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Quantifying entanglement properties of mixed states in quantum field theory via entanglement of
purification and reflected entropy is a new and challenging subject. In this work, we study both quantities
for two spherical subregions far away from each other in the vacuum of a conformal field theory in any
number of dimensions. Using lattice techniques, we find an elementary proof that the decay of both the
entanglement of purification and reflected entropy is enhanced with respect to the mutual information
behavior by a logarithm of the distance between the subregions. In the case of the Ising spin chain at
criticality and the related free fermion conformal field theory, we compute also the overall coefficients
numerically for the both quantities of interest.
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Introduction.—Understanding quantum information
properties of quantum field theory (QFT) and, through
holography [1–3], also of gravity has been an important
contemporary line of research [4–8]. The main object of
interest has been the entanglement entropy (EE), which
reliably quantifies pure state entanglement between a
subregion A and its complement Ā. Given a reduced
density matrix ρA ¼ trĀρ for a total pure state with density
matrix ρ, EE is defined as the von Neumann entropy

SA ¼ SðρAÞ≡ −trAρA log ρA: ð1Þ
EE is an ultraviolet-divergent quantity due to correlations at
arbitrarily short distances in QFT and requires a regulator.
Efficient computations are possible using Gaussian tech-
niques [9–13] for free QFTs, analytical continuation meth-
ods for two-dimensional conformal field theory (CFT)
[14–19], or tensor network constructions for both gapped
and gapless two-dimensional systems [20,21]. In strongly
coupled holographic QFTs, computing EE reduces to a
geometric problem of finding minimal surfaces [22–25].
In the present work, we will be concerned with CFTs in

arbitrary number of dimensions emerging as a long-
distance limit of lattice models regulated by a lattice
spacing δ. We will be interested in entanglement for

subsystems composed of two disjoint regions A and B,
for which one often considers the mutual information (MI)
defined as

IðA∶BÞ ¼ SA þ SB − SAB: ð2Þ
A quantity of significant recent interest in such a setup is
also the entanglement of purification (EOP) [26], which can
be regarded as a generalization of EE for bipartite
mixed states. It requires purifying the reduced density
matrix ρAB to a pure state jψi in an enlarged Hilbert space
onHAB → HAA0BB0 such that ρAB ¼ trA0B0 jψihψ j (visualized
in Fig. 1). The EOP is then defined as

EPðρABÞ ¼ min
ψ

½SAA0 �: ð3Þ

EOP is challenging to compute in QFT due to its inherent
optimization procedure of finding a purification whose EE
is minimal. Its current understanding in the intersection of
quantum information and high-energy physics is based on
Gaussian calculations [27–29], CFT techniques with a
limited range of applicability [30–32], and on a conjectured
realization in holography [33,34]. In the latter case, EOP
has been conjectured to be dual to the entanglement wedge
cross section [35–38]. This led to many novel develop-
ments regarding the emergence of the gravitational holo-
gram [39], see, e.g., [40–50].
Another quantity closely related to EOP and also

conjectured to be holographically dual to the entanglement
wedge cross section is the reflected entropy (RE) [48,51–
60]. It is defined as EE

SRðρABÞ ¼ SAA0 ðj ffiffiffiffiffiffiffi
ρAB

p iÞ ð4Þ
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of the unique purification j ffiffiffiffiffiffiffi
ρAB

p i ≔ P
i

ffiffiffiffi
ei

p jeiijeii ∈
HA ⊗ HB ⊗ HA0 ⊗ HB0 of ρAB, where ρABjeii ¼ eijeii,
HA0 ¼ HA, and HB ¼ HB0 . Simply put, j ffiffiffiffiffiffiffi

ρAB
p i is

the unique purification symmetric under A ↔ A0 and
B ↔ B0 exchange. Clearly, j ffiffiffiffiffiffiffi

ρAB
p i is one of the valid

purifications jψi we minimize over in (3), which implies
EP ≤ SR. RE is much easier to compute compared to EOP,
as it does not require an optimization over all possible
purifications.
The aim of this letter is to elucidate a particularly simple

setting in which EOP and RE behave universally across
CFTs, without relying on Gaussianity or Weyl rescalings.
We achieve this by using spin chains and more general
lattice models and focusing on universal inequalities
satisfied by EE. We corroborate our studies using analytics
and numerics in the Ising and free fermion CFTs [61],
which allows us to extract prefactors in the asymptotic
scaling of EOP and RE.
Setup.—In our analysis, we will be concerned with CFTs

on a lattice. Our general statements will be made in any
number of dimensions, whereas our numerics will focus on
CFTs in two spacetime dimensions.
The setting of interest will contain two spherical sub-

regions of diameter w separated by a distance d. Figure 1
illustrates it for CFTs in two spacetime dimensions in
which case the subregions become intervals. At large
distances ðd=wÞ ≫ 1, the decay of MI (2) in CFTs reads

