
NeuroImage 222 (2020) 116893
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Predictive regression modeling with MEG/EEG: from source power to
signals and cognitive states

David Sabbagh a,b,c,*, Pierre Ablin a, Ga€el Varoquaux a, Alexandre Gramfort a,
Denis A. Engemann a,d,**

a Universit�e Paris-Saclay, Inria, CEA, Palaiseau, France
b Inserm, UMRS-942, Paris Diderot University, Paris, France
c Department of Anaesthesiology and Critical Care, Lariboisi�ere Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
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A B S T R A C T

Predicting biomedical outcomes from Magnetoencephalography and Electroencephalography (M/EEG) is central
to applications like decoding, brain-computer-interfaces (BCI) or biomarker development and is facilitated by
supervised machine learning. Yet, most of the literature is concerned with classification of outcomes defined at
the event-level. Here, we focus on predicting continuous outcomes from M/EEG signal defined at the subject-
level, and analyze about 600 MEG recordings from Cam-CAN dataset and about 1000 EEG recordings from
TUH dataset. Considering different generative mechanisms for M/EEG signals and the biomedical outcome, we
propose statistically-consistent predictive models that avoid source-reconstruction based on the covariance as
representation. Our mathematical analysis and ground-truth simulations demonstrated that consistent function
approximation can be obtained with supervised spatial filtering or by embedding with Riemannian geometry.
Additional simulations revealed that Riemannian methods were more robust to model violations, in particular
geometric distortions induced by individual anatomy. To estimate the relative contribution of brain dynamics and
anatomy to prediction performance, we propose a novel model inspection procedure based on biophysical for-
ward modeling. Applied to prediction of outcomes at the subject-level, the analysis revealed that the Riemannian
model better exploited anatomical information while sensitivity to brain dynamics was similar across methods.
We then probed the robustness of the models across different data cleaning options. Environmental denoising was
globally important but Riemannian models were strikingly robust and continued performing well even without
preprocessing. Our results suggest each method has its niche: supervised spatial filtering is practical for event-
level prediction while the Riemannian model may enable simple end-to-end learning.
1. Introduction

Magnetoencephalography and Electroencephalography (M/EEG) ac-
cess population-level neuronal dynamics across multiple temporal scales
from seconds to milliseconds (Buzs�aki and Draguhn, 2004; H€am€al€ainen
et al., 1993). Its wide coverage of brain rhythms supports modeling
cognition and brain health at different levels of organization from states
to traits (Baillet, 2017; Buzs�aki and Watson, 2012; da Silva, 2013). In the
past decades, this has led to predictive modeling approaches in which
cognitive or clinical outcomes are statistically approximated from the
electrophysiological signals (Woo et al., 2017; Besserve et al., 2007). In a
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common scenario, single-trial stimulus details are predicted from chunks
of event-level signal, e.g., visual orientation or auditory novelty (Cichy
et al., 2015; King et al., 2013). With brain-computer-interfaces (BCI), one
aims to read out cognitive states and translate them into control signals,
e.g., to capture movement-intentions (Wolpaw et al., 1991; Lotte et al.,
2007; Tangermann et al., 2008). For biomarkers applications, the focus is
on predicting medical diagnosis and other clinical endpoints (Engemann
et al., 2018; Sami et al., 2018; Mazaheri et al., 2018).

What is the physiological source of M/EEG-based prediction? Similar
to an analog radio, M/EEG receives signals containing multiplexed
streams of information in different frequency ‘channels’ (van
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Wassenhove, 2016; Akam and Kullmann, 2014; Panzeri et al., 2010). The
signal comprises periodic and arrhythmic components which give rise to
the characteristic 1/f power law regime (Dehghani et al., 2010; Link-
enkaer-Hansen et al., 2001; He et al., 2010). M/EEG brain-dynamics
originate from transient large-scale synchrony of distinct
brain-networks where the anatomical regions involved communicate in
different frequency bands (Hipp et al., 2012; Siegel et al., 2012). Typi-
cally, the frequency depends on the spatial scale of the network: as the
scale becomes more local the spectral frequency increases (Buzs�aki and
Draguhn, 2004; Honey et al., 2007).

This motivates modeling approaches sensitive to both the temporal
scale and the topography of the signal. Unfortunately, the neural sources
of M/EEG cannot be observed and have to be inferred with uncertainty
from their distorted representation on extra-cranial sensors. This argues
in favor of statistical-learning techniques that can readily exploit high-
density sensor arrays beyond sensor-wise statistical testing. So far this
has been approached by explicit biophysical source modeling
(H€am€al€ainen and Ilmoniemi, 1994; Khan et al., 2018; Westner et al.,
2018), statistical approximations of biophysical generators through In-
dependent Component Analysis (ICA) (Hyv€arinen and Oja, 2000; Makeig
et al., 1995; Stewart et al., 2014; Subasi and Gursoy, 2010), spatial
filtering approaches often inspired by BCI (D€ahne et al., 2013, 2014a,b;
de Cheveign�e and Parra, 2014; Haufe et al., 2014a; Nikulin et al., 2011)
or direct application of general purpose machine learning on the sensor
time series (King et al., 2013).

Strikingly, the bulk of the literature on predictive modeling from M/
EEG focuses on classification problems, evoked responses and outcomes
defined at the event-level, e.g., brain responses to stimuli or brain dy-
namics related motor behavior. This is understandable, as evoked
response analysis draws on rich resources from a long-standing history in
experimental psychology (Coles and Rugg, 1995; N€a€at€anen, 1975; Polich
and Kok, 1995) and lend themselves to categorical problems as defined
by experimental conditions. Besides, working on classification rather
than regression may be more rewarding, as learning the boundary be-
tween classes is easier than estimating a full regression function (Hastie
et al., 2005, chapter 7.3.1). Nevertheless, high-interest clinical outcomes
other than diagnosis are often continuous and often involve predicting at
the subject-level (e.g., prediction of risk scores, optimal drug-dosage,
time of hospitalization or survival). Moreover, as EEG-recordings are
combined across medical sites where different EEG-protocols are used,
additional strain is put on spontaneous brain rhythms that can be
accessed even if no particular task is used (Engemann et al., 2018). Yet, it
is currently unclear how learning approaches based on brain rhythms
compare as the data generating mechanism changes (event-level vs
subject-level outcomes) or when the underlying probability model (e.g.
log-linear vs linear relationship to power) is not a priori known.

In this paper we focus on linking neural power spectra with their
measure in M/EEG using appropriate models that facilitate prediction
with high-dimensional regression. We aim to answer the following
questions: 1) How can regression on M/EEG power-spectra be related to
statistical models of the outcome and the neural signal? 2) What are the
mathematical guarantees that a type of regression captures a given brain-
behavior link? 3) How do ensuing candidate models perform in the light
of model violations, uncertainty about the true data-generating process,
variable noise, and different preprocessing options? The article is orga-
nized as follows: First we detail commonly used approaches for M/EEG-
based predictive modeling. Subsequently, we develop a coherent math-
ematical framework for relating M/EEG-based regression to models of
the neural signal, and, as a result, propose to conceptualize regression as
predicting from linear combinations of uncorrelated statistical sources.
Then we present numerical simulations which confront different
regression models with commonly encountered model violations. Sub-
sequently, we conduct detailedmodel comparisons onMEG and EEG data
for event-level and subject-level problems. Finally, we investigate prac-
tical issues related to availability of source-modeling and preprocessing
options.
2

2. Methods

2.1. State-of-the art approaches to predict from M/EEG observations

One important family of approaches for predictive modeling with M/
EEG is relying on explicit biophysical source modeling. Here, anatomi-
cally constrained inverse methods are used to infer the most likely
electromagnetic source configuration given the observations
(H€am€al€ainen et al., 1993). Common techniques rely on fitting
electrical-current dipoles (Mosher et al., 1992) or involve penalized
linear inverse models to estimate the current distribution over a
pre-specified dipole grid (H€am€al€ainen and Ilmoniemi, 1994; Lin et al.,
2006; Van Veen and Buckley, 1988; Hauk and Stenroos, 2014).
Anatomical prior knowledge is injected through the well-defined forward
model: Maxwell equations enable computing leadfields from the geom-
etry and composition of the head, which predict propagation from a
known source to the sensors (H€am€al€ainen et al., 1993; Mosher et al.,
1999). From a signal-processing standpoint, when these steps lead to a
linear estimation of the sources, they can be thought of as biophysical
spatial filtering. Prediction is then based on the estimated source-signals,
see for example (Westner et al., 2018; Kietzmann et al., 2019; Khan et al.,
2018).

A second family is motivated by unsupervised decomposition tech-
niques such as Independent Component Analysis (Hyv€arinen and Oja,
2000; Makeig et al., 1996), which also yield spatial filters and estimates
of maximally independent sources that can be used for prediction
(Stewart et al., 2014; Wang andMakeig, 2009; Subasi and Gursoy, 2010).
Such methods model the data as an independent set of statistical sources
that are entangled by a so-called mixing matrix, often interpreted as the
leadfields. Here, the sources are purely statistical objects and no
anatomical notion applies directly. In practice, unsupervised spatial fil-
ters are often combined with sourcemodeling and capture a wide array of
situations ranging from single dipole-sources to entire brain-networks
(Hild II and Nagarajan, 2009; Brookes et al., 2011; Delorme et al., 2012).

Finally, a third family directly applies general-purpose machine
learning on sensor space signals without explicitly considering the data
generating mechanism. Following a common trend in other areas of
neuroimaging research (Dadi et al., 2019; Schulz et al., 2019; He et al.,
2019), linear prediction methods have turned out extraordinarily
well-suited for this task, i.e., logistic regression (Andersen et al., 2015),
linear discriminant analysis (Wardle et al., 2016), linear support vector
machines (King et al., 2013).

The success of linear models deserves separate attention as these
methods enable remarkable predictive performance with simplified fast
computation (Parra et al., 2005). While interpretation and incorporation
of prior knowledge remain challenging, significant advances have been
made in the past years. This has led to novel methods for specifying and
interpreting linear models (Haufe et al., 2014b; van Vliet and Salmelin,
2019). Recent work has even suggested that for the case of learning from
evoked responses, linear methods are compatible with the statistical
models implied by source localization and unsupervised spatial filtering
(King et al., 2018; King and Dehaene, 2014; Stokes et al., 2015). Indeed,
if the outcome is linear in the source signal, i.e., due to the linear su-
perposition principle, the mixing amounts to a linear transform that can
be captured by a linear model with sufficient data. Additional source
localization or spatial filtering should therefore be unnecessary in this
case.

On the other hand, the situation is more complex when predicting
outcomes from brain rhythms, e.g., induced responses (Tallon-Baudry
and Bertrand, 1999) or spontaneous oscillations. As brain-rhythms are
not strictly time-locked to external events, they cannot be accessed by
averaging. Instead, they are commonly represented by the signal power
in shorter or longer time windows and often give rise to log-linear models
(Buzs�aki and Mizuseki, 2014; Roberts et al., 2015). A consequence of
such non-linearities is that it cannot be readily captured by a linear
model. Moreover, simple strategies such as log-transforming the power



Table 1
Mathematical notations used in this article.

x 2 R Scalar (lower case)
x 2 RP Vector of size P (bold lower case)

jjxjj2 ℓ2 norm of vector x:
ffiffiffiffiffiffiffiffiffiffiP
i
x2i

r
M Matrix (bold uppercase)
IN Identity matrix of size N
½��> Transposition of a vector or a matrix

trðMÞ Trace of matrix M
diagðMÞ Diagonal of matrix M����M����

F Frobenius norm of matrix M:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðMM>Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ��Mij
��2q

rankðMÞ Rank of matrix M
M P Space of P� P square real-valued matrices
S P Subspace of P� P symmetric matrices: fM 2 M P;M> ¼ Mg
S þþ

P Subspace of P� P symmetric positive definite matrices: fM 2 S P;

x>Mx> 0;8x2 RP;x 6¼ 0g
M is full rank, invertible (with M�1 2 S þþ

P )
M ¼ UΛU> with U matrix of eigenvectors (UU> ¼ IP) and Λ ¼ diagðλÞ
matrix of (positive) eigenvalues

S þ
P Subspace of P� P symmetric semi-definite positive (SPD) matrices:

�
S 2

S P; x>Sx � 0; 8x 2 ℝP�
S þ

P;R Subspace of SPD matrices of fixed rank R: fS2 S þ
P ; rankðSÞ ¼ Rg

logðMÞ Logarithm of matrix M 2 S þþ
P : U diagðlogðλ1Þ;…; logðλnÞÞ U> 2 S P

expðMÞ Exponential of matrix M 2 S P : U diagðexpðλ1Þ;…;expðλnÞÞ U> 2 S þþ
P

N ðμ;σ2Þ Normal (Gaussian) distribution of mean μ and variance σ2

Es½x� Expectation of any random variable x w.r.t.its subscript s when needed
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estimates only address the issue when applied at the source-level: the
leadfields have already spatially smeared the signal presented on the
sensors.

