a compatible finite element discretisation of the fields, extending the discretisation
proposed in [22] to the curvilinear case.
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3.1 Discrete particle distribution function

In order to define the charge and current densities in Maxwell’s equations, we need to
define a discrete particle distribution function from the positions xp and velocities vp of
the Np particles of all species s. We use a definition based on δ-functions in phase space,

fh(x,v, t) =

Np∑
p=1

ωpδ(x− xp(t))δ(v − vp(t)).

The δ-function defines the point evaluation in a convolution with another function. There-
fore, we need to scale by the inverse Jacobian when the argument is transformed. This
yields the following definition of the distribution function in logical coordinates:

f̃h(ξ,v, t) = fh(F (ξ),v, t) =

Np∑
p=1

ωpδ(F (ξ)− F (ξp(t)))δ(v − vp(t))

=

Np∑
p=1

ωp
δ(ξ − ξp(t))
|JF (ξ)|

δ(v − vp(t)).

(3.1)

Upon inserting this discrete form of the particle distribution function, the current and
the charge take the following form:

J̃h(ξ, t) =

∫
qsf̃h(ξ,v, t)v dv =

Np∑
p=1

qpωp
δ(ξ − ξp)
|JF (ξ)|

vp, (3.2a)

ρ̃h(ξ, t) =

∫
qsf̃h(ξ,v, t) dv =

Np∑
p=1

qpωp
δ(ξ − ξp)
|JF (ξ)|

. (3.2b)

Note that this representation is smooth enough, since we only consider the densities in
weak form and the Jacobi determinant from the transformation rule cancels out the inverse
Jacobian.
Let us collect the logical positions of all particles and their velocities in the vectors Ξ :=
(ξ1, ..., ξNP )>,V := (v1, ...,vNP )>. Moreover, we use use the following notation, Mm :=
diag(ωpmp)⊗I3,Mq := diag(ωpqp)⊗I3,N := diag(N(ξp)), 1 ≤ p ≤ Np. Hence, the equations
for the characteristics of the particles can be written as

Ξ̇ = N(Ξ)>V,

V̇ = MqM
−1
m N(Ξ)

(
Ẽ(Ξ, t) + (N(Ξ)>V)× B̃(Ξ, t)

)
.

(3.3)

3.2 Finite element discretisation

3.2.1 Discrete de Rham sequence

Arnold, Falk & Winther [2] have developed a theoretical framework for the finite element
discretisation that respects the sequence properties of the de Rham complex. The idea is
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to define discrete spaces that form the following commuting diagram with the continuous
spaces:

H1(Ω̃) H(curl, Ω̃) H(div, Ω̃) L2(Ω̃)

Ṽ0 Ṽ1 Ṽ2 Ṽ3

Π0

grad

Π1

grad

Π2 Π3

curl

curl

div

div

The operators Πk, k = 0, 1, 2, 3, are projecting the corresponding differential forms to the
finite dimensional subspaces Ṽk with dimension,

dim Ṽk =

{
Nk if k = 0, 3,
3Nk if k = 1, 2,

i.e. Π0Φ̃ = Φ̃h ∈ Ṽ0,Π1Ẽ = Ẽh ∈ Ṽ1,Π2B̃ = B̃h ∈ Ṽ2.

The most common construction of such compatible finite element spaces is based on La-
grange finite elements for V0, Raviart–Thomas elements for V1, Nédélec elements for V2

and discontinuous elements for V3. Moreover, a compatible sequence can be constructed
from splines of mixed order as proposed by Buffa, Sangalli, & Vázquez [6]. In our numer-
ical experiments, we apply the latter elements. We introduce basis functions for the finite
dimensional subspaces Ṽk, scalar functions Λ̃k

i for k = 0, 3 and vector valued functions

Λ̃
k

i,1 = (Λ̃k,1
i , 0, 0)>, Λ̃

k

i,2 = (0, Λ̃k,2
i , 0)>, Λ̃

k

i,3 = (0, 0, Λ̃k,3
i )> for k = 1, 2.

The de Rham structure can also be expressed on the level of matrices and vectors. For
some ξ ∈ Ω̃, we collect the value of each basis function in a row vector as

Λ̃k(ξ) =
(

Λ̃k
1(ξ), Λ̃k

2(ξ), ..., Λ̃k
Nk

(ξ)
)
∈ R1×Nk for k = 0, 3,

Λ̃k(ξ) =
(
Λ̃
k

1,1(ξ), Λ̃
k

1,2(ξ), ..., Λ̃
k

Nk,3
(ξ)
)
∈ R3×3Nk for k = 1, 2.

Then, the following relations hold for the basis functions:

∇ξΛ̃
0(ξ) = Λ̃1(ξ)G, ∇ξ × Λ̃1(ξ) = Λ̃2(ξ)C, ∇ξ · Λ̃2(ξ) = Λ̃3(ξ)D (3.4)

for some matrix G ∈ R3N1×N0 denoting the discrete gradient matrix, C ∈ R3N2×3N1 denoting
the discrete curl matrix and D ∈ RN3×3N2 denoting the discrete divergence matrix, all
independent of ξ. These matrices need to satisfy

DC = 0 and CG = 0 (3.5)

to mimic the complex properties div curl = 0 and curl grad = 0.

Lemma 3.1. From the de Rham sequence on the logical mesh, a de Rham sequence can
be constructed on the physical domain by

Λ0(x) = Λ̃0(ξ), Λ1(x) = N(ξ)Λ̃1(ξ), Λ2(x) =
DF (ξ)

JF (ξ)
Λ̃2(ξ), Λ3(x) =

1

JF (ξ)
Λ̃3(ξ).
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Proof. The following computations show the assertions:

∇xΛ0(x) = N(ξ)∇ξΛ̃
0(ξ) = N(ξ)Λ̃1(ξ)G = Λ1(x)G,

∇x ×Λ1(x) =
DF (ξ)

JF (ξ)
∇ξ × Λ̃1(ξ) =

DF (ξ)

JF (ξ)
Λ̃2(ξ)C = Λ2(x)C,

∇x ·Λ2(x) =
1

JF (ξ)
∇ξ · Λ̃2(ξ) =

1

JF (ξ)
Λ̃3(ξ)D = Λ3(x)D

for the same matrices G, C and D as on the logical mesh.

The mass matrices for differential forms are defined as

(M̃0)ij =

∫
Ω̃

Λ̃0
i Λ̃

0
j |JF | dξ for 1 ≤ i, j ≤ N0,

(M̃1)IJ =

∫
Ω̃

(Λ̃
1

I)
>G−1

m Λ̃
1

J |JF | dξ for 1 ≤ I, J ≤ 3N1,

(M̃2)IJ =

∫
Ω̃

(Λ̃
2

I)
>GmΛ̃

2

J

1

|JF |
dξ for 1 ≤ I, J ≤ 3N2,

(M̃3)ij =

∫
Ω̃

Λ̃3
i Λ̃

3
j

1

|JF |
dξ for 1 ≤ i, j ≤ N3.