IðA∶BÞ ¼ N
Γð3

2
ÞΓð2Δþ 1Þ

24Δþ1Γð2Δþ 3
2
Þ × ϵ2Δ þ…; ð5Þ

where

ϵΔ ≡
�
w
d

�
2Δ

ð6Þ

and Δ corresponds of the scaling dimension of the lowest
nontrivial operator(s) in the theory, N denotes the possible
degeneracy of such operators, and the ellipsis denotes faster
decaying terms [18,19,62,63]. The formula (5) assumes a
gap in the spectrum of scaling dimensions and the lowest
lying operator(s) being scalar(s). We will carry over this
assumption in our studies of EOP and RE.
Our aim is to find and prove an analog of the scaling in

(5) for EOP and RE. In the latter case, recent numerical
studies in free CFTs in [56,57] led to the following fit:

SR ¼ αϵ2Δ logðϵ−2Δ Þ þ… for ϵΔ ≪ 1; ð7Þ
where α is a positive model-dependent constant.
In this Letter, we use quantum-many body techniques in

conjunction with elementary EE inequalities to prove that
the asymptotic form (7) holds both for EOP and RE in a
general CFT amenable to a lattice realization.
Elementary proof of the large-distance behavior.—To

set up the general argument valid both for EOP and RE, we
only need to assume that the density operator ρAB of two
subsystems A and B far away from each other takes the
form

ρABðϵΔÞ ¼ ρð0ÞA ⊗ ρð0ÞB þ ϵΔρ
ð1Þ
AB þ 1

2
ϵ2Δρ

ð2Þ
ABþ;…; ð8Þ

where the ellipsis denotes higher, not necessarily integer
powers of ϵΔ and we do not make any assumptions about
subsystem sizes. The ϵΔ term in (8) is needed to reproduce
the power-law scaling of correlation functions involving
insertions of the lowest lying scaling operator in both A and

B. As we will show, the ρð2ÞAB contribution turns out to not
contribute to the leading order decay of EOP and RE.
In the following, we will regard (8) as originating from a

perturbative purification

jψi ¼ jψ ð0Þi þ ϵΔjψ ð1Þi þ 1

2
ϵ2Δjψ ð2Þiþ;…; ð9Þ

where the product nature of the density matrix (8) for an
infinite separation leads to

jψ ð0Þi ¼ jψ ð0Þ
AA0 i ⊗ jψ ð0Þ

BB0 i: ð10Þ
Note that, in our conventions, jψi and, therefore, also jψ ð0Þi
are normalized, which also leads to constraint for jψ ðj≥1Þi.
The long distance behavior of EOP and RE is determined
by the small-ϵΔ expansion of the eigenvalues μj of

ρAA0 ≡ trBB0 jψihψ j ð11Þ
via the definition of EE (1): SAA0 ðjψiÞ ¼ −

P
j≥0 μj log μj.

The fact that ρAB is a product state for ϵΔ ¼ 0 implies
that ρAA0 ðϵΔ ¼ 0Þ is itself pure, see (10), and thus has
eigenvalues μ0 ¼ 1 and μj>0 ¼ 0. This result gets modified
at large but finite distances.
The linear correction to μj vanishes, since we expect μj

to originate from a well-defined density matrix regardless
of the sign of ϵΔ when viewed as a formal parameter. As a

