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ABSTRACT
BACKGROUND: Biomarkers of psychiatric treatment response remain elusive. Functional magnetic resonance im-
aging (fMRI) has shown promise, but low reliability has limited the utility of typical fMRI measures (e.g., average brain
signal) as harbingers of treatment success. Notably, although historically considered a source of noise, temporal brain
signal variability continues to gain momentum as a sensitive and reliable indicator of individual differences in neural
efficacy, yet has not been examined in relation to psychiatric treatment outcomes.
METHODS: A total of 45 patients with social anxiety disorder were scanned twice (11 weeks apart) using simple task-
based and resting-state fMRI to capture moment-to-moment neural variability. After fMRI test-retest, patients
underwent a 9-week cognitive behavioral therapy. Multivariate modeling and reliability-based cross-validation were
used to perform brain-based prediction of treatment outcomes.
RESULTS: Task-based brain signal variability was the strongest contributor in a treatment outcome prediction model
(total rACTUAL,PREDICTED = 0.77), outperforming self-reports, resting-state neural variability, and standard mean-based
measures of neural activity. Notably, task-based brain signal variability showed excellent test-retest reliability
(intraclass correlation coefficient = 0.80), even with a task length less than 3 minutes long.
CONCLUSIONS: Rather than a source of undesirable noise, moment-to-moment fMRI signal variability may instead
serve as a highly reliable and efficient prognostic indicator of clinical outcome.

https://doi.org/10.1016/j.biopsych.2021.09.026
Biomarkers of psychiatric treatment response remain elusive.
The search for such biomarkers is of particular importance
given that subjective ratings of pretreatment symptom severity
often fail to predict treatment outcomes for a range of common
psychiatric disorders (1). Noninvasive functional magnetic
resonance imaging (fMRI) serves as one theoretically viable
alternative for prediction of treatment outcomes (2). However,
typical neuroimaging-based treatment outcome prediction
models have been heavily critiqued under the argument that
thousands of patients are needed to successfully establish
treatment predictors (3). Furthermore, recent meta-analyses
demonstrate low overall reliability of both task and resting-
state fMRI using standard measures (e.g., functional connec-
tivity and average brain signals) (4,5). Inaccurate predictions of
treatment outcomes will thus necessarily remain (despite
large-scale, resource-intensive efforts) if the same unreliable
measures continue to be used. We need a different approach.

Grossly underappreciated in the clinical domain, evidence
continues to mount revealing that moment-to-moment fluctu-
ations in brain activity (i.e., brain signal variability) can viably
index the adaptability and effectiveness of neural systems. For
example, cognitive performance has been repeatedly linked to
brain signal variability (6–8), the level of which can also be
boosted pharmacologically (9,10). Crucially, although the
unique predictive power of signal variability can be more than
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five times that of conventional mean signal-based approaches
(11) and initial evidence for measurement reliability is promising
(12), no treatment outcome prediction studies to date have
examined brain signal variability.

Here, we provide a first test of the predictive utility of brain
signal variability in relation to cognitive behavioral therapy
(CBT) outcomes in patients with social anxiety disorder (SAD).
CBT for SAD is an evidence-based treatment intended to limit
the avoidance of social situations and reduce self-focused
attention—hallmarks of the disorder (13). Although the
average group-level effect of CBT can be strong (14), there is
considerable variability across patient response rates, with
many patients with SAD remaining symptomatic after treat-
ment (15). At its core, CBT is intended to help patients adapt to
momentary, social anxiety–provoking demands in the internal
and external environment (13). This prompts the question of
whether such socially relevant demands may be reflected in
moment-to-moment fluctuations in brain signals (i.e., fMRI
variability) and whether brain signal variability could provide a
novel predictive signature of CBT treatment outcome in SAD.

To this end, 45 patients with SAD underwent fMRI twice
during an 11-week test-retest period before enrollment in a 9-
week CBT. We investigated the reliability and predictive power
of moment-to-moment neural variability at rest and during a
disorder-relevant socioaffective task, while further comparing
ticle under the
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the predictive accuracy of variability to conventional measures
(mean neural responses and behavioral self-reports). Our re-
sults show that on-task moment-to-moment brain signal vari-
ability provides maximal reliability and treatment outcome
prediction for SAD.

