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Long-distance entanglement of purification in conformal field theory
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Quantifying entanglement properties of mixed states in quantum field theory via entanglement of
purification is a new and challenging subject. In this work, we study entanglement of purification for
two intervals far away from each other in the vacuum of a conformal field theory on a lattice. Our
main finding is that the decay of the entanglement of purification is enhanced with respect to the
one for the mutual information by a logarithm of the distance between the intervals. We explicitly
derive this behaviour in the critical Ising spin chain as well as for free fermions. Furthermore, we
corroborate it with a general argument valid for any conformal field theory with a gapped spectrum
of operators arising as a continuum description of a lattice model.

Introduction. Understanding quantum information
properties of quantum field theories (QFTs) and, through
holography [1H3], also of gravity has been an important
line of research of the past two decades [4H8]. The object
of primary interest has been entanglement entropy (EE)
of spatial subregions in QFT. To this end, starting from
a globally pure state (here the vacuum |0)) and a spatial
subregion A and its complement A, one defines a reduced
density matrix in A

pa = tr510) (0] . W
EE is then defined as its von Neumann entropy
Sa=S8(pa) = —trapalogpa. (2)

EE is an ultraviolet-divergent quantity due to correla-
tions at arbitrarily short distances in QFT and its compu-
tation requires introducing a regulator. This can be done
using Gaussian techniques [9HI3] for interesting states in
free QFTs, whereas closed form results and tractable lim-
its in two-dimensional CFTs follow from framing it as an
analytic continuation of correlation functions of primary
operators [I4HI9], while in two spacetime dimensions, one
can also employ tensor network techniques to efficiently
compute EE [20, 2I]. In strongly-coupled holographic
QFTs, computing it reduces to a geometric problem of
finding minimal surfaces [22H25]. As a quantum-theoretic
quantity, it is a reliable measure of entanglement between
A and A in globally pure states.

In the present work, we will be concerned with con-
formal field theories (CFTs) emerging as a long-distance
limit of lattice models and the ultraviolet cut off will be
provided by an underlying lattice with spacing §. At the
same time, we will be interested in a situation in which
one considers a reduced density matrix for a subsystem
consisting of two parts A and B. One quantity to con-
sider in this case is the mutual information (MI) defined
in terms of EE as

I(A:B)=S4+ 55— Sap. (3)
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FIG. 1. Entanglement of purification on an infinite lattice:
The mixed state pap on a subsystem of two disjoint regions
AB separated by Ny = % sites is purified to a state with
auxiliary factors A’ and B’, taken to be of the same size N4 =
wa/d and Ng = wp/d as A and B, respectively, where ¢ is
the lattice spacing. Here we mostly consider N4 = Np.

Another quantity of significant recent interest in such
a setup is the entanglement of purification (EoP) [26],
which can be regarded as a generalization of EE for bipar-
tite mixed states. It requires purifying the reduced den-
sity matrix p4p to a pure state |¥) in an enlarged Hilbert
space consisting now of A and B supplemented by aux-
iliary factors A’ and B’, such that pap = tra p/|V) (V]
(visualized in Fig.[L). The EoP is then defined as

Ep(pap) = min[Saal. (4)

EoP is intrinsically based on an optimization procedure
over purifications and is by default challenging to con-
sider in QFT. Derived from this is the distinguishing
feature of EoP with respect to other correlation mea-
sures such as EE, namely that it additionally provides a
particular purification of the mixed state for which the



von Neumann entropy is minimum. To date, its un-
derstanding in the intersection of quantum information
science and high-energy physics is based on Gaussian cal-
culations [27H29], usage of CFT techniques with a lim-
ited range of applicability [30H32] and, finally, on a con-
jectured realization in holography [33] [34]. It is worth
pointing out that in the latter case, EoP is conjectured
to be dual to the entanglement wedge cross section [35-
38] for which a variety of results have been found rang-
ing from connections with multipartite states to thermal
states (see e.g., [39H49]) and is thus pivotal to the efforts
of understanding bulk reconstruction in holography [50].

The aim of this letter is to to elucidate what perhaps
is the simplest setting in which EoP behaves universally
across CFTs and does not rely on Gaussianity nor on
local conformal transformations. We achieve this by us-
ing spin chains and, more generally, lattice models in a
mixture of analytic and numerical techniques.

