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 Abstract: The effect of externally applied resonant magnetic perturbations (RMPs) on the 

local equilibrium plasma current density profile is studied numerically based on two-fluid equations 

in simplified cylindrical geometry. It is found that a moderate RMP below its penetration threshold, 

via non-linear mode coupling, induces a parallel electric field around its rational surface that can 

significantly change the local flux-surface-averaged current density gradient. At a given RMP 

amplitude, the modification of the current density profile increases with increasing electron 

temperature, and it significantly depends on the bi-normal electron fluid velocity at the resonant 

surface. The effect of this modification on the magnetic island growth is demonstrated by the example 

of small m/n=2/1 islands (m/n being the poloidal/toroidal mode numbers), driven by an unfavorable 

plasma current density profile and bootstrap current perturbation. The 2/1 mode growth is stabilized 

by moderate static 4/2 or 6/3 RMPs if the local electron fluid velocity is in the ion drift direction or 

sufficiently large in the electron drift direction. These results reveal that a weakly three-dimensional 

equilibrium, containing a moderate 4/2 RMP and the associated shielding current, can be more stable 

against the 2/1 mode, which often causes tokamak plasma major disruptions.   
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1. Introduction  

 Since the 1970s, externally applied resonant magnetic perturbations (RMPs) have attracted 

much interest in fusion research [1-15]. RMPs are found to have important effects on magnetic islands 

in tokamak plasmas. Sufficiently large RMPs can lock rotating magnetic islands or generate islands 

at their resonant surface even if the plasma was originally stable to tearing modes [1-15]. On the other 

hand, moderate 𝑚/𝑛 = 2/1 RMPs have been found to stabilize 2/1 tearing modes in experiments 

[1-4,9], where m/n is the poloidal/toroidal mode number. Later, more research efforts have been 

devoted to understand the effect of RMPs on plasma rotation and density profile [16-21] and 

especially on mitigating or suppressing edge localized modes (ELMs) as is planned for ITER [22-32]. 

The penetration of ℎ𝑖𝑔ℎ − 𝑚 RMPs in the pedestal region is found to cause the ELMs suppression 

and associated density pump-out in DIII-D experiments [31-32]. The density pump-out and the 

change of the local plasma rotation from the electron drift direction towards the ion’s one are also 

often observed in ELMs suppression experiments by RMPs on ASDEX Upgrade and other tokamak 

[22-32], a two-fluid effect expected from theoretical results [18,20,21].  

Recently the effect of the 𝑚/𝑛 = 2/1 RMPs on the growth of a 2/1 magnetic island was 

studied numerically using two-fluid equations [33], including the electron diamagnetic drift and the 

associated ion polarization current, being important for the stability of a small magnetic island [34-

41]. If the local bi-normal electron fluid velocity at the resonant surface was large enough, the growth 

of small 𝑚/𝑛 = 2/1  islands was found to be suppressed by static 2/1  RMPs of moderate 

amplitude. In addition, the local flux-surface-averaged plasma current density gradient, i.e., the 

𝑚/𝑛 = 0/0 component in cylinder geometry, has been found to be affected by the RMP at the 𝑞 =

2 surface (𝑞 is the safety factor) [33].  

The stability of MHD modes driven or partly driven by the current density gradient, such as the 

neoclassical tearing mode (NTM) and ELMs, strongly depends on the plasma current density profile 

around the resonant surface. It is therefore of great interest to understand the effect of RMPs on the 

local current density profile and its dependence on RMP amplitude and the plasma parameters. Even 

without applied RMPs, the error field can be in the order of 10−5 or 10−4 of the toroidal field in 

tokamaks, leading to the question that whether its amplitude is already large enough to affect the local 

current density profile. 

In this paper the effect of externally applied 𝑚/𝑛 = 4/2 and 6/3 RMPs on the local flux-

surface-averaged plasma current density gradient is studied numerically, based on the four-field 

equations in a cylindrical plasma [42]. Two sets of plasma parameters, with an electron temperature 

of 𝑇𝑒 = 300𝑒𝑉  (high resistivity case) and 𝑇𝑒 = 2𝑘𝑒𝑉  (low resistivity case), are investigated, 
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respectively, in order to assess the dependence of the effect on plasma parameters. It is found that 

static 4/2 or 6/3 RMPs, via non-linear mode coupling, induce a parallel electric field at the q =

2 rational surface that can significantly change the local current density gradient, even at moderate 

RMP amplitude below the penetration threshold. The modification of the current density profile is 

already significant for the high resistivity case, and it increases with decreasing plasma resistivity. 

The current density profile modification is found to depend on the RMP amplitude, plasma rotation 

velocity, bootstrap current density, and other plasma parameters.   

Based on the findings mentioned above, the effect of the 𝑚/𝑛 = 4/2 and 6/3 RMPs on the 

growth of 2/1 NTMs is further studied. The change in the local plasma current density by RMPs is 

found to significantly affect the NTM growth. In our test case without applied RMPs, a 𝑚/𝑛 = 2/1 

magnetic island grows, driven by an unfavorable plasma current density profile and bootstrap current 

perturbation. The growth of a small 2/1 island is affected by moderate 4/2 or 6/3 RMPs: the 

mode is stabilized if the bi-normal electron fluid velocity is in the ion drift direction or sufficiently 

large in the electron drift direction. Rotating RMPs in the electron drift direction with a frequency 

about the electron diamagnetic drift frequency are found to suppress the island growth even for zero 

electron fluid velocity, since only the relative rotation between the mode and RMPs counts. This 

differs from the effect of RMPs on the magnetic island of the same mode numbers [4,9,12,33], where 

RMPs can additionally cause a non-uniform island rotation and a change in the polarization current, 

both affecting the tearing mode stability. Our results reveal that a weakly three-dimensional 

equilibrium, containing a moderate 4/2 or 6/3 RMP and the associated shielding current, can be 

more stable against the 2/1 mode, which is known to be a major cause for tokamak plasma major 

disruptions. 

In the next section the analysis and numerical results for the change of the local plasma current 

density gradient of the 0/0 component by RMPs are presented. The effects of the 𝑚/𝑛 = 4/2 and 

6/3 RMPs on the growth of the 2/1 NTM are shown in Section 3 and compared to the effect of a 

2/1 RMP, followed by the discussion and summary in the last section. 

 

2. Effect of RMPs on local plasma current density gradient 

There are two mechanisms by which RMPs can cause the plasma current density of the 𝑚/𝑛 =

0/0 component,  𝑗0/0,  to differ from the original equilibrium one, 𝑗0, around the resonant surface: 

(a) The nonlinearity from the parallel static electric field, electron pressure gradient and electron 

inertia in Ohm's law (see (A2) in the Appendix); (b) The change of the local plasma pressure gradient 

of the 𝑚/𝑛 = 0/0 component, which leads to a corresponding change in the local bootstrap and 
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plasma current density.  

In order to find out the change of the equilibrium plasma current density, ∆𝑗0/0 = ( 𝑗0/0 −  𝑗0), 

numerical calculations are generally required. In the following Section 2.1, a heuristic quasi-linear 

analysis will be carried out to find out the dependence of ∆𝑗0/0  on plasma parameters in the 

framework of single fluid equations. Numerical calculation results based on the four-field equations 

[42], shown in the Appendix in the form of normalized units, will be presented in Section 2.2.  

 

2.1 Heuristic quasilinear analysis 

Assuming that the plasma is stable to a tearing mode with the mode numbers 𝑚/𝑛, and the 

applied RMP of the same mode numbers is sufficiently small such that it has not penetrated in, it is 

found from the Ohm’s law (equation (A2) in Appendix) that ∆𝑗0/0 in steady state is determined by 

  2𝜂𝑁(∆𝑗0/0 − ∆𝑗𝑏,0/0) = [𝒃𝟏(𝑓1)∗ + 𝒃1
∗ 𝑓1] − (

𝜂𝑁

𝜐𝑒𝑖
)[𝒗𝐸1(𝑗1)∗ + 𝒗𝐸1

∗ 𝑗1], (1) 

where 𝜂𝑁 = 1 is the normalized plasma resistivity, ∆𝑗𝑏,0/0 is the change of the 0/0 component of 

the bootstrap current density by RMPs from the original equilibrium one, the subscript 1 refers to a 

perturbed quantity of the m/n  component driven by the RMP, the superscript ∗  is for the 

conjugated part, 𝒃, 𝒗𝐸  and 𝑗 are the magnetic field, electric drift velocity and parallel plasma 

current density, respectively, and  

  𝑓1 = 𝜙1 + 𝛺0𝑛𝑒1,         (2) 

including the perturbations of the stream function 𝜙1 and electron density 𝑛𝑒1. 𝛺0 = 𝛺(𝑇𝑒0/𝑛𝑒0), 

𝑇𝑒0  and 𝑛𝑒0  are the equilibrium electron temperature and density, and the parameter 𝛺  is a 

coefficient for the parallel electron pressure gradient in Ohm’s law, defined in the Appendix. The last 

term in equation (1) is due to the electron inertia, and 𝜐𝑒𝑖 is the normalized electron-ion collision 

frequency. All quantities in the above equations are in normalized units: The length is normalized to 

the plasma minor radius 𝑎, the time 𝑡 to the resistive time 𝜏𝑅 = 𝑎2𝜇0/𝜂 (𝜂 is the resistivity), 𝒃 

to the equilibrium toroidal field 𝐵𝑡, the current density to 𝐵𝑡/𝑎, and the electron density 𝑛𝑒 to its 

value at the magnetic axis. 