(3.6)

3.2.2 Discretisation of the curvilinear Maxwell equations

To discretise Maxwell’s equations based on the compatible finite element spaces, we rep-
resent the electromagnetic fields with the 3Nk, k = 1, 2, degrees of freedom as

Ẽh(ξ, t) = Λ̃1(ξ)ẽ(t) =

N1∑
j=1

3∑
i=1

Λ̃
1

j,i(ξ)ẽj,i(t), (3.7a)

B̃h(ξ, t) = Λ̃2(ξ)b̃(t) =

N2∑
k=1

3∑
i=1

Λ̃
2

k,i(ξ)b̃k,i(t). (3.7b)

We recapitulate the Piola transform (2.7), (2.8) of the electromagnetic fields and introduce
the basis representation of the finite dimensional subspaces

Eh(x, t) = Eh(F (ξ), t) = N(ξ)Ẽh(ξ, t) = N(ξ)Λ̃1(ξ)ẽ(t),

Bh(x, t) = Bh(F (ξ), t) =
DF (ξ)

JF (ξ)
B̃h(ξ, t) =

DF (ξ)

JF (ξ)
Λ̃2(ξ)b̃(t).

Proposition 3.2. The transformed discrete version of the Ampère and the electric Gauss
law take the following form in matrix notation:

M̃1
˙̃e = C>M̃2b̃− Mq�̃

1(Ξ)>N(Ξ)>V, (3.8a)

G>M̃1ẽ = −Mq�̃0(Ξ)>1Np . (3.8b)

Proof. The Maxwell equations in weak form are discretised by approximating (Ẽ, B̃) ∈
H(curl, Ω̃)×H(div, Ω̃) with the discrete fields (Ẽh, B̃h) ∈ Ṽ1×Ṽ2 and discrete test functions
in Ṽ0 and Ṽ1.
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For Ampère’s law, we insert (3.7a) and (3.7b) into (2.10a) and use the basis functions
Λ̃1 ∈ Ṽ1 as test functions

d

dt

∫
Ω̃

(
N(ξ)Λ̃1(ξ)

)>
N(ξ)Λ̃1(ξ)ẽ|JF (ξ)| dξ

=

∫
Ω̃

(
DF (ξ)

JF (ξ)
∇ξ × Λ̃1(ξ)

)>
DF (ξ)

JF (ξ)
Λ̃2(ξ)b̃|JF (ξ)| dξ − J̃?h(N(ξ)Λ̃1(ξ)).

Next, we use the relation (3.4) for the curl and insert the transformed current (3.2a)∫
Ω̃

Λ̃1(ξ)>G−1
m (ξ)Λ̃1(ξ)|JF (ξ)| dξ ˙̃e

=C>
∫

Ω̃

Λ̃2(ξ)>Gm(ξ)Λ̃2(ξ)
1

|JF (ξ)|
dξ b̃−

Np∑
p=1

qpωpΛ̃
1(ξp)

>N(ξp)
>vp.

For Gauss’ law, we insert (3.7a) into (2.10b) and choose the basis functions Λ̃0 ∈ Ṽ0 as
test functions

−
∫

Ω̃

(
N(ξ)∇ξΛ̃

0(ξ)
)>

N(ξ)Λ̃1(ξ)ẽ|JF (ξ)| dξ = ρ̃?h(Λ̃
0(ξ)>).

Then, we use the relation (3.4) for the gradient and insert the transformed charge (3.2b)

G>
∫

Ω̃

Λ̃1(ξ)>G−1
m (ξ)Λ̃1(ξ)|JF (ξ)| dξ ẽ = −

Np∑
p=1

qpωpΛ̃
0(ξp)

>.

With the notation from (3.6) we obtain the equations in matrix notation.

Proposition 3.3. The transformed discrete version of Faraday’s and magnetic Gauss’
law take the following form in matrix notation:

˙̃b = −Cẽ, (3.9a)

Db̃ = 0. (3.9b)

Proof. We insert the discrete transformed fields and their basis representation (3.7a),
(3.7b) into (2.9a) and (2.9b). Then, (3.9a) and (3.9b) follow, since Λ̃2 and Λ̃3 are a basis,
respectively.

4 Semi discrete Hamiltonian structure

In the previous section, we have obtained a spatial semi discretisation of the Vlasov–
Maxwell system. Let us now analyse the structure of this semi discretisation.

10



4.1 Equations of motion and Poisson matrix

From the discretisation of the Vlasov–Maxwell system (3.3), (3.8a) and (3.9a) we get the
following equations of motion with hybrid particle push:

Ξ̇ = N(Ξ)>V,

V̇ = M−1
m MqN(Ξ)

(
�̃1(Ξ)ẽ + (N(Ξ)>V)× �̃2(Ξ)b̃

)
,

M̃1
˙̃e = C>M̃2b̃− �̃1(Ξ)>N(Ξ)>MqV,
˙̃b = −Cẽ,

(4.1)

where we denote by �̃1(Ξ) the 3Np×3N1 matrix with generic term Λ̃1
I(ξp) for 1 ≤ p ≤ Np

and 1 ≤ I ≤ 3N1. Furthermore, we introduce the Np × N0 matrix �̃0(Ξ) with generic
term Λ̃0

i (ξp) for 1 ≤ p ≤ Np, 1 ≤ i ≤ N0. �̃2 and �̃3 are defined accordingly.
The corresponding divergence constraints were discretised in (3.8b) and (3.9b) as

G>M̃1ẽ = −Mq�̃0(Ξ)>1Np ,

Db̃ = 0.
(4.2)

Remark 4.1. Note that it would also be possible to transform the velocity into logical

coordinates, Ṽ = N(Ξ)>V. However, this leads to the velocity push ˙̃V = N>(Ξ)V̇ +
dN>(Ξ(t))

dt
V, which contains a derivative tensor.

Let us consider the semi discrete Hamiltonian that corresponds to system (4.1).

Proposition 4.2. The semi discrete Hamiltonian can be written in matrix notation as

H̃h =
1

2
V>MmV +

1

2
ẽ>M̃1ẽ +

1

2
b̃>M̃2b̃. (4.3)

Proof. We transform the Hamiltonian (2.3) to curvilinear coordinates,

H̃ =
∑
s

ms

2

∫
|v|2f̃s(ξ,v, t)|JF (ξ)| dξ dv

+
1

2

∫ (
|N(ξ)Ẽ(ξ)|2 + |DF (ξ)

JF (ξ)
B̃(ξ)|2

)
|JF (ξ)| dξ.