Setup. In our analysis, we will be concerned with two-
dimensional CFT and we will assume existing lattice ap-
proximation. The setting of interest to us will be two
intervals of the same length w separated by a distance d,
see Fig.|ll At large distances % > 1, the decay of MI
in CFTs takes the form

L(rea+1) 5
24A+1F(2A+%) Xext..., ()

I(A:B)=N

where

a=(2) 0

and A corresponds of the scaling dimension of the lowest
non-trivial operator(s) in the theory [I8| [19], N stands
for possible degeneracy of such operators and the ellipsis
denotes faster decaying terms [19, 51} [52]. This formula
assumes a gap in the spectrum of scaling dimensions and
we will carry over this assumption in our studies of EoP.

We will be primarily interested in the Ising model re-
alization of the ¢ = % CFET on an infinite line, which can
be described by the critical lattice Hamiltonian

o0

He~— Y (25785, + 57), (7)

1=—00

more general forms of which we discuss in the appendix.
The 5% are spin operators defined by the Pauli matrices
5% = 107", In the Ising CFT there is a non-degenerate
(i.e., N = 1 in (f]) lightest operator of a scaling di-
mension A = %, often denoted as the spin field o and
corresponding to a 5’;‘ lattice operator.

While it is well known that the Ising model can be
mapped to a free fermion theory, the setup of interest —
reduced density matrices in two disjoint intervals — is gen-

uinely non-Gaussian [29, [53-56], as are almost all CFTs,

and we will provide more comments on this issue later in
the letter.

Large-distance analytics. We start our studies by con-
sidering a subsystem AB consisting of two single sites
(w = §) separated by d/d sites in the ground state of the
critical Ising model . The central idea is to use it as a
point of departure for analytic treatment of EoP in the
Ising CFT and as a guidance for a generic situation.

While the reduced density matrix pap is non-
Gaussian, following [55] one can still use Gaussian tech-
niques to deduce its asymptotic behaviour as % — 00
(or, equivalently, € 1 0). This leads to

D 0 0 OEé
0 E Cex 0

PaB~ | 0 Ce B0 (®)
Cex 0 0 F

Wih D=1t ith =i Foi-iid
02 = % and a possible contribution of the order

€1 vanishes, see appendix for a derivation. We represent

piB in the basis [11), [{1), |Tl) and |])) with the factor
ordering AB. The anti-diagonal terms C €1 encode long

distance correlations between S¥ at the two sites.

The continuum limit corresponding to the Ising CFT
is obtained by keeping d/w (or, equivalently, € 1 ) fixed
and taking 0/w to 0. We will see that considering only
a few lattice sites is sufficient to describe the qualitative
and approximate quantitative behaviour of the contin-
uum limit. To demonstrate this, we use (8)) to calculate
the large distance asymptotics of the MI and compare
it with . The EE of the disjoint system follows from
the eigenvalue spectrum of . Its four eigenvalues pi;
are

1

Hi2 = —+Cey, (9a)
T
1

1
toxy 502 (9b)

from which we can directly compute the EE for AB

S==> pjlogpu;. (10)
J

N N

H3,4 =

Note that in the following we will be denote eigenvalues
of any density matrix by p;.

This analysis leads to the Ising model prediction for a
spin MI at large separations of the following form

4+ 47 + 72
g4—47r+7r2

472 T
+ —1lo

I(A:B)~<7T2_4 .

) C? xed. (11)
8
Comparing this formula with the CFT analytics for
A = %, we see an exact match in the power-law be-
haviour. Furthermore, the prefactor in evaluates to



approximately 0.2978, which is only 3.6% off from the
continuum value of about 0.309 predicted by .

Furthermore, explicit numerical calculations using the
full reduced density matrix p 4p show that the continuum
value of the prefactor is well attained at large distances
already for w = 24§ and 34, see Fig. a). This provides
a strong support to consider as a good starting point
for an analysis of long distance behaviour of EoP in the
Ising CFT.