This leads back to spatial filtering approaches. Beyond source local-
ization and unsupervised filtering, supervised spatial filtering methods
have recently become more popular beyond the context of BCIs. These
methods solve generalized eigenvalue problems to estimate coordinate
systems constructed with regard to criteria relevant for prediction. For
example, spatio-spectral-decomposition (SSD) is an unsupervised tech-
nique that enhances SNR with regard to power in surrounding fre-
quencies (Nikulin et al., 2011).

On the other hand, Common Spatial Patterns (Koles, 1991) and Joint
Decorrelation (de Cheveign�e and Parra, 2014) or Source Power Como-
dulation (SPoC) focus on correlation with the outcome (Blankertz et al.,
2008; D€ahne et al., 2014a, 2013), whereas Dmochowski et al. (2012)
have proposed variants of Canonical Correlation Analysis (CCA) (Hotel-
ling, 1992; D€ahne et al., 2014b) without orthogonality constraint to focus
on shared directions of variation between related datasets or by pro-
posing shared envelope correlations as optimization target (D€ahne et al.,
2014b). This yields a two-step procedure: 1) spatial filters model the
correlation induced by the leadfields and provide unmixed time-series 2)
some non-linear transforms such as logarithms are applied to these
time-series as the validity of linear equations is now secured.

A more recent single-step approach consists in learning directly from
spatially correlated power-spectra with linear models and Riemannian
geometry (Barachant et al., 2011, 2013; Yger et al., 2017; Rodrigues
et al., 2019; Fruehwirt et al., 2017). This mathematical framework pro-
vides principles to correct for the geometric distortions arising from
linear mixing of non-linear sources. This is achieved by using a Rie-
mannian metric, immune to linear transformations, which allows rep-
resenting the covariance matrices used for representing theM/EEG signal
as Euclidean objects for which linear models apply. This approach has
turned out to be promising for enhancing classification of event-level
data and has been the important ingredient of several winning solu-
tions in recent data analysis competitions, e.g., the seizure prediction
challenge organized by the University of Melbourne in 2016. Recently,
this approach has been explored for prediction of subject-level brain
volume from clinical EEG in Alzheimer’s disease in about 100 patients
(Fruehwirt et al., 2017). Yet, systematic comparisons against additional
baselines and competing regression models on larger datasets and other
outcomes are missing.

Importantly, the majority of approaches have focused on event-level
prediction problems instead of subject-level prediction and have never
been systematically compared in terms of their statistical properties and
empirical behavior. Here, we will explicitly focus on subject-level as
contrasted to event-level prediction, both, theoretically and at the level of
data analysis. Note that the present article does not focus on event-level
prediction with generalization across subjects (Halme and Parkkonen,
2018; Westner et al., 2018; Olivetti et al., 2014), which is a distinct and
more complex problem inheriting its structure from, both, event-level
and subject-level regression. A summary of mathematical notations
used in this article can be found in Table 1.
2.2. A priori knowledge: The biophysical data-generating mechanism

MEG and EEG signals are produced by electrical sources in the brain
that emerge from the synchronous activity of cortical layer IV pyramidal
neurons (H€am€al€ainen et al., 1993). These neural current generators form
physiological sources in the brain. We will assume the existence of M such
sources, zðtÞ 2 RM , where t represents time. These sources can be thought
of as localized current sources, such as a patch of cortex with synchro-
nously firing neurons, or a large set of patches forming a network. In this
work, we are interested in predicting an outcome y 2R frommultivariate
MEG/EEG signals xðtÞ 2 RP, where P corresponds to the number of sen-
sors. The underlying assumption is that the physiological sources are at
3

the origin of the signals x, and that they are statistically related to y. Often
they are even the actual generators of y, e.g., the neurons producing the
finger movement of a person. Here, we embrace the statistical machine
learning paradigm where one aims to learn a predictive model from a set
of N labeled training samples, ðxiðtÞ; yiÞ; i ¼ 1; …; N, which we see,
fundamentally, as a function approximation problem. We will consider
predicted outcomes that do not dependent on time. The physics of the
problem and the linearity of the quasi-static approximation of Maxwell’s
equations guarantee that MEG/EEG acquisition is linear too: the signals
measured are obtained by linear combination of the underlying physio-
logical sources. This leads to:

xiðtÞ¼Gi ziðtÞ; (1)

where Gi 2 RP�M is the leadfield, also commonly referred to as gain
matrix. Therefore, the observed M/EEG signal xiðtÞ contains information
on unobserved brain sources ziðtÞ, distorted by individual brain anatomy
represented by Gi. Note that here the j-th column of Gi is not necessarily
constrained to be the forward model of a focal electrical current dipole in
the brain. It can also correspond to large distributed sources. This reality
is illustrated as the area outside the cloud in Fig. 1.

A natural approach to estimate a regression model in this setting
consists in estimating the locations, amplitudes and extents of the sources
from the MEG/EEG data. This estimation known as in the inverse prob-
lem (Baillet, 2017) can be achieved using Minimum Norm Estimates
(MNE) (H€am€al€ainen and Ilmoniemi, 1984). From the estimated sources,
one can then learn to predict y as the distortions induced by individual
head geometry are mitigated. While approaching the problem from this
perspective has important benefits, such as the ability to exploit the ge-
ometry and the physical properties of the head tissues of each subject,
there are certain drawbacks. First, the inverse problem is ill-posed and
notoriously hard to solve. Second, computing Gi requires costly MRI
acquisitions and time-consuming manual labor by experienced
MEG/EEG practitioners: anatomical coregistration and tedious
data-cleaning to mitigate electromagnetic artifacts caused by environ-
mental or physiological sources of non-interest outside of the brain. The
purpose of this article is to show how to learn a regression model without
biophysical source modeling. Note that, in this article, we use the term



Fig. 1. Generative model for regression with M/EEG.
Unobservable neuronal activity z gives rise to observed M/
EEG data X and an observed biomedical outcome y. The M/
EEG data X is obtained by linear mixing of z through the
leadfield G. The outcome y is derived from z through often
unknown neural mechanisms. The statistical model (blue
cloud) approximates the neurophysiological data-
generating mechanisms with two sub-models, one for the
M/EEG signals X (path 1), one for the biomedical outcome
y (path 2). Both models are based on a vector s of uncor-
related statistical sources that, may refer to localized
cortical activity or synchronous brain networks. The
ensuing model generates y from a linear combination of the
statistical sources s. The generative model of X follows the
ICA model (Hyv€arinen and Oja, 2000) and assumes linear
mixing of the source signals by A, interpreted as a linear
combination of the columns of the leadfield G. The
generative model of y assumes a linear model in the pa-
rameters β but allows for non-linear functions in the data,
such as the power or the log-power. The mechanisms
governing path 1 implies that the sources s appear
geometrically distorted in X. This makes it impossible for a
linear model to capture this distortion if y, in path 2, is
generated by a non-linear function of s. This article focuses
on how to mitigate this distortion without biophysical
source modeling when performing regression on M/EEG
source power.
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generative model in the statistical sense of a probabilistic model of the
M/EEG observations and the biomedical outcomes.
2.3. Generative models: Statistical approximation of the M/EEG signals
and the outcome

Independent Component Analysis (Hyv€arinen and Oja, 2000, ICA) is a
popular approach to model M/EEG signals (Makeig et al., 1997). We
consider Q � P statistical sources sðtÞ 2 RQ, that correspond to unknown
latent variables. These variables are assumed to be statistically related to
the outcome variable y and to be linearly related to measured signal xðtÞ.
The area inside the cloud depicted in Fig. 1 illustrates the generative
models.

Generative model of the M/EEG signals. We consider an extension of
noise-free Blind Source Separation (Belouchrani et al., 1997). We assume
the signal arises from activity of uncorrelated sources, contaminated by
an additive noise. The sources span the same space for all samples, of
dimension Q. This model is conveniently written in matrix form:

xiðtÞ¼A siðtÞ þ niðtÞ; (2)

where siðtÞ 2 RQ is the time-series of sources amplitude of sample i and
niðtÞ 2 RP is the contamination due to noise. The columns of the mixing
matrix A 2 RP�Q are the Q linearly independent source patterns (Haufe
et al., 2014b), which correspond to topographies on the sensor array.
Each quantity in the right-hand side of Eq. (2), A, siðtÞ and niðtÞ, is un-
known and should be inferred from xiðtÞ. This setting encompasses both
event-level regression, where the samples xiðtÞ are epochs of signal from
a unique subject (i stands for a particular time window), and subject-level
regression where the samples represent the full signal of multiple subjects
(i then stands for a particular subject). In this latter case, the assumption
that A is fixed across samples is not realistic but useful for modeling
purposes. Model violations will be addressed in section 2.5.

We also make the assumption that the noise subspace is not “mixed”
with the source subspace and that the noise subspace is shared across
samples. This is motivated by the fact that environmental events generate
the strongest noise in M/EEG recordings. These environmental pertur-
bations are by definition independent from brain activity. On the other
4

hand, physiological noise, due to cardiac or ocular activity, systemati-
cally interacts with brain signals and is necessarily captured by the sta-
tistical sources s. We can then extend A to include source and noise
patterns, making it an invertible matrixA 2 RP�P. Denoting ηiðtÞ 2 RP the
concatenation of source and noise signals, the generative model (2) can
be compactly rewritten as:

xiðtÞ¼AηiðtÞ: (3)

Justification of this formulation can be found in Appendix 5.1. Note
that this statistical generative model is a simplification of the biophysical
generative mechanism: The real sources zi may not be independent (Nolte
et al., 2006), the gain Gi is sample-dependent in subject-level regression,
and the number of true sources may exceed the number of sensors,
M ≫ P.

Generative model of the biomedical outcome. The proposed framework
models yi as a function of the sources powers:

yi ¼ β>f ðpiÞ þ εi; (4)

where pi ¼ Et ½s2i ðtÞ� 2 RQ is the power of sources of sample i, f is a known
function, β 2 RQ are regression coefficients, and εi is an additive random
perturbation. In practice, one prefers frequency specific models, where
the previous relationships are obtained after siðtÞ has been bandpass
filtered in a specific frequency range. The broadband covariance
(computed on the raw signal without temporal filtering) largely reflects
low-frequency power as consequence of the predominant 1/f power
spectrum, hence, is rarely of interest for predicting. In frequency-specific
models, the powers are replaced by band-powers: power of the source in
the chosen frequency band. Note that source power in a given frequency
band is simply the variance of the signal in that frequency band. The
noise in the outcome variable depends on the context: It can represent
intrinsic measurement uncertainty of yi, for example sampling rate and
latency jitter in behavioral recordings, inter-rater variability for a psy-
chometric score, or simply a model mismatch. The true model may not be
linear for example.

Linear models in the sources powers (f ¼ identity) or log-powers (f ¼
log) are commonly used in the literature and support numerous statis-
tical learning models on M/EEG (Blankertz et al., 2008; D€ahne et al.,
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2014a; Grosse-Wentrup* and Buss, 2008). In particular Buzs�aki and
Mizuseki (2014) discusses a wide body of evidence arguing in favor of
log-linear relationships between brain dynamics and cognition. Both
possibilities for f will be considered below.
2.4. Regression models

In this article, we use a statistical learning approach and focus on the
function approximation problem rather than parameter estimation. We
aim at finding regression models that are statistically consistent i.e.with no
approximation error. Any regression model has a generalization error
that essentially entails three terms: the approximation error (when the
true function linking x and y does not belong to the search space of our
regression model), the estimation error (when learning from a finite
random sample), the irreducible error (when the relation between y and
x is not deterministic). A statistically consistent regression model is a
model with no approximation error. When learning from a sufficiently
large number of samples (no estimation error) and without noise in y (no
irreducible error), a regression model with no approximation error will
have no generalization error. It has then learnt a function that perfectly
approximates the true function asymptotically.