For the semi discrete version, we introduce the ansatz for the discrete particle distribution
function (3.1) and the basis representation of the discrete fields (3.7a),(3.7b) to find

H̃h =

Np∑
p=1

mp

2
v2
p+

1

2

∫
N(ξ)Λ̃1(ξ)ẽ ·N(ξ)Λ̃1(ξ)ẽ|JF (ξ)| dξ

+
1

2

∫
DF (ξ)

JF (ξ)
Λ̃2(ξ)b̃ · DF (ξ)

JF (ξ)
Λ̃2(ξ)b̃|JF (ξ)| dξ.

The assertion follows when we use the definition of the mass matrices (3.6).

11



Then, the derivative of the discrete Hamiltonian is computed as

DH̃h(ũ) = (0, (MmV)>, (M̃1ẽ)>, (M̃2b̃)>)>.

Next, we consider the discretisation of the Poisson bracket, which can be expressed as

{Fh(ũ),Gh(ũ)}d = DFh(ũ)>J(ũ)DGh(ũ), (4.4)

where J is the discrete Poisson matrix. In particular, setting Fh(ũ) = ũ and Gh(ũ) = H̃h,
the time evolution of the equations of motion is given by the discrete analogon of (2.2),

dũ

dt
= J(ũ)DH̃h. (4.5)

For our semi discretisation (4.1), the Poisson matrix takes the form

J =


0 N>M−1

m 0 0

−M−1
m N M−1

m MqNB̃N>M−1
m M−1

m MqN�̃1M̃−1
1 0

0 −M̃−1
1 (�̃1)>N>MqM−1

m 0 M̃−1
1 C>

0 0 −CM̃−1
1 0

 , (4.6)

where B̃(Ξ,b) is a 3Np × 3Np block diagonal matrix with generic block

ˆ̃Bh(ξp, t) =

N2∑
i=1

 0 b̃i,3(t)Λ̃2,3
i (ξp) −b̃i,2(t)Λ̃2,2

i (ξp)

−b̃i,3(t)Λ̃2,3
i (ξp) 0 b̃i,1(t)Λ̃2,1

i (ξp)

b̃i,2(t)Λ̃2,2
i (ξp) −b̃i,1(t)Λ̃2,1

i (ξp) 0

 . (4.7)

4.2 Discrete Poisson bracket

In this section, we show that, with this form of the Poisson matrix (4.6), (4.4) indeed
defines a (discrete) Poisson bracket.

Theorem 4.3. The differential operator {f, g}d = Df>JDg forms a discrete Poisson
bracket.

Proof. The Poisson matrix J is obviously antisymmetric and the bilinearity and Leibniz’s
rule follow trivially from the form (4.4). So, it is only left to prove that the Poisson matrix
follows the Jacobi identity.
The matrix J satisfies the Jacobi identity if and only if the following condition holds:∑

l

(
∂Jij(ũ)

∂ul
Jlk(ũ) +

∂Jjk(ũ)

∂ul
Jli(ũ) +

∂Jki(ũ)

∂ul
Jll(ũ)

)
= 0 ∀i, j, k,

where i, j, k, l run from 1 to 6Np + 3N1 + 3N2. The Poisson matrix J has the following
block-structure:

J =


0 J12(Ξ) 0 0

J21(Ξ) J22(Ξ, b̃) J23(Ξ) 0
0 J32(Ξ) 0 J34

0 0 J43 0

 .
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Hence, many combinations of indices are trivially zero. In particular, the matrix only
depends on Ξ and b̃ and hence the derivatives are only non zero if l ∈ [1, 3Np] or l ∈
[6Np + 3N1 + 1, 6Np + 3N1 + 3N2]. Moreover, we need to find combinations of i, j, k (or
permutations of these) for which both Jij and Jlk are non vanishing. For l ∈ [1, 3Np], this
only leaves the options i, j, k ∈ [3Np + 1, 6Np] or i ∈ [1, 3Np] and j, k ∈ [3Np + 1, 6Np].
If l ∈ [6Np + 3N1 + 1, 6Np + 3N1 + 3N2], we only have i, j ∈ [3Np + 1, 6Np] and k ∈
[6Np + 1, 6Np + 3N1]. Let us now consider each of these three non trivial terms one-by-
one.
Let first i ∈ [1, 3Np] and j, k ∈ [3Np + 1, 6Np]. Then, we obtain the condition

3Np∑
l=1

(
∂J12(Ξ)ij

∂Ξl

(J12)lk(Ξ) +
∂J21(Ξ)ki

∂Ξl

(J12)lj(Ξ)

)
= 0.

Inserting the expressions of the terms of the Poisson matrix, we get

3Np∑
l=1

(
∂(N(Ξ)>M−1

m )ij
∂Ξl

(N(Ξ)>M−1
m )lk +

∂(−M−1
m N(Ξ))ki
∂Ξl

(N(Ξ)>M−1
m )lj

)
.

Since N is a block diagonal matrix, the terms are only non zero if all four indices belong
to the same particle. Since Mm is diagonal and has the same entry for each component of
one particle, we can leave out this factor. Using the definition of the transposed inverse
Jacobian matrix, Nij =

∂Ξj
∂Xi

, we are left with the following expression:

3Np∑
l=1

(
∂

∂Ξl

∂Ξi

∂Xj

∂Ξl

∂Xk

− ∂

∂Ξl

∂Ξi

∂Xk

∂Ξl

∂Xj

)
=

∂2Ξi

∂Xk∂Xj

− ∂2Ξi

∂Xj∂Xk

= 0,

where we have used the symmetry of second derivatives by Schwarz’s theorem in the last
step.
Next, let i, j, k ∈ [3Np + 1, 6Np]. This yields the following expression to show

3Np∑
l=1

(
∂J22(Ξ)ij

∂Ξl

J12(Ξ)lk +
∂J22(Ξ)jk

∂Ξl

J12(Ξ)li +
∂J22(Ξ)ki

∂Ξl

J12(Ξ)lj

)
= 0.

With the expressions of the Poisson matrix we obtain

3Np∑
l=1

(
∂(MqN(Ξ)B̃(Ξ)N(Ξ)>)ij

∂Ξl

(N(Ξ)>)lk

+
∂(MqN(Ξ)B̃(Ξ)N(Ξ)>)jk

∂Ξl

(N(Ξ)>)li

+
∂(MqN(Ξ)B̃(Ξ)N(Ξ)>)ki

∂Ξl

(N(Ξ)>)lj

)
.

Since Mm is a diagonal matrix, each term contains (M−1
m )ii(M−1

m )jj(M−1
m )kk which therefore

is left out. Moreover, both N and B̃ are block-diagonal so the only case in which the
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terms are non zero is when all four indices belong to the same particle. Let us denote the
corresponding particle index by p and introduce µ, ν, σ ∈ {1, 2, 3} as i−3Np = 3(p−1)+µ,
j−3Np = 3(p−1)+ν, k−3Np = 3(p−1)+σ. In this case, we also have (Mq)ii = (Mq)jj =
(Mq)kk so that we can leave out this matrix as well. Last, we use the definition of N> and
the following identity for the generic block B̃(ξp) of B̃,

B̂h = I×Bh = I× DF

JF
B̃h = N

(
(N>)× B̃h

)
= N ˆ̃BhN

>.

