
NeuroImage 230 (2021) 117809 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Increased sensitivity to strong perturbations in a whole-brain model of LSD 

Beatrice M. Jobst a , ∗ , Selen Atasoy 

b , c , Adrián Ponce-Alvarez a , Ana Sanjuán 

a , Leor Roseman 

d , 

Mendel Kaelen 

d , Robin Carhart-Harris d , Morten L. Kringelbach 

b , c , Gustavo Deco 

a , e , f , g 

a Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Calle Ramón Trias Fargas 25-27, 08005 Barcelona, Spain 
b Department of Psychiatry, University of Oxford, Oxford, United Kingdom 

c Center of Music in the Brain (MIB), Clinical Medicine, Aarhus University, Denmark 
d Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, United Kingdom 

e Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain 
f Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 
g School of Psychological Sciences, Monash University, Clayton, Melbourne, Australia 

a r t i c l e i n f o 

Keywords: 

Brain state 

LSD 

Functional MRI 

Whole-brain modelling 

Perturbation 

Resting state networks 

a b s t r a c t 

Lysergic acid diethylamide (LSD) is a potent psychedelic drug, which has seen a revival in clinical and phar- 

macological research within recent years. Human neuroimaging studies have shown fundamental changes in 

brain-wide functional connectivity and an expansion of dynamical brain states, thus raising the question about a 

mechanistic explanation of the dynamics underlying these alterations. Here, we applied a novel perturbational 

approach based on a whole-brain computational model, which opens up the possibility to externally perturb dif- 

ferent brain regions in silico and investigate differences in dynamical stability of different brain states, i.e. the 

dynamical response of a certain brain region to an external perturbation. After adjusting the whole-brain model 

parameters to reflect the dynamics of functional magnetic resonance imaging (fMRI) BOLD signals recorded un- 

der the influence of LSD or placebo, perturbations of different brain areas were simulated by either promoting 

or disrupting synchronization in the regarding brain region. After perturbation offset, we quantified the recovery 

characteristics of the brain area to its basal dynamical state with the Perturbational Integration Latency Index 

(PILI) and used this measure to distinguish between the two brain states. We found significant changes in dynam- 

ical complexity with consistently higher PILI values after LSD intake on a global level, which indicates a shift of 

the brain’s global working point further away from a stable equilibrium as compared to normal conditions. On 

a local level, we found that the largest differences were measured within the limbic network, the visual network 

and the default mode network. Additionally, we found a higher variability of PILI values across different brain re- 

gions after LSD intake, indicating higher response diversity under LSD after an external perturbation. Our results 

provide important new insights into the brain-wide dynamical changes underlying the psychedelic state - here 

provoked by LSD intake - and underline possible future clinical applications of psychedelic drugs in particular 

psychiatric disorders. 
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. Introduction 

In the past few years, we have witnessed an increasing interest in the

tudy of the effects of psychedelic drugs, including lysergic acid diethy-

amide (LSD), on the human brain. LSD is a potent psychoactive drug,

hich was first synthesized in 1938 and whose potent psychological

ffects were discovered in 1943 ( Hofmann, 1980 ). Between the 1950s

nd the late 1960s LSD was widely used in psychology and psychother-

py and its clinical applications as a pharmacological substance were

ell studied ( Passie et al., 2008 ; Nichols, 2016 ), for a recent review and

eta-analysis see Fuentes et al. (2020 ). Due to political reasons and its

idespread uncontrolled recreational use, LSD was made illegal in the
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ate 1960s, which explains the hiatus period in human research with

SD. It was not until recently that the drug has undergone a renaissance

n clinical and brain research. 

Within the last few years, a significant number of human neu-

oimaging studies have been performed by only few research groups

o identify neural correlates of the psychedelic state provoked by hallu-

inogenic drugs ( Carhart-Harris et al., 2012 2016 b; Tagliazucchi et al.,

014 2016 ; Preller et al., 2017 ; Muthukumaraswamy et al., 2013 ;

alhano-Fontes et al., 2015 ). A non-exhaustive summary of these find-

ngs include: an increase in visual cortex blood flow and an expanded

isual cortex functional connectivity ( Carhart-Harris et al., 2016 b),

 reduction of the integrity of functional brain networks ( Carhart-
ry 2021 
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s  
arris et al., 2016 b; Tagliazucchi et al., 2016 ; Palhano-Fontes et al.,

015 ), a global increase in connectivity between networks ( Carhart-

arris et al., 2016 b; Tagliazucchi et al., 2016 ), where especially high-

evel association cortices comprising parts of the default-mode, salience,

nd frontoparietal attention networks and the thalamus showed in-

reased global connectivity ( Tagliazucchi et al., 2016 ), and an expanded

epertoire of dynamical brain states, characterized by an increase of the

ariance of the Blood-Oxygen Level Dependent (BOLD) signal measured

ith functional Magnetic Resonance Imaging (fMRI) and a higher di-

ersity of dynamic functional connectivity states ( Tagliazucchi et al.,

014 ). While these results offer valuable insights into the major func-

ional alterations taking effect in the brain during the psychedelic state,

e do not yet have a compelling and complete mechanistic understand-

ng of these effects in the context of whole-brain dynamics. To address

his knowledge gap, we here apply a novel method combining a whole-

rain computational model with an in silico model perturbation, previ-

usly described by Deco et al. (2018 ), which enables the simulation of

xternal perturbations of any brain region for an unlimited amount of

ime in ways experimentally not possible. 

In the last 15 years, there have been a number of studies investigat-

ng brain function by systematically exploring the dynamical responses

o controlled artificial external perturbations of different brain regions

nd combining them with whole-brain neuroimaging ( Massimini et al.,

005 ; Litvak et al., 2007 ; Casali et al., 2013 ; Kringelbach et al., 2007 a;

ohseni et al., 2012 ; Saenger et al., 2017 ). There is a wide range of

erturbation possibilities available, from easier to perform perturba-

ion methods such as sensory stimulation and task instructions, to more

nvasive and costly methods, such as transcranial magnetic stimula-

ion (TMS) in healthy human subjects to deep brain stimulation (DBS)

n patients ( Kringelbach and Aziz, 2011 ; Kringelbach et al., 2007 b;

lausen, 2010 ; Siebner et al., 2009 ). Also pharmacological studies in-

ucing an anaesthetic state, which can also be considered as a per-

urbation to the brain, exist in human ( Boveroux et al., 2010 ) as well

s in the non-human primate ( Barttfeld et al., 2015 ) exploring the dy-

amic repertoires of the brain. The advantage of direct controlled artifi-

ial perturbations of specific brain regions is the systematic exploration

f the provoked dynamical responses. These direct approaches have,

owever, been limited to transcranial magnetic stimulation (TMS) in

ealthy human subjects and to deep brain stimulation (DBS) in patients

 Kringelbach and Aziz, 2011 ; Kringelbach et al., 2007 b; Clausen, 2010 ;

iebner et al., 2009 ). 

Here we apply a novel in silico model perturbation approach to study

he perturbation-elicited changes in global and local brain activity and

o obtain a deeper understanding of the mechanisms underlying the

xperimentally observed dynamical brain changes under the influence

f LSD in three different scanning conditions (rest, rest while listen-

ng to music and rest after listening to music). Previous studies have

hown that the effects of LSD are amplified during listening of music

 Preller et al., 2017 ; Kaelen et al., 2015 2016 ). Music is believed to act

n combination with psychedelic drugs to enhance its emotional effects

 Kaelen et al., 2015 ) and that it acts synergistically with the drug to in-

ensify mental imagery and access to personal memories ( Kaelen et al.,

015 ; Bonny and Pahnke, 1972 ; Grof, 1980 ). We used a computational

hole-brain model, which directly simulates the resting state BOLD sig-

al fluctuations ( Deco et al., 2018 ; Saenger et al., 2017 ; Jobst et al.,

017 ; Ponce-Alvarez et al., 2015 a; Deco et al., 2017 b) by simulating the

ynamics in each brain area with the normal form of a supercritical Hopf

ifurcation. This direct simulation of the resting state BOLD signal al-

ows for systematical perturbation of each brain region in silico without

eeding to perturb the brain activity explicitly, e.g. via TMS. This whole-

rain model based perturbation approach has proven useful to reveal the

hanges in brain dynamics underlying sleep, where brain activity was

ound to more rapidly return to its original state after perturbation than

uring awake ( Deco et al., 2018 ). Taken together with previous exper-

mental findings on LSD, we hypothesized that under the influence of

SD, the brain would take longer to return to baseline activity - mean-
2 
ng brain activity without the model based perturbation - after a strong

imulated perturbation. Such a scenario would be consistent with more

omplex and less stable dynamics ( Deco et al., 2018 ; Carhart-Harris and

riston, 2019 ) as well as brain dynamics closer to bifurcation or criti-

al regime ( Carhart-Harris et al., 2016 b; Tagliazucchi et al., 2014 2016 ;