The generative model (4) of the outcome involves source powers i.e.
the squared amplitude of the source signal. This non-linear dependence
hints at using non-linear features of the M/EEG signal xi, based on its
second-order moment: the between-sensors covariance matrix. Denoting
the data matrix Xi 2 RP�T with T the number of time samples, the
covariance matrix of signal xiðtÞ (assumed to be zero-mean) reads:

Ci ¼XiX>
i

�
T 2 RP�P: (5)

The diagonal of this matrix represents the variance (power) of each
sensor, while the off-diagonal terms contain the covariance between each
pair of signals. Negative values in the off-diagonal express negative
correlations. If we assume that the components of the sources are zero-
mean and uncorrelated, the covariance matrix of sources is diagonal:
Et ½siðtÞs>i ðtÞ� ¼ diagðpiÞ. If they are also uncorrelated from the noise
(Et ½siðtÞνiðtÞ>� ¼ 0), then the covariances have a specific structure given
by:

Ci ¼AEiA>; (6)

where Ei ¼ Et ½ηiðtÞηiðtÞ>� is a block diagonal matrix, whose upper Q� Q
block is the covariance of sources diagðpiÞ and the ðP�QÞ� ðP�QÞ lower
block is the covariance of the noise. In particular, these covariances Ci are
full rank. They contain information about source powers pi in Ei but this
information is noisy and distorted through unknown linear field spread
A. This unknown mixing makes it challenging to find optimal regression
models with no approximation error.

In this work, we introduce three different regression models that
successfully achieve statistical consistency under certain generative as-
sumptions. They are all based on a linear model, applied to carefully
chosen non-linear feature vector vi, based on the covariance Ci.

Upper regression model . This model consists in taking

vi ¼UpperðCiÞ 2 R
PðPþ1Þ

2 ; (7)

where UpperðMÞ is defined as the vector containing the upper triangular
coefficients of M, with off-diagonal terms weighted by a factor

ffiffiffi
2

p
.

This weighting ensures that the vector and the matrix have same norms
ðjjUpperðMÞjj2 ¼ jjMjjFÞ. The ‘upper’model is consistent in the particular
case where f ¼ identity. Indeed, rewriting Eq. (6) as Ei ¼ A�1CiA�>,
and since the pi;j are on the diagonal of the upper block of Ei, the rela-
tionship between the pi;j and the coefficients of Ci is also linear. Since the
variable of interest yi is linear in the coefficients of pi, it is also linear in
the coefficients of Ci, hence linear in the coefficients of vi. In other words,
5

the ‘upper’ regression model is statistically consistent for f ¼ identity.
This method cannot be generalized to an arbitrary spectral function f
because f ðCiÞ 6¼ A f ðEiÞ A>.

Riemann regression model. The Riemannian embedding yields a rep-
resentation of sensor-level power and its correlation structure relative to
a common reference. In the particular case where f ¼ log, the idea is to
normalize each covariance Ci by a common reference C, the geometric
mean of covariances Ci. Then we can show that a linear model applied to
feature vector:

vi ¼Upper
�
log

�
C

�1=2
CiC

�1=2��
(8)

leads to a consistent regression model (see proof in Appendix 5.3). This,
essentially, means taking the log of Ci after it has been whitened by

C
�1=2, making the quantity of interest relative to some reference C. This

formulation has also a nice interpretation in terms of Riemannian ge-
ometry as being the projection of covariance matrix Ci to a common
Euclidean space: the tangent space at C. A concise and self-contained
introduction to Riemannian manifolds can be found in Appendices 5.4
and 5.5. In particular, the norm of vi can be interpreted as the (geometric)
distance between Ci and C and does not depend on A. Essentially, the
Riemannian approach projects out fixed linear spatial mixing through the
whitening with the common reference. Finally, even though the geo-
metric mean is the most natural reference on the positive definite
manifold, consistency of the Riemann regression model still holds when
using the Euclidean mean as the common reference point. Indeed, a
recent study on fMRI-based predictive modeling has reported negligible
differences between the two options (Dadi et al., 2019, appendix A).

SPoC regression model. The SPoC regression model achieves consis-
tency for any function f by taking a rather different approach: it consists
in recovering the inverse of the mixing matrix A. The SPoC algorithm is a
supervised spatial filtering algorithm simultaneously discovered by de
Cheveign�e and Parra (2014) and D€ahne et al. (2014a). In general, spatial
filtering consists in computing linear combinations of the signals to
produce so-called virtual sensors. The weights of the combination form a
spatial filter. Considering R � P filters, it corresponds to the columns of a
matrixW 2 RP�R. If R < P, then spatial filtering reduces the dimension of
the data. We will use it here with R ¼ P. The covariance matrix of
‘spatially filtered’ signals, referred to as source signals, W>xi is readily
obtained fromW>CiW. The main idea of the SPoC algorithm is to use the
information contained in the outcome variable to guide the decomposi-
tion, giving preferences to source signals whose power correlates with y.
Note that it was originally developed for event-level regression, e.g. in
BCI, and we adapt it here to a general problem that can also accommo-
date subject-level regression, where one observation corresponds to one
subject instead of one trial. More formally, the filters W are chosen to
maximize the covariance between the power of the filtered signals and y.
Denoting by C ¼ 1

N

PN
i¼1Ci the Euclidean average covariance matrix and

Cy ¼ 1
N

PN
i¼1yiCi the weighted average covariance matrix, the first filter

wSPoC is given by: wSPoC ¼ arg max
w

w>Cyw
w>Cw

: In practice, all the filters in

WSPoC are obtained by solving a generalized eigenvalue decomposition
problem (D€ahne et al., 2014a). Critically we can show that WSPoC re-
covers the inverse of A (see proof in Appendix 5.2). Therefore, the SPoC
regression model can be defined as a linear model applied to a feature
vector of the following form:

vi ¼ diag
�
f
�
WSPoC Ci W>

SPoC

��
(9)

This is consistent for any function f. Indeed, since yi is linearly related
to the components of f ðpiÞ that themselves are linearly related to the
components of vi, it will also be linearly related to the components of the
feature vector vi.
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Link between the regression models
It is noteworthy that both SPoC and Riemannmodels have in common

to whiten the covariances with a common reference covariance (the
Euclidean mean for SPoC and the geometric mean for Riemann): Rie-

mann explicitly with C
�1=2

CiC
�1=2, SPoC implicitly by solving general-

ized eigenvalue problem of ðCy ; CÞ, or equivalently of ðCi;CÞ which is
equivalent to solving the regular eigenvalue problem of Ci after whit-
ening with C ((Fukunaga, 1990; Nikulin et al., 2011) eq. 13–16). SPoC
retrieves the eigenvectors of ðCi; CÞ. Riemann produces vectors whose
size depend on the log eigenvalues of ðCi; CÞ. They both produce
non-linear features that measure powers relative to a common reference.

‘Upper’ and Riemann models both avoid inverting A by being
insensitive to it. More precisely, they consist in building from Ci a P� P
symmetric matrix Mi mathematically congruent to a block-diagonal
matrix Di whose Q � Q upper block is diagðf ðpiÞÞ i.e. that writes Mi ¼
B Di B>, for some invertible matrix B. In this case, the coefficients of
f ðpiÞ are a linear combination of coefficients ofMi which implies that the
outcome yi is linear in the coefficients of Mi. Therefore a linear model
applied to the features vi ¼ UpperðMiÞ is statistically consistent.

Finally, these two models amounts to estimating Q parameters (the
powers of each sources) from PðPþ1Þ=2 parameters (the upper part of a
symmetric matrix). Again, it is important to emphasize that we are not

aiming for explicitly estimating the most probable model parameters bβ
but rather a function that has the smallest approximation error possible,
even if over-parametrized. This approach achieves consistency without
inverting A at a price of over-parametrization: the number of parameters
will always be a lot higher than the number of samples N. Learning in this
underdetermined high dimensional setting requires regularizing the
linear model to stabilize learning. We will thus use a Ridge regression
model with linear kernel, but in a data-driven fashion with nested
generalized cross-validation, leading to effective degrees of freedom less
than numerical rank of the input data.

In this work we will compare these three models to the inconsistent
diag model as baseline. This model is probably the historically most
frequently used model in M/EEG research in countless publications.
Here, powers are considered on the sensor array while the correlation
structure is being ignored. This consists in taking only the diagonal ele-
ments of the covariance matrix: vi ¼ diagðf ðCiÞÞ, which corresponds to
the powers (variances) of sensor-level signals.

2.5. Model violations

The current theoretical analysis implies that the mixingmatrix Amust
be common to all subjects and the covariance matrices must be full rank.
If these conditions are not satisfied, the consistency guarantees are lost,
rendering model performance an empirical question. This will be
addressed with simulations (section 2.7), in which we know the true
brain-behaviour link, and experiments (section 2.8) in which multiple
uncertainties arise at the same time.

Individual mixing matrix. A model where the mixing matrix A is
subject-dependent reads: xiðtÞ ¼ AisiðtÞþ niðtÞ. Such situations typically
arise when performing subject-level regression due to individual head
geometry, individual head positions in MEG and individual locations of
EEG electrodes. In this setting, we loose consistency guarantees, but since
the Ai cannot be completely different from each other (they all originate
from human brains), we can still hope that our models perform reason-
ably well.

Rank-deficient signal. In practice M/EEG data is often rank-reduced for
mainly two reasons. First, popular techniques for cleaning the data
amounts to reduce the noise by projecting the data in a subspace, sup-
posed to predominantly contain the signal. Second, a limited amount of
data may lead to poor estimation of covariance matrices: The number of
parameters to estimate in a covariance grows quadratically with
dimension so many more samples are required than there are sensors to
accurately estimate such matrices (Engemann and Gramfort, 2015;
6

Rodrigues et al., 2017). This leads to rank-deficient covariance matrices.
When signals are rank-deficient, Riemann regression models must be

modified since singular matrices are at infinite distance from any regular
matrices. Assuming the rank R < P is the same across subjects, the cor-
responding covariance matrices do not belong to the S þþ

P manifold
anymore but to the S þ

P;R manifold of positive semi-definite matrices of
fixed rank R. To handle the rank-deficiency, one can then project the
covariance matrices on S þþ

R to make them full rank, and then use the
geometric distance (See Sabbagh et al., 2019 for more theoretical de-
velopments when working with rank-reduced data). To do so, a common
strategy is to project the data into a subspace that captures most of the
variance. This is achieved by Principal Component Analysis (PCA). We
denote the filters in this case by WUNSUP ¼ U 2 RR�P, where U contains
the eigenvectors corresponding to the top R eigenvalues of the average
covariance matrix C. The Riemann regression algorithm is then applied
to the spatially-filtered covariance matrix WUNSUP Ci W>

UNSUP 2 RR�R.
If covariances are rank-deficient, we will use low-rank versions of

both SPoC and Riemann models where only the first components of the
spatial filters are kept. In SPoC, components are ordered by covariance
with the outcome (supervised algorithm). In Riemann, components are
ordered by explained variance in the predictors, not the outcome (un-
supervised algorithm). By construction, we can then expect that SPoC
achieves similar best performance than Riemannwith fewer components:
The variance related to the outcome can be represented with fewer di-
mensions. We can also expect to observe low-rank optima with a plateau
after the effective rank R of the data.

Besides helping to cope with rank-reduced data, the effect of spatial
filtering can be difficult to predict: It helps the regression algorithm by
reducing the dimensionality of the problem making it statistically easier,
but it can also destroy information if the individual covariance matrices
are not aligned (if they span different spaces).
2.6. Model-inspection by error-decomposition

The link between the data-generating mechanism and the proposed
regression models allows us to derive an informal analysis of variance
(Gelman et al., 2005) for estimating the importance of the data gener-
ating factors such as head geometry, uniform global power and topo-
graphic, i.e., spatial information. Given the known physics from Eq. (1),
the data covariance can be written Ci ¼ Gi Cz

i G
>
i , where Cz

i is the
covariance matrix of the physiological sources in a given frequency band.
The input to the regression model is therefore affected by both the head
geometry expressed in Gi, and the covariance of the sources. We can
therefore compute degraded versions of the full covariance CD

i in which
only specific components of the signal are retained based on computation
of the leadfields. Subsequent model comparisons against the full models
then allow for isolating the relative merit of each component. Following
common practice, we considered electrical dipolar sources ziðtÞ 2 RM ,
with M � 8000, and we computed the leadfield matrix Gi with a
boundary element model (BEM) (Gramfort et al., 2014). We then defined
two alternative models which are only based on the anatomical infor-
mation or, additionally, on the global signal power in a given frequency
band without topographic structure.