This leaves us with

3∑
η=1

(
∂B̂h(xp)µν
∂ξp,η

∂ξp,η
∂xp,σ

+
∂B̂h(xp)νσ
∂ξp,η

∂ξp,η
∂xp,µ

+
∂B̂h(xp)σµ
∂ξp,η

∂ξp,η
∂xp,ν

)

=

(
∂B̂h(xp)µν
∂xp,σ

+
∂B̂h(xp)νσ
∂xp,µ

+
∂B̂h(xp)σµ
∂xp,ν

)
.

If µ = ν = σ, we get the diagonal terms that are zero and if two indices are the same, say

µ = ν, we get ∂B̂h(xp)µσ
∂xp,µ

+ ∂B̂h(xp)σµ
∂xp,µ

= 0 due to the antisymmetry of B̂h. Last, if the three

indices are all different, we get

±

(
∂B̂h(xp)12

∂xp,3
+
∂B̂h(xp)23

∂xp,1
+
∂B̂h(xp)31

∂xp,2

)
= ± div Bh(xp).

Since div Bh = 0 is guaranteed over time by the construction of the discrete de Rham
complex when it is initially satisfied, this is also zero.
Finally, we consider the case that i, j ∈ [3Np + 1, 6Np], k ∈ [6Np + 1, 6Np + 3N1]

3Np∑
l=1

(
∂J23(Ξ)ik

∂Ξl

J12(Ξ)lj +
∂J32(Ξ)kj

∂Ξl

J12(Ξ)li

)
+

3N2∑
A=1

∂J22(b̃)ij

∂b̃A
(J43)Ak = 0.

With the expressions of the Poisson matrix, we obtain

3Np∑
l=1

(
∂(M−1

m Mq(N�̃1)(Ξ)M̃−1
1 )ik

∂Ξl

(N(Ξ)>M−1
m )lj

+
∂(−M̃−1

1 (N�̃1)(Ξ)>MqM−1
m )kj

∂Ξl

(N(Ξ)>M−1
m )li

)

+

3N2∑
A=1

∂(M−1
m MqN(Ξ)B̃(Ξ, b̃)N(Ξ)>M−1

m )ij

∂b̃A
(−CM̃−1

1 )Ak = 0.

We contract this with Mm for indices i, j, M̃1 on index k and M−1
q on index i,

3Np∑
l=1

(
∂((N�̃1)(Ξ))ik

∂Ξl

(N(Ξ)>)lj −
∂((N�̃1)(Ξ)>Mq)kj

∂Ξl

(N(Ξ)>M−1
q )li

)

=

3N2∑
A=1

∂(N(Ξ)B̃(Ξ, b̃)N(Ξ)>)ij

∂b̃A
(C)Ak.
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This is possible because Mm,M−1
q and M̃1 are constant, symmetric and positive definite.

Moreover, we have again that i and j must belong to the same particle due to the block-
diagonal structure of the terms. Therefore, we can also contract Mq on index j and M−1

q

on index i. Let us introduce again the corresponding particle index p and µ, ν ∈ {1, 2, 3}
such that i−3Np = 3(p−1)+µ and j−3Np = 3(p−1)+ν. For these index combinations,
the sum over the particle positions breaks down to

3Np∑
l=1

(
∂((N�̃1)(Ξ))ik

∂Ξl

(N(Ξ)>)lj −
∂((N�̃1)(Ξ)>Mq)kj

∂Ξl

(N(Ξ)>M−1
q )li

)

=
∂Λ1

k,µ(xp)

∂xp,ν
−
∂Λ1

k,ν(xp)

∂xp,µ

=


0 if µ = ν,

(curl Λ1(xp))σk if (µ, ν, σ) cyclic permutation of (1,2,3) ,
−(curl Λ1(xp))σk if (µ, ν, σ) non cyclic permutation of (1,2,3) ,

where we used N�̃1 = �1 and the chain rule in the first equality. For the derivative with
respect to b̃, we use expression (4.7) for the block of B belonging to particle p to find

3N2∑
A=1

∂ ˆ̃Bh(ξp)

∂b̃A
=

N2∑
A=1

ˆ̃ΛA(ξp),

where

ˆ̃ΛA(ξp) =

 0 Λ̃2,3
A (ξp) −Λ̃2,2

A (ξp)

−Λ̃2,3
A (ξp) 0 Λ̃2,1

A (ξp)

Λ̃2,2
A (ξp) −Λ̃2,1

A (ξp) 0

 .

It holds that Λ̂A = N ˆ̃ΛAN
> in the same way as ˆ̃Bh = N ˆ̃BhN

>. Hence, we get

3N2∑
A=1

∂(N(Ξ)B̃(Ξ, b̃)N(Ξ)>)

∂b̃A
=

N2∑
A=1

�̂A(X).

Now, for i − 3Np = 3(p − 1) + µ and j − 3Np = 3(p − 1) + ν, we need the component
(µ, ν) which is zero if µ = ν and Λ2

A,σ if (µ, ν, σ) is a cyclic permutation of (1, 2, 3) (or the
negative if the permutation is non cyclic). This yields

3N2∑
A=1

∂(N(Ξ)B̃(Ξ, b̃)N(Ξ)>)ij

∂b̃A
(C)Ak =

N2∑
A=1

�̂A(X)ij(C)Ak

=


0 if µ = ν,

(Λ2(xp)C)σk if (µ, ν, σ) cyclic permutation of (1,2,3) ,
−(Λ2(xp)C)σk if (µ, ν, σ) non cyclic permutation of (1,2,3) .

Hence, the term vanishes due to the de Rham sequence properties of the basis.

Since the conservation properties are tightly connected to the Poisson structure, preserving
the Jacobi identity with the numerical approximation results in numerical conservation
laws.
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4.3 Discrete Casimir invariants

One class of functionals that are conserved over time in Hamiltonian systems are so-called
Casimir invariants, functionals that Poisson commute with all other funtionals. In this
section, we consider the discrete Casimir invariants of our discrete Poisson structure (4.1),
i.e. functions C(ũ) of our discrete dynamic variables ũ = (Ξ,V, ẽ, b̃) that satisfy

{C,F} = 0⇔ J(ũ)DC(ũ) = 0 ∀F (ũ).

First, we derive a general form for such discrete Casimir invariants and, second, we show
that the divergence constraints (4.2) are such discrete Casimir invariants and, hence,
conserved over time in our discretisation.

Proposition 4.4. Let C(ũ) be a discrete Poisson invariant of the system (4.1) with
Poisson matrix (4.6). Then, there exist ē ∈ RN0 and b̄ ∈ RN3 such that

C(ũ) = ē>(�̃0(Ξ)>Mq1Np + G>M̃1ẽ) + b̄>Db̃. (4.8)

Proof. Let us consider the equation J(ũ)DC(ũ) = 0 line by line. The first line reads

N(Ξ)>M−1
m DVC = 0.

