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ABSTRACT
Commonsense knowledge (CSK) about concepts and their prop-
erties is useful for AI applications such as robust chatbots. Prior
works like ConceptNet, TupleKB and others compiled large CSK
collections, but are restricted in their expressiveness to subject-
predicate-object (SPO) triples with simple concepts for S and mono-
lithic strings for P and O. Also, these projects have either prioritized
precision or recall, but hardly reconcile these complementary goals.
This paper presents a methodology, calledAscent, to automatically
build a large-scale knowledge base (KB) of CSK assertions, with
advanced expressiveness and both better precision and recall than
prior works. Ascent goes beyond triples by capturing composite
concepts with subgroups and aspects, and by refining assertions
with semantic facets. The latter are important to express temporal
and spatial validity of assertions and further qualifiers. Ascent
combines open information extraction with judicious cleaning us-
ing language models. Intrinsic evaluation shows the superior size
and quality of the Ascent KB, and an extrinsic evaluation for QA-
support tasks underlines the benefits of Ascent. A web interface,
data and code can be found at https://www.mpi-inf.mpg.de/ascent.
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1 INTRODUCTION
Motivation. Commonsense knowledge (CSK) is a long-standing
goal of AI [14, 26, 33]: equip machines with structured knowledge
about everyday concepts and their properties (e.g., elephants are
big and eat plants, buses carry passengers and drive on roads)
and about typical human behavior and emotions (e.g., children
love visiting zoos, children enter buses to go to school). In recent
years, research on automatic acquisition of CSK assertions has
been greatly advanced and several commonsense knowledge bases
(CSKBs) of considerable size have been constructed (see, e.g., [35,
46, 53, 55]). Use cases for CSK include particularly language-centric
tasks such as question answering and conversational systems (see,
e.g., [27, 28, 59]).

Examples: Question-answering systems often need CSK as back-
ground knowledge for robust answers. For example, when a child
asks “Which zoos have habitats for T-Rex dinosaurs?”, the system
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should point out that i) dinosaurs are extinct, and ii) can be seen in
museums, not in zoos. Dialogue systems should not just generate
plausible utterances from a language model, but should be situative,
understand metaphors and implicit contexts and avoid blunders.
For example, when a user says “tigers will soon join the dinosaurs”,
the machine should understand that this refers to an endangered
species rather than alive tigers invading museums.

The goal of this paper is to advance the automatic acquisition of
CSK assertions from online contents better expressiveness, higher
precision and wider coverage.

State of the Art and its Limitations. Large KBs like DBpedia,
Wikidata or Yago largely focus on encyclopedic knowledge on in-
dividual entities like people, places etc., and and are very sparse
on general concepts [24]. Notable projects that focus on CSK in-
clude ConceptNet [53], WebChild [55], Mosaic TupleKB [35] and
Quasimodo [46]. They are all based on SPO triples as knowledge
representation and have major shortcomings:
• Expressiveness for S: As subjects, prior CSKBs strongly focus
on simple concepts expressed by single nouns (e.g., elephant,
car, trunk). This misses semantic refinements (e.g., diesel car vs.
electric car) that lead to different properties (e.g., polluting vs.
green), and is also prone to word-sense disambiguation prob-
lems (e.g., elephant trunk vs. car trunk). Even when CSK acqui-
sition considers multi-word phrases, it still lacks the awareness
of semantic relations among concepts. Hypernymy lexicons
like WordNet or Wiktionary are also very sparse on multi-word
concepts. With these limitations, word-sense disambiguation
does not work robustly; prior attempts showed mixed results
at best (e.g., [35, 55]).

• Expressiveness for P and O: Predicates and objects are treated as
monolithic strings, such as
o A1: buses, [used for], [transporting people];
o A2: buses, [used for], [bringing children to school];
o A3: buses, [carry], [passengers];
o A4: buses, [drop], [visitors at the zoo on the weekend].

This misses the equivalence of assertions A1 and A3, and is
unable to capture the semantic relation between A1 and A2,
namely, A2 refining A1. Finally, the spatial facets of A2 and A4
are cluttered into unrelated strings, and the temporal facet in
A4 is not explicit either. The alternative of restricting P to a
small number of pre-specified predicates (e.g., [53, 55]) and O to
very short phrases comes at the cost of much lower coverage.

• Quality of CSK assertions: Some of the major CSKBs have priori-
tized precision (i.e., the validity of the assertions) but have fairly
limited coverage (e.g., [35, 53]. Others have wider coverage but
include many noisy if not implausible assertions (e.g., [46, 55]).
Very few have paid attention to the saliency of assertions, i.e.,
the degree to which statements are common knowledge, as
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opposed to merely capturing many assertions. Projects along
these lines (e.g., [47, 53]) fall short in coverage, though.

Ascent aims to overcome these limitations of prior works, while
retaining their positive characteristics. In particular, we aim to
reconcile high precision with wide coverage and saliency. Like [35,
46], we aim to acquire open assertions (as opposed to pre-specified
predicates only), but strive for more expressive representations by
refining subjects and capturing semantic facets of assertions.
Approach. We present the Ascent method for acquiring CSK
assertions with advanced semantics, from web contents. Ascent
operates in three phases: (i) source discovery, (ii) open information
extraction (OIE), (iii) automatic consolidation. In the first phase,
Ascent generates search queries for a given target concept such
as “star” to retrieve relevant pages. The queries include hypernyms
from lexicons such as WordNet, this way covers different meanings
of “star” while distinguishing results for “star (celebrity)” (with
hypernym “human”) vs. “star (celestial body)” (with hypernym
“natural object”). Results are further scrutinized by comparing, via
embedding similarity, against the respective Wikipedia articles. In
the second phase, Ascent collects OIE-style tuples by carefully
designed dependency-parse-based rules, taking into account asser-
tions for subgroups and aspects of target subjects, and increasing
recall by co-reference resolution. The extractors use cues from
prepositional phrases to detect semantic facets, and use supervised
classification for eight facet types. Finally, in the consolidation
phase, assertions are iteratively grouped and semantically organized
by an efficient combination of filtering based on fast word2vec sim-
ilarity, and classification based on a fine-tuned RoBERTa language
model.

We ran Ascent for 10,000 frequently used concepts as target
subjects. The resulting CSKB significantly outperforms automati-
cally built state-of-the-art CSK collections in salience and recall. In
addition, we performed an extrinsic evaluation in which common-
sense knowledge was used to support language models in question
answering. Ascent significantly outperformed language models
without context, and was consistently among the top-scoring KBs
in this evaluation.
Contributions. Salient contributions of this work are:
• introducing an expressive model for commonsense knowledge
with advanced semantics, with subgroups of subjects and faceted
assertions as first-class citizens;

• developing a fully automated methodology for populating the
model with high-quality CSK assertions by extraction from web
contents;

• constructing a large CSKB for 10,000 important concepts.
A web interface to the Ascent KB, along with downloadable data
and code is available at https://www.mpi-inf.mpg.de/ascent.

2 RELATEDWORK
Commonsense knowledge bases (CSKBs). CSK acquistion has
a long tradition in AI (e.g., [19, 26, 30, 51]). A few projects have
constructed large-scale collections that are publicly available. Con-
ceptNet [53] is the most prominent project on CSK acquisition.
Relying mostly on human crowdsourcing, it contains highly salient
information for a small number of pre-specified predicates (isa/type,

part-whole, used for, capable of, location of, plus lexical relations
such as synonymy, etymology, derived terms etc.), and this CSKB
is most widely used. However, it has limited coverage on many
concepts, and its ranking of assertions, based on the number of
crowdsourcing inputs, is very spares and unable to discriminate
salient properties against atypical or exotic ones (e.g., listing trees,
gardens and the bible as locations of snakes, with similar scores).
ConceptNet does not properly disambiguate concepts, leading to
incorrect assertion chains like ⟨elephant, hasPart, trunk⟩; ⟨trunk,
locationOf, spare tire⟩.