tasoy et al., 2017 ). Indeed, close to a bifurcation or instability, a dy-

amical system slows down its fluctuations and increases its responsive-

ess and complexity ( Deco et al., 2017 b 2013 ). Whole-brain models have

een shown to best represent the functional connectivity of whole-brain

esting-state fMRI close to a bifurcation ( Deco et al., 2017 2013 ). Previ-

us research has suggested that LSD re-organizes brain dynamics at the

dge of criticality ( Atasoy et al., 2017 ). Furthermore it has previously

een shown that in an awake resting state - when compared to deep sleep

 the brain takes longer to go back to its original state after perturbation

 Deco et al., 2018 ), and that perturbation induced stimuli propagate to

ther brain regions beyond the original stimulation site in an awake rest-

ng state as opposed to deep sleep ( Massimini et al., 2005 ; Casali et al.,

013 ; Ferrarelli et al., 2010 ). Moreover, it has been shown that, while

nesthesia reduces the complexity of brain signals with respect to nor-

al wakefulness, LSD increases the activity complexity with respect to

ormal wakefulness, without a global loss of consciousness or changes

n physiological arousal as seen in sleep or anaesthesia ( Schartner et al.,

017 ). We thus hypothesized that LSD would produce more complex

nd sustained responses to perturbations than in normal resting-state

onditions. We further expected this effect to be even stronger in the

usic condition, where the effects of LSD have been found to be ampli-

ed ( Preller et al., 2017 ; Kaelen et al., 2015 2016 ). 

. Materials and methods 

.1. Functional magnetic resonance imaging (fMRI) data 

For the fMRI blood oxygen level dependent (BOLD) data, 20 healthy

articipants were scanned in 6 different conditions: LSD resting state,

lacebo (PCB) resting state, LSD and PCB resting state while listening

o music, LSD and PCB resting state after listening to music. LSD and

CB sessions were separated by at least 14 days with the condition or-

er being balanced across participants, who were blind to this order.

ll participants gave informed consent. The experimental protocol was

pproved by the UK National Health Service research ethics committee,

est-London. Experiments conformed with the revised declaration of

elsinki (2000), the International Committee on Harmonization Good

linical Practice guidelines and the National Health Service Research

overnance Framework. The data collection was sponsored by the Impe-

ial College London, which was carried out under a Home Office license

or research with schedule 1 drugs. Eight out of the 20 subjects were

xcluded from further analyses for the following reasons: the scanning

ession of one participant needed to be terminated early due to the sub-

ect reporting significant anxiety. Four participants were excluded due to

igh levels of head movement (as described in the original publication

y Carhart-Harris et al. (2016 b), the exclusion criterion for excessive

ead movement was subjects displaying more than 15% scrubbed vol-

mes with a scrubbing threshold of FD = 0.5). Three participants needed

o be excluded due to technical problems with the sound delivery in the

usic condition. In total, 12 subjects were considered for further anal-

ses. Each participant received either 75 g of LSD (intravenous, I.V.)

r saline/placebo (I.V.) 70 min prior to MRI scanning. As described in

he supplementary information of the original publication by Carhart-

arris et al. (2016 b) the participants reported noticing subjective drug

ffects between 5 and 15 min post-dosing. The drug effects reached peak

ntensity between 60 and 90 min post-dosing. The subsequent plateau of

rug effects varied among individuals regarding their duration, but par-

icipants reported a general remaining of the drug effects for four hours

ost-dosing. MRI scanning started - as mentioned above - approximately

0 min post-dosing, and lasted for about 60 min. After each of the three

cans, participants performed subjective ratings inside the scanner via
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 response box. The subjects who received saline/placebo were con-

idered as baseline MRI scans compared to the LSD scans. The BOLD

MRI data were recorded using a gradient echo planer imaging sequence,

R/TE = 2000/35 ms, field of view = 220 mm, 64 × 64 acquisition ma-

rix, parallel acceleration factor = 2, 90° flip angle. The exact length of

ach of the BOLD scans per participant was 7:20 min. As described in

he original publication by Carhart-Harris et al. (2016 b), the performed

re-processing steps were the following: 1) the first three volumes were

emoved; 2) de-spiking; 3) slice time correction; 4) motion correction

y registering each volume to the volume most similar to all others

egarding least squares; 5) brain extraction; 6) rigid body registration

o anatomical scans; 7) non-linear registration to 2 mm MNI brain; 8)

crubbing using an FD threshold of 0.4 (the mean percentage of volumes

crubbed for placebo and LSD was 0.4 ± 0.8% and 1.7 ± 2.3%, respec-

ively). The maximum number of scrubbed volumes per scan was 7.1%

nd scrubbed volumes were replaced with the mean of the surrounding

olumes. Additional pre-processing steps were: 9) spatial smoothing of

 mm; 10) band-pass filtering between 0.01 to 0.08 Hz; 11) linear and

uadratic de-trending; 12) regressing out 9 nuisance regressors (all nui-

ance regressors were bandpass filtered with the same filter as in step

0. 

BOLD signals were averaged over cortical and sub-cortical regions of

nterest following the automated anatomical labeling (AAL) atlas parcel-

ation of the brain into 90 regions of interest (76 cortical and 14 subcor-

ical regions, AAL90), comprising 45 regions in each hemisphere ( Dang-

u et al., 2005 ). We chose this parcellation of the human brain, since

specially for studying the spatiotemporal dynamics on a whole brain

evel, AAL seems to be particularly well fitted. It has been found to pro-

uce good results in the whole-brain literature in general ( Deco et al.,

018 ; Cabral et al., 2014 ; Cabral et al., 2017 ; Donnelly-Kehoe et al.,

019 ) and furthermore whole brain computational models can be quite

omputationally expensive to perform and thus profit from a not too

arge number of parcels, as is the case in the AAL parcellation. The list

f AAL ROIs can be found in the Supplementary Material (Supplemen-

ary Table S1). 

The full details on the whole study design, the scanning proto-

ol and further details on the fMRI pre-processing can be consulted

n the supplementary information of the original publication ( Carhart-

arris et al., 2016 b). 

.2. Anatomical connectivity 

The anatomical connections between the different brain areas used in

his study were obtained from Diffusion Tensor Imaging (DTI) data of an

ndependent set of subjects, recorded in 16 healthy right-handed partici-

ants (11 men and 5 women, mean age: 24.75 ± 2.54), recruited through

he online recruitment system at Aarhus University. This data has al-

eady been described in previous studies ( Jobst et al., 2017 ; Deco et al.,

017 a). Briefly, the automated anatomical labeling (AAL) template was

sed for the parcellation of the entire brain into 90 regions, as explained

n the previous section. The brain parcellations were conducted in each

ndividual’s native space. The acquired DTI data was used to generate

he structural connectivity (SC) maps for each participant. A three-step

rocess was applied to construct these structural connectivity maps.

irst, the regions of the whole-brain network were defined with the AAL

emplate as used in the functional MRI data. Secondly, probabilistic trac-

ography was applied to estimate the connections between nodes in the

hole-brain network (i.e. edges). Finally, the data was averaged across

articipants. 

.3. Hopf computational whole-brain model 

The brain activity in each brain region was simulated with a com-

utational whole-brain model, which has been previously described in

arious publications ( Deco et al., 2018 ; Jobst et al., 2017 ; Deco et al.,
3 
017 b; Kringelbach et al., 2015 ). The model is based on the 90 cou-

led brain regions, comprising cortical and subcortical areas, retrieved

rom the AAL parcellation explained above. This computational model

imulates the spontaneous brain activity in each node, which originates

n the mutual interactions between anatomically connected brain areas

 Fig. 1 A). The anatomical connections are represented by the structural

onnectivity matrix 𝐶 𝑖𝑗 , obtained through DTI based tractography, as ex-

lained above. The structural connectivity matrix was scaled to a max-

mum value of 0.2 ( Jobst et al., 2017 ; Deco et al., 2017 b), leading to a

eduction of the parameter space to search for the optimal parameter.

he dynamics in each brain area can be simulated by the normal form of

 supercritical Hopf bifurcation, which can describe the transition from

oise-induced oscillations to fully sustained oscillations ( Deco et al.,

017 b; Kuznetsov, 1998 ). In fact, it has been shown that by coupling

he brain regions together using the underlying anatomical connections,

he interactions between the local Hopf oscillators can describe elec-

roencephalography (EEG) ( Freyer et al., 2012 ), magnetoencephalogra-

hy (MEG) ( Deco et al., 2017 a) and fMRI dynamics ( Deco et al., 2018 ;

obst et al., 2017 ; Deco et al., 2017 b; Kringelbach et al., 2015 ). The

ynamics of a given uncoupled node 𝑗 are described by the following

omplex-valued equation, representing the normal form of a supercriti-

al Hopf bifurcation: 

𝑑 𝑧 𝑗 

𝑑𝑡 
= 𝑧 ( 𝑎 + 𝑖 𝜔 𝑗 ) − 𝑧 

|||𝑧 𝑗 |||2 + 𝛽𝜂𝑗 ( 𝑡 ) , (1)

here 𝑧 𝑗 = 𝜌𝑗 𝑒 
𝑖 𝜃𝑗 = 𝑥 𝑗 + 𝑖 𝑦 𝑗 , 𝜂𝑗 ( 𝑡 ) is additive Gaussian noise, 𝛽 = 0 . 04 and

 𝑗 is the intrinsic node frequency, which was estimated as the peak fre-

uency of the filtered BOLD time series for each brain region averaged

ver the participants within one subject group for each of the 6 con-

itions. This normal form possesses a supercritical Hopf bifurcation at

 = 0. For a > 0 the local dynamics settle into a stable limit cycle, pro-

ucing self-sustained oscillations with frequency 𝑓 𝑗 = 

𝜔 𝑗 

2 𝜋 . For a < 0 the

amped oscillations lead the system to a stable fixed point (or focus),

t 𝑧 𝑗 = 0 , and, in the presence of noise, noise-induced oscillations are

bserved. 