When the electron inertia and bootstrap current density are neglected, equations (1) and (2) can 

be simplified to  

  ∆𝑗0/0 = 0.5𝑖𝑘𝑝(𝜓1𝑓1
∗ − 𝜓1

∗𝑓1)′/𝜂𝑁,      (3) 

and it is found from Ohm’s law of the 𝑚/𝑛 component that 

  𝑖𝑘∥𝑓1 = 𝑖𝜔𝑒⊥𝑁𝜓1 + 𝜂𝑁𝑗1,       (4) 

where 𝑖 is the imaginary index, 𝑘𝑝 = 𝑚/𝑟, 𝑟 is the minor radius, 𝑘∥ is the parallel wave vector, 
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the prime stands for the radial gradient,  𝜔𝑒⊥𝑁 = 𝜔𝑒⊥𝜏𝑅 = (𝜔𝐸0 + 𝜔∗𝑒0)𝜏𝑅 is the normalized bi-

normal equilibrium electron fluid frequency, 𝜔∗𝑒0 is the electron diamagnetic drift frequency, and 

𝜔𝐸0  the electric drift frequency. The helical flux 𝜓  is defined by 𝑩 = 𝐵𝑡𝒆𝑡 − (𝑘𝑡/𝑘𝑝)𝐵𝑡𝒆𝑝 +

𝛻𝜓 × 𝒆𝑡, where 𝑘𝑡 = 𝑛/𝑅, 𝒆𝑝 (𝒆𝑡) is the unit vector in the poloidal (toroidal) direction, and 𝑅 is 

the major radius. Equations (3) and (4) give the change in the equilibrium current density  

  ∆𝑗0/0 = −0.5𝑘𝑝[(𝜓1𝑗1
∗ + 𝜓1

∗𝑗1)/𝑘∥]′,     (5) 

which is caused by the plasma current density perturbation in phase with the magnetic island or ψ1. 

It is worth to mention that the poloidal electromagnetic torque density of the 𝑚/𝑛 = 0/0 component 

is of a similar form [12,20], 

  𝑇𝐸𝑀,𝑝 = 0.5𝑟(𝑏1𝑟𝑗1
∗ + 𝑏1𝑟

∗ 𝑗1) = −0.5𝑖𝑚(𝜓1𝑗1
∗ − 𝜓1

∗𝑗1),   (6) 

but depends on the plasma current density perturbation having a 𝜋/2 phase difference with 𝜓1. 

where the subscript 𝑟 refers to the radial component. There is usually a phase shift between 𝑗1 and 

𝜓1 around the resonant surface for rotating plasmas, depending on plasma parameters and rotation 

frequency [43]. 

 In the following our analysis is limited to the framework of single fluid equations in steady 

state. In this case the Ohm’s law and the plasma vorticity equation (equations (A2) and (A3) in the 

Appendix) become 

  𝒗𝐸 = 𝐸0 − 𝜂𝑁𝑗,        (7) 

  𝒗𝐸𝑈 = 𝑆2𝛻||𝑗 + 𝜇𝑁𝛻⊥
2𝑈,       (8) 

where 𝑈 = −𝛻⊥
2𝜙 is the plasma vorticity, 𝐸0 is the parallel equilibrium electric field, 𝑆 = 𝜏𝑅/𝜏𝐴, 

𝜏𝐴 = 𝑎/𝑉𝐴  being the Alfven time, 𝑉𝐴 is the Alfven velocity defined using the toroidal field, 𝜇𝑁 is 

the normalized plasma viscosity, and 𝜂𝑁 = 1 will be used in the following. The plasma vorticity 

perturbation around the resonant surface induced by the RMP can be estimated by 

𝑈1 ~ 𝜙1/𝛿2,         (9) 

where 𝛿 is the tearing layer width. 

 Depending on plasma viscosity and the normalized equilibrium plasma angular rotation 

frequency 𝜔𝑁 = 𝜔𝜏𝑅, there are two different regimes. When the viscous term is much larger than the 

inertia term in the plasma vorticity equation, i.e. the so-called visco-resistive regime [12], it is found 

from equation (8) that  

𝑆2(𝑖𝑘∥𝑗1 + 𝑏1𝑟𝑗0/0
′ ) + 𝜇𝑁𝛻⊥

2𝑈1 = 0 .      (10) 

 In the outer region away from the resonant surface, the plasma viscosity is negligible, so that  

𝑖𝑘∥𝑗1 + 𝑏1𝑟𝑗0/0
′ = 0.        (11) 
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When approaching the resonant surface at 𝑟𝑠, 𝑘∥ ≈ 𝑘∥
′𝑥, and 𝑗1~1/𝑥, where 𝑥 = (𝑟 − 𝑟𝑠).  

 In the inner region around the resonant surface, the viscosity becomes important. Using (9), it 

is found from (10) and (7) that  

𝑖𝑆2𝑘∥
′𝛿𝑗1 ~ 𝜇𝑁𝜙1𝛿−4.        (12) 

𝑖𝑘∥
′𝛿𝜙1  ~ 𝑗1,         (13) 

where we have used 𝛿 for x and 𝛿−2 for 𝛻⊥
2 as an estimation. The tearing layer width is found 

from (12)-(13) to be  

𝛿 ~ 𝜇𝑁
1/6

(𝑆𝑘∥
′)−1/3.        (14) 

 It is also found from Ohm’s law that 

−𝑖𝜔𝑁𝜓1 ~ 𝑗1.         (15) 

 In the framework of single fluid equations, ∆𝑗0/0 is simply due to the nonlinearity contained 

in the 𝒗 term in Ohm's law, which is a static electric field approximately given by  

∆𝑗0/0 ~ 𝑖𝑘𝑝𝜓1𝜙1
′           (16) 

near the resonant surface, where one also has 

𝜙1
′  ~ 𝜙1/𝛿.          (17) 

Relations (12)-(17) lead to  

 ∆𝑗0/0 ~ 𝑘𝑝(𝑘∥
′)−1/3|𝜓1|2𝜔𝑁𝑆2/3𝜇𝑁

−1/3
 ,     (18a) 

or in the form 

 ∆𝑗0/0 ~ 𝑘𝑝(𝑘∥
′)−1/3|𝜓1|2𝜔𝜏𝑅

2/3
𝑆2/3(𝑎2/𝜇)1/3,    (18b) 

with 𝜔 in the unit of 𝑟𝑎𝑑/𝑠 and 𝜇 in the unit of 𝑚2/𝑠. The amplitude of ∆𝑗0/0 is proportional 

to 𝜔𝜏𝑅
2/3

𝑆2/3 . For given values of 𝜔 and RMP amplitude, ∆𝑗0/0 is larger for a smaller plasma 

resistivity (~ 𝜏𝑅
4/3

) and/or Alfven time. The change in the local current density gradient is 

approximately  

 ∆𝑗0/0
′  ~ ∆𝑗0/0/𝛿 ~𝑘𝑝|𝜓1|2𝜔𝜏𝑅

1/2
𝑆(𝑎2/𝜇)1/2 ,    (19) 

which can be significant even for a small RMP amplitudes below the penetration threshold. Using the 

input parameters for the low resistivity case, detailed in the Appendix, 𝑆 = 2.6 × 108, 𝑚 = 4, 𝑟𝑠 =

0.3𝑚, 𝜏𝑅 = 23𝑠, and 𝜇 = 0.2𝑚2/𝑠, and assuming 𝜔 = 104 𝑟𝑎𝑑/𝑠  and |𝜓1| = 10−7, one finds 

that ∆𝑗0/0
′ ~0.93𝐵0𝑡/𝑎2, being larger than 𝑗0

′  which is usually of the order 𝐵𝑝/𝑎2 ~ 0.1𝐵0𝑡/𝑎2, 

where 𝐵𝑝 is the poloidal magnetic field. 

In the opposite limit, if the viscous term is much smaller than the inertia term in the plasma 

vorticity equation, one finds from equation (8) that 
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  𝑆2𝑘∥
′𝑗1 ~ 𝜔𝑁𝜙1𝛿−3 ,        (20) 

Relations (13), (15)-(17) and (20) lead to 

𝛿 ~ (𝜔𝑁)1/4(𝑆𝑘∥
′)−1/2,       (21) 

∆𝑗0/0 ~ 𝑘𝑝|𝜓1|2𝜔𝑁
1/2

𝑆       (22) 

The change in the local current density gradient is approximately  

 ∆𝑗0/0
′  ~ ∆𝑗0/0/𝛿 ~ 𝑘𝑝|𝜓1|2(𝜔𝜏𝑅)1/4𝑆3/2(𝑘∥

′)1/2 ,    (23) 

being proportional to 𝜏𝑅
1/4

𝑆3/2.  

 Both (19) and (23) indicate that ∆𝑗0/0
′  is proportional to |𝜓1|2 and is larger for a smaller 

plasma resistivity and/or Alfven time.  