Model using anatomy only. Assuming the physiological sources are
Gaussian, uncorrelated and of unit variance (power) zDi ðtÞ 	 N ð0; IMÞ,
we can re-synthesize their covariance matrix from individual leadfields
alone without taking into account the actual covariance structure:

CD
i ¼GiG>

i : (10)

Model using anatomy and spatially uniform power. Assuming the phys-
iological sources are Gaussian, uncorrelated and of uniform power
zDi ðtÞ 	 N ð0;σ2

i IMÞ, where σi is a scaling factor, we can re-synthesize their
covariance matrix from individual leadfields and subject-specific source
power, again, ignoring the actual covariance structure:
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CD
i ¼ σ2

i GiG>
i : (11)
Specifically, we chose σ2
i ¼ TrðCiÞ=TrðGiG>

i Þ, such that TrðCD
i Þ ¼

TrðCiÞ: the sum of powers of the signals is the same. This corresponds to
taking into account the total power of the sources in a given frequency
band and anatomy in the ensuing regression model. Note that we omitted
frequency-specific notation for simplicity.
2.7. Simulations

We considered simulations to investigate theoretical performance as
model violations are gradually introduced. We focused on the ‘linear-in-
powers’ and the ‘log-linear-in-powers’ model (Eq. 4, with f ¼ identity
and f ¼ log). Independent identically distributed covariance matrices S1;
…;SN 2 Sþþ

P and variables y1;…; yN were generated for each generative
model. The mixing matrix A was defined as expðμBÞ with the random
matrix B 2 RP�P and the scalar μ 2 R to control the distance of A from
identity (μ ¼ 0 yields A ¼ IP). The outcome variable was linked to the
source powers (i.e. the variance) without and with a log function, and is
corrupted by Gaussian noise: yi ¼

P
jαjf ðpijÞþ εi, with f ðxÞ ¼ x or logðxÞ

and εi 	 N ð0; σ2Þ is a small additive random perturbation. We chose P ¼
5, N ¼ 100 and Q ¼ 2. The affine invariance property of the geometric
Riemannian distance should make the model blind to the mixing matrix
A and enable perfect out-of-sample prediction whatever its value when
the outcome variable is not corrupted by noise (σ ¼ 0). Then we cor-
rupted the clean ground truth data in twoways: by increasing noise in the
outcome variable and with individual mixing matrices deviating from a
reference: Ai ¼ Aþ Ei, where entries of Ei are i.i.d. N ð0; σ2Þ. The
reference A can then be thought of as representing the head of a mean-
subject.
2.8. Experiments: M/EEG data

When analyzing M/EEG data, we do not have access to the actual
sources and do not know a priori which generative model holds, hence,
which regression model performs best. Likewise, we cannot expect per-
fect out-sample prediction: the outcome variable may be noisy (leading
to irreducible error), data samples are finite (leading to estimation error)
and numerous model violations may apply (mixing matrices may be
different for each sample, data may be rank-deficient due to pre-
processing, etc.). However, by performing model comparisons based on
cross-validation errors, we can potentially infer which model provides
the better approximation. We chose three experiments to cover a wide
range of model violations. In the order of presentation, they imply rank-
deficient covariances (because of limited amount of data) with fixed
matrix A, rank-deficient covariances (because of preprocessing) with
variable matrices Ai, full-rank covariances and variable matrices Ai.

2.8.1. Event-level regression: Cortico-muscular coherence
We first focused on event-level regression of continuous electro-

myogram (EMG) from MEG beta activity.

Data acquisition. We analyzed one anonymous subject from the data
presented in (Schoffelen et al., 2011) and provided by the FieldTrip
website to study cortico-muscular coherence (Oostenveld et al., 2011).
The MEG recording was acquired with 151 axial gradiometers and the
Omega 2000 CTF whole-head system. EMG of forceful contraction of the
wrist muscles (bilateral musculus extensor carpi radialis longus) was
concomitantly recorded with two silver chloride electrodes. MEG and
EMG data was acquired at 1200Hz sampling-rate and online-filtered at
300Hz. For additional details please consider the original study (Schof-
felen et al., 2011).

Data processing and feature engineering . The analysis closely followed
the continuous outcome decoding example from the MNE-Python web-
site (Gramfort et al., 2014). We considered 200 s of joint MEG-EMG data.
7

First, we filtered the EMG above 20 Hz using a time-domain firwin filter
design, a Hamming window with 0.02 passband ripple, 53 dB stop band
attenuation and transition bandwidth of 5Hz (-6 dB at 17.5 Hz) with a
filter-length of 661 ms. Then we filtered the MEG between 15 and 30 Hz
using an identical filter design, however with 3.75 Hz transition band-
width for the high-pass filter (-6 dB at 13.1 Hz) and 7.5 Hz for the
low-pass filter (-6 dB at 33.75 Hz). The filter-length was about 880 ms.
Note that the transition bandwidth and filter-length was adaptively
chosen by the default procedure implemented in the filter function of
MNE-Python. We did not apply any artifact rejection as the raw data was
of high quality. The analysis then ignored the actual trial structure of the
experiment and instead considered a sliding window-approach with 1.5 s
windows spaced by 250 ms. Allowing for overlap between windows
allowed to increase sample size.

We then computed the covariance matrix in each time window and
applied Oracle Approximation Shrinkage (OAS) (Chen et al., 2010) to
improve conditioning of the covariance estimate. The outcome was
defined as the variance of the EMG in each window.

Model evaluation. For event-level regression with overlapping win-
dows, we applied 10-fold cross-validation without shuffling such that
folds correspond to blocks of neighboring time windows preventing data-
leakage between training and testing splits. The initialization of the
random number generator used for cross-validation was fixed, ensuring
identical train-test splits across models. Note that a Monte Carlo
approach with a large number of splits would lead to significant leakage,
hence, optimistic bias (Varoquaux et al., 2017). This, unfortunately,
limits the resolution of the uncertainty estimates and precludes formal-
ized inference. As we did not have any a priori interest in the units of the
outcome, we used the R2 metric, a.k.a. coefficient of determination, for
evaluation.

2.8.2. Subject-level regression with MEG: Age prediction
In a second MEG data example, we considered a subject-level

regression problem in which we focused on age prediction using the
Cam-CAN dataset (Taylor et al., 2017; Shafto et al., 2014).

Data acquisition. Cam-CAN dataset contains 643 subjects with resting
state MEG data, between 18 and 89 years of age. MEGwas acquired using
a 306 VectorView system (Elekta Neuromag, Helsinki). This system is
equipped with 102 magnetometers and 204 orthogonal planar gradi-
ometers inside a light magnetically shielded room. During acquisition, an
online filter was applied between around 0.03 Hz and 1000Hz. To sup-
port offline artifact correction, vertical and horizontal electrooculogram
(VEOG, HEOG) as well as electrocardiogram (ECG) signal was concom-
itantly recorded. Four Head-Position Indicator (HPI) coils were used to
track head motion. For subsequent source-localization the head shape
was digitized. The recording lasted about 8 min. For additional details on
MEG acquisition, please consider the reference publications on the Cam-
CAN dataset (Taylor et al., 2017; Shafto et al., 2014).

MNE model for regression with source localization. To compare the data-
driven statistical models against a biophysics-informed method, for this
dataset, we included a regression pipeline based on anatomically con-
strained minimum norm estimates (MNE) informed by the individual
anatomy. Following common practice using the MNE software we used
Q ¼ 8196 candidate dipoles positioned on the cortical surface, and set
the regularization parameter to 1=9 (Gramfort et al., 2014). Concretely,
we used the MNE inverse operator as any other spatial filter by multi-
plying the covariance with it from both sides. We then retained the di-
agonal elements which provides estimates of the source power. To obtain
spatial smoothing and reduce dimensionality, we averaged the MNE
solution using a cortical parcellation encompassing 448 regions of in-
terest from Khan et al. (2018). For preprocessing of structural MRI data
we used the FreeSurfer software (Fischl, 2012, http://surfer.nmr.mgh
.harvard.edu/).

Data processing and feature engineering. This large dataset required
more extensive data processing. We composed the preprocessing pipeline
following current good practice recommendations (Gross et al., 2013; Jas

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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et al., 2018; Pernet et al., 2018). The full procedure comprised the
following steps: suppression of environmental artifacts, suppression of
physiological artifacts (EOG/ECG) and rejection of remaining contami-
nated data segments.

To mitigate contamination by high-amplitude environmental mag-
netic fields, we applied the signal space separation method (SSS) (Taulu
and Kajola, 2005). SSS decomposes the MEG signal into extracranial and
intracranial sources and renders the data rank-deficient. Once applied,
magnetometers and gradiometers become linear combinations of
approximately 65 common SSS components, hence, become inter-
changeable (Garc�es et al., 2017). For simplicity, we conducted all sen-
sor-space analyses on magnetometers. We kept the default settings of
eight and three components for harmonic decomposition of internal and
external sources, respectively, in concert with a 10-s sliding windows
(temporal SSS). To discard segments in which inner and outer signal
components were poorly separated, we applied a correlation-threshold of
98%. Since no continuous head monitoring data were available at the
time of our study, we performed no movement compensation. The origin
of internal and external multipolar moment space was estimated based
on the head-digitization. To mitigate ocular and cardiac artifacts, we
applied the signal space projection method (SSP) (Uusitalo and Ilmo-
niemi, 1997). This method learns principal components on
data-segments contaminated by artifacts and then projects the signal into
to the subspace orthogonal to the artifact. To reliably estimate the signal
space dominated by the cardiac and ocular artifacts, we excluded data
segments dominated by high-amplitude signals using the ‘global’ option
from autoreject (Jas et al., 2017). To preserve the signal as much as
possible, we only considered the first SSP vector based on the first
principal component. As a final preprocessing step, we used the ‘global’
option from autoreject for adaptive computation of rejection thresholds
to remove remaining high-amplitudes from the data at the epoching
stage.

As the most important source of variance is not a priori known for the
problem of age prediction, we considered a wide range of frequencies.
We bandpass filtered the data into nine conventional frequency bands (cf.
Table 2) adapted from the Human-Connectome Project (Larson-Prior
et al., 2013), and computed the band-limited covariance matrices with
the OAS estimator (Chen et al., 2010). All pipelines were separately run
across frequencies and features were concatenated after the vectorization
step.

Model evaluation. We performed Monte Carlo (shuffle split) cross-
validation with 100 splits and 10% testing data. The initialization of
the random number generator used for cross-validation was fixed,
ensuring identical train-test splits across models. This choice also allowed
us to obtain more fine-grained uncertainty estimates than was possible
with the time-series data used for subject-level regression. As absolute
changes of the unit of the outcome is meaningful, we used the mean
absolute error (MAE) as evaluation metric.

2.8.3. Subject-level regression with EEG: Age prediction
In a third data example, we considered a subject-level age prediction

problem, as in Cam-CAN, but focused on EEG from the Temple University
(TUH) EEG Corpus (Harati et al., 2014), one of the largest publicly
available database of clinical EEG recordings. This ongoing project
currently includes over 30,000 EEGs spanning the years from 2002 to
present. This analysis is theoretically important as it supports assessing
translation to clinical EEG data. It is also useful as it allows us to evaluate
our regression models in a complementary setting where A is
Table 2
Definition of frequency bands.

name low Δ θ α

range (Hz) 0:1� 1:5 1:5� 4 4� 8 8� 15
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sample-dependent, as in Cam-CAN, but covariance matrices are full rank.
This analysis is therefore appropriate to primarily investigate the
particular model violation of sample-dependent mixing matrices. Un-
fortunately, the absence of associated MRI data prevented us from con-
ducting source localization.

Data acquisition. We used the TUH “Abnormal EEG Corpus”, a subset
of TUH EEG Corpus that have been annotated as normal or abnormal by
medical experts. From this dataset we focussed on the 1385 healthy pa-
tients, from both training and evaluation sets, whose EEG has been an-
notated as normal. Their age ranges between 10 and 95 years (mean
44.3y, std 16.5y, 775 females, 610 males). EEG was acquired using
several generations of Nicolet EEG system (Natus Medical Inc.), equipped
between 24 and 36 channels. All sessions have been recorded with an
average reference electrode configuration, sampled at 250Hz minimum.
The minimal recording length for each session was about 15 min. For
additional details on EEG acquisition, please consider the reference
publications on the TUH dataset (Harati et al., 2014).

