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We investigate a one-dimensional quantum emitter chain where transport of excitations and
correlations takes place via nearest neighbor, dipole-dipole interactions. In the presence of collective
radiative emission, we show that a phase imprinting wavepacket initialization procedure can lead
to subradiant transport and can preserve quantum correlations. In the context of cavity mediated
transport, where emitters are coupled to a common delocalized optical mode, we analyze the effect
of frequency disorder and nonidentical photon-emitter couplings on excitation transport.

I. INTRODUCTION

The transport of excitations, energy, charge or
correlations is a topic of current interest both in the
classical as well as in the quantum regimes. For example,
efficient and coherent transport of excitations has been
shown to play a crucial role in biological processes such
as photosynthesis [1–3], which has inspired proposals for
improvement of light collection and harvesting in solar
cells [4]. In realistic scenarios, disorder and imperfections
lead to an inhibition of transport, rendering it necessary
to design strategies to combat such detrimental effects
[5–15]. A simple toy model for testing possible scenarios
where disorder can be circumvented is a one-dimensional
chain of two-level systems: here, in the single excitation
subspace comparisons of analytical results with large
scale numerics are possible. The excitation hopping
can be included as stemming from the vacuum-induced
dipole-dipole coupling seen as an exchange interaction.
Diagonal, or frequency disorder can be included as a
natural consequence of inhomogeneous broadening, as
different sites see different local environments leading
to an imprecision in the definition of each site’s natural
transition frequency. Non-diagonal, or tunneling, disorder
comes from the random positioning of the sites and
therefore by a varying strength of the dipole-dipole
interactions between nearest neighbors.

In the context of the simplified one-dimensional
model treated here (illustrated in Fig. 1) it has been
shown [16] that, in the strong-coupling regime of
light-matter platforms, the common coupling of N sites
to a single delocalized optical cavity mode can provide
a scaling of transport inhibition from exponential to
N−2. This can be seen as a collective effect where the
coupling of all sites to a common polaritonic ’bus’ cavity
mode [17–25] leads to long-range interactions surpassing
the efficiency of the nearest-neighbor excitation hopping
process [26–30]. A different kind of collective delocalized
states are encountered in densely packed ensembles of
emitters where the common coupling to the infinite
number of electromagnetic vacuum modes leads to
superradiant/subradiant quantum superpositions [31–33]
exhibiting larger/smaller radiative loss than an individual,
isolated two-level system. This mechanism can provide

protection of excitations against decay [34]. Efficient
targeting of subradiant collective states has also been
shown via tailored pumping where a sequence of phases
are imprinted on a chain of coupled quantum emitters
or via a combination of laser pulses and magnetic field
gradients [35].

We analyze possibilities of providing robustness of
transport with respect to radiative loss in free space and
to diagonal disorder in a cavity setting. In the free space
scenario, we provide a partially analytical approach to
the question of transport in the presence of decay and
describe a phase imprinting mechanism for accessing
asymmetric collective subradiant states with minimal
radiative loss. Moreover, we analytically and numerically
describe the preservation of quantum correlations
between two propagating excitations, which we quantify
by their concurrence as a measure of entanglement.
In the cavity setting, we extend results from Ref. [16]
to provide conditions for polaritonic transport with
asymmetric cavity coupling in the presence of diagonal,
frequency disorder.
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FIG. 1. Sketch of a frequency disordered chain of two-level
quantum systems inside an optical cavity (top). Schematics
of the interactions in the system where the cavity works as a
bus mode providing an additional channel of long-range trans-
port which can overcome the slower dipole-dipole mediated
mechanism (bottom).
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Section II introduces a simplified model of interacting
quantum emitters coupled to a cavity mode and under-
going collective decay in the single excitation regime.
Section III analytically and numerically describes the
initialization and diffusion/propagation of a Gaussian
wavepacket on a subradiant array and quantifies the
robustness of quantum correlations between two prop-
agating wavepackets. Section IV provides analytical
results for polariton-mediated transport with asymmetric
cavity coupling and numerical simulations for diagonal
disorder.

II. MODEL AND EQUATIONS

We consider a chain of two-level systems (TLS) posi-
tioned at rj with ground and excited states |g〉j and |e〉j
for j = 1, S. In some cases we will take S = N where
N is the number of emitters within an optical cavity
volume while in some particular cases we will consider
S = N + 2M where in-coupling and out-coupling chains
of M emitters are added. The second case is useful in
treating the problem of resonantly passing an excitation
wavepacket through the cavity. Moving from one case to
another simply requires setting M = 0. We first write
the master equation for the system which can be used
either to derive equations of motion for averages which
we will denote as a couple-dipoles model or to reduce the
dynamics to the single excitation subspace which we dub
as the quantum model.