METHODS AND MATERIALS

The study was registered at ClinicalTrials.gov (NCT02592564),
and ethical approval was obtained from the regional committee
at Umeå University, Umeå, Sweden. All participants gave
written informed consent prior to participation.

General Procedure and Recruitment of Patients

Individuals experiencing social anxiety (.18 years of age) and
seeking treatment were targeted via media advertisements,
provided self-reports, and participated in a diagnostic inter-
view as part of the screening. Included participants underwent
internet-delivered CBT for SAD for 9 weeks. Before CBT, pa-
tients underwent an 11-week test-retest period (pretreatment)
during which we assessed self-reported social anxiety symp-
toms and recorded two separate fMRI scans (i.e., baseline 1
[B1] and baseline 2 [B2]) (see Figure 1A). Multiple baseline
measures of brain and behavior were included to control for
standard confounds (e.g., regression to the mean and spon-
taneous remission) and to directly estimate test-retest reli-
ability. A total of 46 patients with a primary SAD diagnosis (as
determined by structured clinical interviews) took part in this
study. Recorded fMRI data contained outliers from 1 patient
(Mahalanobis distance = 20.2) (Figure S1), who was excluded
from all analyses. Patients in the sample (n = 45) did not
receive concurrent psychological treatment at any point during
this study, and if treated with a psychotropic medication (n = 4,
8.9%), agreed to maintain a stable dose at least 3 months prior
to and during this study. All patients remained throughout the
intervention and took part in post-treatment assessments.
A
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Cognitive Behavioral Therapy

Briefly, internet-delivered CBT for SAD is a guided self-help
intervention. Each week, a module containing text and home-
work assignments based on CBT was provided. All patients
had identical treatment materials, just as in previous random-
ized controlled trials (16,17). Further details have been
described elsewhere (18–20). Patients were in weekly contact
with a clinical psychologist who provided written feedback and
guidance via a secured internet platform. Treatment compli-
ance measures showed that most patients completed every
module of the 9-week treatment period (see the Supplement,
page 3).

Clinical Outcome Measures

We used the Liebowitz Social Anxiety Scale, self-report
version (LSAS-SR), a reliable and gold standard question-
naire to assess treatment-related changes in social anxiety
symptoms (21). Structured clinical interviews, as well as the
Clinical Global Impressions-Improvement scale (22) were
administrated after treatment. Secondary anxiety outcomes, as
well as depressive and insomnia symptom assessments are
presented in the Supplement, page 4.

Functional Neuroimaging, Preprocessing, and
Variability Estimation

Pretreatment fMRI was performed twice, separated by 11
weeks (B1 and B2). Neither the time of scanning nor patients’
subjective sleepiness ratings differed between baselines (see
the Supplement, page 4).

In each scanning session, we first recorded resting-state
fMRI, followed by task fMRI. Resting-state recordings lasted
340 seconds and were performed with eyes open (fixation
cross present on screen). As displayed in Figure 1B, during the
socioaffective face task, patients passively viewed emotional
faces (happy/fearful male/female) across two blocks (23). In
Figure 1. Study design and experimental task. (A)
A total of 45 patients provided behavioral (e.g., Lie-
bowitz Social Anxiety Scale, self-report version
[LSAS-SR]) and brain data (i.e., functional magnetic
resonance imaging [fMRI]) at two time points:
baseline 1 (B1) and baseline 2 (B2) separated by 11
weeks. Furthermore, post-treatment behavioral data
after 9 weeks of internet-delivered cognitive behav-
ioral therapy (CBT) were also collected. (B) Example
of visual cortex (mean-centered) fMRI time series
(data volumes in seconds) within each baseline
session from 3 random patients (i.e., solid green/
blue/black lines). The dashed red line represents the
average (median cubic spline) signal across all pa-
tients in the study (n = 45). Vertical solid/yellow lines
represent stimuli onsets: face 2001 300 ms fixation,
with 160 repetitions totaling 80 seconds for each
block. Stimuli within each block were either a female
or male face, and the expression was either happy or
fear. The nonshaded parts of the time series repre-
sent fixation blocks (i.e., continuous presentation of
a fixation cross).
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Figure 2. A general overview of the analytic
framework. The analysis of neurobehavioral corre-
lations between blood oxygen level–dependent sig-
nals at baseline 1 (B1) and the treatment outcome
(i.e., delta Liebowitz Social Anxiety Scale, self-report
version [LSAS-R] score after treatment minus B1)
was computed for all 45 subjects via behavioral
partial least squares (PLS). A bootstrap-based mask
was created (bootstrap ratio [BSR]6 2) based on B1
data. To compute reliability-based cross-validation