Therefore, C must be independent of V. Next, we consider the third line, already assum-
ing DVC = 0, which yields

M̃−1
1 C>Db̃C = 0.

Hence, it follows that Db̃C ∈ ker(C>). Due to the complex property of our de Rham
sequence, there exist a b̄ ∈ RN3 such that Db̃C = D>b̄. Analogously, the fourth line,

CM̃−1
1 DẽC = 0, i.e. M̃−1

1 DẽC ∈ ker(C),

yields due to the complex property that there exists an ē ∈ RN0 such that DẽC = M̃1Gē.
Finally, the second line of the Poisson matrix yields the following expression for DΞC:

DΞC = Mq�̃
1(Ξ)M̃−1

1 DẽC = Mq�̃
1(Ξ)Gē = Mq grad �̃0(Ξ)ē, (4.9)

where we used again the complex property for the last equality. Putting everything
together, we get the general form (4.8) of a discrete Casimir invariant.

As a consequence the divergence constraints (4.2) are conserved over time.

Corrolary 4.5. The discrete electric Gauss law, G>M̃1ẽ−Mq�̃0(Ξ)>1Np = 0, is conserved
over time if it is satisfied initially.

Proof. This follows immediately from Proposition 4.4 setting ē = 1N0 and b̄ = 0N3 , since
this leads to the discrete Casimir G>M̃1ẽ− Mq�̃0(Ξ)>1Np .

Remark 4.6. The discrete magnetic Gauss law, Db̃ = 0, follows from Proposition 4.4
for ē = 0N0 and b̄ = 1N3. It can be referred to as “pseudo-Casimir”, since it satisfies the
properties of a Casimir but it is a requirement for the Jacobi identity to hold.
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5 Time discretisation of the equations of motion

For the GEMPIC method on Cartesian grids, two structure-preserving time propagation
schemes that exploit the form (4.5) have been proposed: In [22], the discrete Hamiltonian
(4.3) is split into five parts H̃h,i, i = 1, . . . , 5 so that each part of the equations ˙̃u =
{ũ, H̃h,i} yields explicit equations of motion and the discretisation preserves Gauss’ law.
This splitting was first proposed in [17, 38]. A second ansatz is to split system (4.5)
by an antisymmetric splitting of the Poisson matrix J. Then, the resulting subsystems
can be solved by a discrete gradient method yielding an energy-preserving time stepping
scheme. In [21], two schemes are constructed this way: a semi implicit scheme that does
not preserve the electric Gauss law and a fully implicit scheme that preserves Gauss’ law.
The discrete gradient schemes readily extend to the curvilinear case as we will show in
sections 5.2 and 5.3. However, an explicit Hamiltonian splitting(HS) can no longer be
constructed, since the coordinate directions do not decouple for non diagonal coordinate
transformations. Instead, we will construct a semi implicit splitting that preserves Gauss’
law in section 5.1.

5.1 Charge conserving splitting

In this section, we consider an HS as in [22]; however, we only split into three parts,

H̃h = H̃p + H̃E + H̃B

with

H̃p =
1

2
V>MpV, H̃E =

1

2
ẽ>M̃1ẽ, H̃B =

1

2
b̃>M̃2b̃.

Thus, we obtain the three subsystems

u̇ = {u, H̃p}, u̇ = {u, H̃E}, u̇ = {u, H̃B}.

The subsystems for H̃E and H̃B are solved exactly and, then, evaluated at the discrete
time steps tn = n∆t. Let us denote ũ(tn) =: ũn.
For H̃E, the equations of motion are

Ξ̇ = 0, V̇ = M−1
p MqN(ξ)�̃1(Ξ)ẽ,

˙̃e = 0, ˙̃b = −Cẽ,
(5.1)

and the time discrete version reads

Ξn+1 = Ξn, Vn+1 = Vn + ∆tM−1
p MqN(Ξn)�̃1(Ξn)ẽn,

ẽn+1 = ẽn, b̃n+1 = b̃n −∆tCẽn.

For H̃B, we get

Ξ̇ = 0, V̇ = 0, M̃1
˙̃e = C>M̃2b̃,

˙̃b = 0, (5.2)

which leads to the discretisation

Ξn+1 = Ξn, Vn+1 = Vn, M̃1ẽ
n+1 = M̃1ẽ

n + ∆tC>M̃2b̃
n, b̃n+1 = b̃n.
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For H̃p, we obtain the following equations:

Ξ̇ = N(Ξ)>V, V̇ = M−1
p MqN(Ξ)B̃(Ξ, b̃)N(Ξ)>V,

M̃1
˙̃e = −�̃1(Ξ)>N(Ξ)>MqV,

˙̃b = 0.
(5.3)

Here, we get the analytic solution

Ξ(∆t) = Ξ(0) +

∫ ∆t

0

N(Ξ(t))>V(t) dt,

V(∆t) = V(0) + M−1
p Mq

∫ ∆t

0

N(Ξ(t))B̃(Ξ(t), b̃(0))N(Ξ(t))>V(t) dt,

M̃1ẽ(∆t) = M̃1ẽ(0)−
∫ ∆t

0

�̃1(Ξ(t))>N(Ξ(t))>MqV(t) dt,

b̃(∆t) = b̃(0).

This system is implicit in the particle coordinates (Ξ,V) but decouples between different
particles. It is not possible to solve the resulting 6× 6 systems explicitly. Therefore, the
kinetic energy part was further split into the three directions in [22]. Such a splitting
yields explicit equations only if the Jacobi matrix of the coordinate transformation is
diagonal and constant. Since this is generally not true, we keep the kinetic part together.

In order to resolve the non linearity caused by the dependence of N on Ξ, we need to
introduce some approximation, which should conserve the Poisson structure. In [21] it
has been shown that a Gauss-conserving discretisation can be obtained when using the
same constant velocity for both the position and the current update.

We solve the particle equations with the symplectic midpoint method in a fixed point
iteration using a predictor-corrector scheme and then compute the current for the update
of the electric field with a line integral for �̃1(Ξ(t)) and the velocity from the position
update. This results in the following system:

Ξn+1 =Ξn + ∆tN>
(
Ξ
)
V, (5.4a)

Vn+1 =Vn + ∆tM−1
m MqN

(
Ξ
)
B̃
(
Ξ, b̃n

)
N>
(
Ξ
)
V,

M̃1ẽ
n+1 =M̃1ẽ

n −
∫ tn+1

tn
�̃1(Ξ(τ))> dτMqN

> (Ξ)V, (5.4b)

b̃n+1 =b̃n,

where Ξ = Ξn+Ξn+1

2
,V = Vn+Vn+1

2
and Ξ(τ) = (tn+1−τ)Ξn+(τ−tn)Ξn+1

∆t
.