A. Master equation

The free Hamiltonian of the system is written in

terms of ladder operators σj = |g〉j 〈e|j and σ†j as

H0 =
∑
j ωjσ

†
jσj (notice that we set ~ = 1 and the

Hamiltonian could be reexpressed in terms of population

inversion operators σzj = 2σ†jσj − 1). Diagonal disorder
can be included by assuming a given frequency distribu-
tion ωj = ω + δj where δj is some zero-averaged distribu-
tion. The emitters see the same vacuum electromagnetic
modes which give rise, after elimination, to dipole-dipole
interactions of magnitude Ωij = Ω(|rij|), with rij = ri−rj.
The dipole-dipole contribution yieldsHΩ =

∑
j 6=i Ωijσ

†
jσi,

where Ωij strongly depends on the interparticle separation
rij , the angle of the transition dipole with respect to the
interparticle axis θ and the single particle independent
decay rate γ (see Appendix A). As in the near field the
dipole-dipole interaction scales as 1/r3

ij one can typically
make the nearest neighbor approximation, therefore con-
sidering that the only non-vanishing coupling strengths
are given by Ωj,j+1 = Ω. The TLS can be placed within
the delocalized mode of an optical cavity of frequency
ωc and bosonic annihilation operator a, modeled by the

Tavis-Cummings Hamiltonian

Hc = ωca
†a+

∑
j

gj(a
†σj + aσ†j ) (1)

where gj is the coupling between the emitter j and the
cavity. Collective radiative decay is included in Lindblad

form Lrad[ρ] =
∑
jj′ γjj′ [σjρσ

†
j′ − (σ†jσj′ρ + ρσ†jσj′)/2].

The matrix γij describes both independent and mutual
decay processes. Notice that γij strongly depends on the
same parameters as Ωij as they both stem from the same
physical mechanism (see Appendix A). The cavity photon
loss is described by Lcav[ρ] = κ[aρa† − (a†aρ+ ρa†a)/2].
With the total Linblad term L[ρ] = Lrad[ρ] + Lcav[ρ], the
dynamics of the system can then be followed by solving
the open system master equation

ρ̇(t) = −i [H, ρ] + L[ρ], (2)

where ρ refers to both emitter and cavity states. From the
master equation we can derive a set of coupled equations
of motion for the averages α = 〈a〉 and βi = 〈σi〉. The
equations can be linearized in the limit of weak excitation

where 〈σ†jσj〉 � 1 (average population of each emitter is

much smaller than unity) to lead to

β̇i = −(
γi
2

+ iωi)βi − igiα−
∑
j

(iΩij +
γij
2

)βj , (3a)

α̇ = −(
κ

2
+ iωc)α− i

∑
j

gjβj . (3b)

We will refer to this formulation as the coupled dipole
model as in the weak excitation regime the dynamics
is equivalent to that of a coherently and incoherently
coupled system of oscillators.

B. The single excitation approximation

We construct the ground state as |G〉 = |g1, ...gS0ph〉
with all spins down and no cavity photons and excited
states as |j〉 = |g1, ...ej , ...gS0ph〉 for j = 1, ..., S and
|S + 1〉 = |g1, ...gj , ...gS1ph〉 for the excitation residing
inside the cavity mode. In consequence, when restricting
the dynamics to a single excitation, the master equation
requires the solution for (S + 2)× (S + 2) elements. Simi-
larly to the approach of Ref. [34] (but with an extension
to include the cavity photon state as well as disordered
frequencies) we derive simplified equations of motion that
sees the ground state and the excited state manifold de-
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coupling:

ρ̇GG =
∑
i,j

γijρij (4a)

ρ̇Gj = iωjρGj + i
∑
k

ρGk

[
Ωkj +

i

2
γkj +Gkj

]
(4b)

ρ̇ij = −i
∑
k

ρkj

[
Ωik −

i

2
γik +Gik + ωiδik

]
(4c)

+ i
∑
k

ρik

[
Ωkj +

i

2
γkj +Gkj + ωjδkj

]
.

with the cavity-coupling being Gij = giδj,S+1 + gjδi,S+1.
One can now simply follow the evolution of the re-
duced density matrix in the single excitation mani-
fold and write ρ̇E = −i(ZρE − ρEZ

∗), where Zij =
Ωij − i

2γij + Gij + ωjδij . A quantity that one can nu-
merically follow is the cavity transmission function [16]

T (t) =
∑S
j=M+N+1 ρjj(t) that quantifies the amount of

excitation found on the out-coupling island.

III. FREE SPACE TRANSPORT

Before moving on to analyze the effect of a delocalized
bosonic cavity field we aim at elucidating a few aspects
of transport in free space when collective super- and
subradiant states are taken into account. We will mainly
consider the coupled dipoles model where we initialize a
propagating wavepacket containing on average less than
one excitation. The initialization stage could be done for
example by applying a short pulse from a laser with a
Gaussian profile and with a propagation direction tilted
with respect to the chain axis. We describe diffusion
and propagation with independent decay after which we
show how subradiance can provide a protection of the
excitation. We then analyze, within the quantum model,
the propagation of two initially entangled wavepackets
where quantum correlations are quantified by concurrence
as a measure of entanglement.