WebChild [55], TupleKB [35] and Quasimodo [46] devised fully
automated methods for CSKB construction. They use judiciously
selected text corpora (incl. book n-grams, image tags, QA forums)
to extract large amounts of SPO triples. WebChild builds on hand-
crafted extraction patterns, and TupleKB and Quasimodo rely on
open information extraction with subsequent cleaning. All three
are limited to SPO triples.

Recently, TransOMCS [60] has harnessed statistics about prefer-
ential attachment to convert a large linguistic collection of patterns
into a CSKB of SPO triples with a pre-specified set of predicates. It
uses Transformer-based neural learning for plausibility scoring.

We adopt the idea of using search engines for source discov-
ery and open information extraction (OIE). Our novelty for source
discovery lies in generating better focused queries and scrutiniz-
ing candidate documents against reference Wikipedia articles. For
extraction, we extend OIE to capture expressive facets and also
multi-word compounds as subjects. Multi-word compounds enable
a higher recall on salient assertions, as well as avoiding common
disambiguation errors.

Taxonomy and meronymy induction. The organization of
concepts in terms of subclass and part-whole relationships, termed
hypernymy and meronymy, has received great attention in NLP
and web mining (e.g., [13, 17, 22, 40, 41, 44, 52, 58]). The hand-
crafted WordNet lexicon [34] organizes over 100k synonym sets
with respect to these relationships, although meronymy is sparsely
populated.

Recent methods for large-scale taxonomy induction from web
sources include WebIsADB [22, 49] building on Hearst patterns and
other techniques, and the industrial GIANT ontology [29] based on
neural learning from user-action logs and other sources.

Meronymy induction at large scale has been addressed by [1,
2, 56] with pre-specified and automatically learned patterns for
refined relations like physical-part-of, member-of and substance-of.

Our approach includes relations of both kinds, by extracting
knowledge about salient subgroups and aspects of subjects. In con-
trast to typical taxonomies and part-whole collections, our sub-
groups include many multi-word phrases: composite noun phrases
(e.g., “circus lion”, “lion pride”) and adjectival and verbal phrases
(e.g., “male lion”, “roaring lion”). Aspects cover additional refine-
ments of subjects that do not fall under taxonomy or meronymy
(e.g., “lion habitat” or “lion’s prey”).

Expressive knowledge representation and extraction. Modal-
ities such as always, often, rarely, never have a long tradition
in AI research (e.g., [16]), based on various kinds of modal logics or
semantic frame representations, and semantic web formalisms can
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capture context using e.g., RDF* or reification [23]. While such ex-
pressive knowledge representations have been around for decades,
there has hardly been any work that populated KBs with such re-
fined models, notable exceptions being the Knext project [48] at
small scale, and OntoSenticNet [11] with focus on affective valence
annotations.

Other projects have pursued different kinds of contextualizations
for CSK extraction, notably [61], which scored natural language
sentences on an ordinal scale covering the spectrum very likely,
likely, plausible, technically possible and impossible, Chen et al. [6]
with probabilistic scores, and the Dice project [5] which ranked as-
sertions along the dimensions of plausibility, typicality and saliency.

Semantic role labelling (SRL) is a representation and method-
ology where sentences are mapped onto frames (often for certain
types of events) and respective slots (e.g., agent, participant, instru-
ment) are filled with values extracted from the input text [8, 39, 54].
Recently, this paradigm has been extended towards facet-based
open information extraction, where extracted tuples are qualified
with semantic facets like location and mode [4, 45]. Ascent builds
on this general approach, but extends it in various ways geared
for the case of CSK: focusing on specifically relevant facets, refin-
ing subjects by subgroups and aspects, and aiming to reconcile
precision and coverage for concepts as target subjects.

Pre-trained language models. Recently, there has been great
progress on pre-trained language models (LMs) like BERT and GPT
[3, 10]. In Ascent we make use of such language models, utilizing
them to cluster semantically similar phrases in order to reduce
redundancy and group related assertions. We also use LMs in the
extrinsic evaluation for question answering, showing that priming
LMs with structured knowledge from CSKBs can greatly improve
performance (cf. also [42]).

3 MODEL AND ARCHITECTURE
3.1 Knowledge Model
Existing CSKBs typically follow a triple-based data model, where
subjects are linked via predicate phrases to object words or phrases.
Typical examples, from ConceptNet, are ⟨bus, usedFor, travel⟩ and
⟨bus, usedFor, not taking the subway⟩. Few projects [35, 55] have
attempted to sharpen such assertions by word sense disambigua-
tion (WSD) [36], distinguishing, for example, buses on the road
from computer buses. Likewise, only few projects [5, 20, 46, 61],
have tried to identify salient assertions against correct ones that
are unspecific, atypical or even misleading (e.g., buses used for
avoiding the subway or used for enjoying the scenery). We extend
this prevalent paradigm in two major ways.

Expressive subjects. CSK acquisition starts by collecting asser-
tions for target subjects, which are usually single nouns. This has
two handicaps: 1) it conflates different meanings for the same word,
and 2) it misses out on refinements and variants of word senses.
While word sense disambiguation (WSD) has been tried to over-
come the first issue [35, 55], it has been inherently limited because
the underlying word-sense lexicons, like WordNet and Wiktionary,
mostly restrict themselves to single nouns. For example, phrases
like “city bus” or “tourist bus” are not present at all.

Our approach to rectify this problem is twofold:

• First, our source discovery method combines the target subject
with an informative hypernym (using WordNet, applied to sin-
gle nouns or head words in phrases). For example, instead of
searching with the semantically overloaded word “bus”, we gen-
erate queries “bus public transport” and “bus network topology”
to disentangle the different senses.

• Second, when extracting candidates for assertions from the
retrieved web pages, we capture also multi-word phrases as
candidates for refined subjects, such as “school bus”, “city bus”,
“tourist bus”, “circus elephant”, “elephant cow”, “domesticated
elephant”, etc. This way, we can acquire isa-like refinements,
to create subgroups of broader subjects, and also other kinds
of aspects that are relevant to the general concept. An example
for the latter would be “bus driver” or, for the target subject
“elephant”, phrases such as “elephant tusk”, “elephant habitat”
or “elephant keeper”.
Our notion of subgroups can be thought of as an inverse isa

relation. It goes beyond traditional taxonomies by better coverage
of multi-word composites (e.g., “circus elephant”). This allows us
to better represent specialized assertions such as ⟨circus elephants,
catch, balls⟩.

Our notion of aspects includes part-whole relations (partOf, mem-
berOf, substanceOf) [2, 17, 50, 56], but also further aspects that do
not fall under the themes of hypernymy or meronymy. Examples
are “elephant habitat”, “bus accident”, etc. Note that, unlike single
nouns, such compound phrases are rarely ambiguous, so we have
crisp concepts without the need for explicit WSD.
Semantic facets. For CSK, assertion validity depends often on
specific temporal and spatial circumstances, e.g., elephants scare
away lions only in Africa, or bathe in rivers only during daytime.
Furthermore, assertions often become crisper by contextualization
in terms of causes/effects and instruments (e.g., children ride the
bus . . . to go to school, circus elephants catch balls . . .with their
trunks).

To incorporate such information into an expressive model, we
choose to contextualize subject-predicate-object triples with se-
mantic facets. To this end, we build on ideas from research on
semantic role labeling (SRL) [8, 39, 54]. This line of research has
originally been devised to fill hand-crafted frames (e.g., purchase)
with values for frame-specific roles (e.g., buyer, goods, price etc.).
We start with a set of 35 labels proposed in [45], a combination
of those in the Illinois Curator SRL [8] and 22 hand-crafted ones
derived from an analysis of semantic roles of prepositions in Wik-
tionary (https://en.wiktionary.org/). As many of these are very
special, we condense them into eight widely useful roles that are
of relevance for CSK: 4 that qualify the validity of assertions (de-
gree, location, temporal, other-quality), and 4 that capture other
dimensions of context (cause, manner, purpose, transitive objects).