EoP of minimal subsystems. In the limit of an infi-
nite distance between the two single site subsystems, we
purify (§) by the state [¢(9)) with Schmidt decomposition

VD L) + VE(1IAL) + 1) + VF |m(¢> ,)
12

) =

where the convention for factors ordering in the purifi-
cation is ABA’B’. Note that in this analysis we assume
that a minimal purification from two to four spin degrees
of freedom suffices and we will subsequently provide sup-
porting numerical evidence and an additional discussion.
Moving on, we supplement this purification with finite
distance corrections up to second order in € 1as
[0) ~ @) +ex [p1) + 3 [9) . (13)
We will optimize over |1/} and [/(®)) subject to the
normalization constraint (¥|v) = 1 order by order in € 1.

We further require pAB [ (D | 4 [pD)Y (4] and
pAB 1O (@41 @) (PO +2 D)) (1pD) | to satisty

C

C
Si=| o€ | w0 g

C

which follows from . Combining the normalization
condition for |¢) with constraints allows to system-
atically eliminate free parameters in [¢(1)) and |(2)). In
order to compute S44/, which is the building block of
EoP , we need to find the four eigenvalues p; of

2
pan = Pk + ey Pl + 36 ok (15)

We expect the pattern
po ~ 1 — ooy €1

and  fijs>0 ~ @ 6% , (16)

where qo; = Zj>0 a; and here j > 0 runs from 1 to 3.
Computing the individual a; requires extensive work, but
oy can be deduced by expanding

Tr(pha) = D13 ~ 1 — 200 e . (17)
j

Its RHS leads to the explicit formula

Qtot _ (m—2)x2—2Vm2—dxiax2—2V T2 —4dzszs
C2 - 247
77((7r72)7r74)a:§+8(a:§+7r3)
(m—2)(2+4m)?
2(4+47)2i—4(r—2)mas
(2+m)?

_ Anv/rm?—4zq (18)

T2—4

+ 233? + (m§ + x%z) ,

where z; are remaining parameters in |[(1)) = 3. ;| ¢;),
where |¢;) is the basis of H apasp ordered as in . The
expansion of the unoptimized EE , which underlies
the definition of EoP 7 takes the form

(s —toga) &

3>0
(19)

Saa = ot 62A log (6;2) +

where A = %, shown later to hold for a general A.

In order to ﬁnd the EoP, we need to minimize over the
x; to find the smallest possible ayq;, which can be done
analytically and leads to

4Tt C?
o = ——¢ = 012445 (20)
The non-vanishing ayot shows that the resulting EoP ob-
tained from has the leading order long-distance be-
haviour enhanced with respect to that of MI by a
logarithm of the distance.

This is our main finding and the remaining part of our
letter is devoted to providing further support for its cor-
rectness from the point of view of the continuum limit
and robustness of minimal purifications, as well as dis-
cussing its generalization in a generic CFT with a gap in
the operator spectrum in a lattice representation.

When it comes to the subleading long-distance be-

(Zj>0 a;(1 — logaj)), we
would need to extract the individual «; and optimize
over the remaining parameters. While it is plausible this
can be also done analytically, we skip this tedious step
and in the following will simply resort to numerics.

haviour encapsulated by

Numerical results. Our analytic derivation of the EoP
is in excellent agreement with fully numerical studies.
Note that the latter do not rely on the € 1 -expanded den-
sity matrix , but rather take full numerically evaluated
pPAB as an input.

Our numerical results for minimal purifications (from
141 to 1414141 degrees of freedom, as in the analytic
derivation, and from 2 4 2 to 2+ 2 4 2 + 2) are depicted
in Fig. [J[c). We find a rapid convergence to with
the distance. The leading decay slope for w = § corrob-
orates our analytical prediction , with the coefficient
of the subleading decay numerically predicted to be ap-
proximately 0.423. The w = 2§ data gives

Ep ~ 0.128 €% log (e7%) + 0.440 €3 (21)
8 8 8
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FIG. 2. Numerical data for MI and EoP for spins and fermions, rescaled by the power-law contribution €% = (w/d)** of the
respective dominant term with A = é for Ising spins and A = % for free fermions. The analytical predictions for w = § are
derived in the main text for the Ising spins and in the appendix for free fermions.

We see that the leading fall-off coefficient changes from
the analytic prediction at w = § in by only 2.6% and
the subleading fall-off coefficient by only 3.9%.