In order to simulate the whole-brain dynamics a coupling term was

dded which represents the input from node 𝑗 to node 𝑖 scaled by the

tructural connectivity matrix 𝐶 𝑖𝑗 . Hence, the whole-brain dynamics are

escribed by the following set of coupled equations: 

𝑑 𝑧 𝑗 

𝑑𝑡 
= 𝑧 

(
𝑎 + 𝑖 𝜔 𝑗 − |𝑧 |2 ) + 𝐺 

𝑁 ∑
𝑘 =1 

𝐶 𝑗𝑘 

(
𝑧 𝑘 − 𝑧 𝑗 

)
+ 𝛽𝜂𝑗 , (2)

his model can be interpreted as an extension of the Kuramoto model

 Ponce-Alvarez et al., 2015 ; Strogatz, 2000 ) with amplitude variations,

ence the choice of coupling ( 𝑧 𝑘 − 𝑧 𝑗 ) , which relates to a tendency of

ynchronization between two coupled nodes. For each node 𝑗 the vari-

ble 𝑥 𝑗 = Re ( 𝑧 𝑗 ) simulates the fMRI BOLD signal using the Euler algo-

ithm with a time step of 0 . 1 ⋅ ( TR 2 ) . The parameter G, the global coupling

trength, serves as a global coupling factor scaling equally the total input

n each brain node. 

.4. Functional connectivity estimation 

The BOLD signal of each AAL region was detrended, demeaned and

hen band-pass filtered within the range of 0.04–0.07 Hz following

lerean et al. (2012 ) individually for each subject. This frequency band

as been shown to be less affected by noise and to be more functionally

elevant compared with other frequency bands ( Glerean et al., 2012 ;

chard et al., 2006 ; Biswal et al., 1995 ; Buckner et al., 2009 ). Next, the

ltered time series were z-scored for each subject. The functional con-

ectivity (FC) matrices were then calculated for each participant in each

ondition. Here we calculated the FC matrix as the Pearson correlations

etween the BOLD signals of all pairs of regions of interest (ROIs) over

he whole recording duration. To obtain group-level FC matrices we

pplied fixed-effect analysis by Fisher’s r-to-z transforming ( 𝑧 = tanh ( 𝑟 ) )
he correlation values before averaging over all participants within each
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Fig. 1. Calculation of the Perturbative Inte- 

gration Latency Index (PILI). A. Initially, the 

computational whole-brain model was built 

based on the empirical structural connections 

between the 90 brain nodes. In this model each 

brain area was represented by a supercritical 

Hopf bifurcation. The model was fitted to the 

empirical functional connectivity in each of 

the 6 conditions, thus resulting in an optimal 

global coupling parameter for each condition. 

B. Next, we simulated the BOLD time series in 

each brain node for the basal dynamics and 

for the two perturbed states. The signals were 

band-pass filtered and Hilbert transformed to 

obtain the instantaneous phases and to subse- 

quently calculate the phase locking matrix for 

each time point. C. Next, the integration was 

calculated as a function of time over 200 s in 

the basal state and after the offset of a model 

perturbation in either the synchronous or the 

noisy regime (here only shown the synchronous 

regime). The integration was computed by bi- 

narizing the phase locking matrix for differ- 

ent thresholds and calculating the number of 

areas in the largest connected component and 

finally integrating over thresholds. Finally the 

PILI was calculated, which characterizes the re- 

turn of the brain dynamics to the basal state 

after a model perturbation of the system. For 

each trial, the PILI was computed as the inte- 

gral under the curve of integration values after 

the offset of the model perturbation (yellow) until reaching the maximum of the basal state (blue). The final PILI was obtained by averaging over trials. (see Section 2 . 

Methods for detailed explanation). 
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ondition and then back-transforming to correlation values. Thus, we

btained 6 final FC matrices, one for each condition. For the group level

omparison, the FC matrices were averaged across subjects individually

or each condition and the comparison was performed for each pair of

SD - PCB scanning condition (i.e. LSD vs. PCB in rest, rest with music

nd rest after music conditions, respectively). To test the significance of

he differences of the conditions, we generated 100 surrogate datasets

here the LSD and PCB conditions are randomly permuted with a 50%

hance of switching of the condition assignment, following Jobst et al.

2017 ). In this way, the group pairs get randomly mixed and thus fulfill

he null-hypothesis of no difference between drug-induced conditions. 

In order to ensure that within the group PCB there would be no dif-

erences between FC matrices between the group of participants who

eceived PCB in their first session and the group of participants who

eceived PCB in their second session, we performed a similar statistical

ignificance analysis as described above. We divided the PCB sessions in

he aforementioned groups and generated again 100 surrogate datasets

here the group assignments are randomly permuted with a 50% chance

f switching the group assignment. Thus, also here the null-hypothesis

f no difference between the two groups is fulfilled and it can be ana-

yzed if the differences of the mean FC matrices of the two groups are

ignificantly larger than the ones generated by the surrogate data. The

esults of this analysis are shown in the Supplementary Material (Sup-

lementary Figure S1). 

In line with this analysis we furthermore analyzed if the differences

etween the LSD and PCB states showed differences between the two

roups mentioned above, those who received PCB in their first session

 “First ”) and those who received PCB in their second session ( “Second ”).

e again divided the data into these two groups and now compared the

SD state to the PCB state within each group, as was done in the original

C matrix analysis described above. Then, we analyzed the differences

etween the two groups “First ” and “Second ” regarding the differences

etween LSD and PCB states, a difference of differences so to speak. In

rder to test for statistical significance we again constructed surrogate
 w

4 
ata in the same fashion as described above and tested for significance.

he results of this analysis can be consulted in the Supplementary Ma-

erial (Supplementary Figure S2). 

.5. Drug state classification with Gaussian classifier 

To establish how specific each of the functional connectivity matrices

s to the drug state (LSD or PCB), we classified the drug state based on the

ovariance of fMRI signals using a jackknife cross-validation approach,

ssuming that observations are drawn from a multivariate Gaussian dis-

ribution, following Jobst et al. (2017 ) . First, we estimated the covari-

nce ( ΣLSD and ΣPCB ) using the data of 𝑛 − 1 participants (train set),

here 𝑛 is the number of participants, for each drug state. Note, that in

he Gaussian approximation the fMRI signals were fully determined by

heir covariance, since the data was z-scored and thus the mean of each

MRI time-series was zero. Then, we associated the data of the remaining

ubject (test set) to a drug state by selecting the zero-mean multivariate

aussian process ( 𝑁(0 , ΣLSD ) or 𝑁(0 , ΣPCB ) ) which maximises the log-

ikelihood of the test data given the trained model. We calculated the

ercentage of correct classifications across both states and the 𝑛 partic-

pants. Given the zero-mean multivariate Gaussian process 𝑁(0 , Σ) , the

ikelihood of a test N-dimensional vector 𝑋 𝑡 , representing the 𝑡 -th time

tep of the test data, is given by: 

 

(
𝑋 𝑡 |Σ) = [ 2 𝜋 det (Σ) ] − 

1 
2 exp 

(
− 

1 
2 
𝑋 

∗ 
𝑡 
Σ−1 𝑋 𝑡 

)
, (3)

here det (Σ) is the determinant of the covariance Σ and the superscript
 represents the transpose. The log-likelihood 𝐿 of the entire test time

eries 𝑋 = 𝑋 1 ,...,𝑇 , where 𝑇 is the number of time steps, is given by (as-

uming independence of the observations): 

 ( 𝑋|Σ) = log 
∏𝑇 

𝑡 =1 
𝑃 
(
𝑋 𝑡 |0 , Σ) = 

∑𝑇 

𝑡 =1 
log 𝑃 

(
𝑋 𝑡 |Σ), (4)

o summarize, we calculated 𝐿 ( 𝑋|ΣLSD ) and 𝐿 ( 𝑋|ΣPCB ) for each test

ataset 𝑋. We predicted the state LSD if 𝐿 ( 𝑋|ΣLSD ) > 𝐿 ( 𝑋|ΣPCB ) , other-

ise the predicted state was PCB. 
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To assess statistical significance of the classification performance

e computed the probability of obtaining 𝑘 correct classifications by

hance: Pr ( 𝑘 ) = 𝐶 

𝑘 
𝑛 
𝑝 𝑘 (1 − 𝑝 ) 𝑛 − 𝑘 , where 𝑝 is the probability of getting a

orrect classification by chance ( 𝑝 = 

1 
2 ) and 𝑛 is the number of tests. Sig-

ificant decoding of the conditions was reached when the performance

xceeded the 95th percentile of Pr ( 𝑘 ) . 