These design considerations lead us to the following knowledge
model.

Definition [Commonsense Assertion]:
Let C0 be a set of primary concepts of interest, which could be
manually defined or taken from a dictionary.
Subjects for assertions include all s0 ∈ C0 as well as judiciously
selected multi-word phrases that contain some s0.
Subjects are interrelated by subgroup and aspect relations: each s0
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Figure 1: Example of Ascent’s knowledge for the concept elephant. The data model of traditional CSKBs like ConceptNet is
restricted to assertions outside the green box.

can be refined by a set of subgroup subjects denoted sд(s0), and by
a set of aspect subjects denoted asp(s0). The overall set of subjects
is C := C0 ∪ sдC0 ∪ aspC0 .
A commonsense assertion for s ∈ C is a quadruple ⟨s, p, o, F⟩ with
single-noun or noun-phrase subject s , short phrases for predicate p
and object o and a set F of semantic facets. Each facet (k,v) ∈ F is a
key-value pair with one of eight possible keys k and a short phrase
as v . Note that a single assertion can have multiple key-value pairs
with the same key (e.g., different spatial phrases). □

An example of assertions for s0 = elephant is shown in Fig. 1.

3.2 Extraction Architecture

Design considerations. CSK collection has three major design
points: (i) the choice of sources, (ii) the choice of the extraction tech-
niques, and (iii) the choice of cleaning or consoliding the extracting
candidate assertions.

As sources, most prior works carefully selected high-quality in-
put sources, including book n-grams [55], concept definitions in
encyclopedic sources, and school text corpora about science [7].
These are often a limiting factor in the KB coverage. Moreover,
even seemingly clean texts like book n-grams come with a surpris-
ingly high level of noise and bias (cf. [18]). Focused queries for
retrieving suitable web pages were used by [35], but the query for-
mulations required non-negligible effort. Query auto-completion
and question-answering forums were tapped by Quasimodo [46].
While this gave access to highly salient assertions, it was, at the
same time, adversely affected by heavily biased and sensational
contents (e.g., search-engine auto-completion for “snakes eat” sug-
gesting “. . . themselves” and “. . . children”). In Ascent we opt for
using search engines for wide coverage, and devise techniques for
quality assurance.

For the extraction techniques, choices range from co-occurrence-
and pattern-based methods (e.g., [12]) and open information extrac-
tion (OIE) (e.g., [35, 46]) to supervised learning for classification and
sequence tagging. Co-occurrence works well for a few pre-specified,
clearly distinguished predicates, using distant seeds. Supervised

extractors require training data for each predicate, and thus have
the same limitation. Recent approaches, therefore, prefer OIE tech-
niques, and the Ascent extractors follow this trend, too.

For knowledge consolidation, early approaches simply kept all as-
sertions from the ingest process (e.g., crowdsourcing [53]), whereas
recent projects employed supervised classifiers or rankers for clean-
ing [5, 35, 46], and also limited forms of clustering [35, 46] for
canonicalization (taming semantic redundancy). In Ascent, the
careful source selection already eliminates certain kinds of noise,
rendering extraction frequency statistics a much better signal than
in earlier works. Therefore, we focus on reinforcing these signals
for consolidation, based on clustering with contextual language
models for informative similarity measures.

Approach. The Ascent method operates in three phases (illus-
trated in Fig. 2):
1. Source discovery:

1a. Retrieval of web pages from search engines with specifically
generated queries;

1b. Filtering of result pages based on similarity to Wikipedia
reference articles.

2. Extraction of assertions with subgroups, aspects and facets:
2a. OIE for rule-based extraction using dependency-parsing

patterns;
2b. Labeling of semantic facets by supervised classifier.

3. Clustering of assertions based on contextualized embeddings.
The following section elaborates on these steps.

4 METHODOLOGY
4.1 Relevant Document Retrieval

Web search. We use targeted web search to obtain documents
specific to each subject, this way aiming to reduce the noise from
out-of-context concept mentions, and the processing of large collec-
tions of mostly irrelevant documents, like encountered for instance
in general web crawls. This is especially relevant as we later utilize
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Figure 2: Architecture of our extraction pipeline.

coreference resolution, which is by itself a source of additional
noise. Specifically, we utilize the Bing Web Search API.

Given a concept s0, we first map it to a corresponding Word-
Net synset by taking the synset with the most lemma names, and
use its hypernyms to refine search queries. For example, if s0 has
hypernym animal.n.01 then its search query is “s0 animal facts”,
or if s0 has hypernym professional.n.01 then its search query is “s0
job descriptions”, etc. We have manually designed templates for
35 commonly encountered hypernyms. These cover 82.5% of our
subjects. When none of the templates can be applied, we default
to the direct hypernym of s0 and form the following search query:
“s0 (hypernym)”. Below we provide an example of search query for
the animal lynx whose WordNet synset is lynx.n.02, and a few top
results returned by Bing.

Query: lynx animal facts
Top 5 results:
• Lynx | National Geographic
• Interesting facts about lynx | Just Fun Facts
• Lynx Facts | Softschools.com
• Facts About Bobcats & Other Lynx | Live Science
• Lynx | Wikipedia

Document filtering. Commercial search engines give us the ben-
efit that (near-)duplicates, e.g., copies from Wikipedia, are well
detected and ranked lower. At the same time, the search engine
goal of diversification may introduce spurious results, despite our
efforts with the search query refinement. This is exacerbated by
our interest to obtain large sets of articles. We therefore propose
a filter to remove irrelevant results. Given a subject s0, we use
the Bing API to retrieve 500 websites. For each website, we use a
popular article scraping library1 to scrape its main content. Next,
each retrieved document is compared with a Wikipedia reference
article by the cosine similarity of the bag of words of both pages. As
Wikipedia reference, we leverage the WordNet-Wikipedia pairings
of BabelNet [37] and the resource by [15] as the first fallback. If both
resources do not contain the desired WordNet synset, we simply
pick the first Wikipedia article appearing in the search result. After
this, only documents with similarity higher than 0.55 (chosen based
on tuning on withheld data) are retained.

1https://github.com/codelucas/newspaper

4.2 Knowledge Extraction
To enable the extraction of diverse pieces of information, our extrac-
tion step relies on open information extraction [32, 38]. Similarly,
as open assertions typically follow a general grammatical structure,
we utilize dependency-path-based rules to identify extractions. We
also rely on rules to identify aspects via possessive constructions,
and subgroups via compound nouns. For assigning facets to se-
mantic groups, we use supervised models, as the set of facets is
small.

Rule-based statement extraction. Our open information ex-
traction (OIE) method builts upon the StuffIE approach [45], a series
of hand-crafted dependency-parse-based rules to extract triples and
facets. The core ideas are to consider each verb as a candidate pred-
icate of an assertion, and to identify subjects, objects and facets via
grammatical relations, so-called dependency paths. The elaboration
below uses the Clear style format (http://www.clearnlp.com), as
used by the spaCy dependency parser:

• Subjects are captured based on dependencies of the type
subject (nsubj, nsubjpass and csubj) and adjectival clauses
(acl). If no subject is found, the parent verb of the predicate
identified through adverbial clausemodifier (advcl) and open
clausal complement (xcomp) edges is used to identify subjects.

• Dependency edges used to find objects are direct object
(dobj), indirect object (iobj), nominal modifier (nmod), clausal
complement (ccomp) and adverbial clause modifier (advcl).