 

2.2 Numerical results 

 To take the full nonlinear effects into account for realistic RMP amplitude, numerical 

calculations based on equations (A1)-(A4) in the Appendix have been carried out to study the effect 

of 𝑚/𝑛 = 4/2  and 6/3  RMPs on the local ∆𝑗0/0  profile. The effect of RMPs of an 𝑚/𝑛 

component is taken into account by the boundary condition  

  𝜓𝑚/𝑛|𝑟=𝑎 = 𝜓𝑎,𝑚/𝑛𝑎𝐵𝑡𝑐𝑜𝑠 (𝑚𝜃 + 𝑛𝜙 + 𝜔𝑅𝑀𝑃𝑡),    (24) 

where 𝜓𝑎,𝑚/𝑛 is the normalized amplitude of the 𝑚/𝑛 component helical flux at 𝑟 = 𝑎, 𝜃 and 

𝜙 are the poloidal and toroidal angles, and 𝜔𝑅𝑀𝑃 is the angular frequency of the applied RMP, taken 

to be zero if not specified. The numerical convergence has been checked with a radial grid size of 

3 × 10−4𝑎 and 20 Fourier components.  

 The radial profile of the original equilibrium plasma current density is of the form 𝑗0~[1 −

(𝑟/𝑎)2]2, leading to a monotonic q-profile with the 𝑞 = 2 surface located at 𝑟𝑠 = 0.628𝑎. Without 

applying the RMP, the 4/2 and the 6/3 modes are linearly stable for this q-profile. Static RMPs 

of sufficiently small amplitude are applied such that they have not penetrated in for all the results 

presented in this subsection. 

The input parameters are based on medium size tokamak experimental parameters: 𝑇𝑒 = 2𝑘𝑒𝑉, 

𝑛𝑒 = 3 × 1019𝑚−3 , 𝑎 = 0.5𝑚 , 𝑅 = 1.7𝑚 , and 𝐵𝑡 = 2𝑇 . A parabolic profile for the original 

equilibrium electron density is assumed, and the equilibrium electron diamagnetic drift frequency is 

𝜔∗𝑒0 = 3.14 × 105/𝜏𝑅 (𝑓∗𝑒0 = 2.17𝑘𝐻𝑧) at the 𝑞 = 2 surface for 𝑚 = 4 and 𝛺 = 2 × 104. The 

local bootstrap current density fraction at the 𝑞 = 2 surface is 𝑓𝑏 = 0.35. These parameters will be 

referred to as the low resistivity case and used as input for our calculations in the following, except 

when specified otherwise.  
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 The normalized (to 𝜔∗𝑒0) bi-normal equilibrium electron fluid frequency at 𝑟𝑠 is defined as 

  𝜔𝑛 = (1 − 𝜔0),        (25) 

where 𝜔0 = −𝜔𝐸0/𝜔∗𝑒0 . A negative (positive) value of 𝜔𝑛  ( 𝜔0 ) corresponds to a bi-normal 

electron fluid (EB rotation) velocity in the ion drift direction. When the poloidal electric drift is 

negligible, a negative value of 𝜔𝑛 corresponds to an electric drift in the plasma current direction 

with a frequency being larger than the electron diamagnetic drift frequency (see Appendix B). 

 

  

Figure 1 Radial profiles of the (normalized) 𝑗0/0 in steady state for 𝜓𝑎,4/2 = 2 × 10−5 (red curve) 

and 3 × 10−5 (black) with 𝜔𝑛 = −0.14. The dashed curve is the original equilibrium plasma current density, 

being negative in our calculations. The location of the 𝑞 = 2 surface is marked by the vertical dotted line.  

 

In figure 1 the local radial profiles of 𝑗0/0 in steady state are shown for 𝜓𝑎,4/2 = 2 × 10−5 

(red curve) and 3 × 10−5 (black) with 𝜔𝑛 = −0.14. The dashed curve is the original equilibrium 

plasma current density before applying the 4/2 RMP, taken to be negative in our calculations. It is 

seen that for a normalized 𝜓𝑎,4/2 in the order of 10−5, the relative variation in the 𝑗0/0 amplitude 

is small. However, the local 𝑗0/0 gradient is significantly changed by the 4/2 RMPs around the 

𝑞 = 2  surface, marked by the vertical dotted line, and this change increases for a larger RMP 

amplitude. More importantly, the local radial gradient of 𝑗0/0 is reversed on the inner side of the 𝑞 =

2 surface but is increased on the outer side for this 𝜔𝑛 value. This effect is similar to that caused by 

a localized electron cyclotron current drive (ECCD) at the 𝑞 = 2 surface in the plasma current 

direction. For 𝜓𝑎,4/2 = 3 × 10−5, the 4/2 island width is 0.0084𝑎. 

To investigate the role of plasma rotation, in the following we use 𝜔𝑛 = −0.7, −2.4 and 

−3.6 (by varying the value of 𝜔𝐸0) for a RMP amplitude 𝜓𝑎,4/2 = 10−4. Figure 2 (left) shows the 

corresponding radial profiles of 𝑗0/0 in steady state. A negative value of 𝜔𝑛  (the electron fluid 

velocity in the ion diamagnetic drift direction) results in a larger (reversed) local current density 

gradient outside (inside) the 𝑞 = 2 surface, which is known to be stabilizing for the tearing mode. 

Figure 2 (right) is the same as the left figure but for the electron fluid velocity in the electron drift 
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direction with 𝜔𝑛 = 1.6, 2.1, 3.8 and 5.0. For 𝜔𝑛 = 1.6, the local current density gradient inside 

the 𝑞 = 2 surface is increased except in a very thin layer at the surface, being destabilizing for the 

tearing mode compared to the non-RMP case. For a sufficiently large value of 𝜔𝑛, 𝜔𝑛 = 5, however, 

the changes to the current density profile become stabilizing again.  

 

        

Figure 2 With 𝜓𝑎,4/2 = 10−4  for the low resistivity case, radial profiles of (normalized) 𝑗0/0  in 

steady state for (left) 𝜔𝑛 = −0.7, −2.4 𝑎𝑛𝑑 − 3.6; (right) 𝜔𝑛 = 1.6, 2.1, 3.8 𝑎𝑛𝑑 5.0. 

 

 Two-fluid effects are found to be important for the change of the local 𝑗0/0 profile in the low 

resistivity case. The electron diamagnetic drift frequency is proportional to the value of 𝛺 in equation 

(A2) in the Appendix for a given equilibrium electron density profile. Artificially increasing Ω in the 

calculations results in a larger change in the local 𝑗0/0 by RMPs. The reason is the stronger effective 

electric field resulting from the parallel electron pressure gradient in Ohm’s law.  

 The effect of electron inertia on 𝑗0/0 in the presence of RMPs is demonstrated in figure 3, 

showing radial profiles of 𝑗0/0 in steady state for 𝜔𝑛 = −3.5 and 𝜓𝑎,4/2 = 2 × 10−4 with (black 

curve) and without (red) including the electron inertia. The electron inertia results in a larger change 

of the local 𝑗0/0 at 𝑞 = 2 surface in this case.  

 

  

Figure 3 Radial profiles of 𝑗0/0 in steady state with (black curve) and without (red) including the 

electron inertia for 𝜔𝑛 = −3.5 and 𝜓𝑎,4/2 = 2 × 10−4  

 

 It is known that RMPs can affect the electron density profile, increasing (decreasing) the local 
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electron density gradient of the 0/0 component for the electron fluid velocity in the ion (electron) 

drift direction [18], which causes a corresponding increase (decrease) in the local bootstrap current 

density, since the bootstrap current density is proportional to plasma density gradient. In figure 4, 

radial profiles of 𝑗0/0 in steady state are shown for 𝜔𝑛 = −1.3 and 𝜓𝑎,4/2 = 10−4 by taking the 

equilibrium bootstrap current density fraction 𝑓𝑏 = 0 (black curve) and 0.35 (red). The dashed 

curve is the original equilibrium plasma current density, being the same for both cases. Including the 

bootstrap current density in the calculation, RMPs cause a larger change in the local 𝑗0/0 at the 𝑞 =

2 surface in this case due to the changed local bootstrap current density of the 0/0 component [44]. 

 

 

Figure 4 Radial profiles of 𝑗0/0  in steady state for 𝜔𝑛 = −1.3  and 𝜓𝑎,4/2 = 10−4  with the 

equilibrium bootstrap current density fraction 𝑓𝑏 = 0 (black curve) and 0.35 (red). The dashed curve is the 

original equilibrium plasma current density, being the same for both cases.  

 

 Similar results are also found by applying 𝑚/𝑛 = 6/3  or 8/4  RMPs below their 

penetration threshold. As an example, figure 5 shows the effect of a 6/3 RMP with the amplitudes 

𝜓𝑎,6/3 = 3 × 10−5 (red curve) and 5 × 10−5 (black) for 𝜔𝑛 = −1.27. The local radial profile of  

𝑗0/0 is changed in a similar way to the 4/2 RMP case. 

 

  

Figure 5 For the case of an 𝑚/𝑛 = 6/3 RMP, radial profiles of 𝑗0/0 in steady state for 𝜓𝑎,6/3 =

3 × 10−5 (red curve) and 5 × 10−5 (black) with 𝜔𝑛 = −1.27.  