FIG. 1. Illustration of our general setup for CFTs in two
spacetime dimensions on a lattice. The mixed state ρAB on a
subsystem of two disjoint regions AB separated by Nd ≡ ðd=δÞ
sites is purified to a state with auxiliary factors A0 and B0, taken to
be of the same size NA ≡ wA=δ and NB ≡ wB=δ as A and B,
respectively, where δ is the lattice spacing. Here we mostly
consider NA ¼ NB.
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result, the possible leading behavior of eigenvalues of ρAA0

is given by

μ0 ∼ 1 − αtotϵ
2
Δ and μj>0 ∼ αjϵ

2
Δ as ϵΔ → 0; ð12Þ

where

αtot ≡
X
j>0

αj: ð13Þ

Note that αj>0 ≥ 0 and if all of them vanished, the behavior
encapsulated by (12) would simply involve a higher-than-
two power of ϵΔ.
Let us consider now the asymptotics of EOP and RE

resulting from (12). As we explained in the introduction,
these quantities are given by SAA0 subject to additional
conditions on purifications. For any purification leading to
(12), SAA0 behaves as

SAA0 ¼ αtotϵ
2
Δ log ϵ−2Δ þ βϵ2Δþ;…; ð14Þ

where

β≡
�X

j>0

αjð1 − logαjÞ
�

ð15Þ

and one sees as the leading order behavior the structure (7)
identified in fits to free CFTs RE numerics in [56,57] and
the ellipsis denotes higher order terms in ϵΔ.
Regardless of purification and long-distance limit, SAA0 is

bounded from below [64]

SAA0 ðjψiÞ ≥ 1

2
IABðρABÞ; ð16Þ

as was shown in Eq. (6) of [65]. Given (5), in order for (16)
to be satisfied at large distances SAA0 cannot scale with a
higher power than ϵ2Δ. Since the eigenvalue analysis
predicts this as the strongest possible power-law factor
in the long-distance behavior of SAA0 , αtot must be bigger
than 0, and the behavior predicted by (14) is necessarily the
behavior of both EOP and RE in any CFTwith a gap in the
operator spectrum and amenable to a lattice description.
As a corollary of this proof, from the definition of αtot in

(13) we necessarily obtain that at least one of αj>0 > 0 and,
as a result, the first subleading term encapsulated in (14) is
also generically there. This is consistent with the findings
of [56,57], which also identified such a contribution in RE
for free CFTs on a lattice.
Finally, let us emphasize that our proof of the long-

distance behavior of EOP and RE did not rely on dimen-
sionality of a CFT in question.
Properties of the overall coefficient.—Our proof predicts

only that the overall prefactor αtot is positive. It is possible,
however, to extract more information about what ingre-
dients affect the exact value of αtot using a rather general
argument. To this end, notice that perhaps the easiest way to
compute αtot is to extract it from

Trðρ2AA0 Þ ¼ 1 − 2αtotϵ
2
Δ þ…; ð17Þ

where we suppressed higher order terms in ϵΔ.
Starting with (9) and defining

jψ ðiÞ
AA0 i ¼ ð1 ⊗ hψ ð0Þ

BB0 jÞjψ ðiÞi; ð18Þ
we can write the reduction ρAA0 as

ρAA0 ¼ jψ ð0Þ
AA0 ihψ ð0Þ

AA0 j þ ϵΔðjψ ð0Þ
AA0 ihψ ð1Þ

AA0 j þ jψ ð1Þ
AA0 ihψ ð0Þ

AA0 jÞ

þ 1

2
ϵ2Δð2TrBB0 jψ ð1Þihψ ð1Þj þ jψ ð2Þ

AA0 ihψ ð0Þ
AA0 j

þ jψ ð0Þ
AA0 ihψ ð2Þ

AA0 jÞ; ð19Þ
which allows us to compute Trðρ2AA0 Þ explicitly. Upon using
the normalization condition hψ jψi ¼ 1 in the form of the
following constraints

hψ ð0Þjψ ð1Þi þ hψ ð1Þjψ ð0Þi ¼ 0; ð20aÞ

hψ ð0Þjψ ð2Þi þ hψ ð2Þjψ ð0Þi þ 2hψ ð1Þjψ ð1Þi ¼ 0; ð20bÞ
we obtain

αtot ¼ kjψ ð1Þik2 þ jhψ ð0Þjψ ð1Þij2 − kjψ ð1Þ
AA0 ik2 − kjψ ð1Þ

BB0 ik2;
ð21Þ

where, in analogy with (18), jψ ð1Þ
BB0 i≡ ðhψ ð0Þ

AA0 j ⊗ 1Þjψ ð1Þi.
Quite remarkably and as advertised below (8), the

correction quadratic in ϵΔ to the density matrix ρAB does
not contribute to the leading order coefficient in the scaling
of both EOP and RE. This looks like a potentially useful
insight for any attempt to fix αtot for EOP and RE in terms
of CFT data in an analogous manner to (5) for MI.
Furthermore, obtaining the leading behavior of the EOP
amounts simply to minimizing a quadratic polynomial
obtained from components of jψ ð1Þi subject to the con-

straint (20) and the condition [with ρð1ÞAB from (8)]