We found generating data numerically for w = 3§ chal-
lenging, since, on one hand, this requires dealing with
much bigger matrices making the calculating slower (see
appendix) and, on the other, requires maintaining rather
high accuracy due to the need of keeping fine large dis-
tance corrections. However, taking MI as a guidance, as
discussed below , one sees there very similar devia-
tions between w = § and w = 2§ and we therefore would
expect very little difference between large-distance be-
haviour of EoP for w =26 and w = 36.

Regarding corroborations, a key question concerns the
dimensions of the initial and enlarged Hilbert spaces. In
our setup, when purifying the state of a system with N4+
Np degrees of freedom by adding N4 + Nps additional
ones (see also Fig. (I)), there is a priori no constraint on
N 4+, Npr other than the basic requirement following from
the definition of the Schmidt decomposition that N4 +
Npr > Na 4+ Np. However, we show in the appendix
that the choice of minimal purifications corresponding
to Na» + Np» = Ny + Np and made so far yields the
true minimum of EE, so long as we choose N4 = Ny
and Ng = Np. This was already shown in [57] based
on ideas in [58] for the EoP for Gaussian states (with

Gaussian purifications).

Towards generality. In our presentation so far, we fol-
lowed the properties of the Ising model. However, our
derivation of the scaling of the EoP is much more gen-
eral and applies to any CFT with a gap in the operator
spectrum that arises from a discrete lattice model at crit-
icality [59].

To run the general argument, we only need to assume
that the density operator pap of two subsystems A and
B far away from each other takes the form

0 0 1 2
pas(ea) ~ oY) @ pl) +eaplih + SApleh + ..., (22)
where ... denotes higher, not necessarily integer powers

of en and we do not make any assumptions about sub-
system sizes. One can easily be convinced that is
precisely of this form. Furthermore, it is also clear that
the ea term in is crucial in order to reproduce the
power-law scaling of the connected two-point function of
the lowest lying scaling operators in the lattice descrip-
tion.

The fact that pap is a product state at ea = 0 implies
that paa(ea = 0) of the optimal purification (i.e., the
one with minimal entropy Saar) is itself pure and thus
has eigenvalues (1,0,...,0). In full analogy to , one
can perturbatively account for entanglement between A



and B by constructing a series expansion of the eigenval-
ues in €a.

Provided that the optimal purification |¥(ea)) to the
truncatedﬂ density matrix is analytical at ea = 0,
such that we have |1(ea)) ~ [ + e [1p™D), the re-
sulting paa/(ea) must be a proper density matrix for suf-
ficiently small positive and negative values of ea. Con-
sequently, the leading contribution to the eigenvalues of
paar(ea) that are the building blocks for the correspond-
ing EE will behave in full analogy with (16)), i.e.,

po ~ 1 —aporea  and  p; ~ajex as ea — 0 (23)

unless a0y = 0, when the next non-zero even power of ea
should appear. As we have seen, spatially reduced den-
sity matrices in the Ising model give rise to ayot > 0 and
we expect this to be the case in many if not all the other
examples that exhibit a gap in the operator spectrum.
Under this assumption, formula still goes through,
which is the reason why we wrote it for arbitrary A. This
indicates that in any lattice model giving rise to a CFT
with a gapped operator spectrum the EoP for far away
regions decays with the same power as mutual informa-
tion, but is enhanced by a logarithm of a distance.

Finally, since it is clearly interesting if ayo¢ is indeed
non-zero in other models, we used the Jordan-Wigner
mapping to perform analogous calculations in the Ising
model in the fermionic representation. It is well known
[29, 56 [60] that reduced density matrices of non-adjacent
intervals change under this mapping, effectively removing
the o operator from local fermionic expectation values.
Our calculations, incorporated in figure [2[(d), reproduce
the behaviour with A = %, corresponding to the
fermion fields 1 and . The power-law part of the fall-off
again matches with mutual information, see figure b).
Furthermore, we use this opportunity to test the con-
vergence of MI and EoP with increasing subsystem size
and reach the same conclusions as for the non-Gaussian
spin results. Lattice effects at small w/§ are more pro-
nounced for fermions that for spins, which is likely due
to the smaller scaling dimension gap to the ¢ field with
A = 1, making higher-order terms relatively more pro-
nounced.

Outlook. In this work, we studied the behaviour of EoP
for two subsystems of width w at large distance d, finding
a new log-polynomial decay law of the form

A
Ep ~ (> log <> for d>w. (24)
w w

1 We truncate the density matrix at the quadratic order in order to
avoid contributions from non-integer powers of ea, which would
obscure our assumption about analyticity of the purification in
the vicinity of ea.