A. Wavepacket evolution with independent decay

We initialize a Gaussian wavepacket providing a weak
excitation onto the system via an external tilted laser
field with a Gaussian profile in amplitude (as depicted in
Fig. 2). The driving Hamiltonian reads

Hdrive =
∑
j

ηj(t)
[
σje

iω`teik·rj + h.c.
]
, (5)

where ω` is the laser frequency and rj = ajx describes
positioning within an equidistant chain in the x-direction
with lattice constant a. Notice that the tilting of the
laser is equivalent to imprinting a quasi-momentum q0 =
ka sinφ derived from k · rj = (k sinφ)(ja) = (ka sinφ)j =

q0j. The pulse is assumed constant between t = −T and
t = 0 and the excitation amplitude follows a Gaussian

profile with fj = 1/
√√

2πwe−(j−j0)2/(4w2). We assume
that the pulse is fast enough (T < Ω−1) such that no
hopping of excitations can occur during the driving. This
allows one to neglect the dipole-dipole interaction during
the initialization stage and derive a simple equation of
motion for the coherences at each site:

∂t〈σj〉 = −iωj 〈σj〉+ iηj 〈σzj 〉 e−iq0je−iω`t. (6)

Within the low-excitation approximation obtained by as-
suming that 〈σzj 〉 ∼ −1 and making the following notation
βj = 〈σj〉 one can rewrite the equation of motion for the
jth dipole moment in a frame rotating at the laser fre-
quency

β̇j = −i∆jβj − iηj(t)eiq0j , (7)

where ∆j = ωj−ω`. Since the equations are decoupled we
can integrate them for the time of the pulse −T < t < 0
and with initial condition βj(−T ) = 0 (no excitation
before the pump) to obtain

βj(0) = 2iη0Tfj
sin (∆jT/2)

∆jT/2
e−iq0j = β0e

−iq0jfj . (8)

To insure that the weak excitation condition is fulfilled we
will impose the condition that the total population in the
chain (and in the absence of disorder such that ∆j = ∆)
under resonance conditions

∑
j |βj(0)|2 = 4(η0T )2 is much

less than unity.
After the initialization stage, we follow the evolution

of the wavepacket for t > 0 in the presence of hopping
under the Hamiltonian Ht>0 = H0 + HΩ and diagonal
independent decay. To this purpose we write Eqs. 3a (in
the absence of the cavity mode and assuming all hop-
ping rates equal to Ω, all decay rates equal to γ and all

Ω

φ

Laser
pump

q0

a

k

x

y

-T t0

η0

rj

k

FIG. 2. Initialization scheme for the Gaussian wavepacket of
excitation on a chain of near-field coupled emitters, achieved
by a short laser pulse of duration T . For t > 0, the imprinted
excitation will propagate to the right with a quasimomentum
q0.



4

frequencies ω) in a general form ~̇β = −M~β where

Mjj′ = (iω + γ/2)δjj′ + iΩ(δj,j′+1 + δj,j′−1). (9)

We have already assumed that the dipole-dipole exchange
can be reduced to a nearest-neighbor interaction and that
we are in the case of open boundary condition (OBC).
For periodic boundary conditions (PBC) we would add
two extra terms iΩ(δj,1δj′,S + δj,Sδj′,1) which couple the
first with the last emitter in the chain.

Notice that the evolution matrix can be diagonalized
by the same transformation that diagonalizes the Toeplitz
matrix such that one can write M = V ΛV −1. Assuming
PBC we have

Λkk′ = i[ω + 2Ω cos (kθ)− iγ/2]δkk′ = (iEk + γ/2)δkk′ ,
(10)

(with θ = 2π/S) and the matrix of eigenvectors has the

following elements Vjk = e−ijkθ/
√
S. Notice that this

matrix is symmetric as Vjk = Vkj and for the inverse
matrix we have [V −1]jk = V ∗jk. Here, the index k run from
0 to S−1 while the index j runs from 1 to S. For OBC the
eigenvalues are unchanged but one redefines θ = π/(S+1)

and obtains real eigenvectors Vjk =
√

2/(S + 1) sin (θjk)
with the same properties as for PBC and all indexes run
from 1 to S.

We can now generally write the solution for all dipole

amplitudes as ~β(t) = V e−ΛtV −1~β(0). More explicitly, for
each component:

βj(t) = β0

∑
k,j′

e−iEkt−iq0j
′
e−γt/2VjkV

∗
kj′fj′ . (11)

The sum over the initial Gaussian distribution of excita-
tion can be analytically estimated in the particular case
that the wavepacket is not too narrow. In the Fourier
domain, this means that we ask for the k distribution
around the central value k0 = q0/θ to be small such that
a Taylor expansion of the energy dispersion relation is
possible (see Fig. 3a):

Ek ' Ek0 − 2Ωθ sin (k0θ)(k− k0)−Ωθ2 cos (k0θ)(k− k0)2.
(12)

In the general case, under the approximation that a second
order Taylor expansion suffices, the wavepacket maintains
a Gaussian character and we can analytically describe the
distribution of excitation in time as

|βj(t)|2 = |β0|2
1√

2πw̄(t)
e
− [j−j̄(t)]2

2w̄(t)2 e−γt. (13)

Both the wavepacket central position and its diffusion
acquire a time dependence analytically expressed as

w̄2(t) = w2

[
1 +

Ω2t2

w4
cos2 q0

]
, (14a)

j̄(t) = j0 + 2Ωt sin q0. (14b)

For 0 < q0 < π (for the particular choice of Ω > 0) the
packet moves to the right, reaching the fastest speed
vg = 2Ω sin q0 at q0 = π/2, while for π < q0 < 2π the
packet moves to the left. Stationary diffusion is reached
for q0 = 0 or q0 = π where j̄(t) = j0 and the variance
increases quadratically in time at large times where
Ωt� w2. For minimal diffusion and optimal speed one
sets q0 = π/2 obtaining w̄(t) = w and j̄(t) = j0 + 2Ωt
showing the wavepacket moving with the group velocity
vg = 2Ω and unchanged in shape. Notice that in this
particular case, for OBC k0 ≈ S/2 and the energy
dispersion can be approximated by a line as illustrated in
see Fig. 3a.