Data processing, feature engineering and model evaluation. We applied
minimal preprocessing to the raw EEG data. We first selected the subset
of 21 electrodes common to all subjects (A1, A2, C3, C4, CZ, F3, F4, F7,
F8, FP1, FP2, FZ, O1, O2, P3, P4, PZ, T3, T4, T5, T6). We then discarded
the first 60 s of every recording to avoid artifacts occurring during the
setup of the experiment. For each patient we then extracted the first 8
min of signal from the first session, to be comparable with Cam-CAN. EEG
recordings were downsampled to 250Hz. Finally, we excluded data
segments dominated by high-amplitude signals using the ‘global’ option
from autoreject (Jas et al., 2017) that computes adaptive rejection
thresholds. Note that the absence of linear projection to preprocess raw
data (as SSS or SSP in Cam-CAN) ensures the data are full rank. While the
rank was reduced by one by the use of a common average reference, as
we used a subset of channels common to all subjects the data are actually
full rank. Otherwise, we followed the same feature engineering and
modeling pipeline used for the Cam-CAN data (See section Subject-level
regression with MEG: Age prediction).

2.8.4. Statistical modeling
We used ridge regression (Hoerl and Kennard, 1970) to predict from

the vectorized covariance matrices and tuned its regularization param-
eter by generalized cross-validation (Golub et al., 1979) on a logarithmic
grid of 100 values in ½10�5; 103� on each training fold of a 10-fold
cross-validation loop. For each model described in previous sections
(‘diag’, ‘upper’, SPoC, Riemann), we standardized the features enforcing
zero mean and unit variance. This preprocessing step is standard for
penalized linear models. To compare models against chance, we esti-
mated the chance-level empirically through a dummy-regressor pre-
dicting the mean of the training data. Uncertainty estimation was
obtained from the cross-validation distribution. Note that formal hy-
potheses testing for model comparison was not available for any of the
datasets analyzed as this would have required several datasets, such that
each average cross-validation score would have made one observation.

To save computation time, across all analyses, additional shrinkage
for spatial filtering with SPoC and unsupervised was fixed at the mean of
the value ranges tested in Sabbagh et al. (2019) i.e. 0.5 and 10�5,
respectively.

2.8.5. Software
All analyses were performed in Python 3.7 using the Scikit-Learn

software (Pedregosa et al., 2011), the MNE software for processing
βlow βhigh γlow γmid γhigh

15� 26 26� 35 35� 50 50� 74 76� 120
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M/EEG data (Gramfort et al., 2014) and the PyRiemann package (Con-
gedo et al., 2013) for manipulating Riemannian objects. We used the
R-programming language and its ecosystem for visualizing the results (R
Core Team, 2019; Allaire et al., 2019; Wickham, 2016; Clarke and
Sherrill-Mix, 2017). Code used for data analysis can be found on http
s://github.com/DavidSabbagh/meeg_power_regression.

3. Results

3.1. Simulated data

We simulated data according to the linear and log-linear generative
models and compared the performance of the proposed approaches.
Fig. 2A displays the results for the linear generative model (f ¼ identity
in Eq. 4). The left panel shows the scores of each method as the param-
eters μ controlling the distance from the mixing matrix A to the identity
matrix IP increases (more mixing), and as noise corrupting the outcome
variable y increases (worse supervision). We see that the Riemannian
method is not affected by μ (orange), which is consistent with the affine
invariance property of the geometric distance. At the same time, it is not
the correct method for this generative model as is revealed by its
considerable prediction error greater than 0.5. Unsurprisingly, the ‘diag’
method (green) is highly sensitive to changes in A with errors propor-
tional to the mixing strength. On the contrary, both ‘upper’ (blue) and
SPoC (dark orange) methods lead to perfect out-of-sample prediction
(MAE ¼ 0) even as mixing strength increases. This demonstrates con-
sistency of these methods for the linear generative model. They both
transparently access the statistical sources, either by being blind to the
mixing matrix A (‘upper’) or by explicitly inverting it (SPoC). Hence, they
Fig. 2. Simulation-based model comparison across generative models. We focus
covariance in distinct ways. The simulations performance across three types of model
(left), noise on the outcome y (middle) and individual noise on A (right). (A) Results
Riemannian model achieve consistent regression when no mixing occurs (left). SPo
models performed best as noise on the outcome (center) and noise on A (right) incre
powers. The SPoC and Riemannian models achieve consistent regression across all
(center). Finally, the Riemannian model is most resilient to individual noise on the
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may enable regression on M/EEG brain signals without source localiza-
tion. When we add noise in the outcome variable y (middle) or individual
noise in the mixing matrix (right) we have no theoretical guarantee of
optimality for those methods. Yet, we see that both ‘upper’ and SPoC are
equally sensitive to these model violations. The Riemannian method
seems to be more robust than any other method to individual noise in A,
in the sense that its performance is decaying at a slower rate.

Fig. 2B displays the results for the log-linear generative model
(f ¼ log in Eq. 4). In this case Riemann and SPoC performed best (left), as
expected by consistency of these methods in this generative model. Both
were equally sensitive to noise in outcome variable (middle) but, again,
the Riemann method was more robust than other methods as individual
noise on the mixing matrix increased (right). The simulations show that,
under these idealized circumstances, ‘upper’, and SPoC are equivalent
when the outcome y depends linearly on source powers. When y depends
linearly on the log-powers, SPoC and Riemann are equivalent. However,
when every data point comes with a different mixing matrix, Riemann
may be the best default choice, irrespective of the generative model of y.
3.2. Event-level regression with MEG: Predicting continuous muscle
contraction

We then probed the regression models on real MEG data where the
true data-generating mechanism is not a priori known and multiple
model violations may occur simultaneously. In a first step, we considered
a problem where the unit of observation was individual behavior of one
single subject with some unknown amount of noise affecting the mea-
surement of the outcome. In this scenario, the mixing matrix is fixed to
the extent that the subject avoided head movements, which was enforced
ed on four regression models (indicated by color) each of which learnt from the
violations: the distance μ between the mixing matrix A and the identity matrix IP
for generative model in which y depends linearly on source variance. All but the
C remained consistent throughout the simulated range. The ‘upper’ and SPoC
ased. (B) Results for generative model in which y depends log-linearly on source
simulated values (left). Likewise, both methods are more robust to noise on y
mixing matrix A (right).

https://github.com/DavidSabbagh/meeg_power_regression
https://github.com/DavidSabbagh/meeg_power_regression
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by the experimental design. Here, we analyzed one MEG dataset with
concomitant EMG recordings that we chose as outcome (See section
Event-level regression: Cortico-muscular coherence in Methods for de-
tails). At the time of the analysis, individual anatomical data was not
available, hence we constrained the analysis to the sensor-space. The
results are depicted in Fig. 3.

The analysis revealed that only models including the cross-terms of
the covariance predicted visibly better than chance (Fig. 3A). For the
methods with projection step (SPoC and Riemann) we reported the
performance using the full 151 components, equal to the total number of
gradiometer channels. Importantly, extensive search for model order for
SPoC and Riemann revealed important low-rank optima (Fig. 3B) with
performance around 50% variance explained on unseen data. This is not
surprising when considering the difficulty of accurate covariance esti-
mation from limited data. Indeed, low-rank projection is one important
method in regularized estimation of covariance (Engemann and Gram-
fort, 2015). Interestingly, SPoC showed stronger performance with fewer
components than Riemann (4 vs 42). This is not surprising: SPoC is a
supervised algorithm, constructed such that its first components
concentrate most of the covariance between their power and the outcome
variable. The variance related to y can hence be represented with fewer
dimensions than Riemann that uses unsupervised spatial filtering.
However, it remains equivocal which statistical model best matches this
regression problem. The best performing models all implied the
log-linear model. Yet, compared to the linear-in-power ‘upper’ model,
the low-rank SPoC and Riemann models also implied massive shrinkage
on the covariances, leaving unclear if the type of model or regularized
covariance estimation explains their superior performance.

3.3. Subject-level regression with MEG: Predicting age

We then turned our attention to a regression problem that imposes the
important model violation of varying source geometry due to individual
anatomywhile providing a clean outcomewith virtually nomeasurement
noise: predicting age from MEG. We analyzed resting-state MEG from
about 600 subjects of the Cam-CAN dataset (Shafto et al., 2014; Taylor
et al., 2017) focusing on the power spectral topography and
between-sensor covariance of nine frequency bands as features (for de-
tails see Table 2). In this problem, each sample consists of MEG signals
recorded from different persons, hence different brains. On theoretical
grounds, one may therefore expect individual cortical folding, size and
proportional composition of the head and its tissues to induce important
Fig. 3. Predicting continuous muscular activity on single-subject MEG. (A) mo
mately overlapping 80 epochs from one single subject. Models are depicted along the
summarized by standard boxplots. Split-wise prediction scores are represented by do
includes spatial filtering with full 151 components, equal to the total number of gra
short 1.5 s epochs, models may perform better when fit on a reduced subspace of th
order indicated by subscripts). (B) Exhaustive search for model order in pipelines w
channels were considered. One can spot well defined low-rank regimes in both mod
explicitly considering the between-sensor correlation were successful. The best perform
for SPoC and Riemann of order 4 and 42, respectively.
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distortions to the signal that may pose severe problems to purely
data-driven approaches. Here, each data point can be said to have its own
mixing matrix inducing unique distortions in each observation. To
investigate this point explicitly, we conducted source localization to
obtain power estimates that corrected for individual head geometry
based on biophysical prior knowledge. On the other hand, 8 min of MEG
support accurate covariance estimation, hence, rendering model order
search less important for shrinkage. Covariancematrices are nevertheless
rank-deficient due to SSS and SSP preprocessing steps. Fig. 4 displays the
results for different regression models.

The analysis revealed that all models performed clearly better than
chance. The Riemannian model (orange) yielded the best performance
(8y MAE), followed by SPoC (dark orange, 8:8y MAE) (4A). The diagonal
(green) and upper-triangle (blue) models performed worse. Model order
search did not reveal striking low-rank optima. Models above rank 40
seem approximately equivalent, especially when considering the esti-
mation uncertainty of standard deviation above 1 year of MAE. For both
SPoC and Riemann, the best low-rankmodel was close to themodel at the
theoretically derived rank of 65 (due to preprocessing with SSS, see
Taulu and Kajola, 2005). For subsequent analyses, we, nevertheless,
retained the best models.

One first important observation suggests that the log-linear model is
more appropriate in this regression problem, as the only model not
implying a log transform, the ‘upper’ model, performed clearly worse
than any other model. Yet, important difference in performance remain
to be explained among the log-linear models.

This points at the cross-terms of the covariance, which turns out to be
an essential factor for prediction success: The ‘diag’ model ignores the
cross-terms and performed worst among all log-linear models. The SPoC
and Riemann models performed better than ‘diag’ and both analyzed the
cross-terms, SPoC implicitly through the spatial filters. This raises the
question why the cross-terms were so important. One explanation would
be that they reveal physiological information regarding the outcome.
Alternatively, the cross-terms may expose the variability due to indi-
vidual head geometry. To further investigate this point we conducted the
same regression analysis on source localized M/EEG signals, i.e., after
having corrected for individual head geometry with a biophysical model.

Source space analysis. Next, we have computed source-space covari-
ance matrices based on anatomically constrained Minimum Norm Esti-
mates (MNE). Results are depicted in Fig. 5. Now, the optimal number of
components for prediction remarkably dropped: 11 for Riemann and 20
for SPoC in source space, as compared to 53 and 67, respectively, in
del comparison using cross-validation with 10 consecutive groups of approxi-
y-axis, expected out-of-sample performance (R2) on the x-axis. The distribution is
ts. The model type is indicated by color. SPoC and Riemann (without subscript)
diometer channels. As covariance estimation is necessarily inaccurate with the
e covariance. For these models we reported alternative low-rank models (model
ith projection step. All values from 1 to the total number of 151 gradiometer
els. However, SPoC supports a lower model order than Riemann. Only models
ance was achieved when projecting into a lower dimensional space with optima



Fig. 4. Predicting age from subject-level MEG in sensor space. (A) model comparison using Monte Carlo cross-validation with 100 splits sampled from 596
subjects. Models are depicted along the y-axis, expected out-of-sample performance (mean absolute error) on the x-axis. The distribution is summarized by standard
boxplots. Split-wise prediction scores are depicted by dots. The model type is indicated by color. Here, covariance estimation was based on 8 min of MEG, hence, the
impact of shrinkage should be small. For comparison with the single-subject data (Fig. 3), we nevertheless reported the alternative low-rank models (model order
indicated by subscripts, no subscript meaning an order of 65, the minimum rank of covariances). (B) Exhaustive search for model order in pipelines with projection
step. All values from 1 to the total number of 102 magnetometer channels were considered. One can see that performance starts to saturate around 40 to 50. No
striking advantage of model order search was evident compared to deriving the order from prior knowledge on rank deficiency at a value of about 65. All models
performed better than chance, however, models consistent with log-linear model and using correlation terms performed better. The Riemannian models per-
formed best.