(CV), weights from this mask were applied to corresponding voxels in baseline 2 (B2) brain data to permit extraction of subject-specific brain scores at B2 (i.e.,
no additional PLS model was run on B2 data). Prediction of treatment outcome–based change scores was then performed using fivefold CV, from which
empirical treatment-based change scores were correlated with predicted scores.
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each block, alternations of a single face (200 ms) and fixation
cross (300 ms) were presented for a period of 80 seconds (160
s of face stimulation in total). Stimulus order (happy/fearful;
male/female) was counterbalanced across patients. Fixation
blocks also occurred before (20 s), in-between (30 s), and after
(20 s) the face stimulus blocks (see Figure 1B).

Brain images were collected on a 3T General Electric Dis-
covery MR 750 scanner with a 32-channel head coil at the
Umeå Centre for Functional Brain Imaging (Umeå, Sweden).
The preprocessing pipeline included manual denoising by
examining all functional volumes for artifacts via independent
component analysis (24). To compute the temporal standard
deviation of blood oxygen level–dependent (BOLD) signals per
voxel (SDBOLD), we first subtracted the block mean and
concatenated signals across all blocks before computing
voxelwise SDBOLD across this concatenated time series (25).
We also compared SDBOLD results to typical mean fMRI activity
(MEANBOLD) during the socioaffective face task. All MRI pa-
rameters (including anatomical scans), preprocessing steps,
and signal variability estimation are described in detail in the
Supplement, pages 4 and 5.

Statistical Modeling

Estimating fMRI Correlates of Clinical Out-
come. Clinical outcomes were defined as continuous LSAS-
SR delta scores (i.e., each questionnaire’s total score at post-
treatment minus pretreatment), capturing the overall change
in symptom severity. To examine the association between
BOLD activity and treatment success, we used a partial least
squares (PLS) analysis (26,27) in MATLAB (version
9.6.0.1072779, R2019a; The MathWorks, Inc.), where estima-
tion of neurobehavioral correlations are performed in latent
space. See detailed benefits of PLS (relative to standard gen-
eral linear model) in the Supplement, page 7. In brief, PLS
models were based on a correlation matrix capturing the
between-subject correlation (Pearson’s r) of brain activity (e.g.,
SDBOLD) in each voxel (51,609 per subject) and subjectwise
delta total LSAS-SR score (post-treatment minus B1). Next, this
correlation matrix was decomposed using singular value
decomposition, which yielded voxel-based saliences (weights)
proportionate to the correlation strength between BOLD ac-
tivity (e.g., SDBOLD) and delta LSAS-SR scores. For every
subject, so-called brain scores were then calculated via the dot
product of these saliences with voxelwise BOLD values. To
estimate the robustness of voxel saliencies, 1000 bootstraps
with replacement were used, and the division of each voxelwise
salience by its corresponding bootstrap standard error yielded
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pseudo-z estimates of robustness typically referred to as
bootstrap ratios (BSRs). For all other regression models aimed
at predicting treatment outcome, we performed 1000 boot-
straps (with replacement) to estimate bootstrapped confidence
intervals (CIs). Taken together, bootstrapping was used to es-
timate strength and CIs of effects, while permutations were
used to test the significance of the found effects. PLS brain
maps are found in Figures S2–S4, and peak coordinates, BSRs,
and cluster sizes are noted in Tables S2–S4.

To compare relative predictive utility and reliability, this PLS
approach was used separately to test how different brain
measures (i.e., socioaffective face task–based SDBOLD, face
task–based MEANBOLD, and resting-state SDBOLD) linked to
treatment-related LSAS-SR changes.

Reliability-Based Cross-Validation Framework for
Brain and Behavioral Prediction of Treatment Out-
come. One key goal of this work is to establish and compare
the relative strength and reliability of different brain and
behavioral predictors of treatment outcome. To further char-
acterize the associations identified by PLS, we used a unique
two-step reliability-based cross-validation framework (see
Figure 2).