.6. Fitting the model to experimental data 

We explored the parameter space of the whole-brain computational

odel by varying the global coupling strength parameter G from 0 to 2

n steps of 0.01.To match the procedure applied on the empirical data,

e filtered the simulated BOLD time series as well in the range of 0.04–

.07 Hz. Furthermore, the signal lengths of the simulated data coincided

ith the duration of the empirical data recordings. Next, the FC matrix

as estimated on the simulated data for the whole parameter space ap-

lying the same procedure as on the empirical data. Then, the fitting

etween the empirical and the simulated FC matrices was calculated for

ach condition (i.e. LSD during rest, rest with music and rest after music

nd PCB during rest, rest with music and rest after music) for the whole

arameter space using the Kolmogorov-Smirnov distance (KS distance)

etween the two matrices, yielding a measure of fit for each value of

he parameter G for each condition. For each condition, 50 simulations

f the BOLD time series were generated, and the KS-distance of fit was

veraged across the 50 simulations in order to minimize the random

ffects induced by the Gaussian noise in the model. We compared the

esulting fitting curve minima with the surrogate data explained above

n order to test for significant differences between the LSD and PCB con-

itions. The coupling parameter values, where the fitting curves were

inimal, were then used for the following analysis steps. 

.7. Model perturbation protocols 

Following Deco et al. (2018 ) we made use of the locally defined bifur-

ation parameter a of the Hopf model to simulate two kinds of off-line

erturbation protocols evoking either deviations from the basal state

 𝑎 = 0 ) into the synchronous regime ( 𝑎 > 0 ) or into the noisy regime

 𝑎 < 0 ). In order to investigate the local effects provoked by the pertur-

ation of single brain areas, we perturbed each node individually, re-

eated the perturbation procedure 3000 times and performed statistical

nalyses using the error of the distribution averaged over the 3000 trials.

ne perturbation trial consisted in perturbing one out of 90 nodes for

00 s by setting its local bifurcation parameter value a to either 𝑎 > 0 or

 < 0 . Specifically, for the synchronization perturbation protocol a was

et to 0.6 and for the noise perturbation protocol to − 0.6. This leads

o more oscillations in the perturbed node in the synchronization case

nd to an artificial destruction of the basal synchronization between the

erturbed node and the other brain areas in the noise case. After per-

urbation, the bifurcation parameter was reset to zero in the perturbed

ode. 

.8. Integration measure 

Next, in order to measure the level of brain-wide simulated BOLD

ignal interactions over time, we applied a measure previously defined

n Deco et al. (2015 ) and applied to fMRI data in Deco et al. (2018 ),

hich characterizes the level of integration across all brain regions for

ach time point. 

First, the Hilbert transform was applied on the band-pass filtered

imulated time series giving us the instantaneous signal phases 𝜙𝑛 ( 𝑡 ) .
ext, the phase locking matrix P was calculated which characterizes for

ach time point the pair-wise phase synchronization between two brain

egions p and q : 

 𝑝𝑞 ( 𝑡 ) = 𝑒 
− 𝑖 |||𝜙𝑝 ( 𝑡 )− 𝜙𝑞 ( 𝑡 ) |||, (5)
5 
here i is the imaginary unit ( Fig. 1 B). The level of integration at time t is

hen defined as the size of the largest connected component of the phase

ocking matrix averaged over thresholds ( Deco et al., 2018 2015 ). We

inarized the phase locking matrix P for 100 evenly spaced thresholds

etween 0 and 1, applying the criterion |𝑃 | < 𝜃 = 0 and 1 otherwise, and

xtracted for each of the thresholds the number of nodes of the largest

onnected component of 𝑃 ( 𝑡 ) at each time point t . We then calculated

he integration 𝐼( 𝑡 ) at time t as the integral of the curve of the largest

omponent as a function of the thresholds ( Fig. 1 C). We computed the

ntegration over 200 s of simulated BOLD time series in the basal state

nd starting at perturbation offset in the perturbed case. 

.9. Perturbative integration latency index (PILI) 

Following Deco et al. (2018 ) we calculated the Perturbative Integra-

ion Latency Index (PILI) to characterize the return of the brain dynam-

cs to the basal state after a model perturbation of the system ( Fig. 1 C).

or this we used the changes of the level of integration over time from

he perturbed state to the basal dynamics. 

First, the integration was calculated for 200 s of the simulated basal

tate (blue curve in Fig. 1 C), averaged over 3000 trials and finally the

aximum and minimum values of the averaged curve were identified.

his was done for each of the 6 conditions. Then, the system was per-

urbed following the procedure described above and again the integra-

ion was computed over 200 s after the offset of the perturbation. This

rocedure was performed 3000 times. The maximum and minimum val-

es of the basal integration curve were used to determine the moment

f recovery after the model perturbation, for the synchronization and

oise protocol, respectively. Then, the PILI was calculated as the inte-

ral of the integration curve from perturbation offset to the reaching

oint of the basal state. Finally, we computed the average PILI over tri-

ls to obtain one final value for each brain area. The PILI reflects how

trong the system reacts to a model perturbation and how long it takes

or it to regain its basal dynamical state. The statistical significance tests

ere performed across the 3000 trials applying a Mann-Whitney U test

o compare between LSD and PCB induced states. 

.10. Region-wise and resting state network analysis 

The above described procedure resulted in one PILI for each of the

0 brain areas. We compared the p-values for all brain regions between

SD and PCB in each of the three scanning conditions (rest, rest with

usic, rest after music), computed with the above described statistical

ignificance test, after ordering them from smallest to largest. Bonferroni

orrection was applied in order to correct for the multiple comparisons

cross the 90 brain areas. 

Next, we evaluated the differences between PILI values in seven

ommonly observed resting state networks (RSNs): default mode

etwork (DMN), executive control, dorsal attention, ventral attention,

isual, limbic and somato-motor networks, as described in Yeo et al.

2011 ). The parcellation of the cerebral cortex into these 7 networks

as been extracted from the intrinsic functional connectivity data from

 group of 1000 participants ( Yeo et al., 2011 ) and is available online at

ttp://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo201

or each of the 7 RSN ( Yeo et al., 2011 ; Atasoy et al., 2016 ), we com-

uted the standardized difference between the PILI values in the LSD

nd PCB induced states by calculating Cohen’s d-values, defined as
𝜇∶ 𝑆𝐷 − 𝜇𝑃𝐶𝐵 √ 

𝜎2 
𝐿𝑆𝐷 

+ 𝜎2 
𝑃𝐶𝐵 

2 

, where 𝜇is the mean of the PILI values and 𝜎the standard

eviation, ( Cohen, 1988 ) by taking into account only the brain areas

elonging to that particular RSN. The RSNs were then ordered from

ighest to lowest Cohen’s d-value, where the higher the d-value, the

igher the difference between PILI values and thus the larger the

esponse to a model perturbation under the influence of LSD in one

articular RSN. For completeness, we furthermore tested for statistical

http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
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ignificance between the LSD and the PCB state models in each condi-

ion for each RSN by applying a Mann Whitney U test on the final PILI

alues of the brain areas belonging to each particular RSN. Bonferroni

orrection was applied to correct for the multiple comparisons across

he 7 RSNs. 

.11. Response variability 

Finally, in order to learn more about the differences between the

ynamics of individual brain regions, we calculated the variability of the

ILI values over different brain regions. This was done by calculating the

tandard deviation of the PILI values across all brain nodes for each of

he 3000 trials and then comparing the distributions over trials between

SD and PCB brain state model. We evaluated statistically significant

ifferences between the LSD and PCB induced brain states by applying

 two-sided t -test. 

. Results 

We investigated the differences between LSD and PCB brain states

n three different scanning conditions, namely LSD and PCB during rest,

SD and PCB during rest while listening to music and LSD and PCB dur-

ng rest after listening to music. We applied a previously published off-

ine perturbational approach based on a whole-brain model, which char-

cterizes the return of the brain dynamics to the basal state after a model

erturbation of the system (see Fig. 1 for overview of the method). 