Fig. 5. Predicting age from subject-level MEG in source space. (A) model comparison applied to sources and using Monte Carlo cross-validation with 100 splits
sampled from 596 subjects. It follows the same layout conventions than Fig. 4. The sources are estimated by MNE that exploits biophysical prior knowledge. (B)
Exhaustive search for model order in pipelines with projection step. All values from 1 to the total number of 102 magnetometer channels were considered. One can see
that performance starts to saturate around 40 to 50. But contrary to sensor space analysis of Fig. 4 projection models show clear low-rank minima. All models
performed better than chance, however, the ‘diag’ model that only considers sources’ log-powers clearly outperforms other models.
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sensor space. This may suggest that the inflated number of components in
sensor space is related to extra directions in variance accounting for in-
dividual head geometry. Second, ‘diag’ (green) is now the best regression
model. This model only takes the log powers into account and discards
the cross-terms. These results suggest that the outcome does not depend
on the cross-terms or at least that the potential gain of the cross-terms is
inaccessible due to the inflated dimensionality of feature space. The
‘diag’ score is also the best among all the models that we considered so
far, illustrating that the MNE solution to the inverse problem provides
superior unmixing of brain signals.

The performance of Riemann in sensor space is, nevertheless, close to
‘diag’ in source space, suggesting that the cross-term models, in sensor
space, have learnt to some extent what ‘diag’, in source space, receives
explicitly from source localization. Still, the good performance of ‘diag’
in source space may be due to two independent factors that are not
mutually exclusive: It could be that source localization standardizes head
geometry, hence, mitigates the variability of mixing. On the other hand,
if the anatomy itself covaries with the outcome, which is a safe
assumption to make for the case of aging (Liem et al., 2017), the lead-
fields will also covary with the outcome. Source amplitudes may then
change as a result of dampening-effects (See methods in Khan et al.
(2018)). To investigate these factors, we conducted an
11
error-decomposition analysis.
Error decomposition. To disentangle the factors explaining model

performance, we devised a novel error-decomposition method derived
from the proposed statistical framework (Fig. 1). Using a simulation-
based approach, we computed degraded observations, i.e., individual
covariance matrices, that were either exclusively influenced by the in-
dividual anatomy in terms of the leadfields (Eq. 10) or also by additive
uniform power (Eq. 11). For details see section Model-inspection by
error-decomposition in Methods. This has allowed us to estimate to
which extent the log-linear models have learnt from anatomical infor-
mation, global signal power of the MEG and topographic details. Fig. 6
compares three log-linear models based on the original observations
(black) and the degraded covariances (orange): The ‘diag’model and the
best low-rank models previously found for SPoC and Riemann methods.

One can see that all three error components improved overall pre-
diction in similar ways, each improving performance between 2 and 4
years on average (Fig. 6A). The best performance with the leadfields-only
was obtained by the Riemannian model scoring an MAE of about 11y on
average. Adding spatially uniform power, the Riemann model kept
leading and improved by about 0:5y. Predictions based on the observed
data with full access to the covariance structure improved performance
by up to about 3y, suggesting that age prediction clearly benefits from



Fig. 6. Simulation-based error
decomposition. We performed model
comparisons for the observed data
(black) and degraded data (orange) for
which spatio-spectral information was
progressively removed: ‘leadfield þ
power’ muted topographic information
keeping only spatially uniform power
and information from the individual
leadfields (Eq. 11), ‘leadfield’ muted all
electrophysiological variance (Eq. 10).
(A) depicts absolute performance, (B),
differences with the full observation,
correspondingly, for each model. One
can see that all models learnt to predict
age from all three components:
anatomical variation across subjects,
electrophysiological signal power and
topographic information. However, the
relative importance of each error
component was clearly different across
models. The Riemannian model was
most responsive to the leadfield
component and least responsive to the
uniform power.
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information beyond the leadfields.
Generally, the choice of algorithm mattered across all levels of the

data generating scenario with Riemann always leading and the ‘diag’
model always trailing (Fig. 6A). Finally, the results suggest the presence
of an interaction effect where both the leadfields and the uniform power
components were not equally important across models (Fig. 6A,B). For
the Riemannian model, when only learning from leadfields, performance
got as close as three years to the final performance of the full model
(Fig. 6B). The ‘diag’ model, instead, only arrived at 5 years of distance
from the equivalent model with full observations (Fig. 6B). On the other
hand, the Riemannian model extracted rather little additional informa-
tion from the uniform power and only made its next leap forward when
accessing the full non-degraded covariance structure. Please note that
these analyses are based on cross-validation. The resulting resampling
splits do not count as independent samples. This precludes formal anal-
ysis of variance with an ANOVA model.

Overall, error decomposition suggests that all methods learn from
anatomy and that indeed, the leadfield, in isolation, is predictive of age.
Fig. 7. Impact of preprocessing. Model comparison across cumulative artifact r
environmental þ cardiac (ecg), environmental þ occular þ cardiac (eo/cg), environ
baseline of extracting features from raw data with no preprocessing (depicted by verti
by color, i.e., blue and red for SSS and SSP respectively. Note that the endpoint rej is
performance for the best Riemannian model (A), the best SPoC model (B), and the ‘d
relatively robust to preprocessing and its details.
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Models considering cross-terms of the covariance were however more
sensitive.

Robustness to preprocessing choices . This leads to a final consideration
about error components. Commonly used preprocessing in M/EEG
analysis is based on the idea to enhance signal-to-noise ratio by removing
signals of non-interest, often using dedicated signal-space decomposition
techniques (Uusitalo and Ilmoniemi, 1997; Taulu and Kajola, 2005;
Hyv€arinen et al., 2004). However, it is perfectly imaginable that such
preprocessing removes information useful for predicting. At the same
time, predictive models may learn the signal subspace implicitly, which
could render preprocessing unnecessary. To investigate this issue for the
current subject-level regression problem, we sequentially repeated the
analysis after activating the essential preprocessing steps one by one, and
compared them to the baseline of extracting the features from the raw
data. For this purpose, we considered an alternative preprocessing
pipeline in which we kept all steps unchanged but the SSS (Taulu and
Kajola, 2005) for removal of environmental artifacts. We used instead a
data-driven PCA-based SSP (Uusitalo and Ilmoniemi, 1997) computed on
emoval steps: environmental artifacts (env), environmental þ occular (eog),
mental þ occular þ cardiac þ bad segments (rej). Results are compared to the
cal dashed lines). The method for removal of environmental artifacts is indicated
identical to the full preprocessing conducted in previous analyses. Panels depict
iag’ model (C). One can see that the Riemann model, but not the ‘diag’ model, is
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empty room recordings. The preprocessing pipeline is detailed in section
Subject-level regression with MEG: Age prediction. Results are depicted
in Fig. 7.

The analysis revealed that the Riemannian model performed
reasonably well when no preprocessing was done at all (Fig. 7A). It also
turned out to be relatively robust to particular preprocessing choices. On
the other hand, whether preprocessing was done or not turned out
decisive for the ‘diag’ model and to some extent for the SPoC model
(Fig. 7B,C). A few common tendencies became apparent. Across all
models, while improving above baseline, SSP consistently led to worse
performance than SSS. Second, performance was also slightly degraded
by removing ocular and cardiac artifacts, suggesting that both shared
variance with age. Removing EOG seemed to consistently degrade per-
formance. On the other hand, removing ECG had virtually no impact for
SPoC and the ‘diag’ model. For Riemann, both removing ECG and EOG
additively deteriorated performance. Finally bad epochs rejection had a
negligible and inconsistent effect. Overall, the results suggest that the
importance of preprocessing depended on the model, while minimal
denoising with SSP or SSS always helped improve performance. Of note,
with minimal preprocessing using SSS, the Riemannian model performed
at least as well as the ‘diag’ model after source localization (Fig. 5).

3.4. Subject-level regression with clinical EEG: Predicting age

The results on subject-level regression based on MEG suggest the
importance of model violations due to individual head geometry.
Importantly, with traditional cryogenic MEG, the sensor array is not fixed
relative to the head, rendering head-positioning and head-movements
factors contributing to model violations due to individual signal geom-
etry. How would the present results generalize to clinical EEG? In that
setting, sensors are fixed relative to the head but, in general, fewer sen-
sors are used. Here, we analyzed resting-state EEG (21 sensors) from
about 1000 subjects of the TUH dataset (Harati et al., 2014). As with
previous analysis of the Cam-CAN data, each data point had its own
mixing matrix. Likewise, the EEG recordings from TUH were sufficiently
long to support accurate covariance estimation, hence, rendering model
order search less important for shrinkage. We did not preprocess the data
on purpose to ensure having full-rank signals. This analysis is therefore
appropriate to primarily investigate the particular model violation of
sample-dependent mixing matrices with constrained degrees of freedom
for the sensor-positioning as well as the generalization fromMEG to EEG.
Fig. 8 displays the results for different regression models. Unfortunately
the absence of associated MRI data prevented us to conduct source
localization to correct for individual head geometry.
Fig. 8. Predicting age from subject-level EEG in sensor space. (A) model compa
sampled from 1000 subjects. It follows the same layout conventions than Fig. 4. Her
nevertheless reported the alternative low-rank models (model order indicated by sub
All values from 1 to the total number of 21 electrodes were considered. Model or
performed better than chance, however, models consistent with log-linear model
formed best.
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Model order search did not reveal clear low-rank optima. This was
expected considering the absence of preprocessing and accurate covari-
ance estimation. Strikingly, the only model not implementing a log
transform, the ‘upper’ model, performed at chance level, clearly worse
than any other model. All other models performed better than chance,
with Riemann clearly leading, followed by SPoC and diag. Those results
are consistent with our simulations in Fig. 2(B) in which the only model
violation comes from individual mixing matrices. The performance and
ordering of the models in the TUH data is also consistent with the results
obtained on the Cam-CAN dataset. This strongly suggests that the log-
linear model is more appropriate in this regression problem. It is note-
worthy, that the best performance based on the Riemannian model was
virtually identical to its performance with MEG on the Cam-CAN data.
However, it remains open to which extent the benefit of constrained
signal geometry due to fixed sensor positioning is cancelled out by
reduced spatial sampling with 21 instead of 306 sensors.

4. Discussion

In this work, we have proposed a biophysics-aware framework for
predictive modeling with M/EEG. We specifically considered regression
tasks based on source power in which source localization is not practical.
To the best of our knowledge, this is the first study systematically
comparing alternative approaches for predicting continuous outcomes
from M/EEG in a coherent theoretical framework from the level of
mathematical analysis over simulations down to analysis of real data.
Here, we focused on the band-limited between-channels covariance as
fundamental representation and investigated distinct regression models.
Mathematical analysis identified different models supporting perfect
prediction under ideal circumstances when the outcome is either linear
or log-linear in the source power. We adapted techniques originating
from event-level prediction i.e. the SPoC spatial filtering approach (de
Cheveign�e and Parra, 2014; D€ahne et al., 2014a) and projection with
Riemannian geometry (Congedo et al., 2017) for subject-level prediction
typically encountered in biomarker development. Our simulation-based
findings were consistent with the mathematical analysis and suggested
that the regression models based on adaptive spatial filtering or Rie-
mannian geometry were more robust across data generating scenarios
and model violations. Subsequent analysis of MEG focused on a) differ-
ences between models in event-level and subject-level prediction, b) the
contribution of anatomical and electrophysiological factors, for which we
proposed a novel error decomposition method, and c) the impact of
preprocessing, investigated through large-scale analysis of M/EEG data.
Our findings suggest that, consistent with simulations, Riemannian
rison applied to sensors and using Monte Carlo cross-validation with 100 splits
e, covariances are full rank, hence, the impact of shrinkage should be small. We
scripts). (B) Exhaustive search for model order in pipelines with projection step.
der search did not reveal striking low-rank optima. All models except ‘upper’
and using correlation terms performed better. The Riemannian models per-
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methods are generally a good bet across a wide range of settings with
considerable robustness to different choices of preprocessing.