• Once a triple has been formed, its constituents are com-
pleted by expanding their head words with related words via
various dependency edges. For compound predicates, these
include xcomp, auxpass, mwe, advmod. For compound subjects
and objects, they are compound, nummod, det, advmod, amod.

• Finally, facets of a verb are identified through the following
complements to the given verb: adverb modifier, preposi-
tional and clausal complement.

We extend StuffIE’s algorithm in the following ways:

(1) The original algorithm includes all conjuncts of head words
into one assertion, thus producing often overly specific asser-
tions. In our method we break conjunctive objects (Table 1,
row 1) and facets (Table 1, row 2) into separate assertions.
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No. Sentence StuffIE [45] Ascent OIE extractor

1 They eat ptarmigans, voles, and grouse. (1) They; eat; ptarmigans, voles, and grouse
(1) They; eat; ptarmigans
(2) They; eat; voles
(3) They; eat; grouse

2 Lynx are active during evening and early morning. (1) Lynx; are; active
(1.1) TEMPORAL: during evening and early morning

(1) Lynx; are; active
(1.1) TEMPORAL: during evening
(1.2) TEMPORAL: during early morning

3 Lions live for 20 years in captivity.
(1) Lions; live;_
(1.1) PURPOSE: for 20 years
(1.2) LOCATION: in captivity

(1) Lions; live; for 20 years
(1.1) LOCATION: in captivity

4 Lions hunt many animals, such as gnus and antelopes. (1) Lions; hunt; many animals, such as gnus and antelopes. (1) Lions; hunt; gnus
(2) Lions; hunt; antelopes

5 Dogs are extremely smart. (1) Dogs; are; extremely smart (1) Dogs; are; smart
(1.1) DEGREE: extremely

6 Elephants are extremely good swimmers. (1) Elephants; are; extremely good swimmers (1) Elephants; are; good swimmers
(1.1) DEGREE: extremely

Table 1: Comparison of outputs returned by our OIE method and StuffIE.

Note that conjuncts should be connected by either “and” or
“or”.

(2) The original algorithm frequently returns assertions with
empty objects. To only return complete triples, in such cases,
we identify the nearest prepositional facet after its predicate
and convert the facet into the assertion’s object (Table 1, row
3).

(3) We post-process special cases of sentences used for giving
examples with the words: “like”, “such as” and “including” to
get finer-grained output (Table 1, row 4).

(4) We convert all adverb modifiers of objects (besides those of
predicates as in StuffIE) into facets. There are two types of
modifiers we consider: (i) direct adverb modifiers connected
to object’s head word through the edge advmod (Table 1, row
5); (ii) the adverb in a noun phrase that follows the pattern
“adverb + adjective + object” (Table 1, row 6).

Table 1 gives a qualitative comparison of StuffIE’s and our extraction
results, while in the experiment section (Table 10) we investigate
their quantitative differences.
Subject and predicate postprocessing. After OIE, we perform
coreference resolution2 on paragraph level to resolve nominative
pronouns occuring as subjects. For instance, the primarily extracted
assertion ⟨they, have, long trunks⟩ will be replaced by ⟨the elephants,
have, long trunks⟩ if “they” is resolved to “the elephants”. This step
helps improve the number of assertions extracted for each concept.
Then, all subjects are normalized by removing determiners and
punctuation, and by lemmatizing head nouns. Moreover, predicates
are normalized so that main verbs are transformed to their infinite
forms (e.g., “has been found in” → “be found in”, “is performing”
→ “perform”). Finally all extracted facet words are removed from
predicates and objects.
Facet type labeling. The extraction algorithm so far extracts
facet values, but is unaware of their semantic type (e.g., “spatial” or
“causal”). For assigning semantic types, we fine-tune a RoBERTa [31]
model to classify each facet into one of the aforementioned eight
types. The input sequences of RoBERTa take the form: “[CLS]

2https://huggingface.co/coref

subject [PRED] predicate [OBJ] object [FCT] facet [SEP]”, where
[PRED], [OBJ] and [FCT] are special tokens used for marking the
borders between different elements. The output vector of the [CLS]
token is then passed to a fully-connected layer stacked with a soft-
max layer on top of the transformer architecture to label the facet.
Details on classifier training are in Section 5.5.

Extraction of subgroups. Subgroups could be sub-species in
case of animals, or refer to the target concept in different states,
such as “hunting cheetah” and “retired policeman”. For subject s0,
we collect all noun chunks (normalized as for triple subjects de-
scribed above) ending with s0 or any of its WordNet lemmas as
potential candidates. Semantically similar chunks, such as “Cana-
dian lynx” and “Canada lynx”, are then grouped using hierarchical
agglomerative clustering (HAC) on average word2vec representa-
tions.In addition, we leverage WordNet to distinguish antonyms,
with which vector space embeddings typically struggle. Note that
the subgroups are restricted to be less-than-5-words, and subgroups
that syntactically contain other subgroups are disregarded (e.g., “old
male Canadian lynx” is grouped with “Canadian lynx”). In addition,
a chunk will be ignored if it is a named entity (e.g., “Will Smith” for
the concept “smith”). Finally we use WordNet hyponyms to remove
spurious subgroups, e.g., “sea lion” and “ant lion” w.r.t. “lion”.

Extraction of related aspects. Given subject s0 and its WordNet
lemmas Ls0 , related aspects of the subject are extracted from noun
chunks collected from two sources:

(i) Possessive noun chunks where the possessives refer to any
lemma in Ls0 , for example, “elephant’s diet” and “their diet”
(with resolution to “elephant”);

(ii) ⟨s , p, noun chunk⟩ triples where s ∈ Ls0 and p is one of the
following verb phrases: “have”, “contain”, “be assembled of”
or “be composed of”.

In order to prevent too specific aspects (e.g., “large paws” or “short
tails”), only compound nouns (if applicable) or nouns in these noun
chunks are then extracted as aspects of s0. For example, if we observe
⟨lynx, have, black ear tuft⟩, then the adjective “black” is ignored
and “ear tuft” will be extracted instead of only extracting the head
noun “tuft”.
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Retained assertions. For each primary subject, a separate set of
documents is processed, and the output of this stage are three sets
of assertions: Assertions for the primary subject s0, assertions for
its subgroups, and assertions for its aspects. These are selected as
follows.

As assertions for the main subject and its subgroups we simply
retain all assertions that have a subject that matches a WordNet
lemma of the primary subject, or the name of one of its subgroups.

The case of aspect assertions is slightly more complex, we merge
three cases:

(1) Assertions that have a subject which is among the previously
identified aspects;

(2) Assertions that have a subject among the lemmas of the main
subject, and an object which is a noun chunk consisting of an
aspect t ∈ asps0 as the head noun and an adjectival modifier
adj of t . For instance, from the assertion ⟨elephant, have,
a long very trunk⟩ we infer that ⟨elephant trunk, be, long,
DEGREE: very⟩.

(3) All noun chunks that follow the pattern “possessive + adj +
t” (e.g., “elephant’s long trunks”), where possessive refers
to any lemma in Ls0 , adj is an adjectival modifier of t , and
t ∈ asps0 .

Results from the latter two cases are transformed into ⟨t, be, adj, F⟩
assertions where the facets F are extracted from adverb modifiers
of adj.

4.3 Knowledge Consolidation
Natural language is rich in paraphrases, and consequently, the
extraction pipeline so far produces frequently assertions that carry
the same or nearly the same meaning. Identifying and clustering
such assertions is necessary, in order to avoid redundancies, and
get better frequency signals for individual assertions.
Triple clustering. Because extraction is done for each concept
separately, we only need to cluster predicate-object pairs. First, we
train a RoBERTamodel to detect if two given triples are semantically
similar (for setup details see Sec. 5.5). Confidence scores given by the
model are then used to compute distances for the HAC algorithm to
group assertions into clusters. Given two assertions ⟨s,p1,o1⟩ and
⟨s,p2,o2⟩, the input sentence given to RoBERTa is: “[CLS] [SUBJ] p1
[U-SEP] o1 [SEP] [SUBJ]p2 [U-SEP] o2 [SEP]”, where [SUBJ] and [U-
SEP] are new special tokens introduced to replace identical subjects
and mark the borders between predicates and objects, respectively.
The output vector of the [CLS] token is used for the classification
purpose in the same way as in the model used for facet labeling
described above.