We recall that the value of q0 could be adjusted by
simply varying the angle φ at the initialization such
that for optimal φ = π/2 we have q0 = 2πa/λ. As for
considerable nearest neighbour near field coupling one
needs small interparticle distances, this procedure limits
the achievable values of q0 to smaller than π/2 values.
Therefore the achievement of these values will need an
additional protocol of implementation as for example the
application of a magnetic field gradient as in Ref. [35] or
a more complicated interval level scheme where particles
can be trapped with fields of small wavelength while the
initialization of the wavepacket could be done via a larger
wavelength field.

B. Wavepacket evolution with subradiance

The presence of individual emitter decay has the trivial
effect of exponentially reducing the excitation number dur-
ing propagation. A straightforward way of tackling this
detrimental aspect brought on by the radiative emission
is to consider structures exhibiting robustness to decoher-
ence, such as subradiant arrays. For small inter-particle
separations a < λ, the diagonalization of the mutual de-
cay rates matrix Γ gives rise to S channels of decay, some
of superradiant character (decay rate larger than γ) but
most of them exhibiting subradiance (decay rate smaller
than γ). The inclusion of the collective decay effect is done
in Eq. (9) by replacing γ with γjj′ . The diagonalization
of the coherent part leads to V −1MV = Λ + V −1(Γ/2)V .
The last will have diagonal terms Γk =

∑
jj′ V

∗
jkγjj′Vj′k

describing decay of the collective state to the ground state
of the system while all non-diagonal terms describe mi-
gration of excitation within the single excitation manifold.
Assuming that the diagonal parts are dominant, one can
estimate that most of the collective states are subradiant,
as illustrated in Fig. 3b. The inset shows a roughly linear
dependence of the percentage of superradiant states with
decreasing interparticle separation. For small separations,
where subradiant effects are strong, the number of su-
perradiant states reduces to less that ∼ 20% of the total
number of states.

Let us analyze the influence of subradiant transport
in the collective basis where the collective amplitudes
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FIG. 3. (a) Energy dispersion with OBC in black (Ek for collective states indexed by k from 1 to S). The red line shows the
Taylor expansion approximation assuming q0 = π/2. The green and blue curves are the k-space components of two initial
wavepackets with w = 1 and w = 5, respectively. Parameters are S = 100 and Ω = 0.07. (b) Normalized collective decay rates
Γk/γ. The inset shows the scaling of the percentage of superradiant states (Γk > γ) with increasing interparticle separation. (c)
Time evolution of an initial Gaussian wavepacket with independent and collective decay, where the quasimomentum initialization
allows the direct tuning into superradiant (q0 = 0) or subradiant (q0 = π) behaviour. The blue curve shows robustness against
decay when the excitation is initially encoded in a subradiant superposition. (d) Time evolution of a wavepacket initialized in
the left part of the chain with q0 = π/2, comparison between individual decay (top) and collective decay (bottom), considering
S = 110, w = 5, a/λ = 0.08.

are defined from the transformation
~̃
β = V −1~β which

on components reads β̃k =
∑
j V
∗
kjβj . Starting from ex-

ample with a single localized excitation and with OBC,
the initial occupancy of each collective state is simply
1/S. For a mesoscopic ensemble we can then estimate the
survival probability of the excitation (for time t � γ−1

after all subradiant states decayed) simply from counting
the number of subradiant states in Fig. 3b. For an initial
Gaussian wavepacket, the occupancy of the k-th collective
state is found to be also a Gaussian

|β̃k|2 = |β0|2
1√

2πw̃k
e
−(k−k0)2

2w̃2
k (15)

centered at k0 = q0/θ and with a width w̃k = 1/(2θw) =
S/(4πw).

For an initial stationary wavepacket undergoing diffu-
sion, Fig. 3c shows the impact of subradiant collective
states on the preservation of the excitation. At a time
t = γ−1, individual decay shows the expected decrease
of the wavepacket amplitude while a strategy of constant
illumination (corresponding to q0 = 0) leads to a very
quick superradiant decay of the excitation. Illumination
with phases of adjacent emitters alternating by π (cor-
responding to q0 = π) leads instead to the immediate
mapping of the collective state onto a subradiant robust
one.

C. Transport of correlations

Let us now move to the alternative scenario where
dynamics takes place in the single excitation Hilbert space
of dimensions S + 1 with the basis vectors made up of
the collective ground state and single excitation |j〉 states.