 

Next we study a case with a higher resistivity, for which we chose the following set of 
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parameters as characteristic for a smaller size tokamak: 𝑇𝑒 = 300𝑒𝑉, 𝑛𝑒 = 1019𝑚−3, 𝑎 = 0.25𝑚, 

𝑅 = 1𝑚, and 𝐵𝑡 = 2𝑇. The local electron diamagnetic drift frequency is 𝜔∗𝑒0 = 6.43 × 103/𝜏𝑅 at 

the 𝑞 = 2 surface. Furthermore, 𝑓𝑏 = 𝑚𝑒 = 0 is assumed. This case will be referred to as the high 

resistivity case in the following. Figure 6 shows an example for this high resistivity case, with  

𝜓𝑎,4/2 = 3 × 10−4  and 𝜔𝑛 = −11.5 obtained from the two-fluid simulation (solid black curve). 

The red curve is obtained from single fluid equation by only solving equations (A2)-(A3) for the same 

values of 𝜓𝑎,4/2 and 𝜔𝑛 with 𝛺 = 0. Significant changes in the current density profile are found 

for both cases, however, only for sufficiently larger RMP amplitudes and plasma rotation velocities.  

 

  

Figure 6 Radial profiles of 𝑗0/0 in steady state for the high resistivity case with 𝜓𝑎,4/2 = 3 × 10−4 

and 𝜔𝑛 = −11.5. The solid black (red) curve is obtained from the four-field (single fluid) equations. The 

dashed curve is the equilibrium plasma current density.  

 

3. Effect of RMPs on 𝟐/𝟏 island growth 

 In order to assess the role of the changed equilibrium current density by RMPs for MHD 

instabilities, driven or partly driven by the plasma current density gradient, in the following Section 

3.1 the effects of static 𝑚/𝑛 = 4/2 and 6/3 RMPs on the 2/1 mode growth will be studied. 

Without applying RMPs, the 2/1 tearing mode is unstable for the q-profile used here, and the 

magnetic island grows to a width of 0.2𝑎 in the nonlinear phase even when the bootstrap current 

perturbation is neglected. The effect of the 2/1 RMPs on the 2/1 NTM growth will be presented 

in Section 3.2 for comparison. The initial 2/1 island width at 𝑡 = 0 is smaller than 0.01𝑎 when 

applying static RMPs for all the results in Sections 3.1 and 3.2. The influences of a large initial 2/1 

island width and rotating RMPs are described in Section 3.3. Further including the electron 

temperature perturbations in calculations by solving the electron heat transport equation together with 

the four-field equations, the results are shown in Section 3.4.     

  

3.1 Effect of static 𝒎/𝒏 = 𝟒/𝟐 and 𝟔/𝟑 RMPs on 𝟐/𝟏 island growth 
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 In order to separate the underlying physics for a better understanding, in the following Section 

3.1.1 linear results obtained from the single fluid equations are presented, to study the effect of the 

modified equilibrium current density by RMPs on the stability index ∆′ and the linear growth rate 

of resistive tearing modes. Results obtained from four-field equations are given in Section 3.1.2, 

followed by the regimes for the 2/1 mode stabilization by RMPs in Section 3.1.3. 

 

3.1.1 Linear results from single fluid equations 

It is well known that the value of ∆′ determines the stability of resistive tearing mode. The ∆′ 

values calculated from equation (11) are shown as a function of −𝜔𝑛 in figure 7 (left), using the 

modified 𝑗0/0 profile obtained from the four-field equations at different 𝜔𝑛 values in steady state 

with a 4/2 RMP below the penetration threshold, 𝜓𝑎,4/2 = 10−4, as shown in figure 2. The dotted 

line marks the ∆′ value for the original equilibrium current density unaffected by RMPs. The ∆′ 

value becomes negative with the modified 𝑗0/0 for the electron fluid velocity in the ion drift direction 

(−𝜔𝑛 > 0) or a sufficiently large |𝜔𝑛|, but it is increased for 𝜔𝑛~2 compared to the original one, 

as expected from the 𝑗0/0  profiles shown in figure 2. For 𝜔𝑛 = 0  or 1 , the 4/2  RMP has 

penetrated in.  

 

          

Figure 7 (left) The normalized ∆′ value of the 2/1 mode versus −𝜔𝑛, with the input equilibrium 

current density obtained from the four-field equations for 𝜓𝑎,4/2 = 10−4. The dotted line marks the ∆′ for the 

original equilibrium current density. (right) Corresponding to the left figure with the modified equilibrium 

current density as input, the normalized linear 2/1 tearing mode growth rate versus −𝜔𝑛, obtained from the 

single fluid equations for 𝑆 = 2.6 × 108  and 𝜇𝑁 = 0.19. The dotted line marks the growth rate for the 

original equilibrium current density.  

 

Corresponding to figure 7 (left) with the modified 𝑗0/0 as input, the linear 2/1 mode growth 

rate in the absence of RMPs, obtained from the single fluid equations for 𝑆 = 2.6 × 108 and 𝜇𝑁 =

0.19, is shown by the solid curve in figure 7 (right). The dotted line marks the growth rate using the 

original equilibrium current density as input. The change of the linear growth rate at different 𝜔𝑛 
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values with the modified 𝑗0/0 is similar to that of the ∆′. The difference in the detailed profiles 

between the left and right figures is due to the the “constant-” assumption used in ∆′ calculations. 

This assumption is not well satisfied when there is a significant change of the local 𝑗0/0 gradient 

around the resonant surface, as shown in figure 2. The linear growth rate is more accurate than the 

∆′ value in revealing the effect of the modified equilibrium current density on the mode stability.  

 

3.1.2 Results from four-field equations 

 In this subsection the results are obtained by directly solving the four-field equations.   

 In the presence of small 4/2 (6/3) RMPs below their penetration threshold for the low 

resistivity case, the linear 2/1 mode growth rate is shown in figure 8 as a function of 𝜔𝑛 with  

𝜓𝑎,4/2 = 2 × 10−5  (black curve) and 𝜓𝑎,6/3 = 4 × 10−5  (red). The dotted line marks the linear 

2/1 mode growth rate without applying RMPs, which changes little with 𝜔𝑛. The growth rate is 

decreased by the 4/2 𝑜𝑟 6/3 RMPs for the electron fluid velocity in ion drift direction (−𝜔𝑛 > 0) 

or a sufficiently large value of |𝜔𝑛| but it is increased in the region −𝜔𝑛 = [0,2], similar to the 

results obtained from single fluid equations shown in figure 7. When the value of −𝜔𝑛 is slightly 

negative, the 4/2 RMP has penetrated.  

 The linear growth rate shown in figures 7 and 8 is determined by the modified 𝑗0/0 profile, 

as seen from figure 7(a), and the interaction between the 4/2 and 2/1 components, but it shows no 

stabilizing effect from plasma rotation shear due to the large S number (2.6 × 108) and small plasma 

viscosity used in calculations. The stabilizing effect from plasma rotation shear exists for a 

sufficiently low S value and/or large plasma viscosity [45,46].  

 

  

Figure 8 In the presence of 4/2 (6/3) RMPs below their penetration threshold for the low resistivity 

case, the linear 2/1 mode growth rate is shown as a function of 𝜔𝑛 with 𝜓𝑎,4/2 = 2 × 10−5 (black curve) 

and 𝜓𝑎,6/3 = 4 × 10−5 (red). The dotted line marks the linear 2/1 mode growth rate without applying 

RMPs. The growth rate is decreased by the 4/2 or 6/3 RMPs for −𝜔𝑛 > 0 or a sufficiently large |𝜔𝑛|.  
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 For the low resistivity case with 𝜔𝑛 = 0, the time evolution of the normalized 𝑚/𝑛 = 2/1 

magnetic island width, calculated from 𝑊 = 4[𝜓2/1/(𝐵𝑝𝑞′/𝑞)]1/2 at the 𝑞 = 2 surface, is shown 

in Figure 9 for 𝜓𝑎,4/2 = 0, 1.5 × 10−5 and 3 × 10−5. The 2/1 island growth is speeded up already 

by small 4/2 RMPs. Similar results are also found for 𝜔𝑛 = 1, as expected from the results shown 

in figure 8. 

 

  

Figure 9 For the low resistivity case with 𝜔𝑛 = 0 time evolution of the 2/1 island width for 𝜓𝑎,4/2 =

0, 1.5 × 10−5 and 3 × 10−5. A small 4/2 RMP speeds up the 2/1 island growth. 

 

 For the electron fluid velocity in the ion drift direction with 𝜔𝑛 = −0.14, the time evolution 

of the normalized 2/1 island width is shown in Figure 10 for 𝜓𝑎,4/2 = 0, 2 × 10−5 and 3 × 10−5. 

A small 4/2 RMP, 𝜓𝑎,4/2 = 3 × 10−5, stabilizes the 2/1 island growth, partly due to the change 

of the local 𝑗0/0 profile around 𝑞 = 2 surface as shown in figure 1. Using a smaller RMP, 𝜓𝑎,4/2 =

2 × 10−5, the 2/1 island growth is slowed down in the early phase, but is not stabilized. 

 

  

Figure 10 For the low resistivity case with 𝜔𝑛 = −0.14, time evolution of the 2/1 island width for 

𝜓𝑎,4/2 = 0  (blue curve), 2 × 10−5  (red) and 3 × 10−5 (solid black). A small 4/2  RMP, 𝜓𝑎,4/2 = 3 ×

10−5 , stabilizes the 2/1  island growth. When using the 𝑗0/0  in steady state obtained with 𝜓𝑎,4/2 =

3 × 10−5 as the input equilibrium current density, the 2/1 island growth without applying RMPs is shown 

by the dashed curve. 