Our work opens a genuinely new avenue for studying
EoP in QFT without restriction to free models. In the
long term, we hope that it will serve as a guiding prin-
ciple in developing a microscopic understanding of EoP
in terms of the operator content of CFTs, from which
universal behaviour of MI at large distances has previ-
ously been derived. An intermediate step in this endeavor
would be to supplement our numerical code with large
distance behaviour of two interval density matrices ob-
tained in various lattice models using tensor networks.
This might in particular allow to reconstruct the formula
governing the coefficients in the large distance scaling of
EoPs akin to .

When optimizing over purifications outside the Gaus-
sian realm, one is inevitably led to vast parameter spaces
that quickly exhaust desktop-scale computational re-
sources. However, the entanglement between reasonably-
sized subsystems both mixed and purified is not large and
it should be possible to represent purifications as inhomo-
geneous matrix product states (MPS). Employing tensor
network techniques that are already well developed for
spin chains might allow for a better access to a contin-
uum limit, as well as recover CFT behaviour at finite %.
See also [34] for an earlier application of MPS to EoP.
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Appendix

Review of critical Ising model. The Hamiltonian of
the transverse Ising is given by

ji g sz: (2JS*,§S’,§+1 + hS;’i) :
k=1

(A1)

with spin operators represented by Pauli matrices o,



with o € (z,y,2) by

Sp=190-b g %” ® 18-k (A2)

We also use the identification S'JC\‘,H = S¢. This spin
model can be converted to fermions by defining the 2NV
Majorana operators v, via

Yopoy = 0.2 D @ g, @ 19NR)

Vo = O—Z®(k*1) Qoy, @ ‘]]®(N*k) .

The Ising Hamiltonian then takes the form

. N-1 N
L i
Hy = 5 (71 Yon P+ J Z Yok V2k+1 +h272k71 72k> :

k=1 k=1
(A5)
Here P is the total parity operator [[, Zr =
[T, (—i7v2r_1Vor)- At the critical point J = h, the Hamil-
tonian thus simplifies to

: 2N-1
N i
H = 5 <71 Yon P+ Z 7k’>’k+1> ; (A6)

k=1

which leads for N — oo to the lattice model of the ¢ = %
CFT. The critical Ising Hamiltonian as displayed in the
main text ([7)) corresponds to J = h = 1.

Covariance matrix. For the critical ground state vec-
tor |0) which has a positive total parity, all correlations
are encoded in the Majorana covariance matrix
i
Qg = 5 Ol [v;,7:110)
which in the infinite system size limit takes the form

0 {o k=j
gk =Y (=DF i1 -
St k#

(A7)

(A8)

Fermionic subsystem. We first consider the critical
Ising model from the perspective of fermions, i.e., local-
ity is associated by the anti-commuting variables ;. A
subsystem consisting of two sites (w/0 = 1) separated
by d/w = d/§ sites is then fully characterized by the re-
striction of the covariance matrix introduced in and
explicitly given by

2 -2
T ) (2d/w+3)m™

fi — 2d/w+1
Qfsr, = ) (2d/w+1)m D
(2d/w+1)w T

3

2
(2d/w+3)mw r3
(A9)

from which we find A = %
density operator is then
D
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PaB ™~ E

The associated fermionic

1
271'6

[NIE

(A10)

1
27 6% F

1) 0
A l—il .
oo ---- . --- | Fermions
Jordan—Wigneri o
A B .
---d'd'ﬁ'ﬂﬁ'---ﬂd’d'd’ﬂ--- Spins

FIG. 3. Subsystem setup of our analytical limits for fermions
(top) with an inherent ordering and spins (bottom) without
one. In both systems, we consider the subsystem AB consist-
ing of two single sites A and B separated by d/¢ sites.

for e; = w /d. If we further restrict to a single site, we
find the following covariance matrix and density opera-
tor:

_2 1_ 1
o= (o ) v (F, L)
2

™ s

Spin subsystem. We can perform a similar calculation
in the original Ising spin system whose reduced density
matrices can be constructed from the fermionic covari-
ance matrix [55]. We need not repeat the single interval
case, as entanglement entropies of connected regions are
equivalent under a Jordan-Wigner transformation. How-
ever, we still need the reduced density matrix of a system
of 1 4 1 sites in the large d limit, which we find to be

(A12)

Here, the constant C' corresponds to the expectation
value of an operator nonlocal in fermions, and can be
computed from

9\ " pl/4
C = lim () anetM”7

n— oo i

(A13)

where M™ is defined as the n X n matrix
(A14)

Using this construction, one finds [61]

3¢ (-1)

C = —+5 ~0.1612506.