Proposition 5.1. For the proposed splitting, Gauss’ law is preserved over time if it is
satisfied initially and (5.3) is discretised as in (5.4).

Proof. First, we identify the two splitting steps in which the electric field is changed.
In HB, the update of the electric field (5.2) multiplied by G> stays constant due to the
discrete complex property (3.5). For Hp, we multiply (5.4b) with G> and plug in the
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position formula (5.4a) and use that dΞ
dτ

= Ξn+1−Ξn

∆t
is constant in time,

G>M̃1ẽ
n+1 − G>M̃1ẽ

n = −
∫ tn+1

tn
G>�̃1(Ξ(τ))> dτMq

Ξn+1 −Ξn

∆t

= −
∫ tn+1

tn
MqG

>�̃1(Ξ(τ))>
dΞ(τ)

dτ
dτ.

Last, we use the chain rule , d�̃0(Ξ(τ))>

dτ
1Np = G>�̃1(Ξ(τ))> dΞ(τ)

dτ
, and obtain

G>M̃1ẽ
n+1 − G>M̃1ẽ

n = −
∫ tn+1

tn
Mq

d�̃0(Ξ(τ))>

dτ
1Np dτ

= −
(
Mq�̃

0(Ξn+1)>1Np − Mq�̃
0(Ξn)>1Np

)
.

Note that the source-free Maxwell equations are solved in two different splitting steps,
which causes a restriction on the time step (cf. [21, Appendix A.2]). Using the stability
condition for ∆t

∆x
on Cartesian grids with the minimal cell size of the mapped grid provides

a rough estimate for the maximal time step. For the simulation results of the Hamiltonian
splitting we use the acronym HS.

5.2 Energy conserving antisymmetric splitting

Next, we consider energy-conserving time discretisations constructed as discrete gradients
[30].

Theorem 5.2. Let us consider a system of ordinary differential equations of the form

˙̃u = J (ũ)DH̃h(ũ)

with a skew-symmetric matrix J . Then, the discrete gradient discretisation of the form

ũn+1 − ũn

∆t
= J̄ (ũn+1, ũn)DH̃h(ũ

n+1, ũn)

is energy conserving if J̄ (ũn+1, ũn) is skew-symmetric.

Proof. The energy variation in one time step is defined as

H̃n+1
h − H̃n

h = DH̃h(ũ
n+1, ũn)>

(
ũn+1 − ũn

)
.

Now, we insert the discretisation from above and use the skew-symmetry of J̄ ,

H̃n+1
h − H̃n

h = DH̃h(ũ
n+1, ũn)>

(
∆tJ̄ (ũn+1, ũn)(ũ)DH̃h(ũ

n+1, ũn)
)

= −∆tDH̃h(ũ
n+1, ũn)>J̄ (ũn+1, ũn)DH̃h(ũ

n+1, ũn) = 0.
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Several ways to construct discrete gradients have been proposed in the literature [20, 15, 7].
However, in our case the Hamiltonian is quadratic—and DH̃h linear—so that all methods
simplify to the second order midpoint rule. Hence, this leaves us with the choice of how
to discretise J . Moreover, we follow [21] and split the discrete Poisson matrix, keeping its
skew-symmetry in each subsystem. We split the Poisson matrix into four antisymmetric
parts and obtain the following subsystems:

system 1: Ξ̇ = N(Ξ)>V,

system 2: V̇ = M−1
m MqN(Ξ)B̃(Ξ, b̃)N(Ξ)>V,

system 3: ˙̃b = −Cẽ, M̃1
˙̃e = C>M̃2b̃,

system 4: V̇ = M−1
m MqN(Ξ)�̃1(Ξ)ẽ, M̃1

˙̃e = −�̃1(Ξ)>N(Ξ)>MqV.

(5.5)

In the first system, the element of the Poisson matrix N(Ξ) is changing over time and
needs to be approximated. We use a Crank-Nicolson method to maintain the second order
accuracy and solve the system iteratively with a predictor-corrector scheme,

Ξn+1 =Ξn + ∆t
N(Ξn)> + N(Ξn+1)>

2
Vn.

Note that the system is block-diagonal and, hence, only couples the positions of one
particle at a time.
In the other three systems, the Poisson matrix is constant over time and we only use the
midpoint rule to discretise the DH̃h part. So, the equation for the second system reads(

I− ∆t

2
M−1
m MqNB̃N

>
)

Vn+1 =

(
I +

∆t

2
M−1
m MqNB̃N

>
)

Vn, (5.6)

where for every particle the inverse of the 3×3 matrix on the left hand side can be exactly
calculated.
With the same method, the matrix form of the equations for system 3 reads(

M̃1 −∆t
2
C>M̃2

+∆t
2
C I

)(
ẽn+1

b̃n+1

)
=

(
M̃1 +∆t

2
C>M̃2

−∆t
2
C I

)(
ẽn

b̃n

)
.

With the Schur complement S = M̃1 + ∆t2

4
C>M̃2C, we get the following decoupled system,

en+1 = S−1

(
(M̃1 −

∆t2

4
C>M̃2C)en + ∆tC>M̃2b

n

)
,

bn+1 = bn − ∆t

2
C(en + en+1).

(5.7)

Finally, system 4 is discretised in matrix-vector notation as

A−

(
Vn+1

ẽn+1

)
= A+

(
Vn

ẽn

)
, with A± =

(
I ±∆t

2
M−1
m MqN�̃1

∓∆t
2

(�̃1)>N>Mq M̃1

)
.

We use the Schur complement S = M̃1 + ∆t2

4
M2
qM
−1
m (�̃1)>N>N�̃1 to decouple the equations

for V and e, which yields the following system that is explicit in the particles and linearly

20



implicit in the electric field:

en+1 = S−1

(
(M̃1 −

∆t2

4
M2
qM
−1
m M?)en −∆t(�̃1)>N>MqV

n

)
,

Vn+1 = Vn +
∆t

2
M−1
m MqN�̃

1(en + en+1).

Here, we introduced the so-called particle mass matrix, M? := (�̃1)>N>N�̃1.
When we look at the charge conservation of the system, we notice that the conservation
of Gauss’ law gets lost, since the current is not computed in the same splitting step as
the position update which is pointed out in [21]. The simulation results of this energy
conserving discrete gradient method are labelled as DisGradE. Note that this method has
many similarities with the semi implicit ECSIM method [24].

5.3 Energy and charge conserving antisymmetric splitting

In this section, we change the splitting and solve systems 1 and 4 from the antisymmetric
splitting (5.5) together with the goal of devising a discrete gradient that also preserves
Gauss’ law. The three subsystems are then given as

system 1: Ξ̇ = N(Ξ)>V, V̇ = M−1
p MqN(Ξ)�̃1(Ξ)ẽ, M̃1

˙̃e = −�̃1(Ξ)>N(Ξ)>MqV,

system 2: V̇ = M−1
p MqN(Ξ)B̃(Ξ, b̃)N(Ξ)>V,

system 3: ˙̃b = −Cẽ, M̃1
˙̃e = C>M̃2b̃.