We assume that an initial entangled state is prepared
as a superposition between two Gaussians centered at
j0 and j0 + d0 where d0 quantifies the distance between
the two Gaussians. We recall the previous definition

fj = 1/
√√

2πwe−(j−j0)2/(4w2) and define the initial state
as

|ψ(0)〉 =
1√
2

S∑
j=1

eiq0j(fj + fj−d0) |j〉 . (16)

We aim at analyzing the behavior of quantum correlations
with respect to independent decay and possibly utilize the
robustness brought on by collective subradiant states. To
this end we employ concurrence as a measure of bipartite
entanglement defined as Cjj′ = Max{0,

√
λ1−
√
λ2−
√
λ3−√

λ4}, where the eigenvalues are computed on the matrix

Λ(jj′) = ρ̄(jj′)(σy ⊗ σy)[ρ̄(jj′)]∗(σy ⊗ σy) and are arranged
in decreasing order. The density matrix used to compute
the concurrence is the reduced one obtained after tracing
over all other particle and field states except for particles
j, j′. As we are working in the single excitation only, the
density matrix elements for double excitation are zero
and the reduced matrix reads

ρ̄(jj′) =


ρGG +

∑
n 6=j,j′ Pn ρGj ρGj′ 0

(ρGj)
∗ Pj ρjj′ 0

(ρGj′)
∗ (ρjj′)

∗ Pj′ 0
0 0 0 0

 (17)

where Pj = ρjj . Notice that tracing over all particles
except j and j′ has the only consequence of increasing
the weight of the zero excitation state in the reduced
density matrix, while leaving all coherences (off-diagonal
elements) unaffected. From here one can explicitly write

the matrix Λ(jj′) as
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Λ(jj′) =


0 ρGjPj′ + ρGj′ ρ̄

∗
jj′ ρGjPj + ρGj ρ̄jj′ −2ρGjρGj′

0 PjPj′ + |ρjj′ |2 2ρjjρjj′ −ρGj′Pj − ρGjρjj′
0 2Pj′ρ

∗
jj′ ρjjρj′j′ + |ρjj′ |2 −ρGjPj′ − ρGj′ρ∗jj′

0 0 0 0

 . (18)

Surprisingly, the eigenvalues, in decreasing order, assume
a very simple form independent of the coherence between
the ground state and the single excitation states

λ1,2 = (
√
PjPj′ ± |ρjj′ |)2 (19)

and λ3,4 = 0. The concurrence for sites jj′ then can be
computed from here as specified above:

Cjj′ = |
√
PjPj′ + |ρjj′ || − |

√
PjPj′ − |ρjj′ ||. (20)

Notice that as decoherence mechanisms typically affect the
two particle coherence rather than populations, the con-
currence for two sites is simply Cjj′ = 2|ρjj′ | and therefore
easily estimated even at the analytical level. For example,
between a mixed state and a Bell maximally entangled
state, the concurrence varies betweeen 0 and 1 as indicated
by the off diagonal elements of the density matrix. For the
two non-overlapping Gaussian wavepackets, we can define
an average concurrence Cav(t) =

∑
j∈D1,j∈D2

Cjj′/(5w(t))
where the sum is done over the non-overlapping domains
D1,2 referring to the two wavepackets. The normalization
by the average number of sites participating in the entan-
gled state gives an average concurrence close to unity. At
the analytical level, it is straightforward to show that for
non-diffusive, initial wavepackets made of independently
decaying emitters the concurrence simply decays in time
as e−γt. For collective decay, the behavior reproduces
closely the one of the propagating single wavepacket: as
subradiance protects both decay of population and coher-
ence, the average concurrence stays close to unity as long
as the wavepacket does not decay.

IV. CAVITY TRANSPORT

A way to circumvent detrimental effects of disorder in
the transport of energy has been proposed in Refs. [16, 26].
The mechanism is based on the collective coupling to a
cavity delocalized mode, which leads to the occurrence
of additional polariton-mediated channels for enhanced
energy transport. We propose here an additional improve-
ment by showing that when polaritons are formed by
the hybridization of the photon state with asymmetric
superpositions of the quantum emitters, protection of
excitation can be achieved by spreading the wavepacket
into robust collective subradiant states.

In the case of identical cavity-emitter couplings gj(S) =
g, a bright mode is formed as a symmetric superposition
of all quantum emitters B =

∑
j σj/

√
N . The corre-

sponding bright state is obtained by applying B† to the
ground state |G〉 obtaining a W-state. This mode is

hybridized with the cavity field leading to polaritonic
states that can be obtained from the action of the fol-
lowing operators p†u,d(S) = 1/

√
2(a† ±

∑
j σ
†
j/
√
N) onto

the ground state. The two light-matter hybrid quantum
states are the upper (u) and lower (d) polaritonic states

energetically positioned at ω ± g
√
N . Notice that the

same polaritonic energies can be obtained even if the
couplings follow a different symmetry scaling as for exam-
ple gj(A) = (−1)jg, albeit with very different collective

states obtained as
∑
j σ
†
j/
√
N |G〉. As the analysis in

Refs. [16, 26] neglected collective radiative effects, the
symmetry of the collective polaritonic states did not play
a role. However, symmetric modes are strongly superra-
diant at small particle-particle separations and therefore
not optimized for robust transport. A natural choice is
to consider instead transport through very asymmetric,
typically very subradiant states.