923/12 (A15)

Mutual information and EoP for fermions. While
we studied MI and EoP for spins in the main text, we



are now considering them for two sites separated by d in
in the fermionic picture. In this case, the state p& 5 is
Gaussian and fully characterized by the covariance ma-
trix QfA B

For the MI I(A : B), we need to compute the von
Neumann entropy of a single site Sy = Sp and of both
sites S4p. Such a von Neumann can be computed from
the eigenvalues of the covariance matrix {2 associated to
the respective Gaussian state p. As an antisymmetric
matrix, QfA p has pairs of purely imaginary eigenvalues
+i g, from which one can compute the von Neumann

entropies as S(p) = —> . ; hé)‘i log % leading to
Sa=-52log T2 — T2log T2 ~ 0.474  (A16)
Sap = Z (— 12k Jog LA — 12k Jog 1220) 1 (A17)

k=1

where the eigenvalues of Q0 5 are to leading order

(A18)

)

Ao = = (2:&%62%) —|—O(62%) .

We can similarly expand S111 = Sap at large d, which
results in the MI

og Tt2
I*"(A: B) =254 — Sap ~ 222 2 + O(2) . (A19)

This reproduces the correct continuum power law of
fermionic MI, but yields a coefficient lower than the con-
tinuum value which also matches the large-distance
expansion of earlier results for Dirac fermions [62]

(A B) = Slog LA+

3% d (2w + d) (420)

L, 2

We can follow a similar strategy to compute the EoP
in the fermionic subsystem of two sites separated by d/é
sites. We purify Q45 in the limit d/d — oo as

00 = (A21)

associated to A + B+ A’ + B’ with G = 2 and L =
V1 — G2, whose EE Ss4: is zero and we thus have
limy oo Ep = 0, i.c., the EoP vanishes for large d/J,
as expected.

In order to find the asymptotic behaviour of Ep, we
need to study the variation of the eigenvalues A\ of €44/
when perturbing € according to

O~ 0O 46 0+ 1807 as er 0. (A22)
2

The requirement of §2 representing a purification implies
Q2 = —1, which induces the constraints

QOOM L WO = ¢,

2(0W)? + VR + 00 =0, )

We further require that the restrictions Qgé and Q(A%
matches the ones of (A9) expanded in €1, i.e.,

1

T

3 e

1
(1) P (2) _ T
QAB = ) QAB = 1 )

|

(A24)

The equations (A23]) and (A24) can be solved iteratively
up to some free variables. We first solve Q) in terms of

Q© and then Q® in terms of Q) and Q).

In order to find asymptotics of the symplectic eigenval-
ues \;, we can use the fact that Tr(Q2% ,,) = —2(\? + \3)
and Tr(Q% 4/) = 2A1 + A3 to solve for the asymptotics of
A; to be given by

M=X~1—ae as er =0, (A25)
2
where a will depend on some of the free parameters con-
tained in Q) and Q). With this trick, one finds
T1403 — T1322a + 1 2 G(214 — To3)T !
2 2L

(14 — $23)2 + (z13 + $24)2
+
412 ’

(A26)

where the variables x;; represent unconstrained entries
in the block QE;})B)A,B,. In order to find the asymptotics
of EoP, we need to minimize « over these parameters to
find the smallest possible EE S44/. This minimum can
be computed analytically to be

~ 0.03605 .

e (A27)

Expanding Saar ~ ), (log2— %) through A up to second
order in d gives the asymptotics

&
!
l

(a log(e;?) + alog %)
2

(A28)
(0.036 log(e72) + 0.18) :

=N o= N

Q

which agrees with the form (19)). Note that the simplicity
of Gaussian states allowed us to even find the analytical
form of the constant offset. The accuracy of this ana-
lytical prediction was tested numerically, for which we
presented the results in figure [2|in the main text.