4.1. What distinguishes event-level from subject-level prediction in the light
of model violations?

Unsurprisingly, no model performed perfectly when applied to
empirical data for which the data generating mechanism is by definition
unobservable, multiple model violations may occur and information is
only partially available. One important source of differences in model
violation is related to whether outcomes are defined at the event-level or
at the subject-level. When predicting outcomes from ongoing segments of
neural time-series within a subject, covariance estimation becomes non-
trivial as the event-level time windows are too short for accurate esti-
mation. Even if regularized covariance estimates provide an effective
remedy, there is not one shrinkage recipe that works in every situation
(Engemann and Gramfort, 2015). In this study, we have relied on the
oracle approximating shrinkage (OAS) (Chen et al., 2010) as a default
method in all analyses. Yet, we found that additional low-rank shrinkage
(Engemann and Gramfort, 2015; Woolrich et al., 2011; Tipping and
Bishop, 1999; Rodrigues et al., 2018), as implied by the SPoC method
(D€ahne et al., 2014a), or the unsupervised projection for the Riemannian
model (Sabbagh et al., 2019), improved performance considerably for
event-level prediction. A spatial-filter method like SPoC (de Cheveign�e
and Parra, 2014; D€ahne et al., 2014a) can be particularly convenient in
this context. By design, it concentrates the variance most important for
prediction on a few dimensions, which can be easily searched for,
ascending from the bottom of the rank spectrum. Riemannian methods
can also be operated in low-rank settings (Sabbagh et al., 2019). How-
ever, model order search may be more complicated as the best model
may be anywhere in the spectrum. This can lead to increased computa-
tion times, which may be prohibitive in realtime settings such as BCI
(Lotte et al., 2007, 2018; Tangermann et al., 2008).

Issues with the numerical rank of the covariance matrix also appear
when predicting at the subject-level. The reason for this is fundamentally
different and rather unrelated to the quality of covariance estimation.
Many modern M/EEG preprocessing techniques focus on estimating and
projecting out the noise-subspace, which leads to rank-deficient data. In
our analysis of the Cam-CAN dataset (Shafto et al., 2014; Taylor et al.,
2017), we applied the SSS method (Taulu and Kajola, 2005) by default,
which is the recommended way when no strong magnetic shielding is
available, as is the case for the Cambridge MEG-system on which the data
was acquired (see also discussion in Jas et al., 2018). However, SSS
massively reduces the rank down to about 64 out of 306 dimensions,
which may demand special attention when calibrating covariance esti-
mation. Our results suggest that projection can indeed lead to slightly
improved average prediction once a certain rank value is reached. Yet,
thoughtful search of optimal model order may not be worth the effort in
practice when a reasonably good guess of model order can be derived
from the understanding of the preprocessing steps applied. Our findings,
moreover, suggest, that a Riemann-based model is, in general, a
reasonably good starting point, even when no model order search is
applied. What seems to be a much more important issue in subject-level
prediction from M/EEG are the model violations incurred by individual
anatomy. Our mathematical analysis and simulations demonstrated that
not even the Riemannian approach is immune to those, for MEG and EEG.

4.2. What explains the performance in subject-level prediction?

Our results suggested that, for the current regression problems with
MEG and EEG, the log-linear model was more appropriate than the
linear-in-powers ones. This is well in line with practical experience and
theoretical results highlighting the importance of log-normal brain dy-
namics (Buzs�aki and Mizuseki, 2014). On the other hand, on the
Cam-CAN data, we observed substantive differences in performance
within the log-normal models highlighting a non-trivial link between the
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cross-terms of the covariance and subject-level variation. Indeed, the
‘diag’ model, both in sensor and source space, ignored the cross-terms of
the covariance, yet in source space, it performed about 1.5 years better on
average than in sensor space. This is rather unsurprising when recapit-
ulating that subject-level regression on M/EEG implies individual anat-
omy. Indeed, our mathematical analysis and simulations identified this
factor as important model violation. MNE source localization, by design,
uses the head and brain geometry to correct for such violations. On the
other hand, if leadfields are correlated with the outcome, the source
localization, which depends on the leadfields, will be predictive of the
outcome too, even if no brain source is actually relevant to the outcome.
This suggests that the cross-term models that were more successful than
the ‘diag’ model may either convey biological information relevant to
predict the outcome, or expose information on head geometry to the
regression model, which then improved prediction by de-confounding
for head geometry. Our findings on source localization strongly sug-
gested that correcting for geometrical misalignment was the driving
factor, evidenced by the fact that after source localization the simple
‘diag’ model performed best. Yet, these findings did not rule out that
leadfields themselves were not predictive of the outcome.

We, therefore, derived a novel error-decomposition technique from
the statistical framework presented in Fig. 1 to estimate the sensitivity of
our M/EEG regression models to anatomy, spatially uniform power and
topographic details. We applied this technique on the Cam-CAN dataset
to investigate the subject-level prediction problem. While all models
captured anatomical information and the Riemannian models were most
sensitive to it, anatomical information did not explain the performance
based on the full data. At the same time, this demonstrated that MEG
captures age-related anatomical information from the individual lead-
fields and raises the question of which aspects of anatomy were con-
cerned. Neuroscience of aging has suggested important alterations of the
cortical tissues (Liem et al., 2017), relevant for generating M/EEG sig-
nals, such as cortical surface area, cortical thickness or cortical folding.
Yet, more trivially, head size or posture are a common issue in MEG and
could explain the present effect, which would be potentially less fasci-
nating from a neuroscientific standpoint. We investigated this issue
post-hoc by predicting age from the device-to-head transform describing
the position of the head relative to the helmet and the coregistration
transforms from head to MRI. Compared to the Riemannian model
applied to the leadfields-only surrogate data, this resulted in three years
lower performance of around 14 years error, which is close to the random
guessing error and may at best explain the performance of the ‘diag’
model. Moreover, translating our approach to EEG for which sensor
placement relative to the head is less variable, we did not witness im-
provements over MEG. On the other hand, this may be due to the smaller
number of sensors available in EEG. Future work will have to show, how
these two factors interact in practice across prediction problems and
EEG-configurations.

Interestingly, also the SPoC model was more sensitive to anatomy
than the ‘diag’ model. This suggests that by learning adaptive spatial
filters from the data to best predict age, SPoCmay implicitly also tune the
model to the anatomical information conveyed by the leadfields. This
seems even more plausible when considering that from a statistical
standpoint, SPoC learns how to invert the mixing matrix A to get the
statistical sources implied by the predictive model. This must necessarily
yield a linear combination of the columns of G. As a consequence, SPoC
does not learn to invert the leadfields G but directly yields an imperfect
approximation to G . Theoretically, unique SPoC solution can be found
with arbitrary outcomes as long as the data is full-rank and the target is
noise-free. In practice, this is rarely the case. Therefore, the SPoC solution
empirically depends on the choice of the outcome. This also motivates
the conjecture that differences between SPoC and Riemann should
become smaller when the Gi are not correlated with the outcome (Rie-
mann should still enjoy an advantage due to increased robustness to
model violations) or even vanish when G is constant and no low-rank
issues apply. The latter case is what we encountered in the event-level
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analysis where SPoC and Riemann where roughly on par, suggesting that
both handled the distortions induced by G.

Unfortunately, the current analysis did not elucidate the precise
mechanism by which different models learnt from the individual anat-
omy and why the Riemannian model was so much more proficient. As a
speculation, one can imagine that changes in the leadfields translate into
simple topographic displacements that the ‘diag’ model can easily cap-
ture. This would be in line with the performance of the ‘diag’ model on
the leadfields-only surrogate data, which matched prediction perfor-
mance based on the device-to-head transforms or the coregistration
matrices previously mentioned. With cross-terms included in the
modeling, SPoC and, in particular, Riemann may better unravel the di-
rections of variation with regard to the outcome by considering the entire
geometry presented in the leadfields. Instead, for the case of the
leadfields-only surrogates, SPoC attempts capturing sources which liter-
ally do not exist, hence must yield a degraded view on G.

Overall, our results suggest that Riemannian models may also be the
right choice when the anatomy is correlated with the outcome and the
primary goal is prediction. The enhanced sensitivity of the Riemannian
model to source and head geometry may be precisely what brings them
so close to performance based on source localization. Indeed, the TUH
experiment shows that these properties render Riemannian models
particularly helpful in the case of EEG, where the leadfields should be less
variable as the sensor cap is affixed to the head, which strongly limits
variation due to head posture.
4.3. How important is preprocessing for subject-level prediction?

It is up to now equivocal how important preprocessing is when per-
forming predictive modeling at the subject-level. Some evidence suggests
that preprocessing may be negligible when performing event-level
decoding of evoked responses as a linear model may well learn to
regress out the noise-subspace (Haufe et al., 2014b). Our findings suggest
a more complex situation when performing subject-level regression from
M/EEG signal power. Strikingly, performing no preprocessing was
clearly reducing performance, for some models even dramatically, SPoC
and in particular ‘diag’. The Riemann model, on the other hand, was
remarkably robust and performed even reasonably well without pre-
processing. Among the preprocessing steps, the removal of environ-
mental artifacts seemed to be most important and most of the time led to
massive improvements in performance. Removing EOG and ECG artifacts
mostly reduced performance suggesting that age-related information was
present in EOG and ECG. For example, one can easily imagine that older
subjects produced less blinks or showed different eye-movement patterns
(Thavikulwat et al., 2015) and also cardiac activity may change across
the lifespan (Attia et al., 2019).

Interestingly, our results suggest that the method used for pre-
processing was highly important. In general, performance was clearly
enhanced when SSS was used instead of SSP. Does this mean that SSP is a
bad choice for removing environmental artifacts? Our results have to be
interpreted carefully, as the situation is more complicated when
considering how fundamentally different SSP and SSS are in terms of
design. When performing SSS, one actually combines the information of
independent gradiometer and magnetometer sensor arrays into one
latent space of roughly 65 dimensions, less than the dimensionality of
both sensor arrays (306 sensors in total). Even when analyzing the
magnetometers only after SSS, one will also access the extra information
from the gradiometers (Garc�es et al., 2017). SSP on the other hand is less
invasive and is applied separately to magnetometers and gradiometers. It
commonly removes only few dimensions from the data, yielding a sub-
space greater than 280 in practice. Our results therefore conflate two
effects: 1) learning from magnetometers and gradiometers versus
learning from magnetometers only and 2) differences in strength of
dimensionality reduction. To disentangle these factors, careful
15
experimentation with more targeted comparisons is indicated. To be
conclusive, such an effort may necessitate computations at the scale of
weeks and should be investigated in a dedicated study. For what concerns
the current results, the findings simply suggest that SSS is a convenient
tool as it allows one to combine information from magnetometers and
gradiometers into a subspace that is sufficiently compact to enable effi-
cient parameter estimation. It is not clear though, if careful processing
with SSP and learning on both sensors types would not lead to better
results.

5. Conclusion

Our study has investigated learning continuous outcomes from M/
EEG signal power from the perspective of generative models. Across
datasets and electrophysiological modalities, the log-linear model turned
out to be more appropriate. In the light of common empirical model vi-
olations and preprocessing options, models based on Riemannian ge-
ometry stood out in terms of performance and robustness. The overall
performance level is remarkable when considering the simplicity of the
model. Our results demonstrate that a Riemannian model can actually be
used to perform end-to-end learning (Schirrmeister et al., 2017)
involving nothing but signal filtering and covariance estimation and,
importantly, without deep-learning (Roy et al., 2019). When using SSS,
performance improves beyond the current benchmark set by the MNE
model but probably not because of denoising but rather due to the
addition of gradiometer information. Moreover, we observed comparable
performance on minimally processed clinical-EEG with only 21 channels
instead of 306 MEG-channels, suggesting that the current approach may
well generalize to certain clinical settings. This has at least two important
practical implications. First, it allows researchers and clinicians to
quickly assess the limits of what they can hope to learn in an economical
and eco-friendly fashion (Strubell et al., 2019). In this scenario, the
Riemannian end-to-end model rapidly delivers an estimate of the overall
performance that could be reached by extensive and long processing,
hence, supports practical decisionmaking on whether a deeper analysis is
worth the investment of time and resources. Second, this result suggests
that if prediction is the priority, availability of MRI and precious MEG
expertise for conducting source localization is not any longer the
bottleneck. This could potentially facilitate data collection and shift the
strategy towards betting on the law of large numbers: Assembling an
MEG dataset in the order of thousands is easier when collecting MRI is
not a prerequisite.

It is worthwhile to consider important limitations of this study. Un-
fortunately, we have not had access to more datasets with other inter-
esting continuous outcomes. In particular the conclusions drawn from the
comparison between event-level and subject-level regression may be
expanded in the future when considering larger event-level datasets and
other outcomes for which the linear-in-powers model may be more
appropriate. Second, one has to critically acknowledge that the perfor-
mance benefit for the Riemannian model may be partially explained by
increased sensitivity to anatomical information, which might imply
reduced specificity with regard to neuronal activity. In this context it is
noteworthy that recent regression pipelines based on a variant of SPoC
(D€ahne et al., 2014b) made use of additional spatial filtering for
dimensionality reduction, i.e., SSD (Nikulin et al., 2011) to isolate
oscillatory components and discard arrhythmic (1/f) activity. This raises
the question if the specificity of a Riemannian model could be enhanced
in a similar way. Ultimately, what model to prefer, therefore, clearly
depends on the strategic goal of the analysis (Bzdok et al., 2018; Bzdok
and Ioannidis, 2019) and cannot be globally decided.