First, as described above, we computed PLS models linking
brain activity (separately for each brain measure) and re-
ductions in total LSAS-SR scores of all participants based on
the B1 (delta LSAS-SR post-B1) MRI recording. Second, the
resulting voxelwise BSRs for each model were thresholded at
62.0 while excluding all clusters smaller than 20 voxels
(Figures S2–S4 and Tables S2–S4). As control analyses, a
similar PLS model was computed based on B2, which
demonstrated that neurobehavioral relationships as captured
by PLS-based brain scores (separated by 11 weeks) are highly
correlated (r = 0.77) (Figure S5). Third, we applied the corre-
sponding weights to fMRI data recorded during B2 (11 weeks
after B1) to extract subject-specific brain scores without re-
estimating PLS models. We also generated brain scores
from the B1 and B2 measurements (i.e., weights from B1
applied to either of these), and they were all normally distrib-
uted (Figure S6). Applying B1 weights to B2 data permits a
form of “metric invariance” (28) (here, the fixing of model
weights between the two baseline periods), allowing an
assessment of stability between these measurement points.
Finally, these B2 brain scores were used to estimate linear
relationships between BOLD activity and changes in total
LSAS-SR scores (delta LSAS-SR post-B2) within a fivefold
cross-validation framework. For each fold, linear coefficients
rnal
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were estimated on a subset of subjects (training set, n = 36)
before being applied to another, nonoverlapping subset of
subjects (test set, n = 9), based on which predictions were
generated. We then calculated Pearson correlations between
predicted and observed LSAS-SR changes, and the mean
absolute scaled error (MASE) (29) was used as a metric for
the relative comparison of predictors (see the Supplement,
page 12).

While our reliability-based modeling approach does not,
by definition, seek out-of-sample prediction per se due to the
common topographical weight map estimated at B1 and
fixed at B2 (see above), we nevertheless tested for general-
izability of our models on two intertwined levels. First,
because PLS weights from the B1 fMRI measurement are
applied to B2 fMRI data without rerunning PLS, any statisti-
cally meaningful prediction of treatment success can only
emerge if the link between BOLD activity and treatment
outcome is similar in both magnitude and topographical
distribution across two completely separate fMRI recordings
11 weeks apart. Second, our fivefold cross-validation
approach further limits model overfitting (in the presence of
our limited sample size). Building on the direct comparisons
of strength and reliability of different brain measures for
treatment prediction, future work can target larger-scale out-
of-sample prediction of treatment outcomes.
A
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Figure 3. Reductions in social anxiety symptoms and task-related brain signa
social anxiety outcome, Liebowitz Social Anxiety Scale, self-report version (LSAS
represents the median cubic spline. (B) Task-based standard deviation of blood o
strongly related to empirical change scores. (C) Task-based SDBOLD spatial patte
better treatment outcome; yellow/red regions: higher SDBOLD associated with be
logical Institute coordinates. Furthermore, unthresholded statistical maps are av
BSR, bootstrap ratio.
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Standard intraclass correlation coefficient (ICC) and Pear-
son’s r correlation coefficient (30) were also calculated to
determine test-retest reliability between the two baseline
measurements (see the Supplement, page 15).

Data and Code Availability

All code and statistical software commands are available online
(https://github.com/LNDG/Mansson_etal_2022_BiolPsychiatry).
Owing to ethics constraints, we cannot at present make the raw
patient data openly available; please contact the first author
(KNTM) to discuss potential routes to data access.
RESULTS

Treatment Outcomes

The primary social anxiety outcome measure (LSAS-SR)
decreased 33.46 points on average from screening to post-
treatment (Figure 3A). Large within-group Cohen’s d effect
sizes (.1.49) were observed for both LSAS-SR and secondary
outcomes, all permuted ps , .001. The clinician-administered
Clinical Global Impressions-Improvement interviews found the
mental health of 32 of 45 patients to be much (48.9%) or very
much (22.2%) improved at post-treatment. See Tables S5–S6
B