Ideally one would compute the full distance matrix between all
assertions (an n × n matrix for n triples), but given that pretrained
language models (LM) are exceedingly resource-intensive, this qua-
dratic computation would be expensive even for moderate assertion
sets. We therefore reduce the computational effort by pre-filtering
the set of pairs to be compared by the pretrained LM.

(1) The assertions are sorted in decreasing order of frequency.
(2) We compute cosine similarities between vector representa-

tions of predicate-object pairs, using word2vec embeddings.
This can be done very fast with parallel matrix multiplica-
tion.

(3) For each assertion ai , we then only compute the RoBERTa-
based distanceswith the top-k most similar assertions (ranked
by word2vec-based similarities) that succeed ai in the sorted
list (the sorted list helps us focus on salient assertions). All
other pairs get the distance of 1.0. This produces a “sparse”
distance matrix for n assertions.

(4) For clustering, we use the HAC algorithmwith single linkage,
because it only looks at the most similar pairs between two
clusters. That helps to reduce the chance of missing similar
triples whose similarities were not computed by RoBERTa
in the third step.

After clustering, the most frequent assertion inside each cluster is
used as representative.
Facet value clustering. Facet values may similarly exhibit redun-
dancy, for example, the degree facet may come with values “often”,
“frequently”, “mostly”, “regularly”, etc. Also, sources may occasion-
ally mention odd values. We combat both by clustering facet values
per facet type, and retaining only the one with strongest support.

Considering the small number of facet values per assertion and
facet type (usually less than 5), we utilize simple methods for cluster-
ing. Specifically, given the list of values, we use the HAC algorithm
to cluster values which are adverbs, in which distance between
two values is measured by the cosine distance of their word2vec
presentations. Other values are grouped if they have the same head
word (e.g., “during evening” and “in the evening” go to one same
cluster). Similarly, the most frequent value inside a cluster is used
as representative of that cluster.

5 EXPERIMENTS
The evaluation of Ascent is centered on three research questions:

• RQ1: Is the resulting CSKB of higher quality than existing
resources?

• RQ2: Does (structured) CSK help in extrinsic use cases?
• RQ3:What is the quality and extrinsic value of facets?

We first present the implementation of Ascent, then discuss each
of these research questions in its own subsection.

5.1 Implementation
We executed the pipeline for the 10,000 most popular subjects
in ConceptNet (ranked by number of assertions). The execution
of took a total of 10 days, of which about 5 days were spent on
website crawling, 3 days on statement extraction, and 2 days on
clustering. For each subject, we used the Bing Search API to retrieve
500 websites. The resulting CSKB contains 3,693,990 assertions
for these primary subjects, and 1,768,538 assertions for 280,970
subgroups and 3,349,198 for 92,038 aspects. On average, half of all
assertions have a facet (see Table 2).

In Table 3, we show statistics of our CSKB in comparison with
popular existing resources. For comparability, we report statistics
on a sample of 50 popular animals and 50 popular occupations
introduced in [46], in addition to 50 popular concepts in the engi-
neering domain collected using Wiktionary word frequencies (e.g.,
car, bus, computer, phone, etc.). For statistics, subgroups are col-
lected through hyponyms (WordNet) and relation IsA (ConceptNet
and TupleKB). Aspects are collected via part meronyms (WordNet),
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Subject type #s #spo #facets

Primary 10,000 3,693,990 2,169,119
Subgroup 280,970 1,768,538 944,124
Aspect 92,038 3,349,198 1,467,159
All 382,555 8,562,593 4,425,628

Table 2: Statistics of Ascent KB.

Resource #s #spo #facets #subgroups #aspects

WordNet [34] 150 - - 1,472 229
WebChild [55] 150 178,073 - - 47,171
ConceptNet [53] 150 7,313 - 7,239 368
TupleKB [35] 133 23,106 - 231 2,302
Quasimodo [46] 150 137,880 - - 563
GenericsKB [1] 150 192,075 - - -
Ascent 150 132,070 80,717 10,026 5,843
Ascentsд 8,251 110,631 64,449 - -
Ascentasp 5,618 169,770 74,449 - -

Table 3: Statistics of different resources on top 50 subjects
for three domains: animals, occupations, engineering.

relation PartOf (ConceptNet), hasPart (TupleKB), hasPhysicalPart
(WebChild) and hasBodyPart (Quasimodo). We divide the statistics
of our KB into three categories: general assertions (Ascent), sub-
group assertions (Ascentsд ) and aspect assertions (Ascentasp ).
Table 3 shows that Ascent, among all resources, is the only one
which conveys qualitative facets besides triples. Ascent also ex-
tracts a considerable amount of assertions for the primary subjects.
In addition, Ascent has the capability to extend the 150 primary
subjects to 13,869 subgroups and related aspects, approximately
tripling the number of the extracted assertions. We extract more
subgroups than any other KB. Regarding aspects we are only out-
performed by WebChild, which includes many uninformative and
rather “exotic” part-of triples (e.g., teacher has cell, lion has facial
vein).

5.2 Intrinsic Evaluation
To investigate RQ1, we instantiate quality with the standard notions
of precision and recall, splitting precision further up into the dimen-
sions of typicality and salience, measuring this way the degree of
truth, and the degree of relevance of assertions (cf. [46]). Typicality
states that an assertion holds for most instances of a concept. For
example, elephants using their trunk is typical, whereas elephants
drinking milk holds only for baby elephants. Salience refers to the
human perspective of whether an assertion is associated with a
concept by most humans more or less on first thought. For example,
elephants having trunks is salient, whereas elephants killing their
mahouts (trainers) is not.
Assertion precision. Unlike for encyclopedic knowledge (“The
Lion King” was either produced by Disney, or it wasn’t), precision
of CSK is generally not a binary concept, calling for more refined
evaluation metrics. We follow the Quasimodo project [46] which
assessed typicality and salience. Given a CSK triple, annotators on
Amazon MTurk are asked to evaluate each of the two aspects on
a scale from 1 (lowest) to 5 (highest). We use the same sampling

setup as proposed in [46]: for each KB (i.e., Ascent and the prior
CSKBs), create a pool that contains the 5 top-ranked triples of each
of a selected set of subjects, then randomly sample 50 triples from
this pool. In addition, specifically for our KB, we create a pool from
top-5 ranked subgroup assertions of each subject, then also draw
50 random triples from the pool for evaluation, which is reported
as Ascentsд . The same sampling process is applied for aspect as-
sertions in our KB, which is reported as Ascentasp . Each triple is
evaluated by three different crowd-workers. We iteratively evaluate
triple quality for three sets of 50 subjects of three domains: animals,
occupations and engineering, respectively. We report the aggre-
gated results in Fig. 3a. Among the automatically-constructed KBs
(i.e., except for ConceptNet), our KB has the most salient assertions
while demonstrating competitive quality when it comes to typical-
ity. These results indicate that our source selection, filtering and
extraction scheme allows to pull out important assertions better
than other CSKBs.