 

 To identify the effect of the current density profile modifications by RMPs, we have used the 
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𝑗0/0 profile obtained in steady state with 𝜓𝑎,4/2 = 3 × 10−5 as the input equilibrium current density 

to calculate the 2/1 mode growth without applying RMPs. The corresponding result is shown by 

the dashed curve in figure 10. In this case the 2/1 mode is still unstable, but grows more slowly in 

the earlier phase compared to the case with the original equilibrium current density (blue curve). This 

indicates that the change of 𝑗0/0 by the RMP is not the sole mechanism for stabilizing the 2/1 mode. 

 Applying a static RMP to a rotating plasma, the total equilibrium magnetic field becomes a 

weakly three-dimensional one, including a helical shielding plasma current density, which can also 

affect the MHD instability in addition to the change of 𝑗0/0. For example, in the presence of a small 

4/2 RMP, the linear growth of the 2/1 plasma vorticity is given by 

 𝛾𝑈2/1 = 𝑖𝑆2[𝑘∥𝑗2/1 + (2/𝑟)𝜓2/1(𝑗0/0
′ + 0.5𝑗4/2

′ ) + (2/𝑟)𝜓4/2𝑗2/1
′ ] + 𝜇𝑁𝛻⊥

2𝑈2/1, (26) 

where the coupling between the 4/2  and 2/1  component plasma velocity and vorticity 

perturbations and higher order terms being proportional to 𝜓2/1
′ 𝑗4/2 and  𝜓4/2

′ 𝑗2/1 are neglected. 

As the terms involving 𝜓2/1𝑗4/2
′  and 𝜓4/2𝑗2/1

′  in equation (26) are of the same order of magnitude, 

the effect of the 4/2 RMP on the 2/1 mode stability can be assessed by the ratio of 0.5𝑗4/2
′ /𝑗0/0

′ . 

At the resonant surface [18] 

  𝑗4/2 = 𝑖𝜔𝑒⊥𝑁𝜓4/2,        (27) 

which has a radial width being about the tearing layer width, so that  

   𝑗4/2
′  ~ 𝑖𝜔𝑒⊥𝑁𝜓4/2/𝛿 .        (28) 

As  

  𝜓4/2 =  𝑊4/2
2 𝐵𝑝𝑞′/(16𝑞),       (29) 

where 𝑊4/2 is the 4/2 island width, and 𝑗0/0
′  ~𝐵𝑝/𝑎2, one finds 

  0.5𝑗4/2
′ /𝑗0/0

′  ~ 0.5𝑖𝜔𝑒⊥𝑁(𝑊4/2
2 /𝑎𝛿)𝑎𝑞′/(16𝑞)    (30) 

Assuming 𝛿 = 𝑊4/2 = 0.005𝑎 , 𝑎𝑞′/𝑞 = 1   𝜔𝑒⊥𝑁 = 104 , one finds from (30) that 0.5𝑗4/2
′ /

𝑗0/0
′  ~ 1.6, indicating that a small 4/2 RMP can affect the 2/1 mode stability even if the change 

of 𝑗0/0 discussed in Section 2 is neglected.  

 The effect described in (26) to (30) is proportional to the RMP amplitude. The change of 𝑗0/0 

is proportional to the square of the RMP amplitude, which is expected to be more important in 

determining the 2/1 mode stability for larger RMPs. Similar to the case shown by the dashed curve 

in figure 10, calculations have also been carried out for a larger 4/2 RMP at a larger value of |𝜔𝑛|. 

In such cases the change of 𝑗0/0 alone is found to be sufficient for stabilizing the 2/1 mode. 

 By applying the 𝑚/𝑛 = 4/2 (black curve) and 6/3 (red) RMPs separately below their 



16 

penetration threshold with 𝜔𝑛 = −1.27, it is seen from figure 11 that the linear growth rate of the 

2/1 mode almost linearly decreases with the square of the normalized RMP amplitude, 𝜓𝑎,𝑚/𝑛
2 , for 

a sufficiently large RMP, as expected. The growth rate decreases faster with increasing the RMP 

amplitude for the 4/2 RMP. The 4/2 island width, being proportional to the square root of the 

local 4/2 magnetic perturbation amplitude, is larger than the 6/3 island width at the same value 

of 𝜓𝑎,𝑚/𝑛
2 , but it is smaller than 0.01𝑎 for all cases shown in figure 11.  

  

 

Figure 11 By applying 𝑚/𝑛 = 4/2 (black curve) and 6/3 (red) RMPs separately with 𝜔𝑛 = −1.27, 

the linear 2/1 mode growth rate is shown as a function of the square of the normalized RMP amplitude. The 

growth rate almost linearly decreases with the square of the RMP amplitude for a sufficiently large RMP.  

 

3.1.3 Regimes for 𝟐/𝟏 mode stabilization 

Extensive nonlinear simulations based on four-field equations have been carried out by 

scanning over the values of the plasma rotation velocity and the 4/2 RMP amplitude, while keeping 

the other input parameters unchanged. The stability diagram in the (𝜔𝑛 − 𝜓𝑎,4/2) plane is shown in 

Figure 12 (left) for the low resistivity case. The black circles (red squares) are the cases in which the 

2/1 island growth is (not) stabilized by the 4/2 RMP. A large stabilization region exists for the 

electron fluid velocity in the ion drift direction (−𝜔𝑛 > 0). When the value of |𝜔𝑛| is sufficiently 

large, a stabilization region also exists for −𝜔𝑛 < 0 but it is smaller than that for −𝜔𝑛 > 0. The 

asymmetry on the two sides of 𝜔𝑛 = 0 can be understood from the dependence of the linear growth 

rate on the value of 𝜔𝑛 as shown in figures 7 and 8. The upper boundary of the stabilization region 

is determined by the 4/2 RMP penetration threshold in the presence of the 2/1 perturbation. Once 

the RMP is sufficiently large, the local bi-normal electron fluid velocity is significantly reduced due 

to the change of both the plasma rotation velocity and electron density gradient, similar to that 

described in Ref. [18,20,21]. A large value of |𝜔𝑛|  leads to a larger threshold for the RMP 

penetration and therefore a wider stabilization region. The lower boundary of the stabilization region 

is determined by the minimum 4/2 RMP to have a large enough stabilizing effect, as shown in figure 
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10. For the low resistivity case, no 2/1 mode stabilization by the 4/2 RMP has been found from 

single fluid equations for the value of |𝜔𝑛|  up to 5, being quite different from the two-fluid 

simulation results. 

 Figure 12 (right) shows results for the high resistivity case. The black circles (red squares) are 

again the cases in which the 2/1 island growth is (not) stabilized by the 4/2 RMP. In this case the 

stabilization region exists only for |𝜔𝑛| > 5, and the stabilization region is nearly symmetric on the 

two sides of 𝜔𝑛 = 0 for |𝜔𝑛|~9 or larger. The blue diamonds (green triangles) are single fluid 

results for which the 2/1 island growth is (not) suppressed by the 4/2 RMP. The stabilization 

window obtained from the four-field equations is different from that of the single fluid equations, 

indicating the role of two-fluid physics even for the high resistivity case.  

 

           

Figure 12  (left) Stability diagram in the (𝜔𝑛 − 𝜓𝑎,4/2) plane obtained from the four-field equations for the 

low resistivity case. The black circles (red squares) mark the cases in which the 2/1 island growth is (not) 

stabilized by the 4/2 RMP. The stabilization region is larger for the plasma rotation in the ion drift direction 

(−𝜔𝑛 > 0). (right) Same as the left figure but for the high resistivity case. The stabilization region exists only 

for |𝜔𝑛| > 5. The blue diamonds (green triangles) are single fluid results for which the 2/1 island growth 

is (not) suppressed by the 4/2 RMP. 

   

  

Figure 13 Same as figure 12 (left) for the low resistivity case but with 𝑓𝑏 = 0. The black circles (red 

squares) are the cases in which the 2/1 island growth is (not) stabilized by the 4/2 RMP. 

 

 When the bootstrap current density fraction 𝑓𝑏 is taken to be zero in the calculations for the 
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low resistivity case, while keeping the other input parameters the same as those for figure 12 (left), 

the stability diagram in the (𝜔𝑛 − 𝜓𝑎,4/2) plane is shown in Figure 13. The black circles (red squares) 

are again for the cases in which the 2/1 island growth is (not) stabilized by the 4/2 RMP. Without 

including bootstrap current density perturbations, the stabilization region is smaller for −𝜔𝑛 > 0 

but is much larger for −𝜔𝑛 < 0, showing the role of the bootstrap current density perturbation in 

increasing the asymmetry [18,44].  

 By applying 6/3 RMPs, the stability diagram in the (𝜔𝑛 − 𝜓𝑎,6/3) plane obtained from 

four-field equations is shown in figure 14 for the low resistivity case. The black circles (red squares) 

mean that the 2/1 island growth is (not) stabilized by 6/3 RMPs. The stabilization region by 

applying 6/3 RMPs is similar to that by 4/2 RMPs for −𝜔𝑛 > 0, but the required 6/3 RMP 

amplitude is somewhat larger. The 6/3 RMPs leads to a larger stabilization window for −𝜔𝑛 < 0 

compared to the 4/2 RMP case, since the intrinsic frequency of the 6/3 mode is higher than that 

of the 4/2  mode for the same value of 𝜔𝑛 . Both the diamagnetic drift and plasma rotation 

frequencies are proportional to the mode numbers.  