Let us first consider the eigenvalue problem of the Tavis-
Cummings model plus nearest-neighbour dipole-dipole
exchanges. We denote the eigensystem by ωn and |n〉
such that the eigenvalue problem becomes H |n〉 = ωn |n〉
for n running from 1 to N + 1. In the single excitation
regime the general form of an eigenvector will then be of
the form

|n〉 =

N∑
j=1

c
(n)
j |j〉+ β(n) |1ph〉 , (21)

where normalization requires that
∑
j |c

(n)
j |2 + |β(n)|2 = 1.

The task is to find all ωn and corresponding coefficients

of the emitter c
(n)
j and photon β(n) content in each eigen-

vector. To this end we use the diagonal representation of
the dipole-dipole interaction Hdd = 2Ω

∑
k cos(kθ) |k̃〉 〈k̃|

and the transformation |k̃〉 =
∑
j Vjk |j〉 to find the repre-

sentation Hdd =
∑
k Ek

∑
j

∑
j′ VjkV

∗
j′k |j′〉 〈j|. One can

then proceed by finding a set of couple equations for c
(n)
j

and β(n) from which the eigenvalues can be extracted.
For the symmetric case the sum

∑
j Vjk =

√
Nδk,0 se-

lects only the symmetric collective mode with k = 0 and
one ends up solving for[

(ωn − ω)2 − g2N
]
β(n) − E0(ωn − ω)β(n) = 0. (22)

There are N − 1 degenerate solutions with zero photonic
component β(n) = 0 and two polariton states with energies
obtained as solutions of a quadratic equation

ωsym
± = ω + Ω±

√
g2N + Ω2. (23)

For small tunneling rates Ω� g
√
N we can approximate

the polariton energies at ω ± g
√
N + Ω. The polaritonic
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FIG. 4. (a) Cavity transmission comparison, in the presence of collective decay, between symmetric versus asymmetric couplings
scenarios with parameters M = 30, N = 50, ωc = ω, g = 90Ω,Ω′ = 10Ω,∆S,A = ±635.4. (b) Energy dispersion curve shows
little influence from the presence of disorder (at the order of Ω for all non-polaritonic S − 1 states shown here. (c) Transmission
in the presence of disorder and collective decay, considering that the wavepacket is matched into the antisymmetric polariton
energy in which case the cavity transport is not influenced by disorder. In contrast, free space transport is slower (dashed, blue
line in the absence of disorder) and strongly inhibited by disorder (full blue line). Disorder averaging has been performed over
100 realizations. (d) Time evolution of the wavepacket through cavity, considering individual decay (top) versus collective decay
(bottom). The grey lines denote the cavity boundaries.

states show a photon contribution

β± =
g
√
N√

(ω± − ω)2 + g2N
, (24)

while the matter contribution is

c±j =
ω± − ω√

N
√

(ω± − ω)2 + g2N
. (25)

Notice that, as expected, in the absence of dipole-dipole
couplings, the expressions above reduce to the expected
β± = 1/

√
2 and c±j = ±1/

√
2N .

In the completely asymmetric case where gj = g(−1)j

we select the asymmetric mode
∑
j(−1)jVjk ≈

√
Nδk,N/2

(for PBC) and the solution is similar to that above with
a slight difference in the energy of the polaritons

ωasym
± = ω − Ω±

√
g2N + Ω2. (26)

The photonic part of the asymmetric eigenvectors is identi-
cal to above while the matter contribution shows the phase
dependence dictated by the coupling variation among the
emitters

c±j = (−1)j
ω± − ω√

N
√

(ω± − ω)2 + g2N
. (27)

Having identified the energies of the asymmetrically
driven polaritons, we can compare our results with those
of Ref. [16]. In Fig. 4a transmission through a cavity with
gj = g(−1)j is shown more efficient that the overall equal
coupling mechanism. In the presence of disorder, Fig. 4b
illustrates that the dispersion curve does not change too
much. Moreover, as Ref. [36] describes in detail, the
polaritonic energies are also very robust with disorder
even at the level of g

√
N . Therefore, as also concluded

in [16] (in the case of positional disorder), diagonal

disorder plays almost no role in the transmission through
the cavity even if it has a strong role of localization
excitations in free space, as shown in Fig. 4c. Finally,
Fig. 4d shows robust transport in the collective radiative
regime (bottom propagation line) versus independently
decaying emitters.

V. CONCLUSIONS

We have treated aspects of excitation and quantum
correlations propagation on a one dimensional chain
of nearest neighbor coupled quantum emitters in the
presence of a collective radiative bath. The robustness
of collective subradiant states can be exploited towards
more efficient transport of excitations by proper phase
imprinting in free space. Also, not only excitations but
quantum correlations as well can show robustness against
radiative decay when transport takes place via subradiant
collective states. In cavity settings, where a common
delocalized bosonic light mode couples to all emitters, an
asymmetric coupling pattern shows protection against
radiative decay as well as against diagonal, frequency
disorder in the chain of emitters.
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Appendix A: Vacuum mediated coherent and incoherent interactions

The vacuum mediated dipole-dipole interactions for an electronic transition at wavelength λ (corresponding wave-
vector k = 2π/λ) between an identical pair of emitters separated by rij is

Ωij =
3

4
γ

[
(1− 3 cos2 θ)

(
sin(krij)