l variability as a predictor of treatment outcome. (A) Change in the primary
-SR), from screening, baseline 1, baseline 2, to post-treatment. The solid line
xygen level–dependent signal (SDBOLD)-predicted treatment change score is
rn reflecting treatment outcome. Blue regions: lower SDBOLD associated with
tter treatment outcome. X Y Z below the brains represent Montreal Neuro-
ailable at NeuroVault.org (https://identifiers.org/neurovault.collection:9030).
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Figure 4. Treatment outcome prediction accuracies and brain signal variability. (A) Prediction accuracy (i.e., mean absolute scaled error [MASE]) for each
condition (i.e., task standard deviation of blood oxygen level–dependent signal [SDBOLD]; resting-state SDBOLD; task MEANBOLD; Liebowitz Social Anxiety
Scale, self-report version [LSAS-SR] at baseline 1 [B1] and baseline 2 [B2]) and across data volumes (i.e., 40, 80, 160, and 340 s). * denotes significant
(permuted p , .001) zero-order prediction models noted in Table S7. Lower values indicate better model performance. (B) Fivefold cross-validated correlation
between empirical and predicted treatment change scores using all zero-order significant conditions (i.e., 160-s task SDBOLD, 340-s resting-state SDBOLD, and
LSAS-SR at B2). (C) Unique and shared variance (R2) between model predictors and treatment outcome. (D) Task-related SDBOLD and (E) resting-state SDBOLD

spatial pattern reflecting treatment outcome. Blue regions represent less variability predicting better outcome, whereas yellow/red regions represent higher
functional magnetic resonance imaging signal variability predicting better outcome. (F) Displays overlapping activations between task SDBOLD (160 s) and
resting-state SDBOLD (340 s). The spatial pattern for each condition represents a binary mask. X Y Z below the brains represent Montreal Neurological Institute
coordinates. Unthresholded statistical maps are available at NeuroVault.org (https://identifiers.org/neurovault.collection:9030). BSR, bootstrap ratio;
MEANBOLD, average BOLD signal.

Brain Variability Predicts Treatment Outcome
Biological
Psychiatry
and Figures S7–S9 for a detailed presentation of all clinical
outcomes.
Task-Related Brain Signal Variability Strongly
Predicts Treatment Outcome

Moment-to-moment brain signal variability during emotional
face processing robustly predicted social anxiety change scores
(post-pre CBT; fivefold cross-validated; rACTUAL,PREDICTED
[rACT,PRED] = 0.65, MASE = 0.54, permuted p, .001) (Figure 3B).
Specifically, low signal variability in the right visual cortex and
high variability in the anterior cingulate, medial prefrontal, and
temporal cortices predicted larger reductions in social anxiety
symptoms (see Figure 3C; Figure S2 and Table S2 for a com-
plete presentation of neural activations and data density plots).
The predictive power of task-related SDBOLD remained nearly
identical even when the data volume was reduced by either 50%
662 Biological Psychiatry April 1, 2022; 91:658–666 www.sobp.org/jou
(80 s; rACT,PRED = 0.65, MASE = 0.53, permuted p , .001) or
75% (40 s; rACT,PRED = 0.62, MASE = 0.52, permuted p , .001).
See Figure 4 and Table S7 for details of various multiple
regression models spanning brain measures and data volumes.
Gauging the Relative Predictive Utility of Task-
Based BOLD Variability

In a multiple regression model including all potential behavioral
and brain-based predicted social anxiety change scores (and
equal data volumes of 160 s for all brain measures), task-related
SDBOLD (b = 0.61, permuted p , .001) dominantly outperformed
resting-state SDBOLD (b = 0.26, permuted p = .090), task-related
MEANBOLD (b =20.07, permuted p = .621), and pretreatment so-
cial anxiety severity (B2 LSAS-SR, b = 0.22, permuted p = .186).
Themodel accounted for 54%of the variance in the social anxiety
change score (Table S8). Although self-reported social anxiety at
rnal
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Table 1. Univariate (Zero-Order) and Multiple Predictor
Models of Treatment Outcome Across Different Within-
Patient Data Volumes

Pretreatment
Predictors

Data
Volume MASE r (95% CI) Perm p

Behavioral

LSAS-SR at B1 48 items 0.65 0.27 (20.01 to 0.56) .071

LSAS-SR at B2 48 items 0.58 0.45 (0.20 to 0.70) ,.001a

Brain

Task SDBOLD 160 s 0.54 0.65 (0.51 to 0.79) ,.001a

Rest SDBOLD 160 s 0.63 0.19 (20.08 to 0.46) .085

340 s 0.55 0.55 (0.35 to 0.75) ,.001a

Task MEANBOLD 160 s 0.67 20.18 (20.49 to 0.12) .843

Brain SDBOLD and Behavioral Self-reports Combined

Multiple predictorsb – 0.43 0.77 (0.66 to 0.89) ,.001

See Table S7 for a complete presentation of model results across all
data volumes.