 

 

Figure 14  Same as figure 12 (left) for the low resistivity case but by applying the 6/3 RMPs. The black 

circles (red squares) are the cases in which the 2/1 island growth is (not) stabilized by the 6/3 RMP.  

 

3.2 Effect of 𝟐/𝟏 RMPs on 𝟐/𝟏 island growth 

 As already shown in references [4,9,33], a 2/1 RMP can also suppress the 2/1 mode growth. 

By applying 2/1 RMPs, the stability diagram in the (𝜔𝑛 − 𝜓𝑎,2/1) plane obtained from four-field 

equation is shown in figure 15 (left) for the low resistivity case. The black circles (red squares) are 

the cases that the island growth is (not) stabilized by the 2/1 RMP. A larger RMP is required for 

NTM’s onset or RMP penetration for a larger value |𝜔𝑛|, being in line with the experimental 

observation that NTMs are more stable for a larger plasma rotation velocity [47,48]. The stabilization 

regions are also asymmetric on the two sides of 𝜔𝑛 = 0 , as observed in the RMP penetration 

experiments [8], but they are smaller compared to the 4/2 or 6/3 RMP cases for −𝜔𝑛 < 0. This 
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indicates again that static RMPs of higher harmonics have a larger window in the region −𝜔𝑛 < 0 

to stabilize the 2/1 mode.  

 

       

Figure 15  (left) Stability diagram in the (𝜔𝑛 − 𝜓𝑎,2/1) plane for the low resistivity case obtained from four-

field equation. The black circles (red squares) are the cases in which the island growth is (not) stabilized by 

the 2/1 RMP. (right) same as the left figure but for the high resistivity case.  

  

 For the low resistivity case, no 2/1 mode stabilization by the 2/1 RMP has been found 

from single fluid equations for the value of |𝜔𝑛| up to 5. 

 Figure 15 (right) is same as the left figure but for the high resistivity case. In this case, the 

stabilization region only exists for sufficiently large 𝜔𝑛  values ( 𝜔𝑛 > 4 ), and it is nearly 

symmetrical on the two sides of 𝜔𝑛 = 0. Comparing to the effect of the 4/2 RMPs for the high 

resistivity case shown in figure 12 (right), the stabilization region by applying the 2/1 RMP is larger 

in the region |𝜔𝑛| < 10. This could be due to the 2/1 ion polarization current and the non-uniform 

2/1 island rotation caused by the 2/1 RMP [4,9,12,33].  

 

 

FIG. 16. Stability diagram in the (𝜔𝑛 − 𝜓𝑎,2/1) plane for the high resistivity case. The blue diamonds (green 

triangles) are the cases in which the 2/1 island growth is (not) suppressed by 2/1 RMPs for the single fluid 

case. The black circles and red squares are obtained from four-field equation, being the same as those in figure 

15 (right) for −𝜔𝑛 > 0.  

  

 To compare the results obtained from the single fluid and four-field equations, the stability 

diagram in the (𝜔𝑛 − 𝜓𝑎,2/1) plane is shown in figure 16 for the high resistivity case. The blue 
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diamonds (green triangles) are the cases in which the 2/1 island growth is (not) suppressed by the 

2/1 RMP for the single fluid case. The black circles and red squares are the same as those shown in 

figure 15 (right), obtained from four-field equations for −𝜔𝑛 > 0. The stabilization region obtained 

from four-field equations is larger than that from the single fluid equations for −𝜔𝑛 < 10, indicating 

again the role of two-fluid physics for the high resistivity case.  

 

3.3 Effect of initial 2/1 island width and rotating RMP 

 The results shown in Sections 3.1 and 3.2 were obtained with a small initial 2/1 island width 

at 𝑡 = 0 when applying static RMPs. If the initial 2/1 island width is too large, the island growth 

cannot be stabilized by RMPs. As an example, the time evolution of the normalized 2/1 island width 

is shown in figure 17 by applying the 4/2 RMP for different initial 2/1 island widths, with 𝜔𝑛 =

−3.5 and 𝜓𝑎,4/2 = 3 × 10−4 for the low resistivity case. The 2/1 island grows for a larger initial 

width (red curve) but is stabilized for a slightly smaller one (black), showing a threshold in the initial 

2/1 island width. For a sufficiently large island the local electron density profile flattens, and the 

two-fluid effects such as the diamagnetic drift vanish.  

 

  

Figure 17  By applying 4/2 RMP with 𝜔𝑛 = −3.5 and 𝜓𝑎,4/2 = 3 × 10−4 for the low resistivity case, the 

time evolution of normalized 2/1 island width for different initial 2/1 island width. The 2/1 island grows 

for a larger initial width (red curve) but is stabilized for a smaller one (black).  

 

As shown in Sections 3.1 and 3.2, static RMPs can suppress the 2/1 island growth only for a 

negative value of 𝜔𝑛 or a sufficiently large |𝜔𝑛|. Rotating RMPs should be able to stabilize the 

island in any case, since the result only depends on the relative rotation between the electron fluid 

and RMPs. An example is shown in figure 18 for the time evolution of the 2/1 island width with 

𝜔𝑛 = 0  and 𝜓𝑎,4/2 = 10−4 . The island grows for a low 4/2  RMP angular frequency, 𝜔𝑅𝑀𝑃/

𝜔∗𝑒0 = 0.16 but is suppressed for 𝜔𝑅𝑀𝑃/𝜔∗𝑒0 = 0.32. The RMP rotates in the electron diamagnetic 

drift direction, being more effective for the island suppression than it would be in the ion drift 

direction. 
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Figure 18  By applying rotating 4/2 RMPs for the low resistivity case with 𝜔𝑛 = 0 and 𝜓𝑎,4/2 = 10−4, 

the time evolution of normalized 2/1 island width for 𝜔𝑅𝑀𝑃/𝜔∗𝑒0 = 0.16 (red curve) and 0.32 (black). 

The RMP rotates in the electron diamagnetic drift direction. 

 

3.4  Effect of electron temperature perturbations 

The electron temperature perturbations have been neglected for the results in Sections 3.1-3.3. 

When further including them by solving the electron heat transport equation, equation (A9) in the 

Appendix, together with the four-field equations, (A1)-(A4), the results are shown in figure 19. The 

black circles (red squares) are the cases in which the 2/1 island growth is (not) stabilized by the 

4/2 RMP. Same input parameters as those of figure 12 (left) for the low resistivity case have been 

used. In addition, the ratio between the parallel and perpendicular heat conductivity, 𝜒∥/𝜒⊥ = 109, 

𝜒⊥ = 𝜇, and a parabolic profile for the equilibrium electron temperature are taken. The equilibrium 

electron diamagnetic drift frequency 𝜔∗𝑒0 = 9.74 × 105/𝜏𝑅 (𝑓∗𝑒0 = 4.3𝑘𝐻𝑧) at the 𝑞 = 2 surface 

for 𝑚 = 4 , being about two times larger than that for figure 12 (left) due to the additional 

contribution from the electron temperature gradient. The results are also asymmetry on the two sides 

of 𝜔𝑛 = 0. A large stabilization region exists for −𝜔𝑛 > 0 but at a smaller value of |𝜔𝑛| than that 

shown in figure 12 (left). The range of the electric drift velocity in figure 19 is about the same as that 

in figure 12 (left). A larger electron diamagnetic drift frequency for figure 19 leads to a smaller value 

of |𝜔𝑛| for the same electric drift velocity. The upper boundary of the stabilization region depends 

on the electric drift velocity.   
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Figure 19  Stability diagram in the (𝜔𝑛 − 𝜓𝑎,4/2) plane for the low resistivity case, obtained from the four-

field equations together with the electron heat transport equation (A9). The black circles (red squares) mark 

the cases in which the 2/1 island growth is (not) stabilized by the 4/2 RMP.  

 

4. Discussion and summary 

 It is well known that the application of RMPs to rotating plasmas causes helical shielding 

currents at resonant surfaces as long as the fields don’t penetrate, which is basically a linear effect. It 

is shown in this paper that due to nonlinear effects, the local 𝑚/𝑛 = 0/0 component plasma current 

density gradient can be changed by the helical shielding currents coupled to magnetic and plasma 

velocity perturbations, as seen from equation (1). The change of the local electron density gradient 

and bootstrap current density is also caused by the coupling of helical shielding currents and magnetic 

perturbations [18,44]. The current density profile modification is significant for RMPs of the order 

𝜓𝑎 = 10−5 −  10−4 below their penetration threshold, being larger for a higher electron temperature 

and depending on the plasma rotation velocity. As the intrinsic error field in tokamaks is usually in 

the same order of magnitude, while the applied RMPs are even larger, they could change the local 

plasma current density profile around the resonant surface according to our results. The required error 

field or RMP amplitude to affect the local current density profile is expected to be even smaller for a 

fusion reactor with a low plasma resistivity. 