.1. Functional connectivity and optimal working point 

Firstly, we investigated the differences in functional connectivity

FC) between the LSD and PCB brain states in all three scanning con-

itions. For this, we calculated the FC matrices on a subject-level ba-

is and averaged across subjects within each condition (see Section 2 .

ethods ). To compute the differences between the LSD and PCB states,

he mean FC value was computed for each condition and then com-

ared with the surrogate data. We found a significant difference in the

ean FC values between LSD and PCB in the music condition (LSD:

.204 ± 0.179, PCB: 0.140 ± 0.197; p-value: 0.0297). We also observed a

light increase in mean FC values during the LSD state with respect to

CB in resting conditions, which did not involve listening to music(rest:

SD: 0.186 ± 0.175, PCB: 0.154 ± 0.202; p-value: 0.0990; rest after mu-

ic: LSD: 0.181 ± 0.171, PCB: 0.163 ± 0.191, p-value: 0.1485). However,

hese differences were not found to be significant ( Fig. 2 A). 

Next, we fitted the Hopf whole-brain model to the fMRI data in

ach condition in order to compare the effects of LSD and PCB with

egards to their dynamical working point, i.e. the parameter region

here the model best fits the data. The Hopf whole brain model has

een previously shown to be able to simulate fMRI-BOLD network

ynamics ( Deco et al., 2018 ; Jobst et al., 2017 ; Deco et al., 2017 ;

ringelbach et al., 2015 ) and is especially well suited for simulat-

ng external perturbations to distinct brain nodes, as demonstrated in

eco et al. (2018 ). We computed the KS distance between the empirical

nd the simulated functional connectivity matrices and found a shift in

he optimal global coupling parameter G , i.e. the minimal KS distance,

owards higher values under the influence of LSD in all three scanning

onditions (rest: LSD: 0.31, PCB: 0.27; rest with music: LSD: 0.35, PCB:

.25, rest after music: LSD: 0.29, PCB: 0.28) with a significant difference

n the music condition ( p = 0.0099) ( Fig. 2 B). As above, to assess statisti-

al significance, the values were compared with surrogate data obtained

y randomly permuting group assignments (see Section 2 . Methods ). 

To summarize, we found a global increase in functional connectivity

nd a shift of the optimal global coupling strength to larger values under

he effect of LSD, implying a higher global level of brain connectivity in

his state. 
6 
.2. Drug state classification with Gaussian classifier 

We assessed how specific the functional connectivity is to the drug

tate (LSD or PCB). The jackknife cross-validation procedure we applied

onsisted of: first, calculating the covariances on a subset of the data

sing N-1 participants, and then classifying the data of the remaining

ubject given the previously computed covariances (see Methods ). We

ound that the drug states were predicted with an accuracy exceeding

he significance level for all 3 scanning conditions (75% for rest, 79,17%

or rest with music and 70,83% for rest after music) (Supplementary

igure S3). Importantly, these classification performances were signifi-

antly higher than expected by chance given the number of subjects. To

ummarize, the whole-brain covariance of single participants reliably

elates to the drug state and thus even a small number of participants

an be seen as representative of the two states LSD and PCB. 

.3. Global differences in integration 

Next, we simulated two kinds of model perturbation protocols for

ach brain state in order to compare the different state models with re-

ard to their responses to a strong in silico perturbation. We compared

he brain states by making use of the global integration measure (see

ection 2.7 . Integration measure ), which we used to evaluate the differ-

nces in integration. 

With the adjustment of the whole-brain model to the fMRI data, we

btained a representative model of the basal brain state for LSD and

CB states in each condition. The two model perturbation protocols

ere then simulated by either shifting one brain node to a more syn-

hronous state or to a noisier state for 100 s (see Section 2.6 . Model per-

urbation protocols ). This was done for each of the 90 nodes representing

he brain regions in the AAL parcellation. Immediately after perturba-

ion, we quantified the perturbation-caused changes in brain-wide signal

nteractions over time by computing the global integration measure. 

In Fig. 3 , the integration averaged over 3000 trials and all 90 brain

odes is displayed as a function of time. The integration is shown imme-

iately after perturbation offset for LSD and PCB state models in each

ondition. We observed that the basal integration was higher for each

canning condition in LSD (dark green curve) compared with PCB (light

reen curve), where the difference between LSD and PCB was highest

n the music condition. This implies that without perturbation, the level

f BOLD signal connectedness was higher in the LSD state than in PCB.

otably, comparison of the basal integration among scanning conditions

i.e. before, during and after music listening) within both the LSD and

CB state models also revealed that the basal integration increased un-

er the influence of LSD while listening to music, whereas in the PCB

tate model it decreased with music. This finding is in line with previous

esults that have demonstrated an enhancement of the LSD experience

hile listening to music ( Preller et al., 2017 ; Kaelen et al., 2015 2016 ),

hilst in the PCB state, music appeared here to have a contrastive ef-

ect. These results call for further exploration of the differential effects

f music on brain dynamics in the psychedelic state. Regarding the per-

urbation protocols, we found that for all three scanning conditions, the

eviations from the basal activity were both stronger and longer-lasting

nder the influence of LSD (violet curve)in comparison with PCB (or-

nge curve) after being exposed to the same kind of perturbation. While

his is valid for both synchronization protocols and noise protocols, the

ffects on the differences in integration in the LSD state model as com-

ared to the PCB state model were much smaller for the noise protocol

han for the synchronization protocol (detailed analysis in Methods -

lobal and local differences in Perturbative Integration Latency Index and

upplementary Information). We therefore decided to mainly focus on

he synchronization protocol for the rest of the article. The results of

he noise perturbation protocol can be consulted in the Supplementary

nformation. 
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Fig. 2. Empirical functional connectivity and model fitting. In A the functional connectivity matrices are shown for each of the 6 conditions. Significance tests have 

been performed between the LSD and PCB conditions resulting in a significant difference in the mean functional connectivity between the LSD and the PCB state 

in the music scanning session. In B the mean and standard deviation over 50 realizations of the KS distance between the empirical and the simulated functional 

connectivity matrices are shown for each condition as a function of the global coupling strength. The optimal fit corresponds in each condition to the minimal KS 

distance. We found a significant difference between the optimal fit in the LSD and the PCB state in the music scanning session. 
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.4. Global and local differences in perturbative integration latency index 

In order to formally characterize the above observed changes in In-

egration strength and the return duration of the brain dynamics to its

asal state after a model perturbation, we computed the Perturbative

ntegration Latency Index (PILI). The PILI is defined as the area under

he integration curve up to the point it reaches the basal state. Thus,

he PILI captures both, strength of deviation from the basal state and

uration of the recovery. The PILI was calculated for each node by only

erturbing this specific node and leaving the other nodes at their basal

ynamics for 3000 trials, which were then averaged in order to obtain

ne single PILI value for each brain area (see Section 2.8 . Perturbative

ntegration Latency Index (PILI) ). 

We found consistently higher PILI values for the LSD induced brain

tate model than for PCB in all three scanning conditions, where the ef-

ect was strongest for the music condition ( Fig. 4 ). Again, the effect was

iminished in the rest after music condition, which is most likely due

o the decreased effect of LSD, as explained above. Most importantly,

e demonstrate here, that the LSD and PCB brain states show very dif-

erent dynamical responses to a model perturbation. In particular, the
7 
esponses to the same perturbation are stronger and longer lasting under

he influence of LSD with respect to PCB. 

Similar results were found for the noise protocol (Supplementary

igure S4). Also, here we observed a global increase in PILIs for LSD

hen compared to PCB for all three scanning conditions. 

In order to prove that the higher PILI values not only depend on

he stronger deviations from the baseline brain activity, but are indeed

onger lasting under the influence of LSD when compared to PCB, we

urthermore calculated the time for the perturbed signals to come back

o the basal state. We found, by applying a Mann Whitney U test, that

or the synchronization protocol in the first resting state 88 out of 90

odes showed significantly higher latencies in LSD when compared to

CB, in the Rest with Music condition 90 out of 90 nodes showed sig-

ificantly higher latencies in the LSD state and in the Rest after Music

ondition 62 out of 90 nodes showed significantly higher latencies in the

SD state. This means that the perturbation effect is also longer lasting

nd not only stronger in the LSD state, where the effect is most promi-

ent in the Music condition. The latencies for the 3 LSD conditions com-

ared to the PCB conditions can be found in the Supplementary Material

Figure S5). 
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Fig. 3. Mean integration. The integration averaged over trials and nodes and the standard deviation of the integration over nodes is shown as a function of time for 

the three scanning conditions for both perturbation protocols. The mean and standard deviation of the integration are shown in dark green and light green for the 

basal state of the LSD and the PCB state, respectively. The mean and standard deviation of the integration are indicated in violet and orange and for the LSD and the 

PCB state, respectively. 

Fig. 4. PILI - Node level analysis. Here the mean and the standard error of the mean (SEM) of the PILI values over trials are shown for each of the three scanning 

conditions for the LSD and the PCB state for all 90 brain regions. The vertical error bars represent the SEM for the PCB state and horizontal error bars represent 

the errors for the LSD state. The results show that the global differences between the LSD and PCB induced brain states were amplified in the music condition. 