B1, baseline 1; B2, baseline 2; LSAS-SR, Liebowitz Social Anxiety
Scale, self-report version; MASE, mean absolute scaled error;
MEANBOLD, average blood oxygen level–dependent signal; Perm,
permuted; SDBOLD, standard deviation of BOLD signal.

aSignificant zero-order prediction.
bThe multiple regression model includes all significant zero-order

predictors (i.e., 160-s task SDBOLD, 340-s resting-state SDBOLD, and
LSAS-SR at B2).
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pretreatment did not predict treatment outcome within our full
model, a moderate zero-order correlation indicated that patients
with more severe SAD exhibited greater reductions in social anx-
iety (rACT,PRED = 0.45, permuted p , .001). See Table 1 and
Figure 4A for a complete presentation of statistical results. In a
secondmodel including the same predictors but instead using the
brain score from the full available resting-state SDBOLD data vol-
ume (340 s), we found that resting-state SDBOLD also uniquely
predicted treatment outcome (b = 0.34, permuted p = .039), but
task-related SDBOLD remained the strongest treatment outcome
predictor (b= 0.41, permuted p = .018) despite relying on less than
half thedata volume (160s) comparedwith restingstate (TableS9).
Biologica
Furthermore, we demonstrate good (although slightly reduced)
model performance without thresholding weights based on B1
data (i.e., no feature selection) (Figure S11D); however, as
Figure S11A–C demonstrates, a BSR of 2 remains optimal for
single and multiple predictor model performance. All peak neural
activations from the initial PLS models (i.e., task SDBOLD, resting-
state SDBOLD, task MEANBOLD) and corresponding coordinates
are reported in Tables S2–S4 and Figures S2–S4. Unthresholded
statistical maps are available at NeuroVault.org (https://identifiers.
org/neurovault.collection:9030).

A final cross-validated model including only the univariate
significant predictors of treatment outcome (i.e., task SDBOLD

[160 s], resting-state SDBOLD [340 s], and B2 LSAS-SR)
improved the predictive accuracy beyond any single predic-
tor (rACT,PRED = 0.77, MASE = 0.43, permuted p , .001) (see
Figure 4B and Table 1). However, the unique variance
associated with task-based SDBOLD was notably higher than
all other predictors (Figure 4C). Furthermore, the spatial
patterns capturing neurobehavioral correlations of task-
based and resting-state SDBOLD differed considerably
(Figure 4F and Figure S12), suggesting that the contribution
of each SDBOLD estimate to treatment outcome prediction
is complementary both statistically (with regard to effect
size and MASE values) and with regard to brain regions
involved.

Neither depression nor insomnia severity at pretreatment
predicted social anxiety treatment outcomes (all permuted ps
. .188). Furthermore, a single principal component analysis
including all secondary social anxiety outcomes correlated
strongly with the task SDBOLD–predicted social anxiety change
score noted in Figure 3B (R2 = 34%, permuted p , .001) but
did not correlate with reductions in depressive or insomnia
symptoms (Supplement, page 21).

Eleven-Week Test-Retest Reliability

Eleven-week test-retest reliability (B1 vs. B2) was excellent
both for the primary social anxiety measure (LSAS-SR;
Figure 5. Test-retest reliability. Intraclass corre-
lation coefficients (ICCs) were computed for Liebo-
witz Social Anxiety Scale, self-report version (LSAS-
SR) scores; functional magnetic resonance imaging
blood oxygen level–dependent (BOLD) across con-
ditions (i.e., task SDBOLD and resting-state SDBOLD);
and data volumes (i.e., 40, 80, 160, and 340 s). Error
bars represent bootstrapped 95% confidence in-
tervals (CI). For reference, two meta-analyses on
test-retest reliability using conventional analytics
(i.e., functional connectivity and average brain sig-
nals) are presented (4,5), which are meta-analyses
on standard measures of task- and resting-state
functional magnetic resonance imaging. SDBOLD,
standard deviation of BOLD signal.
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ICCB1,B2 = 0.84, CI = 0.75–0.90) and our task-related SDBOLD