(krij)2
+

cos(krij)

(krij)3

)
− sin2 θ

cos(krij)

(krij)

]
. (A1)

The quantity θ is the angle between the dipole moment d and the vector rij . The associated collective decay is
quantified by the following mutual decay rates

γij =
3

2
γ

[
(1− 3 cos2 θ)

(
cos(krij)

(krij)2
− sin(krij)

(krij)3

)
+ sin2 θ

sin(krij)

(krij)

]
. (A2)

Appendix B: Wavepacket transport

In the collective basis, the components are obtained as β̃k =
∑
j V
∗
kjβj . At zero time we can write

β̃k = β0

∑
j

V ∗kjfje
−iq0j =

β0√
S

∑
j

eikθjfje
−iq0j =

β0√
S

∑
j

ei(k−k0)θjfj , (B1)

which we can estimate in the limit of large S by extending the sum to the whole range of integers (under the assumption
that the wavepacket is at all times far from the edges of the chain) and turning it into an integration in the continuum.
Notice that for the initial Gaussian distribution∑

j

|fj |2 ≈
∫ ∞
−∞

dx
1√
2πw

e−
(x−j0)2

2w2 = 1 (B2)

giving the expected normalization condition. We then use know expressions for the Fourier transform of a Gaussian to
obtain ∑

j

ei(k−k0)θje−
(j−j0)2

4w2 ≈
∫ ∞
−∞

dxei(k−k0)θxe−
(x−j0)2

4w2 = 2w
√
πei(k−k0)θj0e−w

2θ2(k−k0)2

(B3)

After some simplifications, the expression we will extensively use reads:∑
j

V ∗kjfje
−iq0j =

1√
S

∑
j

ei(k−k0)θjfj ≈ f̃kei(k−k0)θj0 (B4)

where the distribution in k-space is a Gaussian

f̃k =
1√√
2πw̃

e−
(k−k0)2

4w̃2 , (B5)

centered at k = 0 and with effective width w̃ = 1/(2wθ) = S/(4πw). Notice that the validity condition for this discrete
to continuum transition is w � S reflecting a wide distribution in the k-space w̃ � 1.
To estimate the components in time we use the expression

βj(t) = β0

∑
k,j′

e−iEkt−iq0j
′
e−γt/2VjkV

∗
kj′fj′ = β0e

−γt/2
∑
k

e−iEktVjk
∑
k,j′

V ∗kj′fj′e
−iq0j′ (B6)

Using the expression from above we simply have

βj(t) = β0e
−γt/2

∑
k

e−iEktVjkf̃ke
i(k−k0)θj0 = β0e

−γt/2 e
−iq0j
√
S

∑
k

e−iEkte−i(k−k0)θj f̃ke
i(k−k0)θj0 (B7)

We will use now the Taylor expansion of the energy dispersion relation

Ek ' Ek0
− 2Ωθ sin (k0θ)(k − k0)− Ωθ2 cos k0θ(k − k0)2 = Ek0

− 2Ωθ sin q0k̄ − Ωθ2 cos q0k̄
2 (B8)
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which we re-express by introducing k̄ = k − k0 with the new variable centered around k0. Putting together the
expression above we can write

βj(t) = β0e
−iEk0

te−γt/2
e−iq0j√

S

∑
k̄

e2iΩtk̄θ sin q0eiΩtθ
2 cos q0k̄

2

e−ik̄θ(j−j0)f̃k (B9)

We can now regroup the terms above

βj(t) = β0e
−iEk0

te−γt/2e−iq0j
1√
S

1√√
2πw̃

∑
k̄

e−ik̄θ(j−j0−2Ωt sin q0)e−( 1
4w̃2 +iΩtθ2 cos q0)k̄2

(B10)

= β0e
−iEk0

te−γt/2e−iq0j
1√
S

1√√
2πw̃

∑
k̄

e−ik̄θ(j−j0−2Ωt sin q0)e−
k̄2

4w̃2 (1+4iw̃2Ωtθ2 cos q0) (B11)

We peform now the same transition to the continuum and use the following identity

1

S

1√√
2πw̃

∫ ∞
−∞

dxe−ixθAe−
x2

4w̃2 (1+B) =
23/4π1/4e−

A2w̃2θ2

1+B√
(1+B)S

w̃

(B12)

which is valid as long as the real part of B is larger than −1. We denoted A = j − j0 − 2Ωt sin q0 and B =
4iw̃2Ωθ2 cos q0 = iΩt cos q0/w

2. Working it out the result above reads

βj(t) = β0e
−iEk0

te−γt/2e−iq0j
1√√

2πw̄(t)
e
− (j−j0−2Ωt sin q0)2

4w̄(t)2 (B13)

where the complex time dependent width is

w̄(t) = w
√

1 +B =
√
w + iΩt cos q0 = w

√
1 +

(
Ωt cos q0

w

)2

eiφ(t) (B14)

Notice that the site population is a Gaussian with a time dependent center and variance

|βj(t)| = |β0|2e−γt
1√

2πw̄(t)
e
− (j−j̄(t))2

2|w̄(t)|2 . (B15)