For the first system, we have to construct a discretisation of the partial Poisson matrix
that is antisymmetric to maintain the energy conservation. Moreover, we are aiming at an
approximation that preserves Gauss’ law. Both goals can be achieved with the following
discretisation:

Ξn+1 −Ξn

∆t
=

N(Ξn)> + N(Ξn+1)>

2

Vn+1 + Vn

2
,

Vn+1 −Vn

∆t
= M−1

p Mq
N(Ξn) + N(Ξn+1)

2

1

∆t

∫ tn+1

tn
�̃1(Ξ(τ)) dτ

ẽn+1 + ẽn

2
, (5.8a)

M̃1ẽ
n+1 − M̃1ẽ

n

∆t
= − 1

∆t

∫ tn+1

tn
�̃1(Ξ(τ))> dτ

N(Ξn)> + N(Ξn+1)>

2
Mq

Vn+1 + Vn

2
, (5.8b)

b̃n+1 = b̃n.

Since the system (5.8) is implicit, it has to be solved iteratively: We first loop over
the particle position and velocity and then, update the electric field with the computed
current. The whole system is looped over in a fixed point iteration for the electric field.
The last two systems are still solved as in (5.6) and (5.7), so we look at the conservation
properties of this splitting.

Proposition 5.3. The discrete energy of the splitting defined by (5.8), (5.6) and (5.7) is
conserved.
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Proof. As the systems 2 and 3 are still discretised with the discrete gradient method, they
trivially conserve the discrete energy. Therefore, we only have to check the discretisation
of the first system. The variation of the discrete energy in this splitting step is given by

H̃n+1
h − H̃n

h =
1

2
[(Vn+1)>MpV

n+1 − (Vn)>MpV
n + (ẽn+1)>M̃1ẽ

n+1 − (ẽn)>M̃1ẽ
n].

We multiply (5.8a) with (Vn+1 + Vn)>Mp to find, after some reordering,

(Vn+1)>MpV
n+1 − (Vn)>MpV

n =(∫ tn+1

tn
�̃1(Ξ(τ))> dτ

N(Ξn)> + N(Ξn+1)>

2
Mq

Vn+1 + Vn

2

)>
(ẽn+1 + ẽn).

Using (5.8b) to express the right hand side yields

(Vn+1)>MpV
n+1 − (Vn)>MpV

n = −
(
M̃1ẽ

n+1 − M̃1ẽ
n
)>

(ẽn+1 + ẽn)

= −
(

(ẽn+1)>M̃1ẽ
n+1 − (ẽn)>M̃1ẽ

n
)
.

Proposition 5.4. For the splitting defined by (5.8), (5.6) and (5.7), Gauss’ law is pre-
served over time if it is satisfied initially and system 1 is discretised as in (5.8).

Proof. This can be proved in the same way as Proposition 5.1 with Ξn+1−Ξn

∆t
= const. in

this step.

The simulation results of this charge and energy conserving discrete gradient method are
labelled as DisGradEC.
Let us compare the building blocks of the DisGradEC method to the HS in terms of
complexity. Since usually the number of particles is much larger than the number of
degrees of freedom for the fields, the most expensive step is the evaluation of the line
integral for the current deposition (cf. [21, sec. 5.2.2.]). However, for DisGradEC, this
evaluation needs to be repeated in each nonlinear iteration. Moreover, for the source free
Maxwell equations, the computation of the Schur complement for DisGradEC is more
expensive than the explicit solution for HS.
The DisGradE scheme treats the source-free Maxwell equations in the same way as Dis-
GradEC. The computationally most expensive part in this case is the assembly of the
particle mass matrix. Both the evaluation of the line integral and the particle mass ma-
trix depend to the sixth power on the order of the basis functions (cf. the discussion in
[21]). In the case of DisGradEC, however, the constant depends on the number of cells
crossed by the line integral as well as the number of nonlinear iterations, so that a general
comparison is not possible.

6 Numerical experiments

We have implemented the 3D3V propagators in curvilinear coordinates as part of the
SeLaLib library [1] with a finite element solver based on compatible splines (see [3, Ap-
pendix A] for some details on the implementation). In this section, we reproduce two
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(a) Orthogonal non uniform mesh (b) Distorted mesh

Figure 1: Orthogonal and distorted mesh for ε = 0.1.

numerical test cases from [22] in a three dimensional(3D) setting in order to validate the
code. Additionally, we perform an actual 3D simulation and compare the conservation
properties of the different schemes. All numerical simulations are performed for electrons
with a neutralising ion background. The particles are loaded with Sobol numbers and
sampled uniformly in logical configuration space. In the absence of a coordinate transfor-
mation, the mass matrices are block-diagonal and can thus be inverted in Fourier space
(cf. [21]). With a coordinate transformation, this is no longer the case. Therefore, we use
a conjugate gradient solver that we precondition with the Fourier solver for the Cartesian
case, to invert the mass matrices. The idea to use a direct solver on the Cartesian mesh
as preconditioner for an iterative solver on the curvilinear mesh was borrowed from [12].
Note that this yields a solution to machine accuracy for the Cartesian case. Therefore,
we switch off the preconditioner in this case in order to show comparable accuracy in the
conservation properties, which depends on the solver tolerance.

6.1 Coordinate transformation

We use the following two periodic coordinate transformations for our tests, an orthogonal
non uniform transformation and a sinusoidal transformation as defined in [10], which leads
to a distorted mesh. The transformations are defined by the following functions:

Forth(ξ) =

L (ξ1 + ε sin(2πξ1))
L (ξ2 + ε sin(2πξ2))

Lξ3

 , Fdist(ξ) =

L (ξ1 + ε sin(2πξ1) sin(2πξ2))
L (ξ2 + ε sin(2πξ1) sin(2πξ2))

Lξ3

 .

We choose ε < 1
2π

so that the inverse Jacobi matrix does not become singular. Figure 1
visualises the (x, y)-part of the corresponding meshes for ε = 0.1.

6.2 Weibel instability

Let us first consider the Weibel instability [36] with the 3D3V initial distribution

f(x,v, t = 0) = (1 + α cos(k · x))
1

(2π)
3
2vth1v2

th2

exp

(
−1

2

(
v2

1

v2
th1

+
v2

2 + v2
3

v2
th2

))
,

where x ∈ [0, L]3,v ∈ R3. The magnetic field is initially set to B(x, t = 0) = β cos(k ·x)e3

and E(x, t = 0) is calculated from Poisson’s equation. We choose the parameter as
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Figure 2: Weibel instability: Growth rate for magnetic field with time step ∆t = 0.05
and distortion parameter ε = 0.1.

vth1 = 0.02/
√

2, vth2 =
√

12vth1,k = (1.25, 0, 0)>, α = 0, L = 2π
1.25

and β = 10−3. For
the numerical resolution, we take 800, 000 particles, 16× 16× 2 grid cells, spline degrees
(3, 3, 1) and a time step of ∆t = 0.05 and for the iterative solver a tolerance of 10−13. The
tolerance for the non linear iteration in DisGradEC is set to 10−12. These parameters
are comparable to the 1D2V settings in [22]. However, β is chosen one magnitude larger
so that the initial growth of the magnetic field is higher than the effects caused by the
particle noise at the chosen resolution.