ρð1ÞAB ¼ TrB0A0 ðjψ ð1Þihψ ð0Þj þ jψ ð0Þihψ ð1ÞjÞ; ð22Þ
which generally leads to affine-linear constraints on jψ ð1Þi.
The fact that the minimum exists follows from the argu-

ment presented in the previous section. While ρð2ÞAB does not
affect the leading large-distance behavior encapsulated by
αtot, individual αj>0 do depend on it and, via (14), so does
the coefficient in front of the subleading term quadratic
in ϵΔ.
Analysis in the critical Ising chain and free fermion

CFT.—So far, we have been completely general in our
studies and in the following we will specialize to two
closely related lattice models describing CFTs in two
spacetime dimensions. This will allow us to obtain numeri-
cal values of the leading and first subleading coefficients in
the behavior of EOP and RE captured by (14) and, for RE,
compare with earlier studies in [56].
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The Ising model realization of the c ¼ 1
2
CFT on an

infinite spatial line can be described by the critical lattice
Hamiltonian

Ĥ ∼ −
X∞
i¼−∞

ð2Ŝxi Ŝxiþ1 þ Ŝzi Þ; ð23Þ

more general forms of which we discuss in the
Supplemental Material [66]. The Ŝx;zi are spin operators
defined by the Pauli matrices Ŝx;zi ¼ 1

2
σx;zi . In the Ising CFT

there is a nondegenerate (i.e., N ¼ 1) lightest operator of
scaling dimension Δ ¼ ⅛, often denoted as the spin field σ
and corresponding to a Ŝxi lattice operator.
The critical Ising model can be mapped to a free fermion

theory, which is going to be another model in which we

obtain numerical coefficients in EOP and RE. This for-
mulation leads to two different notions of reduced density
matrices for disjoint intervals, see, for example, [29,70–73],
and therefore provides in itself an independent example.
For free fermion CFT there are two (N ¼ 2) lowest lying
operators with Δ ¼ ½ and being simply the fermionic field
operators.
Critical lattice models will describe CFT predictions for

large enough sizes of subsystems at fixed w=d. Since we are
dealing with purifications, which can lead to challenges
when the relevant Hilbert space dimension becomes big, the
key question is how big subsystems need to be to reproduce
the continuum physics of interest. One hint comes fromMI,
for which we see that the continuum value of the prefactor in
(5) is well attained at large distances already for w ¼ 2δ and

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Numerical data for MI, EOP, and RE for fermions and spins, rescaled by the power-law contribution ϵ2Δ ¼ ðw=dÞ4Δ of the
respective dominant term with Δ ¼ ½ for free fermions and Δ ¼ ⅛ for Ising spins. The analytical predictions for w ¼ δ are derived in
the Supplemental Material [66] (see also Table I). Analytical comparisons are drawn as solid lines and fits of the numerical EOP and RE
data at the largest available w as dashed ones. The top solid (gray) line in (e) displayed above the numerical data corresponds to the result
reported in [56] for the continuum (δ → 0).

PHYSICAL REVIEW LETTERS 127, 141604 (2021)

141604-4



3δ with the smallest subsystems of w ¼ δ giving already
reasonable predictions, see Figs. 2(a) and 2(b).
Given this encouraging result, we were in fact able to

analytically compute the coefficients of the leading order
MI, EOP, and RE in the critical Ising model and for free
fermions when w ¼ δ. The results are summarized in
Table I together with offsets and derivations can be found
in the Supplemental Material [66].
Figures 2(c)–2(f) show fits of our proven asymptotic

formula (14) to fully numerical results, i.e., based on the
full density matrix for disjoint intervals of both CFTs,
which we consider. We see strong indications of conver-
gence to continuum values. In particular, for the critical
Ising model EOP, the behavior of αtot for w ¼ δ corrob-
orates our analytical prediction in Table I. Looking at the
results for the largest attainable values of w, we see that the
leading falloff coefficient changes from the analytic pre-
diction at w ¼ δ by only 2.6% and the subleading falloff
coefficient by only 3.9%. Generating data for w ¼ 3δ and
above is numerically challenging as this requires comput-
ing very large matrices, slowing down calculations (see the
Supplemental Material [66]).
For the EOP and RE of the Ising CFT, our results provide