Assertion recall. Evaluating recall requires a notion of ground
truth. For this purpose, we use crowdsourcing-based phrases from
humans collected by Quasimodo [46]: 2,400 free association sen-
tences for 50 occupations and 50 animals. We also evaluate using
the same metrics, strict and relaxed sentence-assertion match. In
the relaxed mode, we measure the fraction of tokens, from the
human-written phrase, that are contained in some KB triples for
the corresponding subject. In the strict mode, we only consider
statements where P, O or PO is exactly found in the human-written
phrase, and measure the fraction of matching characters vs. the to-
tal length of the human-written phrase. To match natural language
with KB predicates, we use generic translations (e.g., hasProperty→
is, hasPhysicalPart → has, is-part-of → is part of, etc.). The evalua-
tion results can be seen in Fig. 3b. We observe that Ascent captures
a significantly higher fraction of the ground-truth assertions pro-
vided by crowd workers than any of the other CSKBs. When we
limit CSKBs to their top-10 ranked triples for each subject, Ascent
outperforms all other KBs in the strict mode and is the second-best
after ConceptNet, which is the only one that was constructed man-
ually, in the relaxed mode. This result affirms that our top-ranked
assertions have high quality compared to other CSKBs.

Subgroups and aspects. We compare Ascent subgroup entries
to the manually created ConceptNet, and against a comprehensive
taxonomy, WebIsALOD [22], automatically built by applying 58
Hearst-style extraction patterns to the Common Crawl corpus. For
a random sample of 500 subgroup entries per resource, we manu-
ally found an average precision of 5.6% for WebIsALOD, 83.4% for
ConceptNet, and 92.0% for Ascent (note that we manually filtered
out instances in WebIsALOD’s entries). Our precision significantly
outperforms WebIsALOD, and is even better than the manually
constructed ConceptNet. At the same time, it is worth to point out
that our approach misses out on subgroups that do not lexically
contain the main subject, e.g., “panda” as subgroup of “bear”.

We compare aspects against two resources: hasPartKB [2] and
predictions made by masked language models (LMs). As neural-
embedding LM, we use RoBERTa-Large and follow the idea of [57]
to ask the LM to predict the missing word in the sentence “Everyone
knows that <subject> has <?>.” We use the human-generated CSLB
concept property norm dataset [9] as ground truth, retaining only
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Figure 3: Precision and recall assessment of different CSKBs.

concept property norm dataset [9] as ground truth, retaining only
headwords to allow a fair comparison with the masked prediction
that produces only a single token. Since Ascent contains a wider
range of aspects than just physical parts as in hasPartKB and the
CSLB dataset, we use recall@𝑘 as the metrics for this evaluation,
focusing on the top-5 terms from CSLB. Considering the top-5,
top-10 and top-20 assertions per KB/LM, Ascent achieves recall@5
of 0.27, 0.41, 0.53, compared with hasPartKB at 0.13, 0.22, 0.35,
and RoBERTa-Large at 0.29, 0.41, 0.51. Thus, Ascent considerably
outperforms hasPartKB in this setup, and performs on par with
state-of-the-art language models.

5.3 Extrinsic Evaluation
To answer RQ2, we conduct a comprehensive evaluation of the
contribution of commonsense knowledge to question answering
(QA) via four different setups, all based on the idea of priming
pre-trained LMs with context [21, 42]:

(1) In masked prediction (MP) [43], we ask language models to
predict single tokens in generic sentences.

(2) In free generation (FG), we provide only questions, and let
LMs generate arbitrary answer sentences.

(3) In guided generation (GG), LMs are provided with an answer
sentence prefix. This provides a middle ground between
the previous two setups, allowing multi-token answers, but
avoiding some overly evasive answers.

(4) In span prediction (SP), LMs select best answers from pro-
vided content [25].

We illustrate all settings in Table 4. In all settings, LMs are provided
with context in the form of assertions taken from either Concept-
Net, TupleKB, Quasimodo, GenericsKB or Ascent. These setups
are motivated by the observation that priming language models
with context can significantly influence their predictions [21, 42].
Previous works on language model priming mostly focused on eval-
uating retrieval strategies. In contrast, our comprehensive test suite

Setting Input Sample output

MP Elephants eat [MASK]. [SEP] Elephants eat roots,
grasses, fruit, and bark, and they eat a lot of these
things.

everything (15.52%), trees
(15.32%), plants (11.26%)

FG

C: Elephants eat roots, grasses, fruit, and bark, and
they eat a lot of these things.

They eat a lot of grasses,
fruits, and trees.

Q: What do elephants eat?
A:

GG

C: Elephants eat roots, grasses, fruit, and bark, and
they eat a lot of these things.

Elephants eat a lot of things.

Q: What do elephants eat?
A: Elephants eat

SP
question=“What do elephants eat?” start=14, end=46,
context=“Elephants eat roots, grasses, fruit, and
bark, and they eat a lot of these things.”

answer=“roots, grasses, fruit,
and bark”

Table 4: Examples of 4 QA settings (MP - masked predic-
tion, FG - free generation, GG - guided generation, SP - span
prediction). Sample output was given by RoBERTa (for MP),
GPT-2 (for FG and GG) and ALBERT (for SP).

focuses on the impact of utilizing different CSK resources, while
leaving the retrieval component constant.

Masked prediction is perhaps the best researched problem, com-
ing with the advantage of allowing automated evaluation, although
automated evaluation may unfairly discount sensible alternative
answers. Also, masked prediction is limited to single tokens. Free
generations circumvent this restriction, although they necessitate
human annotations, and are prone to evasive answers. They are
thus well complemented by extractive answering schemes, which
limit the language models abstraction abilities, but provide the
cleanest way to evaluate the context alone.
Models. Following standard usage, we use RoBERTa-Large for
masked prediction, the autoregressive GPT-2 for the two generative
setups, and ALBERT-xxlarge [25], fine-tuned on SQuAD 2.0 for
span prediction.
Context retrievalmethod. Given a query, we use a simple token
overlapping method to pull out relevant assertions from a CSKB.
First, we only take into account assertions whose subjects are men-
tioned in the query. We rank these assertions by the number of
distinct tokens occurring in the input query (ignoring stop words).
For each query, we pick up the top ranked assertions and concate-
nate them to build the context. For comparability, we limit the
length of every context to 256 characters. As rank tie-breaker, we
use original ranks in the CSKBs.
Task construction. Previous work has generated masked sen-
tences based on templates from ConceptNet triples [43]. However,
the resulting sentences are often unnatural, following the idiosyn-
crasies of the ConceptNet data model. We therefore built a new
dataset of natural commonsense sentences for masked prediction.
We use the CSLB property norm dataset [9] which consists of short
human-written sentences about salient properties of general con-
cepts. We hide the last token of each sentence, which is usually
the object of that sentence. Besides, we remove sentences that con-
tain less than three words. The resulting dataset consists of 19,649
masked sentences.

For the generative and extractive settings, we use the Google
Search Auto-completion functionality to collect commonsense ques-
tions about the aforementioned set of 150 engineering concepts,
animals and occupations. For each subject, we feed the API with

9

Figure 3: Precision and recall assessment of different CSKBs.

headwords to allow a fair comparison with the masked prediction
that produces only a single token. Since Ascent contains a wider
range of aspects than just physical parts as in hasPartKB and the
CSLB dataset, we use recall@k as the metrics for this evaluation,
focusing on the top-5 terms from CSLB. Considering the top-5,
top-10 and top-20 assertions per KB/LM, Ascent achieves recall@5
of 0.27, 0.41, 0.53, compared with hasPartKB at 0.13, 0.22, 0.35,
and RoBERTa-Large at 0.29, 0.41, 0.51. Thus, Ascent considerably
outperforms hasPartKB in this setup, and performs on par with
state-of-the-art language models.

5.3 Extrinsic Evaluation
To answer RQ2, we conduct a comprehensive evaluation of the
contribution of commonsense knowledge to question answering
(QA) via four different setups, all based on the idea of priming
pre-trained LMs with context [21, 42]:

(1) In masked prediction (MP) [43], we ask language models to
predict single tokens in generic sentences.

(2) In free generation (FG), we provide only questions, and let
LMs generate arbitrary answer sentences.