Numerical approach and asymmetric purifica-
tions. Our numerical methods are based on [29] 57, [63],



Na + Np/
1+1 142241 1+432+23+1

d=4 |0.382 0.382 0.382  0.382 0.382 0.382

7| =26 |0.333 03330333  0.333 0333 0333

o — | d=35 [0.306 0.306 0.306  0.306 0.306 0.306
= d=25 (0292 0292 0.292  0.292 0.292 0.292
* d=14 0.412 0.438  0.412 0.412 0.440
= Tl d=20| 03680412 0.368 0368 0.415
L d=35 0.345 0.394  0.345 0.345 0.398

d =46 0.335 0.385  0.335 0.335 0.389

TABLE 1. Numerical evidence for optimality of certain min-
imal purifications. The table shows the values of the opti-
mization for different choices of the system dimensions and of
d. The true EoP values (the minimum optimization values)
are highlighted in yellow, with the darker shade indicating the
lowest-dimensional purification for which the EoP is obtained.

which outline the construction of an efficient algorithm
for local optimization over Gaussian states, based on
a gradient descent approach exploiting the natural Lie
group parametrization of the state manifolds. Our nu-
merical results are obtained using an adaptation of this
algorithm to the non-Gaussian case of interest.

To compute the EoP as given in 7 we minimise the
entanglement entropy S over the manifold M of puri-
fied state density matrices. We first purify our initial
mixed density matrix to a 2V-dimensional pure p; via
the Schmidt decomposition. Here, N = ), Nx with
Ny denoting the physical degrees of freedom in subsys-
tem X. We parametrize elements py € M by trans-
formations U = 1 ® U with U € U(2Na+V5"), 50 that
pu = UpiU~L. The tensor product signifies that U only
acts non-trivially on degrees of freedom in A’ and B’. We
then optimize by performing iterative steps along direc-
tions in M which locally minimize S44. [29 57],

Uny1 = UpetBn . (A29)
Here, K, = Z#.7-'“(UTL)EM/H]:H2 and F#: M — Ris
the gradient descent vector field
8 = =
FHU) = —=S(Ue*=rpre *=r U |,—0 (A30)

0s

with {Z,} as basis of u(2N¥4’*N5"). We choose Uy = 1
and we pick 0 < ¢t < 1 in such a way that the value of
Sa4 decreases with successive steps.

The {=Z,,} span the tangent space at U = 1 and, due to
the left-invariance of the Riemannian metric on M, form
orthonormal bases for the tangent spaces at all other
points in M, too, where =, is identified with the tan-
gent vector to the curve v(s) = Ue*S+ at v(0) [57]. This
saves us having to re-evaluate the matrix representation
of the metric at each step, as we would have to if we had
chosen a coordinate parametrisation of M. While this

makes our algorithm more efficient than a naive gradient
descent, the numerically accessible range is still highly
limited: since N/ +Np: > N4+ Np, the dimension of M
is at least dimu(2Va' V) = 22Nar+2Npr _ 1 and
requires exponentiation of at least 2(Va+tN8) x 2(Na+Ns
matrices, with a typical step count of several hundred.
This becomes extremely slow on a powerful Desktop com-
puter for N4+ Np: > 5. For the symmetric purifications
in the main text this corresponds with w > 2§, which ex-
plains the regime we were able to explore.

Given this limitation on our numerical capabilities, it is
instructive to ask whether an optimization over minimal
purifications corresponding with N4, + Ng: = Nj + Np
yields the true minimum of EE — not least because for
large systems this becomes the only numerically viable
choice. A natural follow-up question is whether among
the choices of minimal purifications, the intuitive choice
of Nov = N4 and Ny = Np suffices to reach the true
minimum defined as EoP. More pertinently, we might ask
whether it is even possible to reach the true minimum
with a minimal purification for which N4 # N4 and
Np' # Np. In [57], a combination of numerical and ana-
lytical evidence was provided to show that the answer to
this question is in affirmative for Gaussian states. While
limited by the greater numerical challenge in the non-
Gaussian case, we present similar numerical evidence in
Table[[] to show that the same may be said for our model:
the true minimum can only be reached if Ny > N4 and
Np > Np, which indicates that the lowest-dimensional
purification for which the EoP can be obtained is the
minimal purification with N4y = N4 and Ngr = Np.
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