 Our results also indicate that moderate 4/2 or 6/3 RMPs below their penetration threshold 

affect a small 2/1 island growth mainly due to the change of the local current density gradient around 

the resonant surface, which can be either stabilizing or destabilizing, depending on the plasma rotation 

velocity. Static RMPs of moderate amplitude are found to stabilize the 2/1 island growth if the local 

bi-normal electron fluid velocity at 𝑞 = 2  surface is in the ion drift direction or sufficiently large. 

Rotating RMPs of a sufficiently high frequency in the electron drift direction are more effective to 

stabilize the 2/1 island growth independent of the electron fluid velocity.  

 In addition to the change of the local 𝑚/𝑛 = 0/0 component of the plasma current density 

gradient around the 𝑞 = 2 surface, a moderate 4/2 RMP below its penetration threshold also has 

a direct effect on the 2/1 mode stability by introducing a new equilibrium. This weakly three-

dimensional equilibrium, including a 4/2  component magnetic field and the associated helical 

shielding current, makes the 2/1 mode more stable, if the local electron fluid rotates in the ion drift 

direction. 

 As already shown in existing publications [4,9,12], a 2/1 RMP can also suppress the 2/1 

mode growth. The conventional explanation of the stabilization is based on single-fluid simulation 
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results [4,9,12]: RMPs can cause a non-uniform mode rotation due to its applied electromagnetic 

torque. The island stays for a longer time in the half period when the RMP is stabilizing than in 

another half period when the RMP is destabilizing, resulting in a net stabilizing effect by RMPs 

[4,9,12]. In addition, the 2/1  component of ion polarization current induced by RMPs is also 

involved [33]. As the stability diagrams obtained by applying the 2/1, 4/2 𝑜𝑟 6/3 RMPs shown in 

Section 3.2 are similar for the low resistivity case, the change of the local flux-surface-averaged 

plasma current density gradient around 𝑞 = 2  surface becomes increasingly important for 

stabilizing the 2/1 mode with decreasing resistivity.  

 It has been observed in existing tokamak discharges that NTMs can significantly degrade 

tokamak plasma confinement. Among them, the 2/1 NTM is the most dangerous one, which can 

grow to a large amplitude and cause major disruption, a critical issue to be solved for a fusion reactor. 

NTMs can be stabilized by ECCD if a sufficiently large driven current is accurately located at the 

resonant surface [49-56]. Recent theoretical studies, however, showed that the deposition width of 

the electron cyclotron wave will be 2 − 4 times larger in ITER when taking into account plasma 

density perturbations [57], corresponding to a lower driven current density at the resonant surface and 

therefore a larger wave power required for NTM stabilization. Our results indicate that static or 

rotating RMPs of moderate amplitude, depending on the plasma rotation direction, provide a possible 

method to stabilize the small island, similar to preempting NTM by ECCD. The 4/2 or 6/3 RMPs 

will not generate locked 2/1 mode even if their amplitude is large. For ITER plasmas with 17 MW 

neutral beam injection together with the intrinsic torque, the plasma rotation is predicted to be in the 

ion drift (co-current) direction with a rotation frequency being about one order of magnitude larger 

than the electron diamagnetic frequency [58]. Although the prediction involves uncertainty, moderate 

static 4/2 or 6/3 RMPs could have a strong stabilizing effect for small 2/1 islands, as long as the 

electron fluid velocity is in the ion drift direction. However, once the NTM amplitude is sufficiently 

large, ECCD would still be required for NTM stabilization.  

 A significant change of the local flux-surface-averaged current density profile induced by 

RMPs might also be important for other MHD instabilities driven or partially driven by the plasma 

current density gradient. 

In summary, it is found in this paper that  

(a) The local flux-surface-averaged plasma current density gradient around the q=2 surface can 

be significantly changed by moderate 𝑚/𝑛 = 4/2 or 6/3 RMPs below their penetration threshold, 

and the required RMP amplitude for this change becomes smaller for a higher electron temperature. 

The modified local current density profile depends on the bi-normal electron fluid velocity;  
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(b) The growth of small 𝑚/𝑛 = 2/1 islands, driven by an unfavorable plasma current density 

profile and bootstrap current perturbation, is found to be stabilized by static 𝑚/𝑛 = 4/2 or 6/3 

RMPs of moderate amplitude if the electron fluid velocity is in the ion drift (co-current) direction or 

sufficiently large in the electron drift direction;  

(c) A weakly three-dimensional equilibrium, containing a moderate 𝑚/𝑛 = 4/2 or 6/3 RMP 

together with the associated shielding current and the modified flux-surface-averaged plasma current 

density gradient, is more stable against the 2/1 mode, if the local electron fluid rotates in the ion 

drift direction with respect to applied RMPs.  
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Appendix A Equations and input parameters 

 Using the large aspect ratio approximation, the magnetic field is defined as 𝑩 = 𝐵𝑡𝒆𝑡 −

(𝑘𝑡/𝑘𝑝)𝐵𝑡𝒆𝑝 + 𝛻𝜓 × 𝒆𝑡 , where 𝐵𝑡 is the equilibrium toroidal field, 𝜓  is the helical flux, 𝑘𝑝 =

𝑚/𝑟 and 𝑘𝑡 = 𝑛/𝑅 are the wave vectors in 𝒆𝑝 (poloidal) and 𝒆𝑡 (toroidal) direction, and 𝑟 and 

𝑅 are the minor and the major radius. The ion velocity 𝒗 = 𝒗∥ + 𝒗𝐸, including both the parallel and 

perpendicular component, 𝒗𝐸 = 𝛻𝜙 × 𝒆𝑡, and 𝜙 is the velocity stream function. 

 The four-field equations, the continuity equation, the generalized Ohm's law, the plasma 

vorticity equation, and the equation of motion in the parallel (to magnetic field) direction, are utilized 

[42]. The toroidal mode coupling is neglected. Normalizing the length to the plasma minor radius 𝑎, 

the time 𝑡 to the resistive time 𝜏𝑅 = 𝑎2𝜇0/𝜂 (𝜂 is the resistivity), the helical flux 𝜓 to 𝑎𝐵𝑡, and 

the electron density 𝑛𝑒 to its value at the magnetic axis, these equations become [18,41] 

𝑑𝑛𝑒

𝑑𝑡
= 𝑑1𝛻||𝑗 − 𝛻||(𝑛𝑒𝑣||) + 𝛻⊥(𝐷⊥𝑁𝛻⊥𝑛𝑒) + 𝑆𝑛,     (A1) 

𝑑𝜓

𝑑𝑡
= 𝐸0 − 𝜂𝑁(𝑗 − 𝑗𝑏) −

𝜂𝑁

𝜈𝑒𝑖

𝑑𝑗

𝑑𝑡
+ 𝛺(

𝑇𝑒

𝑛𝑒
𝛻||𝑛𝑒 + 𝛻||𝑇𝑒),     (A2) 

𝑑𝑈

𝑑𝑡
= 𝑆2𝛻||𝑗 + 𝜇𝑁𝛻⊥

2𝑈 + 𝑆𝑚,        (A3) 

𝑑𝑣||

𝑑𝑡
= −𝐶𝑠

2𝛻||𝑃/𝑛𝑒 + 𝜇𝑁𝛻⊥
2𝑣||,        (A4) 

where  

 
𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝒗𝐸 ∙ 𝛻⊥,         (A5) 

 𝑗 = −𝛻⊥
2𝜓 − 2𝑛𝐵𝑡/(𝑚𝑅)         (A6) 

is the parallel plasma current density, 

 𝑈 = −𝛻⊥
2𝜙           (A7) 

the plasma vorticity. 𝑃 = 𝑃𝑒 = 𝑛𝑒𝑇𝑒 is the electron pressure,  

 𝑗𝑏 = −𝑐𝑏𝜀0.5(𝑐𝑇𝑛𝑒𝜕𝑇𝑒/𝜕𝑟 + 𝑇𝑒𝜕𝑛𝑒/𝜕𝑟)/𝐵𝑝      (A8) 

is the bootstrap current density, 𝑐𝑏  a constant of order of unity, 𝑐𝑇 = 0.367, 𝜀 = 𝑟/𝑅, 𝐵𝑝  the 

poloidal magnetic field, 𝑇𝑒 the electron temperature, and 𝜂𝑁 = 1 the normalized resistivity. 𝐸0 is 

the equilibrium electric field, 𝑆𝑛 the particle source, and 𝑆𝑚 the poloidal momentum source leading 

to an equilibrium poloidal plasma rotation. 𝛺 = 𝛽𝑑1, 𝑑1 = 𝜔𝑐𝑒/𝜐𝑒𝑖, 𝛽 = 4𝜋𝑃𝑒/𝐵𝑡
2, and 𝜔𝑐𝑒 and 

𝜐𝑒𝑖 are the electron cyclotron and the electron-ion collisional frequency. 𝑆 = 𝜏𝑅/𝜏𝐴, where 𝜏𝐴 =

𝑎/𝑉𝐴  is the Alfven time, and 𝑉𝐴 is the Alfven velocity defined using the toroidal field. 𝐶𝑠, 𝜇𝑁 and 

𝐷⊥𝑁 are the normalized ion sound velocity, plasma viscosity, and perpendicular particle diffusivity.  

 The cold ion assumption is made. The third term on the right hand side of equation (A2), being 

proportional to 1/𝜐𝑒𝑖, takes into account the electron inertia. When solving equations (A1)-(A4) 
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alone, a constant electron temperature is assumed. 