to the best of our knowledge new predictions; whereas, for
RE for the massless free fermions, we find and display very
good agreement with earlier studies in [56], where the
continuum (δ → 0) is studied. The remaining difference is
due to the fact that w ¼ 3δ does not fully capture this
continuum limit.
An interesting question regarding EOP concerns the

dimensions of the enlarged Hilbert spaces. In our setup,
when purifying the state of a system with NA þ NB degrees
of freedom by adding NA0 þ NB0 additional ones (see also
Fig. 1), there is a priori no constraint onNA0 ,NB0 other than
the basic requirement following from the definition of the
Schmidt decomposition that NA0 þ NB0 ≥ NA þ NB.
However, we show in the Supplemental Material [66] that
the choice ofminimal purifications used so far yields the true
minimum of EE as long as we choose NA0 ¼ NA and
NB0 ¼ NB. This was already shown in [74] based on ideas

of [75] for the EOP for Gaussian states (with Gaussian
purifications).
Outlook.—In this Letter, we studied large-distance

behavior of EOP and RE in a generic CFT with a gap in
the operator spectrum for two spherical subsystems of
diameter w in the large-distance d limit. Using (8) in
conjunction with elementary properties of EE we were able
to prove that the large order behavior of both EOP and RE
is governed by (14). In comparison to the classic result (5)
encapsulating large-distance behavior of MI, EOP, and RE
get both enhanced by a logarithm of a separation.
Subsequently, we explicitly calculated the large-distance
behavior for both EOP and RE in one spatial dimension for
the critical Ising model and massless fermions. This
allowed us to establish the value of coefficients appearing
in (14), see Table I and Fig. 2.
Our work opens a genuinely new avenue for studying

EOP and RE in QFTs without restriction to free models.
Perhaps the most interesting question concerns the depend-
ence of the coefficients in the large order behavior of EOP
and RE on CFT data, akin to (5) for MI. An intermediate
step could be to supplement our numerical code with large-
distance reduced density matrices obtained with tensor
networks for more complicated models, in particular
determining model-dependent coefficients akin to (5).
Optimizing over purifications outside the Gaussian realm
inevitably leads to vast parameter spaces that quickly
exhaust desktop-scale computational resources. However,
the entanglement between reasonably sized subsystems
both mixed and purified is not large and it should be
possible to represent purifications as manageable tensor
networks, perhaps building on earlier works [34,76].

We would like to thank J. Eisert and T. Takayanagi for
collaborations on related subjects and M. C. Bañuls,
T. Faulkner, J. Knaute, C. Pattison, D. Radicevic,
L. Shaposhnik, S. Singh, V. Svensson, B. Swingle, and
L. Tagliacozzo for useful discussions and comments on the
draft. Our special thanks go to P. Bueno who in response to
the first version of the manuscript pointed out to us that the

TABLE I. Summary of numerical and analytical results for the leading coefficient αtot and the offset β obtained for MI, EOP and RE
with asymptotics (14) both for Ising spins and for latticized fermions on a line. We refer to the respective equation in the Supplemental
Material [66]. Numbers without analytical expression are based on a numerical fit.

Free Fermions (Gaussian) Ising Spins (non-Gaussian)

Coefficient αtot Offset β Equation Coefficient αtot Offset β Equation

MI 0 flog½π þ 2=π − 2�=4πg
≈0.120

(S20) 0 C2f½4π2=ðπ2 − 4Þ�
þðπ=2Þ log½ð4þ 4π þ π2Þ=
ð4 − 4π þ π2Þ�g ≈ 0.298

(S24)

EOP ½1=ð8þ 2π2Þ�
≈0.036

f½log 2eð8þ 2π2Þ�=ð8þ 2π2Þg
≈0.181

(S33) ½4C2π4=ðπ4 − 16Þ
≈0.124

0.440 (S40)

RE ð1=2π2Þ ≈ 0.051 f½1þ logð4π2Þ�=2π2g
≈0.237

(S44) f½4C2ðπ2 − 2Þ�=ðπ2 − 4Þg
≈0.139

0.425 (S48)
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behavior encapsulated by (7) was also seen in the reflected
entropy in free fermion and free boson QFTs [56,57]. The
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