measure (reliability-based brain scores; ICCB1,B2 = 0.80, CI =
0.70–0.90) (see Figure 5 and Tables S10 and S11). The task
SDBOLD ICC value was nearly identical after reducing data
volume to 80 seconds (ICCB1,B2 = 0.78) and decreased
slightly when reducing data volume to 40 seconds
(ICCB1,B2 = 0.62). Further details and voxelwise whole-brain
calculations and plots are displayed in Table S11 and
Figures S13–S15. In contrast to estimates of signal vari-
ability, task-related MEANBOLD showed very poor reliability
(all ICCsB1,B2 w 0). Control analyses revealed that this is not
due to data quality issues per se, because MEANBOLD

response to faces replicated common topographical brain
activity of face viewing (e.g., visual cortex, amygdala)
(Table S12 and Figure S16).
DISCUSSION

In this study, we found that internet-delivered CBT suc-
cessfully reduced discomfort for patients with SAD and that
pretreatment brain signal variability was an accurate and
reliable predictor of treatment outcome. A multiple predictor
model that included task-based SDBOLD, resting-state
SDBOLD, and pretreatment social anxiety severity showed
excellent prediction accuracy. Task-related SDBOLD was the
strongest predictor and exhibited excellent reliability. This
relatively short (160 s) estimate of task-based BOLD signal
variability outperformed resting-state SDBOLD, standard
MEANBOLD, and pretreatment self-reported social anxiety.
Resting-state variability also uniquely predicted treatment
outcome in our full model, but accounted for approximately
50% less unique explained variance than task-based SDBOLD

and required more than double the data volume to achieve
comparable reliability and treatment outcome prediction
accuracy.

Estimating Brain Signal Variability During Simple,
Disorder-Relevant Tasks May Help Optimize
Treatment Prediction

Clinical neuroscientists often argue that resting-state neuro-
imaging protocols are preferable for ease of implementation
and minimization of demands on patients. Here, superior
treatment outcome prediction was achieved using a disorder-
relevant task (socioaffective visual processing in patients with
SAD) with extremely low cognitive requirements (passive
viewing, no behavioral responses required) and absolutely
minimal scan time (2 min 40 s, far shorter than typical resting-
state scans). Furthermore, the spatial patterns linking SDBOLD

to treatment outcome were largely distinct for task and resting-
state SDBOLD. Thus, while both task and resting-state vari-
ability contributed to CBT outcome prediction, the two mea-
surements represent different neural signatures. If simple,
demand-minimal fMRI remains a primary goal for biomarker
development in psychiatry, then passive, disorder-relevant
tasks should be included in future large-scale studies of
treatment outcome, particularly when BOLD fluctuations can
be examined. Here, we used a simple and straightforward
calculation of each patient’s brain signal variability, for which
code is freely available and deployable for use in the majority of
664 Biological Psychiatry April 1, 2022; 91:658–666 www.sobp.org/jou
already collected patient fMRI data in the field (https://github.
com/LNDG/Mansson_etal_2022_BiolPsychiatry).

Moving Beyond Average Neural Signals for Reliable
Treatment Prediction

Our task-based SDBOLD prediction model also dominated a
more conventional analytic approach using mean brain signals
(MEANBOLD; i.e., the average fMRI signal across time) to esti-
mate treatment outcomes. Why might MEANBOLD perform so
poorly? Recently, alarming meta-analyses demonstrate that
the average ICC may be as low as 0.40 (CI = 0.33–0.46) for
common experiments using conventional mean-based ana-
lyses in task-based fMRI (5). Crucially, the test-retest reliability
of such standard (and alternative) fMRI measures in the treat-
ment outcome prediction literature remains largely unknown.
Our task-based SDBOLD treatment prediction model demon-
strated excellent 11-week test-retest reliability, and even with
minimal data (40 s), task SDBOLD was far more reliable than
MEANBOLD when all available data (160 s) were used. Note that
we did replicate common topographical brain activity patterns
of face viewing based on the conventional MEANBOLD data
(Table S12 and Figure S16); hence, the low reliability of
MEANBOLD is unlikely to trace back to data quality per se.
Beyond the poor performance of MEANBOLD here, another
meta-analysis also revealed very low reliability (ICC = 0.29;
CI = 0.23–0.36) for connectivity-based analyses of resting-
state fMRI data (4). Using brain measures with such poor
reliability may continue to contribute to reduced probability of
replication, and we argue that moment-to-moment brain signal
variability computations are therefore strong candidates for
future smaller- and larger-scale investigations of biomarkers in
psychiatric research and treatment outcome prediction.