For the low resistivity case, the input parameters are based on medium size tokamak 

experimental parameters: 𝑇𝑒 = 2𝑘𝑒𝑉 , 𝑛𝑒 = 3 × 1019𝑚−3, 𝑎 = 0.5𝑚, 𝑅 = 1.7𝑚, and 𝐵𝑡 = 2𝑇, 

leading to 𝑆 = 2.6 × 108 ,  𝐶𝑠 = 2 × 107 (𝑎/𝜏𝑅) , 𝜂𝑁 = 1 , and 𝑑1 = 3.1 × 107 . The 

perpendicular plasma momentum and particle transport are assumed to be at an anomalous transport 

level of 𝜇 = 0.2𝑚2/𝑠 = 18.8𝑎2/𝜏𝑅 and 𝐷⊥ = 𝜇/5.  

For the high resistivity case, the following input parameters are used: 𝑇𝑒 = 300𝑒𝑉 , 𝑛𝑒 =

1019𝑚−3, 𝑎 = 0.25𝑚, 𝑅 = 1𝑚, and 𝐵𝑡 = 2𝑇, leading to 𝑆 = 3.76 × 107 , 𝐶𝑠 = 8.4 × 105 (𝑎/

𝜏𝑅) , 𝑑1 = 5.4 × 106 , and 𝛺 = 8.2 × 102 . Furthermore, 𝑓𝑏 = 𝑚𝑒 = 0  and 𝜇 = 𝐷⊥ = 0.2𝑚2/𝑠 

are assumed.  

 For the results in Section 3.4, the electron heat transport equation [21]  

 
3

2
𝑛𝑒

𝑑𝑇𝑒

𝑑𝑡
= 𝑑1𝑇𝑒𝛻||𝑗 − 𝑇𝑒𝑛𝑒𝛻||𝑣|| + 𝑛𝑒𝛻 ⋅ (𝜒||𝛻||𝑇𝑒) + 𝑛𝑒𝛻 ⋅ (𝜒⊥𝛻⊥𝑇𝑒) + 𝑆𝑝,  (A9) 

is solved together with equations (A1)-(A4), to take into account the electron temperature perturbations, 

where 𝜒  the heat conductivity, and 𝑆𝑝  is the heat source. The ratio between the parallel and 

perpendicular heat conductivity, 𝜒∥/𝜒⊥ = 109, 𝜒⊥ = 𝜇 and a parabolic profile for the equilibrium 

electron temperature are assumed.  

 The tokamak plasma rotation in the core region is essentially toroidal, while only the poloidal 

rotation is included in equations (A1)-(A4) due to the large aspect ratio approximation. To guarantee 

a reasonable balance between the electromagnetic (EM) and viscous force, a larger plasma viscosity 

for the 𝑚/𝑛 = 0/0  component (by a factor 102 ) is used in (A3) based on the following 

considerations [4]: (a) The EM force in the toroidal direction is smaller by a factor (𝑛/𝑚)(𝑟𝑠/𝑅) 

than that in the poloidal direction. (b) To have the same mode frequency due to the plasma rotation, 

the toroidal rotation velocity should be (𝑚/𝑛)(𝑅/𝑟𝑠) times larger than the poloidal one. These two 

effects lead to a larger viscous force compared to the EM force for the toroidal rotation case by a 

factor [(𝑚/𝑛)(𝑅/𝑟𝑠)]2~102. 

 

Appendix B Electron fluid velocity and tearing mode frequency 

The electron diamagnetic drift velocity is 

  𝒗∗𝒆 = ∇𝑃𝑒 × 𝑩/(𝑛𝑒|𝑒|𝐵2),       (B1) 

which is mostly in the poloidal direction with a poloidal component 

  𝒗∗𝑒,𝑝 ≈ 𝑣∗𝑒,𝑝𝒆𝑝,        (B2) 

where 𝑣∗𝑒,𝑝 = −𝑃𝑒,𝑁
′ 𝐵𝑡/𝐵2, 𝑃𝑒,𝑁

′ = 𝑃𝑒
′/(𝑛𝑒|𝑒|), and e is the electron charge. 

The electric drift velocity is 
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  𝒗𝐸 = 𝑬𝑟 × 𝑩/𝐵2,        (B3) 

where 𝑬𝑟 = 𝐸𝑟𝒆𝑟 is the radial electric field.  

 When there is no poloidal rotation damping, the electric drift is dominated by its poloidal 

component, 

  𝒗𝐸,𝑝 = 𝑣𝐸,𝑝𝒆𝑝,         (B4) 

where 𝑣𝐸,𝑝 = −𝐸𝑟𝐵𝑡/𝐵2. In this case the bi-normal electron fluid velocity is found from (B2) and 

(B4),  

  𝒗𝒆 = 𝒗𝐸 + 𝒗∗𝑒 = −[(𝐸𝑟 + 𝑃𝑒,𝑁
′ )𝐵𝑡𝒆𝑝]/𝐵2.     (B5) 

The angular frequency of the tearing mode is determined by the local bi-normal electron fluid 

velocity at the resonant surface [41], 

  𝜔𝑒⊥ = (𝜔𝐸0 + 𝜔∗𝑒0) = 𝒌 ∙ 𝒗𝒆 = − (
𝑚

𝑟
) (𝐸𝑟 + 𝑃𝑒,𝑁

′ )𝐵𝑡/𝐵2,   (B6) 

where 𝒌 = 𝑚𝒆𝑝/𝑟 + 𝑛𝒆𝑡/𝑅. (B5) and (B6) show that if 𝐸𝑟 > −𝑃𝑒,𝑁
′ , 𝜔𝑛 < 0, and the electron fluid 

velocity is in the ion drift direction.  

 When the poloidal electric drift is negligible due to neoclassical damping, which is usually 

the case for tokamak core plasmas, the toroidal electric drift velocity is 

  𝒗𝐸,𝑡 = 𝑣𝐸,𝑡𝒆𝑡,         (B7) 

where 𝑣𝐸,𝑡 = 𝐸𝑟𝐵𝑝/𝐵2. In this case the electron fluid velocity is found from (B2) and (B7), 

  𝒗𝑒 = 𝒗𝐸 + 𝒗∗𝑒 = [𝐸𝑟𝐵𝑝𝒆𝑡 − 𝑃𝑒,𝑁
′ 𝐵𝑡𝒆𝑝]/𝐵2,     (B8) 

and the angular mode frequency 

  𝜔𝑒⊥ = (
𝑚

𝑟
) 𝑣∗𝑒,𝑝 + (

𝑛

𝑅
) 𝑣𝐸,𝑡 = [− (

𝑚

𝑟
) 𝑃𝑒,𝑁

′ 𝐵𝑡 + (
𝑛

𝑅
) 𝐸𝑟𝐵𝑝]/𝐵2.  (B9) 

 The parallel wave vector is zero at the resonant surface for the tearing mode, i.e. 

   𝒌 ∙ 𝑩 = (
𝑚

𝑟
) 𝐵𝑝 + (

𝑛

𝑅
) 𝐵𝑡 = 0 ,      (B10) 

which leads to 𝑞 = 𝑞𝑠 at the resonant surface, where 𝑞 = 𝑟𝐵𝑡/(𝑅𝐵𝑝) and 𝑞𝑠 = −𝑚/𝑛. Therefore, 

(B9) can be written in the form 

𝜔𝑒⊥ = 𝜔∗𝑒0 + 𝜔𝐸0 = (
𝑛𝐵𝑝

𝑅𝐵2
) [(

𝑞𝑠
2𝑅2

𝑟2
) 𝑃𝑒,𝑁

′ + 𝐸𝑟].    (B11) 

where 𝜔∗𝑒0 = 𝑛𝑃𝑒,𝑁
′ /(𝐵𝑝𝑅) and 𝜔𝐸0 = 𝑛𝐵𝑝𝐸𝑟/(𝑅𝐵2). It is seen from (B11) that for 𝐸𝑟 > 0, the 

contribution of the electric and the electron diamagnetic drifts to the frequency has the opposite sign.  

Using (B7), equation (B11) can be written in another form 

  𝜔𝑒⊥ = (
𝑛𝐵𝑝

𝑅𝐵2
) [(

𝑞𝑠
2𝑅2

𝑟2
) 𝑃𝑒,𝑁

′ + 𝐵2𝑣𝐸,𝑡/𝐵𝑝],     (B12) 

which indicates that if 𝑣𝐸,𝑡/𝐵𝑝 > 0 (𝑣𝐸,𝑡 in the plasma current direction), the contribution of the 

electric and the electron diamagnetic drifts to the frequency has the opposite sign, being independent 
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of the toroidal field direction. In this case, a negative value of 𝜔𝑛  corresponds to 𝐵2𝑣𝐸𝑡/𝐵𝑝 >

−𝑃𝑒,𝑁
′ 𝑞𝑠

2𝑅2/𝑟2, i.e. the toroidal electric drift is in the plasma current direction with a frequency being 

larger than the electron diamagnetic drift frequency. As described in Ref. [20], the electron 

diamagnetic drift frequency can also be written in another form, 𝜔∗𝑒0 = v∗e,tn/R, with a toroidal drift 

velocity v∗e,t = Pe,N
′ /Bp in the counter current direction. This is equivalent to the 𝜔∗𝑒0 calculated 

from the poloidal diamagnetic drift velocity by making use of equation (B10). 

 