(3) In guided generation (GG), LMs are provided with an answer
sentence prefix. This provides a middle ground between
the previous two setups, allowing multi-token answers, but
avoiding some overly evasive answers.

(4) In span prediction (SP), LMs select best answers from pro-
vided content [25].

We illustrate all settings in Table 4. In all settings, LMs are provided
with context in the form of assertions taken from either Concept-
Net, TupleKB, Quasimodo, GenericsKB or Ascent. These setups
are motivated by the observation that priming language models
with context can significantly influence their predictions [21, 42].
Previous works on language model priming mostly focused on eval-
uating retrieval strategies. In contrast, our comprehensive test suite

Setting Input Sample output

MP Elephants eat [MASK]. [SEP] Elephants eat roots,
grasses, fruit, and bark, and they eat a lot of these
things.

everything (15.52%), trees
(15.32%), plants (11.26%)

FG

C: Elephants eat roots, grasses, fruit, and bark, and
they eat a lot of these things.

They eat a lot of grasses,
fruits, and trees.

Q: What do elephants eat?
A:

GG

C: Elephants eat roots, grasses, fruit, and bark, and
they eat a lot of these things.

Elephants eat a lot of things.

Q: What do elephants eat?
A: Elephants eat

SP
question=“What do elephants eat?” start=14, end=46,
context=“Elephants eat roots, grasses, fruit, and
bark, and they eat a lot of these things.”

answer=“roots, grasses, fruit,
and bark”

Table 4: Examples of 4 QA settings (MP - masked predic-
tion, FG - free generation, GG - guided generation, SP - span
prediction). Sample output was given by RoBERTa (for MP),
GPT-2 (for FG and GG) and ALBERT (for SP).

focuses on the impact of utilizing different CSK resources, while
leaving the retrieval component constant.

Masked prediction is perhaps the best researched problem, com-
ing with the advantage of allowing automated evaluation, although
automated evaluation may unfairly discount sensible alternative
answers. Also, masked prediction is limited to single tokens. Free
generations circumvent this restriction, although they necessitate
human annotations, and are prone to evasive answers. They are
thus well complemented by extractive answering schemes, which
limit the language models abstraction abilities, but provide the
cleanest way to evaluate the context alone.
Models. Following standard usage, we use RoBERTa-Large for
masked prediction, the autoregressive GPT-2 for the two generative
setups, and ALBERT-xxlarge [25], fine-tuned on SQuAD 2.0 for
span prediction.
Context retrievalmethod. Given a query, we use a simple token
overlapping method to pull out relevant assertions from a CSKB.
First, we only take into account assertions whose subjects are men-
tioned in the query. We rank these assertions by the number of
distinct tokens occurring in the input query (ignoring stop words).
For each query, we pick up the top ranked assertions and concate-
nate them to build the context. For comparability, we limit the
length of every context to 256 characters. As rank tie-breaker, we
use original ranks in the CSKBs.
Task construction. Previous work has generated masked sen-
tences based on templates from ConceptNet triples [43]. However,
the resulting sentences are often unnatural, following the idiosyn-
crasies of the ConceptNet data model. We therefore built a new
dataset of natural commonsense sentences for masked prediction.
We use the CSLB property norm dataset [9] which consists of short
human-written sentences about salient properties of general con-
cepts. We hide the last token of each sentence, which is usually
the object of that sentence. Besides, we remove sentences that con-
tain less than three words. The resulting dataset consists of 19,649
masked sentences.

For the generative and extractive settings, we use the Google
Search Auto-completion functionality to collect commonsense ques-
tions about the aforementioned set of 150 engineering concepts,
animals and occupations. For each subject, we feed the API with
6 prefixes: “what/when/where are/do <subject>”, then we collect

9

2644



Context FG GG SP MP
C I C I C I P@5

No context 2.44 2.22 2.87 2.57 - - 17.9
ConceptNet 2.74 2.39 3.03 2.61 2.34 2.16 24.5
TupleKB 2.84 2.53 3.46 3.03 1.82 1.62 23.7
Quasimodo 2.58 2.31 3.06 2.72 2.22 2.05 25.1
GenericsKB-Best 2.89 2.71 3.13 2.77 2.39 2.20 24.8
Ascenttri 2.91 2.68 3.41 3.01 2.61 2.34 25.9

Table 5: Results of our QA evaluation. Metrics: C - correct-
ness, I - informativeness, P@5 - precision at five (%). As-
centtr i contains only triples in Ascent.

all auto-completed queries returned by the API. We got 8,098 auto-
completed queries for these subjects. Next, we drew samples from
that query set, then manually removed jokes and other noise (e.g.,
“where do cows go for entertainment”) obtaining 50 questions for
evaluation. The answers from each KB in each generative or extrac-
tive setting were then posted on Amazon MTurk, along with test
questions that ensured answer quality.
Evaluation scheme. For commonsense topics, questions often
have multiple valid answers. Additionally, given that answers in
our settings of generative and extractive QA are very open, creat-
ing an automated evaluation is difficult. We therefore use human
judgements for evaluating all settings except masked prediction.
Specifically, given a question and set of answers, we ask humans to
assess each answer based on two dimensions, correctness and infor-
mativeness, on a scale from 1 (lowest) to 5 (highest). Each question
is evaluated by three annotators in Amazon MTurk. For evaluating
masked prediction, we use the mean precision at k (P@k) metric,
following [43].
Results. The evaluation results are shown in Table 5. We can see
that all KBs contribute contexts that improve LM response quality.
Ascent performs significantly better than the no-context baseline
in both FG, GG and MP settings (p-values of paired t-test below
0.013), Besides, in the span prediction (SP) setting, where answers
come directly from retrieved contexts, Ascent outperforms all
competitors, indicating that our assertions have very high quality
compared to other KBs – with statistically significant gains (p-
value below 0.038) over TupleKB on both metrics, and Quasimodo
on correctness. Notably, our structured resource also outperforms
the text-based GenericsKB in all but one case. For the MTurk as-
sessments, we obtained a mean score variance of 0.76 and a mean
Pearson correlation coefficient of 0.58, which indicate high agree-
ment among annotators. We demonstrate three examples for the
retrieved contexts and answers generated by GPT-2 in Table 6.

5.4 Evaluation of Facets
To answer RQ3, we evaluate facets both intrinsically and extrinsi-
cally.

For intrinsic evaluation, as there are no existing CSKBs with
facets, we provide comparisons with two baselines, a random per-
mutation of facet values in Ascent, and facets generated by GPT-2.
First, we randomly drew 100 assertions with facets from our KB.
Next, we translate each statement into a sentence prefix and ask

Question + Retrieved contexts Answer

When are rats awake?

∅ - The rats are awake.

CN

Awakes have yawn. Awakes need open eyes.
Awakes need sleep. Awaking has rub eyes.
Awakes need set alarm clock. Ratss are rodents...

Rats are awake.

TP

Rats have bone. Rats have brain. Rats have cell.
Rats have chest cavity. Rats have chest. Rats
have cytoplasm. Rats have ear.

Rats are awake.

Q
S

Rats carry rabies. Rats can jump. Rats get elec-
trocuted. Rats get rabies. Rats are pet. Rats have
gallbladder. Rats have bladder...

Rats are awake.

GB

Rats are omnivorous, which means they eat
both plant and animal material. Rats are noctur-
nal animals. Rats are monophyodont, whi...

Rats are awake at night.

AT

Rats are intelligent. Rats are clean. Rats are noc-
turnal. Rats are active. Rats are careful. Rats
grind their teeth. Rats are om...

Rats are awake.

AQ

Rats are very intelligent. Rats are very clean.
Rats are mainly nocturnal. Rats are active at
night. Rats are very careful. Rats...

Rats are awake at night.

Where do shepherds live?

∅ - They live in the woods.