Node-by-node analysis with corresponding p-values can be found in Table 1 and Supplementary Table S2. 
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Next, to gain further insights into local processes, we looked at the

ILI values on a node-to-node basis. We checked for statistical signifi-

ance of the difference in the mean PILI value between LSD and PCB for

ach scanning condition for each node applying a Mann-Whitney U test

ith Bonferroni correction for multiple comparison across the number

f brain nodes. The results for the synchronization protocol are shown

n Table 1 , where the 20 brain areas with the highest PILI differences

re shown in order from smallest to largest p-value with their according

ffect sizes 𝑟 = 𝑧 ∕ 
√
𝑁 , where 𝑁 is the number of samples. Effect sizes

etween 0 . 1− < 0 . 3 indicate small effects, 0 . 3− < 0 . 5 medium effects and

 0 . 5 large effects. The ordering of the rest of the brain regions and the

esults for the noise protocol can be found in the Supplementary Mate-

ial (Supplementary Tables S2 and S3). 
8 
Ordering the brain regions by p-values of each scanning condition

evealed that globally p-values were lower and effect sizes higher for

he rest with music condition with respect to the other resting condi-

ions, which confirms previous findings on the amplified effect of LSD

hile listening to music ( Kaelen et al., 2015 ; Atasoy et al., 2017 ). The

rain regions with small p-values in all three scanning conditions, were

he cingulate cortex, the precuneus, the medial OFC and the supplemen-

ary motor area. Other regions where high differences between LSD and

CB could be observed were the calcarine sulcus, the olfactory sulcus,

he superior frontal gyrus and the medial frontal gyrus, thalamus and

ippocampus. 

Taken together, these results reveal that the dynamical responses of

he brain as a whole to an external model perturbation are stronger and
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Table 1 

Node level PILI differences. In this table brain nodes are ordered for each scanning condition by p-values - from smallest to largest -, based on the PILI differences 

between LSD and PCB by perturbing each specific node at a time. Here the 20 regions with the smallest p-values are shown with their corresponding effect 

sizes. 

Rest Rest with Music Rest after Music 

Brain region p-value Effect Size Brain region p-value Effect Size Brain region p-value Effect Size 

Olfactory R 2.99e-37 ∗ 0.2328 Cingulum Mid R 1.24e-172 ∗ 0.5114 Hippocampus R 1.63e-34 ∗ 0.2237 

Thalamus L 2.70–36 ∗ 0.2297 Precuneus L 2.21e-166 ∗ 0.5019 Cingulum Ant R 2.20e-21 ∗ 0.1734 

Supp Motor Area R 4.74e-35 ∗ 0.2255 Medial OFC R 2.93e-166 ∗ 0.5017 Precuneus R 4.97e-18 ∗ 0.1580 

CingulumMid L 3.34e-33 ∗ 0.2192 Frontal Sup Medial R 1.32e-159 ∗ 0.4915 Precentral R 4.12e-15 ∗ 0.1433 

Calcarine L 1.41e-32 ∗ 0.2170 Frontal Sup Medial L 3.68e-158 ∗ 0.4892 Hippocampus L 7.24e-12 ∗ 0.1251 

Cingulum Ant R 1.80e-31 ∗ 0.2131 Frontal Sup R 9.98e-157 ∗ 0.4870 Supp Motor Area R 9.00e-12 ∗ 0.1245 

Occipital Sup R 9.14e-30 ∗ 0.2069 Frontal Sup L 1.24e-156 ∗ 0.4868 Occipital Mid L 3.36e-11 ∗ 0.1210 

Cingulum Post R 1.03e-29 ∗ 0.2067 Precuneus R 1.68e-154 ∗ 0.4834 Frontal Sup Medial R 5.16e-11 ∗ 0.1199 

Precuneus L 2.19e-29 ∗ 0.2055 Cingulum Post L 5.07e-151 ∗ 0.4779 Cingulum Mid L 6.66e-11 ∗ 0.1192 

Medial OFC L 3.74e-29 ∗ 0.2046 Cingulum Mid L 4.49e-149 ∗ 0.4748 ParaHippocampal R 7.58e-11 ∗ 0.1188 

Putamen L 4.22e-29 ∗ 0.2044 Cingulum Post R 6.79e-149 ∗ 0.4745 Medial OFC L 2.80e-10 ∗ 0.1152 

Thalamus R 8.44e-29 ∗ 0.2033 Medial OFC L 2.74e-147 ∗ 0.4719 Cingulum Ant L 9.31e-10 ∗ 0.1118 

Calcarine R 2.85e-28 ∗ 0.2013 Caudate L 2.64e-144 ∗ 0.4670 Frontal Sup R 3.58e-09 ∗ 0.1078 

Putamen R 2.86e-28 ∗ 0.2013 Olfactory R 1.63e-139 ∗ 0.4591 Fusiform R 3.62e-09 ∗ 0.1077 

Lingual L 3.52e-28 ∗ 0.2010 Frontal Sup Orb L 1.26e-136 ∗ 0.4542 Cingulum Mid R 4.11e-09 ∗ 0.1073 

Olfactory L 1.10e-27 ∗ 0.1991 MedialOFC R 1.22e-132 ∗ 0.4474 Calcarine R 4.54e-09 ∗ 0.1070 

Precuneus R 1.12e-26 ∗ 0.1952 Cingulum Ant R 5.57e-132 ∗ 0.4463 Temporal Pole Sup L 1.10e-08 ∗ 0.1043 

Cingulum Post L 1.58e-26 ∗ 0.1946 Supp Motor Area R 5.64e-131 ∗ 0.4446 Frontal Mid Orb L 1.55e-08 ∗ 0.1033 

Frontal Sup Medial L 3.00e-26 ∗ 0.1935 Cingulum Ant L 1.03e-130 ∗ 0.4441 Precuneus L 2.14e-08 ∗ 0.1022 

Cingulum Ant L 3.87e-26 ∗ 0.1931 Frontal Sup Orb R 5.13e-130 ∗ 0.4429 Temporal Inf L 3.25e-08 ∗ 0.1009 

∗ statistically significant after Bonferroni correction. 
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onger lasting under the influence of LSD when compared to PCB. Fur-

hermore, this effect is amplified in the model estimated from data in

hich participants listen to music. Next, we performed the same anal-

sis on a resting state network level, in order to assess whether some

etworks exhibit larger responses to external perturbations than others

nd more importantly, whether those networks coincide with the ones

hich have been reported to be relevant for the LSD experience. 

.5. Relationship of PILI to resting state networks 

Next, we assessed the differences in PILI values based on the synchro-

ization protocol in seven reference RSNs - default mode, executive con-

rol, dorsal attention, ventral attention, visual, limbic and somato-motor

etworks - by computing Cohen’s d values, a standardized difference

easure, between LSD and PCB PILI values for each RSN. Furthermore

e tested for statistical significance of the differences between LSD and

CB state models for each RSN 

The differences between LSD and PCB state models for all 7 RSNs in

he resting state and music condition have been found to be statistically

ignificant. In the rest after music condition 5 out of the 7 networks

on’t survive the Bonferroni correction for multiple comparisons. The

able of the corresponding p-values can be found in the Supplementary

aterial (Supplementary Table S4). Notably, in all three scanning con-

itions, three RSNs were found to have the highest PILI differences be-

ween the LSD and PCB state models: i.e. the limbic, visual and default

ode networks. The limbic network showed the highest differences in

ll three cases (see Fig. 5 , where the RSNs were ordered for each of the

hree scanning conditions by Cohen’s d values, darker colours indicate

igher difference). In both of the no-music conditions, the visual net-

ork seemed to play an important role, whereas in the music condition

he default mode network showed higher differences in PILI values than

he visual network. In the resting state conditions, the somato-motor

etwork came fourth to the first three RSNs by Cohen’s d values, whilst

n the music condition, the ventral attention network gained more im-

ortance. 

Overall, these results highlight that in particular three resting state

etworks, limbic, visual and default mode, show highly increased sensi-

ivity under the influence of LSD, in line with previous studies ( Carhart-

arris et al., 2016 b; Tagliazucchi et al., 2016 ). Importantly, our findings
9 
ropose a mechanistic explanation for the enhanced emotional, visual

nd self-referential processing due to increased sensitivity of the limbic,

isual and default mode networks, respectively, in the psychedelic state.

.6. Increased perturbation response variability in LSD condition 

Finally, we analyzed the perturbation response variability across all

rain regions. This was done by computing the standard deviation of

he PILI values over brain nodes. In Fig. 6 we show the distribution over

he 3000 trials of the standard deviation for all three scanning condi-

ions and both drug states for the synchronization protocol. We found

hat the differences in variability between LSD and PCB were highly

ignificant ( p < 0.0001) in all three scanning conditions, with higher

esponse variability under the influence of LSD than for PCB. This ef-

ect was strongest in the music condition and again less apparent in the

fter-music condition. 