We hope that this study will provide the community with the theo-
retical framework and tools needed to deepen the study of regression on
neural power spectra and safely navigate between regression models and
geometric distortions governing M/EEG observations.
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Appendix

5.1. Full-rank formulation of M/EEG signal generative model

Denoting by asj 2 RP, j ¼ 1…Q the independent source patterns, the generative model of M/EEG observations reads:

xiðtÞ¼
XQ
j¼1

asj si;jðtÞ þ niðtÞ;

where si;jðtÞ 2 R is the time-series of the j-th source amplitude of sample i and niðtÞ 2 RP is the contamination due to noise. Denoting As ¼ ½as1;…;asQ� 2
RP�Q, this model is conveniently written in matrix form:

xiðtÞ¼As siðtÞ þ niðtÞ:
Since we assume that RP is the co-product of the source and noise subspaces (they are not ‘mixed’) and that the noise subspace is the same for each

sample, the noise writes niðtÞ ¼ Anζ iðtÞ with An ¼ ½an1;…; anP�Q� 2 RP�ðP�QÞ and ζ iðtÞ 2 RP�Q. Denoting A ¼ ½as1;…; asQ; a
n
1;…; anP�Q� 2 RP�P and ηiðtÞ ¼

½si;1ðtÞ;…si;QðtÞ; ζi;1ðtÞ;…; ζi;P�QðtÞ� 2 RP, the generative model can be rewritten as:

xiðtÞ¼AηiðtÞ;
The matrix A is invertible since the source and noise subspaces span all RP.

5.2. Consistency of SPoC regression model

Statement . We consider the previous generative model xiðtÞ ¼ AηiðtÞ and the outcomes y1;…;yN . Define the weighted average Cy ¼ 1
N

PN
i¼1yiCi and

the average C ¼ 1
N

PN
i¼1Ci. SPoC finds a matrix W 2 RP�P solution of the generalized eigenvalue problem:

CyW¼CWdiagðλ1;…; λPÞ subject to W>CW¼ IP (12)

where λ1;…; λP are the generalized eigenvalues. We assume that the eigenvalues are all distinct, and therefore without loss of generality λ1 > … > λP.
Under this condition, the generalized eigenvalue problem has a unique solution W, and Q rows of W> match the first Q rows of A�1 up to scale. In
particular, the transform W>xi recovers the Q sources si.

Proof.We recall the definition Ei ¼ E½ηiðtÞηiðtÞ>�, which is block-diagonal with the sources powers pi;j as coefficient ðj; jÞ when j � Q. We have Ci ¼
A Ei A>, and therefore C ¼ A E A> and Cy ¼ A Ey A>, with E ¼ 1

N

PN
i¼1Ei and Ey ¼ 1

N

PN
i¼1yiEi sharing the same block-diagonal structure than the Ei.

Their lower ðP�QÞ � ðP�QÞ diagonal blocks, respectively Σ and Σy , are symmetric matrices. Further, Σ is definite positive, as a linear combination with
positive coefficients of definite positive matrices. Hence, Σ andΣy are co-diagonalizable i.e. there exists an invertible matrix Z such that Σy ¼ ZDyZ> and

Σ ¼ ZDZ>. By denoting A’ ¼ A�
	
IQ 0
0 Z



, we have that C and Cy are co-diagonalized by A’. Let D the diagonal matrix such that C ¼ A’DA’>. The

matrix W ¼ A’�>D�1=2 is solution of the generalized eigenvalue problem. By the unicity assumption, SPoC recovers W up to a permutation of its
columns. The first Q rows of W> are the first Q columns of A’�>, hence the first Q rows of A�1 up to scale: SPoC recovers the sources.

5.3. Consistency of Riemann regression model

Statement .We consider the previous generative model xiðtÞ ¼ AηiðtÞ and the outcomes y1;…;yN , which follow a linear model with respect to the log
of the source powers: yi ¼ β>logðpiÞ. Denote the geometric mean ~C (defined in section 5.5). Let vi the projection of Ci on the tangent plane at ~C: vi ¼
Upperðlogð~C�1=2

Ci~C
�1=2ÞÞ. Then, yi is a linear combination of the coefficients of vi.

Proof. First, we note that by invariance, ~C ¼ A~EA>, where ~E has the same block diagonal structure as the Ei’s, and ~Ejj ¼ ðQN
i¼1pi;jÞ

1
N ≜ ~pj for j �Q. The

vectorization is vi ¼ Upperðlogð~C�1=2
Ci~C

�1=2ÞÞ. We observe that ~C
�1=2

Ci~C
�1=2 ¼ ~C

�1=2ðCi~C
�1Þ~C1=2 ¼ BEi~E

�1
B�1 with B ¼ ~C

�1=2
A. Therefore,

logð~C�1=2
Ci~C

�1=2Þ ¼ BlogðEi~E
�1ÞB�1, since matrix logarithm is equivariant by similarity. The Q values on the diagonal part of logðEi~E

�1Þ are the
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logðpi;j =~pjÞ. In particular, by denoting b�1
j the j-th row of B�1 and bj the j-th column of B, we find:

log
�
pi;j

�¼�
b�1
j

�>
log

�
~C
�1=2

Ci
~C
�1=2�

bj þ log
�
~pj
�
: (13)

This equation means that logðpi;jÞ is obtained as a linear combination of the coefficients in logð~C�1=2
Ci~C

�1=2Þ, i.e. the coefficients of the vectorization
vi. Since yi is itself a linear combination of the logðpi;jÞ, the advertised result holds.

As a side note, we have that jjvijj2 ¼ ��jlogðC�1=2
CiC

�1=2Þj��F ¼ dðCi;CÞ ¼ dðEi;EÞ , by affine-invariance of the geometric distance dð �Þ (see Appendix
5.5): the norm of vi does not depend on A, but only on the log source powers and noise.

5.4. Riemannian manifolds

In this work, we consider differentiable manifolds M in RP of dimension K. Intuitively differentiable manifolds are “curved” spaces that locally
resemble a flat vector space at each point (see Absil et al., 2009, chap. 3 and Pennec et al., 2006). Examples of differentiable manifolds in R3 are curves
(one-dimensional manifolds which locally look like a straight line) and surfaces (two-dimensional manifolds which locally look like a plane). More
precisely, each point of the manifoldM 2 M is associated to a vector space called tangent space atM, denoted T M . It is the set of derivatives of curves on
the manifold passing throughM. The dimension of T M is the dimension of M , K. The differentiable manifold becomes Riemannian when each tangent
space T M is endowed with a metric, i.e. an inner product 〈 �; � 〉M , giving it an Euclidean structure. This metric is supposed smooth across points on the
manifold. We can then define:


 A norm on the tangent space T M : jjξjj2M ¼ 〈ξM ; ξM〉M for ξM 2 T M .

 The length of a path between two points M;M’ 2 M : for a path γ : ½0; 1� → M such that γð0Þ ¼ M and γð1Þ ¼ M’, the length of γ is LðγÞ ¼R 1

0 jj _γðtÞjjγðtÞdt. This generalizes the usual notion of path length in Euclidean spaces, where the metric is constant.

 A distance on the manifoldM , defined as the minimum length of paths: dðM;M’Þ ¼minLðγÞ such that γð0Þ ¼M; and γð1Þ ¼M’. This distance is
called the geodesic distance. IfM is an Euclidean space, this distance is simply the usual Euclidean distance: dðM;M’Þ ¼ jjM �M’jj2, achieved when γ

is a straight line between M and M’.

 The Frechet meanM of a set of pointsMi 2 M is defined asM ¼ arg min

M2M

PN
i¼1dðM;MiÞ2. This is a generalization of averaging on manifolds. Indeed,

in an Euclidean space, the average 1
N

PN
i¼1Mi is the Frechet mean ofM1;…MN with respect to the Euclidean distance dðM;M’Þ ¼ jjM �M’jj2. Another

example is the geometric mean between positive numbers a1;…;aN > 0, given by a ¼ ða1 �…� aNÞ1=N , which if the Frechet mean of ða1;…; aNÞ
with respect to the distance dða;a’Þ ¼

���log� a
a’

����.

 The exponential mapping ExpM : T M → M is the operation that maps the tangent space, which has a simple Euclidean structure, to the manifold
which might have a much more complicated structure. It satisfies dðExpMðξMÞ;MÞ ¼ jjξM jjM for ξM 2 T M small enough.


 The logarithmmapping LogM : M → T M is defined as the reciprocal of the exponential mapping which hence verifies
����LogMðM’Þ����M ¼ dðM;M’Þ for

M’ 2 M close enough from M. It maps the manifold to the tangent space, while preserving the local properties of the manifold.

The logarithm mapping is of crucial importance in practical applications, since it allows to manipulate and store vectors (belonging to the tangent
space) instead of points on the manifold. To be more concrete, since each tangent space is a K-dimensional Euclidean space, there exists a linear and
invertible mapping φM : T M → RK such that jjξM jjM ¼ jjφMðξMÞjj2 for ξM 2 RK . Combining φM and LogM gives the vectorization operator P M ¼ φM∘
LogM which maps M to RK , and verifies: jjP MðM’Þjj2 ¼ dðM;M’Þ for M’ 2 M . This operator explicitly captures the local Euclidean properties of the
Riemannian manifold.

As a final note, all the notions developed above are based on the metric 〈 �; � 〉M . Different metrics lead to different geodesic distances, Frechet means,
exponential and logarithm mapping and vectorization operator. Choosing the right metric for a particular problem may lead to substantial benefits.

5.5. The positive definite manifold

In this work, we are interested in onemanifold in particular: the manifold of positive definite matrices S þþ
P (F€orstner andMoonen, 2003). This is not

a vector space, as for example the difference of two positive definite matrices may not be positive definite. It is a differentiable manifold of dimension
PðPþ1Þ

2 , with fixed tangent spaces T C ¼ S þ
P for all C 2 S þþ

P . We endow the manifold with the geometricmetric given by: 〈P;Q〉C ¼ TrðPC�1QC�1Þ. This
metric leads to closed-form formulas for most Riemannian notions seen above:


 The associated norm generalizes the Froebenius norm: jjPjjI (identity) ¼ jjPjjF (Frobenius) for P 2 T I .


 The geodesic distance (also called geometric distance) is dðC;C0 Þ ¼ ����logðC�1=2C’C�1=2Þ����F ¼ ðPP
k¼1log

2ðλkÞÞ1=2, where λk are the eigenvalues of

C�1=2C’C�1=2. This distance is affine invariant, i.e. for W invertible, dðWCW>;WC’W>Þ ¼ dðC;C’Þ. This is an important property for our purpose:
assume that C and C’ are covariances of some signals x and x’ 2 RP. Affine invariance implies that the distance computed with x and x’ is the same as
the distance computed with any linear transform of the signals Wx and Wx’: the distance is blind to global mixing effects. We also see that the
singular matrices act as a barrier for this distance: if C or C’ is close from being singular, one eigenvalue λk goes either to 0 or þ ∞, and dðC;C’Þ goes
to infinity.


 For P ¼ 1, the Frechet mean is the geometric mean between positive scalars. In higher dimension, no closed-form formula for the Frechet mean has
been discovered, but iterative algorithms to compute it are available (Jeuris et al., 2012; Congedo et al., 2016). The mean is also affine invariant, in
the sense that W C W> ¼ WCiW>. As a consequence, if the matrices Ci were jointly diagonalizable, i.e. Ci ¼ AΛiA> with A invertible and Λi di-

agonal, we would have C ¼ AðQN
i¼1ΛiÞ1=NA>. This property is used in the proof of consistency of the Riemann regression model in Appendix 5.3.
17
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 The logarithm mapping is given by LogCðC’Þ ¼ C1=2logðC�1=2C’C�1=2ÞC1=2 2 T C, and the vectorization operator is P CðC0 Þ ¼
UpperðlogðC�1=2C0C�1=2ÞÞ, where UpperðMÞ is the vector of size PðP�1Þ

2 containing the upper triangular coefficients of M, with off-diagonal terms

weighted by a factor
ffiffiffi
2

p
. Once again, if C and C’ are covariances of x and x’, it amounts to whitening x’ with C, and then applying a “spectral” non-

linear transform on the resulting covariance, where the transform only changes the eigenvalues and not the eigenvectors.
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