CN

Lives have die. Lives have breathe. Lives need
born. Living causes dying. Living causes death.
Living causes life. Lives have bo...

They live in the wilds of the North.

TP

Shepherds have arm. Shepherds have body sub-
stance. Shepherds have cell membrane. Shep-
herds have cell. Shepherds have corpus. She...

Shepherds live in the wild.

Q
S

Shepherds can live. Noes can live. Living is
thing. Lives are illegal in uk. Living is alone. Liv-
ing is abroad. Living is good.

Shepherds live in the wild.

GB
Shepherds care for their sheep but also expect to
make a living. Shepherds require proteins, car-
bohydrates, minerals, vitamins a...

Shepherds live in the wild, but they
are not allowed to breed in the
wild.

AT

Shepherds live in crop fields. Shepherds care for
the sheep. Shepherds are the flock of god. Being
is living. Shepherds keep the...

Shepherds live in crop fields.

AQ

Shepherds live in crop fields. Shepherds care for
the sheep to green pastures. Shepherds are the
flock of god. Being is living f...

Shepherds live in crop fields.

What are cars used for?

∅

- The most common car used for
driving is a car with a front end
that is not a front end.

CN

Cars are used for fun. Cars are used for getting
to work. Carss can use fuel. Cars are used for
drive. Cars are used for transpo...

Cars are used for fun.

TP

Cars use chemical energy. Cars use energy. Cars
use gasoline. Cars use suspension. Cars use in-
dependent suspension. Cars use pis...

Cars used for: 1. A car that is used
for: 1. A car that is used for: ...

Q
S

Cars use gas. Cars use diesel. Cars use fuel. Cars
use circuit breakers. Cars use transmission. Cars
use engines. Cars use propa...

Cars used for the purpose of trans-
porting goods.

GB

Cars are complex devices used in a complex en-
vironment. Cars use up energy and cause pollu-
tion. Cars use up energy and cause pol...

Cars are complex devices used in a
complex environment.

AT

Cars are used for transportation. Cars use par-
allel washington street. Cars use part. Cars use
lever. Cars use less manpower. Ts...

Cars are used for transportation.

AQ

Cars are used for transportation. Cars use par-
allel washington street to a crest at hyde street.
Cars use part by drew winter an...

Cars are used for transportation.

Table 6: Examples of retrieved KB assertions and answers
generated by GPT-2. Abbreviations: No context (∅), Concept-
Net (CN), TupleKB (TP), Quasimodo (QS), GenericsKB-Best
(GB), Ascenttr i (AT), Ascentquad (AQ). AT contains only
triples, while in AQ the most frequent facet in every triple
is involved.

GPT-2 to fill in the remaining words to complete the sentence. For
example, given the quadruple ⟨elephant, use, their trunks, PURPOSE:
to suck up water⟩, the sentence prefix will be “Elephants use their
trunk to” and for this, GPT-2’s continuation is “to move around”
(see also Table 7 for more examples of Ascent vs. GPT-generated
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No. Prefix Ascent GPT-2

1 Lawyers represent clients in courts [location] the case
2 Elephants use their trunks to suck up water [purpose] move around

3 Artificial intelligence has a
number of applications in

today’s society [location] the field of artificial in-
telligence

4 Waiters deliver food to a table [trans-obj] the homeless in the city
of San Francisco

5 Hogs roll in mud to keep cool [purpose] the ground
6 Wine is high in alcohol [other-qty.] the mix

Table 7: Examples of Ascent’s facet types and values along
with predictions of GPT-2 given sentence prefixes.

Correctness Informativeness

Random 1.47 1.29
GPT-2 2.85 2.22

Ascent 3.99 3.50

Table 8: Assessment of Ascent and LM-generated facets.

facets). We show each sentence prefix along with three answers
(from Ascent, GPT-2 and random permutation) to crowd workers
and ask them to evaluate each answer along two dimensions: cor-
rectness and informativeness, based on a scale from 1 (lowest) to
5 (highest). Each statement is assessed by three annotators. The
evaluation results are reported in Table 8. Ascent outperforms
the baselines by a large margin, indicating that the facets provide
valuable information to better understand the assertions. For the
MTurk assessments, we obtained a mean variance score of 0.77
and a mean Pearson correlation coefficient of 0.63, indicating good
agreement between annotators.

For extrinsic evaluation, we reused the four question answering
tasks from Section 5.3. We incorporated facets in the context in
two ways: Once based on a 256-character limit (so adding facets
means that in total, fewer statements can be given as context), once
by expanding the top-5-ranked statements with their facets. Note
that the sets of questions in each case were different, so the ab-
solute scores are not directly comparable. The results are shown
in Table 9, and the insights are twofold. On the one hand, within
the fixed character-limit setting, facets do not improve results, pre-
sumably because expanding statements by facets means that some
statements relevant for question answering fall out of the size limit.
On the other hand, expanding a fixed number of statements by
facets gives a consistent improvement in three of the four evalua-
tion settings (FG, GG, SP), with the biggest effect being observed
for informativeness in the least constrained setting (11% relative
improvement in informativeness in free generation). An example
where facets are crucial is shown in Table 6 with the query “When
are rats awake?”.

5.5 Per-module Evaluation
Open information extraction. We report the yield of our OIE
method in comparison with StuffIE [45] and Graphene [4] in Ta-
ble 10 on a sample dataset of Wikipedia articles for ten random
concepts, consisting of 2,557 sentences. Nested facets (i.e., linked
contexts in Graphene) are not considered. It can be seen that our
extractor can identify significantly more assertions and facets than

Context FG GG SP MP
C I C I C I P@5

256-character limit

Ascenttri 2.91 2.68 3.41 3.01 2.61 2.34 25.9
Ascentquad 2.84 2.59 3.20 2.81 2.68 2.44 25.6

Top-5-statement limit

Ascenttri 2.73 2.26 2.91 2.41 2.20 1.89 25.8
Ascentquad 2.93 2.53 3.04 2.57 2.23 1.96 25.5

Table 9: Extrinsic evaluation of facets by correctness (C) and
informativeness (I).

Method #spo #facets avg. length

StuffIE [45] 6,078 4,281 6.83
Graphene [4] 5,708 2,112 10.10

Ascent 6,690 4,911 6.28

Table 10: Yield statistics of different OIE methods.

Task #train #test Acc.

Triple-pair classification 21,569 5,392 0.958
Facet type labeling 3,962 991 0.928

Table 11: Corpus accuracy statistics for two RoBERTa-based
tasks.

the comparison systems. Besides, the conciseness of our output
improves, as average assertion length without facets (measured in
words) decreases.
RoBERTa-based tasks. We report the sizes of annotated cor-
pora and performance of our two RoBERTa classification models
in Table 11. Since these tasks are specific to our pipeline, there are
no external baselines to be compared. For both tasks, we use the
pretrained RoBERTa-Base model for initialization and other specifi-
cations as follows: Adam optimizer with learning rate of 2 × 10−5
and Adam epsilon of 10−8; batch size of 32; and maximal sequence
length of 32. We train the model for 10 epochs for the facet labeling
task, and 4 epochs for the triple pair classification task. Both models
obtain very high accuracy.

6 CONCLUSION
This paper presented Ascent, a methodology to collect advanced
commonsense knowledge about generic concepts. Our refined knowl-
edge representation allowed us to identify considerably more in-
formative assertions, and avoid common limitations of previous
works. The technique for generating web search queries and filter-
ing results shows that CSK extraction from general web content is
feasible with high precision and recall. Intrinsic and extrinsic eval-
uations confirmed that the resulting CSKB is a significant advance
over existing resources.

We hope that our approach revives the long-standing vision of
structured CSKBs [26] and provides a cutting-edge resource that can
drive forward knowledge-centric AI applications. Code, data, and a
web interface are available at https://www.mpi-inf.mpg.de/ascent.
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