. Discussion 

We applied a novel in silico model-based perturbational approach

o analyze the perturbation-elicited changes in global and local brain

ctivity under the influence of LSD compared with PCB in three con-

ecutive scanning conditions, namely a resting state followed by resting

hile listening to music and finally a post-music resting state. Besides

nding an increase in global functional connectivity and a shift of the

rain’s global working point to higher connectivity in the LSD state, we

howed that under the influence of LSD, brain dynamics show a larger

ivergence from and take longer to return to baseline activity after a

trong model perturbation compared with the PCB state. Although we

ound that this effect was global on the whole cortex, our findings also

evealed that certain brain regions and networks, such as the limbic

etwork, the visual network, and the default mode network, were most

ensitive to these changes. Finally, we also evaluated the differences be-

ween LSD and PCB with regard to the variability of these perturbational

esponses and found higher response variability under the influence of

SD. 

We found that the empirical functional connectivity was higher on

verage in the LSD condition compared with the PCB condition, and this

ifference was especially pronounced in the music condition ( Fig. 2 A),
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Fig. 5. PILI - RSN analysis. The differences between the PILIs in LSD and PCB are shown on an RSN level. For all the nodes forming part of one RSN the Cohen’s 

d value was calculated based on the mean and standard deviation over nodes in each state, indicating the standardized mean difference between the PILIs of each 

RSN in LSD and PCB. This was done for each of the 7 RSNs. The RSNs were ordered for each scanning condition (rest, rest with music, rest after music) by Cohen’s 

d values, where darker colours indicate larger differences in PILI between the LSD and PCB conditions. The white area, which represents the corpus callosum and 

the subcortical structures, is to be discarded. It should be noted that the differences between PILI values in LSD and PCB state models for each RSN have found to 

be statistically significant in the rest and the rest with music condition. In the rest after music condition only 2 out of 7 networks (limbic network and DMN) show 

statistically significant differences (see Supplementary Table S4). 
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here the effects of LSD seem to be amplified - as reported in the litera-

ure ( Preller et al., 2017 ; Kaelen et al., 2015 2016 ). This finding consoli-

ates the results of previous studies, where it was found that high-level

ssociation cortices and the thalamus exhibit increased global functional

onnectivity under the influence of psychedelics ( Tagliazucchi et al.,

016 ; Carhart-Harris et al., 2013 ; Müller et al., 2017 ). At least two pre-

ious studies have found increased thalamic functional connectivity to

arious cortical regions ( Carhart-Harris et al., 2013 ; Müller et al., 2017 )

nd another found a dramatic increase in functional connectivity be-

ween the primary visual cortex and other cortical areas under LSD -an

ffect that correlated strongly with ratings of enhanced visual imagery

 Carhart-Harris et al., 2016 b). Similar results have been reported for

ther psychedelic drugs such as psilocybin (the main psychedelic com-

onent of magic mushrooms). One study found an expanded repertoire

f dynamical brain states under the influence of psilocybin, character-

zed by an increase of the variance of the Blood-Oxygen Level Depen-

ent (BOLD) signal measured with (fMRI) and a higher diversity of dy-

amic functional connectivity states ( Tagliazucchi et al., 2014 ). In an-

ther study psilocybin was found to have an increasing effect on DMN-

ask-positive network (TPN) functional connectivity, thus underlining

imilarities of the psychedelic state to psychosis and meditatory states,

here the same effect has been found ( Carhart-Harris et al., 2013 ). Yet

nother study by Roseman et al. (2014 ) found an increase in between-

etwork functional connectivity under psilocybin, suggesting that the

sychedelic state makes networks become less differentiated from each

ther. All these findings confirm our results of an increase of global

unctional connectivity. 

Additionally to comparing the functional connectivity between LSD

nd PCB, we also assessed how specific the functional connectivity is to

he drug state, meaning how well the functional connectivity of a single

articipant relates to either the LSD or the PCB state. We found that the

rain states were predicted with an accuracy exceeding the significance
10 
evel for all 3 scanning conditions (see Supplementary Figure S3). The

nding that the FC matrices of single participants can be classified to

he corresponding drug state with an accuracy higher than the chance

evel, implies that the characteristics of the single subjects are reflected

n the group-level results. Importantly, these classification performances

ere significantly higher than expected by chance given the number of

ubjects. This suggests that also a small number of participants, as is

he case in this study, and the characteristics of their fMRI recordings

or each of the two drug states can be seen as a representative sam-

le which can be used to draw general conclusions on a global level.

evertheless, it would be undoubtedly advantageous to perform further

imilar experiments in the future with more participants involved. 

In order to study the whole-brain dynamics underlying the

sychedelic state, first, we applied a whole-brain model based on the

ormal form of a supercritical Hopf bifurcation simulating directly the

MRI BOLD responses. Our analyses revealed that the global working

egion of brain dynamics shifts to higher global coupling parameters in

he LSD state when compared with PCB. Notably however, statistical

ignificance was only reached in the music condition, implying that the

ifferences in brain dynamics between the LSD and PCB state may be

ccentuated under conditions of significant emotional evocation here

epresented by listening to music ( Fig. 2 B). This result underlines yet

gain the enhancing effect of music on the psychedelic state, as pre-

iously reported ( Preller et al., 2017 ; Kaelen et al., 2015 2016 ). Taken

ogether, our results suggest increased propagation of activity and en-

anced communication between distinct brain regions. This finding is

n agreement with previous studies that have demonstrated that the dy-

amical repertoire of the brain expands under the influence of psilo-

ybin ( Tagliazucchi et al., 2014 ), implying that, in this state, the brain

perates in a different dynamic working region. Similar findings have

lso been recently demonstrated by Atasoy et al. (2017 ), where LSD was

ound to tune brain dynamics closer to criticality, entailing an increase
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Fig. 6. Response variability. Here the distribution over trials of the standard deviation of PILI values is shown for the three different scanning conditions for LSD and 

PCB. Statistical differences between LSD and PCB brain states were evaluated with a two-sided t -test resulting in highly significant differences in all three scanning 

conditions with significantly higher PILI variability in the LSD state with respect to PCB. Especially in the music condition under the influence of LSD a considerably 

larger response variability can be observed with a p-value significantly smaller than 0.0001. 
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n the diversity of the repertoire of brain states – a finding replicated

ore recently using both LSD and psilocybin data ( Varley et al., 2019 ).

ncreased brain criticality is consistent with the so-called entropic brain

ypothesis 58,59 - and note the schematic Fig. 2 in Carhart-Harris and

riston (2019 ). 

In order to understand the optimal working point of brain dynamics

n each scanning condition, we evaluated the responses to strong off-

ine model perturbations in each state. In a previous study ( Deco et al.,

018 ), this method was successfully used to discriminate between awake

nd sleep states. The importance of this new methodology lies in the fact

hat perturbations are exclusively applied in silico to a whole-brain com-

utational model, allowing for stronger, longer lasting and brain node-

pecific perturbations in ways not possible experimentally. Furthermore,

n important difference of this model-based perturbation approach to

reviously described perturbation procedures ( Massimini et al., 2005 ;

asali et al., 2013 ; Ferrarelli et al., 2010 ) is the fact that with this new

pproach, we measure the recovery characteristics of the system after

he offset of the perturbation, not the dynamical reaction to the pertur-

ation itself. 

Following this approach, we characterized return to the basal brain

ctivity by the Perturbative Integration Latency Index (PILI). Interest-

ngly, we found differences in the global integration, even without ap-

lying any perturbation, where the basal integration was increased un-

er LSD in contrast to PCB, which was again amplified in the music

ondition ( Fig. 3 ). These findings indicate that the communication and

nteraction between distinct brain areas is enhanced under the influ-

nce of LSD, in line with the previous study of Tagliazucchi et al., where,

mongst other findings, LSD was found to increase global integration by

nhancing the level of communication between normally distinct brain

etworks ( Tagliazucchi et al., 2016 ). Similar effects could be observed
11 
ith psilocybin ( Roseman et al., 2014 ; Petri et al., 2014 ). Interestingly,

e also observed an increase in the basal integration in the music con-

ition under LSD, while music during PCB condition led to a slight de-

rease in the basal integration. This opposing effect of music in the LSD

ersus PCB conditions could be related to an accentuated psychologi-

al response to music under psychedelics, as observed more generally

n the psychedelic research literature ( Preller et al., 2017 ; Kaelen et al.,

015 2016 ). The effect of music on brain activity in the placebo con-

ition appeared to be more consistent with a generic ‘focused’ brain

esponse – as suggested by a decrease in brain-wide integration and

 narrowing of the repertoire of activity ( Ponce-Alvarez et al., 2015 b;

e, 2013 ). Music could be characterized as a type of (felt) intrinsic per-

urbation under LSD but perhaps less so under placebo, where it is more

ikely to be witnessed more as an external object. That there was less of

 difference between the LSD and placebo condition in the final resting

tate scan (post-music), could be due to a waning effect of the drug (i.e.

 pharmacokinetic factor) - as described in the Materials and Methods

ection, the third and final fMRI session (rest after music) was more tem-

orally distanced to the subjective peak effect of the drug than the first

wo sessions -, or a residual effect of having just listened to music, e.g.

tabilising mind and brain dynamics under LSD, such that they differ

ess from those of the placebo condition. It would be useful to test these

peculations in the future with more experiments. 