What Could BOLD Variability Reveal About Social
Anxiety Treatment Outcomes?

Researchers often conceive signal variability as unreliable and
unwanted noise. However, moment-to-moment brain signal
variability continues to exhibit a host of behaviorally and
group-relevant effects in cognitive neuroscience [for a review,
see (8,31)] yet remains grossly underused in clinical research.
To our knowledge, SAD has not previously been linked to
BOLD variability. It has been argued that an individual’s brain
signal variability may 1) reflect available neural dynamic range
for the more accurate processing of incoming stimuli (32) and
2) index a more cognitively effective system overall (31). One
characteristic SAD symptom is self-focused attention; as a
result of an external socioaffective trigger, patients with SAD
become self-attentive and biased toward internal cognitive and
emotional processes, leading to deficits in the ability to
disengage from internally focused modes (13). As such, pa-
tients with SAD may indeed filter external socioaffective stimuli
through their own internal biases, showing a heightened focus
on socioaffective content at the cost of an incomplete repre-
sentation of such stimuli. CBT includes cognitive and behav-
ioral interventions for dealing with excessive anxiety, such as
shifting one’s attention from internally referenced processing
toward a more faithful representation of external input. Previ-
ous work has shown that lower signal variability in the visual
cortex should be expected when individuals do not fully
rnal
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process the complexity of visual input (32). It is plausible that
patients with treatment-responsive SAD express more limited
visuocortical brain signal variability due to a relative inability to
fully process external socioaffective stimuli, a function that
may be directly improved via CBT. Complementarily, we also
found that patients who displayed higher variability in the
prefrontal cortex benefited more from CBT. Past work
consistently shows that greater BOLD variability in the frontal
lobes typifies healthy, higher-performing adults across a host
of different cognitive domains, such as attentional capacity,
working memory, and verbal abilities (6,9,11,12,33,34) [for a
review, see (31)]. Accordingly, prefrontal signal variability may
be required to respond to internet-delivered CBT, a treatment
process that requires self-motivated learning, working mem-
ory, and verbal capacity. Although these interpretations remain
speculative, novel questions related to intraindividual variability
could be key for future directions in neuroscience-based
psychiatric research. To best do so, future longitudinal
studies are needed that mechanistically investigate the links
between joint changes in neural variability and psychiatric
treatment outcomes.

Limitations and Future Directions

To our knowledge, we provide first evidence for within-sample
reliability-based mapping of a series of different fMRI-based
measures and experimental conditions in relation to treat-
ment outcome. However, ultimately, the utility of any prediction
model is determined by its ability to generalize to new, unseen
patients. Poldrack et al. (3) recently criticized current prediction
practices in the neuroimaging literature (35–38), claiming that
hundreds or even thousands of patients are needed for out-of-
sample prediction. Even when such high data volume is
available, prediction using conventional brain measures can
work (n = 1188) (2), but replication is not necessarily guaran-
teed in completely independent patient samples (39). We
provide reliability-based evidence for the importance of brain
signal variability in treatment prediction, and the use of such
reliable tools may markedly reduce the need for such large,
resource-intensive samples for treatment prediction.

It is also well established that moment-to-moment brain
signal variability is linked to a wide variety of state- and trait-
related functions in different samples (9,31), rendering it
possible that BOLD variability may be similarly sensitive to a
variety of treatment outcomes in other common psychiatric
disorders. However, it remains to be tested whether moment-
to-moment neural variability estimated during other task types
(e.g., memory and/or motor tasks; tasks that would not be
judged a priori as disorder relevant) also predicts treatment
outcomes. Such future comparisons could then address
whether variability-based prediction reflects clinically relevant
state- or trait-like neural signatures. Here, our socioaffective
face-based task SDBOLD treatment outcome prediction model
was related to social anxiety but not depression or insomnia,
suggesting that the specific type of task might indeed deter-
mine the specificity of brain-based predictions.

Conclusions

Neural variability has the potential to offer unique insights into
factors that affect patient responses to psychiatric treatments.
Biologica
Here, we demonstrate that intraindividual neural response
variability is a reliable and accurate predictive biomarker of
treatment success, even when using a simple passive task
administered in less than 3 minutes. Ultimately, our findings
may help improve precision medicine and clinical decision
making in psychiatric populations.
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