Figure 2a shows the magnetic field energy as a function of time for different propagators on
the orthogonal non uniform mesh and Figure 2b shows the same quantity on the distorted
mesh. In both cases, a 1D reference run with an explicit HS on Cartesian coordinates is
given for comparison using the 1D Weibel distribution from [22] with β = 10−3.

Next, we set the wave vector to k = (1.25, 1.25, 1.25)> and α = 0.1 so that we have
a perturbation in every x-component. For the numerical resolution, we take 1, 600, 000
particles, 8 grid cells in every direction and spline degrees (3, 3, 3). The other parameters
remain unchanged.

Now, we look at runs of the HS for different distortion parameters ε of the transformation.
We take ε = 0 as a reference and go from ε = 0.01 up to ε = 0.1 to study the effect of the
coordinate transformation. The time step is taken as ∆t = 0.01 to obey the CFL-condition
for all choices of ε. The initial distribution is sampled in logical coordinates. Hence, the
number of particles per cell is approximately constant. The larger the distortion of the
grid, the larger cells appear and parts of the domain become more and more underresolved
and the quality of the solution decreases. Note that the coordinate transformations which
we consider here are artificial with the goal to validate our method. Problem-specific
coordinate systems and sampling methods should be designed such that they yield a
resolution that is as homogeneous as possible.

In Figure 3a, we see that for decreasing ε the magnetic field growth rate converges to the
scaling case with ε = 0, which coincides with the run without transformation.

Now, we look at the conservation properties of our propagators. Therefore, the time step
is set to ∆t = 0.05 and the distortion parameter ε to 0.05 so that all methods run stably.

24



0 100 200 300 400 500
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

(a) Magnetic field energy

0 100 200 300 400 500

10
-10

10
-8

10
-6

10
-4

10
-2

(b) Error in total energy

Figure 3: Weibel instability on distorted mesh: HS with ∆t = 0.01 and different values
of the distortion parameter ε.

For the fully implicit step in DisGradEC we need on average 4 iterations per time step on
the Cartesian grid, 7 on the orthogonal non uniform mesh and 8 on the distorted mesh.

Table 1: Weibel instability: Maximum error in Gauss’ law and the total energy until time
500 for various integrators with ∆t = 0.05 and distortion parameter ε = 0.05 for the two
different mappings.

Method Cartesian Orthogonal Distorted

Gauss
HS 1.9 · 10−11 5.9 · 10−10 6.8 · 10−10

DisGradE 1.1 · 10−6 1.7 · 10−6 1.6 · 10−6

DisGradEC 3.8 · 10−13 6.4 · 10−10 8.6 · 10−10

Energy
HS 1.1 · 10−4 1.8 · 10−4 1.6 · 10−3

DisGradE 3.2 · 10−10 1.4 · 10−10 4.2 · 10−10

DisGradEC 6.0 · 10−12 1.6 · 10−10 4.2 · 10−10

In Table 1, we see the difference between the energy and the charge conserving methods.
As expected, the discrete gradient methods (DisGradE, DisGradCE) conserve the total
energy whereas for the HS method the energy is not conserved but the error is bounded
as can be seen in Figure 3b. As proven in Section 4, the charge conserving discrete
gradient method (DisGradCE) and the HS method conserve Gauss’ law. Note that all
the conservations are up to the tolerance of the solver times the condition number of the
mass matrices.

6.3 Strong Landau damping

We also study the electrostatic Landau damping with initial distribution

f(x,v, t = 0) = (1 + α cos(k · x))
1

(2π)
3
2v3
th

exp

(
−1

2

(
v2

v2
th

))
,x ∈ [0, L]3,v ∈ R3.

The magnetic field is set to zero and for the electrostatic setting Farady’s equation is
excluded. The electric field at initial time, E(x, t = 0), is calculated from Poisson’s
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Figure 4: Landau damping on distorted mesh: First component of electric energy with
time step ∆t = 0.05 and distortion parameter ε = 0.1 for the transformation.

equation. We choose the parameter as vth = 1,k = (0.5, 0, 0)>, α = 0.5, L = 2π
0.5

. For the
numerical resolution, we take 3, 200, 000 particles, 16 × 16 × 2 grid cells, spline degrees
(3, 3, 1) and a time step of ∆t = 0.05 and for the iterative solver a tolerance of 10−13. The
tolerance for the non linear iteration in DisGradEC is set to 10−12 which leads on average
to 6 iterations per time step on the Cartesian grid and 13 on the distorted mesh. These
parameters extend the 1D2V settings in [22] to the 3D3V phase space.

Figure 4 shows the electric energy for various integrators on the distorted mesh together
with a 1D reference run on the Cartesian grid. All propagators yield similar results which
fit with the damping and growth rate obtained from the 1D test case.

Table 2: Landau damping: Maximum error in Gauss’ law and the total energy until
time 500 for various integrators with ∆t = 0.05 and distortion parameter ε = 0.1 for the
mapping.

Gauss Energy
Method Cartesian Distorted Cartesian Distorted

HS 3.1 · 10−13 3.1 · 10−11 1.0 · 10−4 10.0 · 10−3

DisGradE 7.4 · 10−3 2.1 · 10−2 3.1 · 10−14 2.7 · 10−14

DisGradEC 2.5 · 10−13 3.5 · 10−11 1.4 · 10−13 1.3 · 10−14

From Table 2 it becomes obvious that the constructed conservation properties are satisfied
numerically.

7 Conclusions

We have derived a geometric particle-in-cell method in curvilinear geometry based on
a discretisation of the fields with finite element exterior calculus and a hybrid particle
pusher. Our formulation yields a semi discrete Poisson system that satisfies the Jacobi
identity. For the discretisation in time, we have considered both a variational integrator
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as well as energy-conserving time stepping schemes based on the discrete gradient method
and an antisymmetric splitting of the Poisson matrix.
In order to investigate the influence of the coordinate transformation, we have restricted
ourselves to test problems with periodic boundaries, where exact conservation is achieved.
However, in more realistic scenarios real boundary conditions apply and the energy balance
at the boundaries has to be considered. Moreover, singular points appear in toroidally
shaped domains, which require special treatment. Toshniwal et al. [33] have proposed
polar splines to solve this problem. However, this work cannot trivially be extended to
compatible finite element spaces. These aspects will be the topic of forthcoming work.
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