It was evident that almost every node revealed a marked difference

n PILI values under LSD versus placebo (see Supplementary Tables S2

nd S3) – and this was evident across all three scanning conditions (rest,

est with music, rest after music). A higher PILI value indicates that the

erturbed node shows increased sensitivity and stronger reaction to a

odel perturbation and requires longer recovery time to return to nor-

al baseline activity. This suggests there is a diminished ability of the
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rain to homeostatically ‘right itself’ after perturbation under LSD. It

s well established that slowness of recovery to perturbation is a key

roperty of critical systems, where it is sometimes referred to in the lit-

rature as “critical slowing ” ( Friston et al., 2012 ). That the brain should

xhibit critical slowing under psychedelics was recently hypothesised in

 narrative review on the effects of psychedelics on global brain func-

ion (and note Fig. 2 in this article) ( Carhart-Harris and Friston, 2019 ).

he present findings therefore provide important empirical support for

his principle. 

Heightened sensitivity and the stronger reaction to a model per-

urbation in the LSD state models is also consistent with the work of

chartner et al. (2017 ), where elevated measures of MEG-recorded spon-

aneous or resting state brain complexity was found under psychedelics

sing an approach not unrelated to that of Massimini and colleagues

 Massimini et al., 2005 ; Casali et al., 2013 ; Tononi et al., 2016 ;

assimini et al., 2009 ), who used TMS and complexity measures to char-

cterise (diminished) states of consciousness. The here described effect

f a simulated perturbation to LSD fMRI data could be regarded as a

ogical extension of these previous studies, where actual brain stimu-

ation may be difficult to perform under a potent psychedelic. More-

ver, the finding of elevated brain complexity is consistent with the

nding of Schartner et al. (2017 ), Atasoy et al. (2017 ) as well as the en-

ropic brain hypothesis ( Carhart-Harris et al., 2014 b 2018 ), which stipu-

ates that within reasonable bounds, the complexity or entropy of spon-

aneous activity indexes the richness of conscious experience, where

reater ‘richness’ implies greater diversity and depth. 

Analyzing the perturbation-elicited differences on a local node and

etwork level ( Fig. 4 and Table 1 ), we found that some brain regions and

etworks were more dominant regarding differences in PILI than oth-

rs. For example, the limbic network yielded the highest perturbation-

licited differences between the LSD and the PCB state models indicat-

ng an enhanced sensitivity of this network under the effect of LSD.

ithin this network, the cingulate cortex showed a remarkably large

ensitivity ( p < 10 − 8 , effect size: 0.51 in music condition). The cingu-

ate cortex, and the limbic system more generally, are both implicated

n emotional processing ( Hadland et al., 2003 ). Moreover, they are both

lso implicated in the brain action of psychedelics ( Preller et al., 2019 ;

üller et al., 2018 ; RajMohan and Mohandas, 2007 ; Morgane et al.,

005 ). Interestingly, limbic brain regions, especially the medial tempo-

al lobe, have been associated with producing transient dreamlike states

ith visual hallucinations, similar to psychedelic-like phenomena, upon

lectrical depth stimulation ( Herbet et al., 2014 ; Carhart-Harris and

utt, 2014 ; Vignal et al., 2006 ; Harris, 2007 ), also supporting the in-

olvement of these brain regions in psychedelic visions. The here pre-

ented finding of enhanced sensitivity to a model perturbation of the

imbic network supports the well known effect of LSD to facilitate emo-

ional arousal ( Carhart-Harris et al., 2016 a). One could infer that height-

ned sensitivity of the limbic circuitry in particular is implicated in the

eightened emotional responsivity that has been found in relation to

sychedelic therapy ( Kaelen et al., 2015 ; Roseman et al., 2019 2018 )

 The release of emotional content is thought to be a key aspect of

he therapeutic action of psychedelic therapy ( Carhart-Harris et al.,

016 a; Roseman et al., 2019 ). Abnormal functioning of the limbic cir-

uitry is well reported in mood disorders– and depression in particu-

ar ( Bennett, 2011 ; Pandya et al., 2012 ) which has been the target of

sychedelic therapy ( Carhart-Harris et al., 2016 a; Roseman et al., 2019 ).

Two other networks, the visual network and the default mode net-

ork (DMN), were strongly altered by LSD, consistent with previous

tudies reporting changes in the functioning of visual areas and in

he functional properties of the DMN under LSD ( Carhart-Harris et al.,

016 b; Tagliazucchi et al., 2016 ). Consistent with this result, brain

hanges involving visual regions have been found to correlate with eyes-

losed imagery under LSD ( Carhart-Harris et al., 2016 b), while changes

n DMN properties have been found to correlate with high-level charac-

eristics of the experience, including ego dissolution ( Tagliazucchi et al.,

016 ). 
12 
Finally, in order to understand the level of variation across brain

odes in the perturbation response, we analyzed the perturbation

esponse variability by looking at the variance over nodes of the

erturbation-elicited responses. Larger variance over brain nodes means

igher heterogeneity across brain regions. A larger response variability

ignifies that each brain region is becoming more independent in its ac-

ivity after a strong model perturbation. We found that the response vari-

bility was significantly higher in all three scanning conditions under

SD than PCB ( Fig. 6 ), which indicates an enhanced diversity in brain

ynamics, as also previously suggested for the LSD state ( Atasoy et al.,

017 ). This effect is consistent with what one would expect from a

reakdown in the usual hierarchical constraints governing global brain

unction. Interestingly, abnormal hierarchical organization has previ-

usly been associated with neuropathological disorders such as depres-

ion, with changes in multimodal network organization ( Bassett et al.,

008 ) as well as psychosis and schizophrenia, with connectivity distur-

ances afflicting hierarchical brain organization ( Bassett et al., 2008 )

eading to attenuated top-down cognitive control ( Peled, 1999 ). Further-

ore autism also has been found to relate to differences in this multi-

odal network hierarchy ( Hong et al., 2019 ). The relationship between

ierarchical organization in the brain and criticality (including criti-

al slowing) was the focus of a recent major review on the acute and

otential therapeutic action of psychedelics ( Carhart-Harris and Fris-

on, 2019 ) – and flattened functional hierarchy in the brain has recently

een observed in formal ‘gradient-based’ analyses applied to the present

ataset ( Girn et al., 2020 ). 

The present study’s results suggest fundamental changes in brain dy-

amics and complexity under the influence of psychedelic drugs, con-

istent with the brain moving closer to a critical regime in which the

rain is exquisitely sensitive to perturbation. These findings are there-

ore consistent with recent ( Carhart-Harris and Friston, 2019 ) and older

heoretical models of the effects of psychedelics on global brain func-

ion ( Carhart-Harris, 2018 ; Carhart-Harris et al., 2014 a). They also bear

ignificant relevance to principles of psychedelic psychotherapy, where

reat emphasis is placed on the importance of context, or ‘set and set-

ing’, as a principal modulator of outcomes ( Carhart-Harris et al., 2018 ).

ore plainly, the present findings of increased brain sensitivity to per-

urbation under LSD could be interpreted as related to evidence-based

ssumptions ( Kaelen et al., 2015 ) about increased emotional sensitiv-

ty to environmental and other contextual factors (such as music) under

sychedelics ( Carhart-Harris et al., 2018 ). 

The present version of the model allows us to understand how the

lobal changes induced by LSD (i.e., global coupling) interact with the

onnectome and produce different network dynamics. The main limita-

ion of the model is its homogeneity. In this model, all the brain regions

ere assumed to have the same intrinsic dynamics ( a = 0). Therefore,

ithin this model, the differences in the dynamics of the brain regions

ere a consequence of the different effective connectivity of the regions.

he model could be extended by introducing heterogeneity in local dy-

amics (i.e., by allowing the parameter a to vary between brain regions,

hus requiring the estimation of N new model parameters). This exten-

ion might be useful to investigate local changes produced by LSD. A

urther limitation of the model is its limited frequency range. Since the

odel was constructed based on BOLD signals, it can only produce slow

requencies. Probing the model with MEG signals could provide insights

n how LSD affects the different frequency bands of brain activity. 

In summary, by exploring the underlying mechanistic properties of

he whole-brain dynamics in the LSD state using a novel in silico pertur-

ational approach, we have provided important new insights into global

rain function underlying a possible altered state of consciousness that

ould bear relevance to our understanding of brain function and con-

cious states more generally. Importantly, the perturbational approach

ased on whole-brain modelling allows for the exploration of character-

stic changes in whole-brain dynamics in ways that are extremely chal-

enging to do via in vivo experiments. Furthermore, the here presented

esults enrich our understanding of how psychedelic drugs may have
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herapeutic utility and suggest future research directions, in which the

eural mechanisms underlying their clinical use can be further explored.
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