Appendix C: Polaritons

Let us consider the eigenvalue problem of the Tavis-Cummings model plus nearest-neighbor dipole-dipole exchanges.
We denote the eigensystem by ωn and |n〉 such that the eigenvalue problem become H |n〉 = ωn |n〉 for n running from
1 to N + 1. In the single excitation regime the general form of an eigenvector will then be of the form

|n〉 =

N∑
j=1

c
(n)
j |j〉+ β(n) |1ph〉 , (C1)

where normalization requires that
∑
j |c

(n)
j |2 + |β(n)|2 = 1. The task is to find all ωn and corresponding coefficients of

the emitter c
(n)
j and photon β(n) content in each eigenvector. To this end we write

H |n〉 = ω |n〉+

N∑
j=1

gj

(
c
(n)
j |1ph〉+ β(n) |j〉

)
+

N∑
j=1

N∑
j′=1

∑
k

EkVjkV ∗j′kc
(n)
j′ |j〉 . (C2)

We have used above the diagonal representation of the dipole-dipole interaction Hdd = 2Ω
∑
k cos(kθ) |k̃〉 〈k̃| and the

transformation |k̃〉 =
∑
k Vjk |j〉 to find the representation Hdd =

∑
k Ek

∑
j

∑
j′ VjkV

∗
j′k |j′〉 〈j|. We will now use the
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eigenvalue equation H |n〉 = ωn |n〉 and consequently 〈j|H |n〉 = c
(n)
j ωn, 〈1ph|H |n〉 = β(n)ωn to find a set of coupled

equations

(ωn − ω)c
(n)
j −

N∑
j′=1

∑
k

EkVjkV ∗j′kc
(n)
j′ − gjβ

(n) = 0 (C3a)

(ωn − ω)β(n) −
N∑
j=1

gjc
(n)
j = 0. (C3b)

We can proceed by performing a sum in the upper equation and using that
∑
j gjc

(n)
j = (ωn − ω)β(n) to find(ωn − ω)2 −

∑
j

g2
j

β(n) −
∑
j′

∑
k

Ek

∑
j

gjVjk

Vj′kc(n)
j′ = 0. (C4)

Notice first that in the absence of particle-particle interactions, the equation above we simply suggest N − 1 solutions
which are degenerate with zero photon components (β(n) = 0) and two non-degenerate polaritonic components with

energies ω ±
√∑

j g
2
j .

Let us now assume the perfectly symmetric coupling where gj = g. Notice that the sum
∑
j Vjk =

√
Nδk,0 selects

only the symmetric collective mode with k = 0, as expected. Also notice that Vj′0 = 1/
√
N so that one can use again∑

j c
(n)
j = (ωn − ω)β(n)/g [

(ωn − ω)2 − g2N
]
β(n) − E0(ωn − ω)β(n) = 0. (C5)

Again there are N − 1 degenerate solutions with β(n) = 0 and two polariton energies obtained as solutions of a
quadratic equation. Notice that E0 = 2Ω and the two solutions read

ωsym
± = ω + Ω±

√
g2N + Ω2. (C6)

Let us now find the eigenvectors corresponding to the polaritonic energies. For symmetric coupling we can rewrite
Eq.(C3a)

(ω± − ω)c±j −
Ω

N
(c±j−1 + c±j+1)− gβ± = 0, (C7)

where we have used Vjk = 1/
√
Ne−iθjk, Ek = Ω(eiθk + e−iθk). This expression can be satisfied if all the coefficients of

the matter part are equal. From Eq.(C3b) and the normalization condition
∑
j |c
±
j |2 + |β±|2 = 1 we readily find

β± =
g
√
N√

(ω± − ω)2 + g2N
, (C8)

for the photonic part and the following matter contribution

c±j =
ω± − ω√

N
√

(ω± − ω)2 + g2N
. (C9)

Notice that, as expected, in the absence of dipole-dipole couplings, the expressions above reduce to the expected
β± = 1/

√
2 and c±j = ±1/

√
2N . For small tunneling rates Ω� g

√
N we can approximate the polariton energies at

ω ± g
√
N − Ω.

In the completely asymmetric case where gj = g(−1)j we select the asymmetric mode
∑
j(−1)jVjk ≈

√
Nδk,N/2 (we

assumed large even numbers for N) such that
∑
j(−1)jc

(n)
j = (ωn − ω)β(n)/g and we can rewrite similarly[

(ωn − ω)2 − gN2
]
β(n) − EN/2(ωn − ω)β(n) = 0. (C10)

Again there are N − 1 degenerate solutions with β(n) = 0 and two polariton energies obtained as solutions of a
quadratic equation. Notice that EN/2 = −2Ω and the two solutions read

ωasym
± = ω − Ω±

√
g2N + Ω2. (C11)

The polaritons can be found in an analogous manner as in the symmetric case, with the ansatz that the coefficients
show the (−1)j phase dependence.


	Excitation transport with collective radiative decay
	Abstract
	I Introduction
	II Model and equations
	A Master equation
	B The single excitation approximation

	III Free space transport
	A Wavepacket evolution with independent decay
	B Wavepacket evolution with subradiance
	C Transport of correlations

	IV Cavity transport
	V Conclusions
	VI Acknowledgments
	 References
	A Vacuum mediated coherent and incoherent interactions
	B Wavepacket transport
	C Polaritons


