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Abstract

Recombination is an important feature of HIV evolution, occurring both within and between the major branches of diversity
(subtypes). The Ugandan epidemic is primarily composed of two subtypes, A1 and D, that have been co-circulating for
50 years, frequently recombining in dually infected patients. Here, we investigate the frequency of recombinants in this
population and the location of breakpoints along the genome. As part of the PANGEA-HIV consortium, 1,472 consensus
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genome sequences over 5 kb have been obtained from 1,857 samples collected by the MRC/UVRI & LSHTM Research unit in
Uganda, 465 (31.6 per cent) of which were near full-length sequences (>8 kb). Using the subtyping tool SCUEAL, we find that
of the near full-length dataset, 233 (50.1 per cent) genomes contained only one subtype, 30.8 per cent A1 (n¼143), 17.6 per
cent D (n¼82), and 1.7 per cent C (n¼8), while 49.9 per cent (n¼232) contained more than one subtype (including A1/D
(n¼164), A1/C (n¼13), C/D (n¼9); A1/C/D (n¼13), and 33 complex types). K-means clustering of the recombinant A1/D
genomes revealed a section of envelope (C2gp120-TMgp41) is often inherited intact, whilst a generalized linear model was
used to demonstrate significantly fewer breakpoints in the gag–pol and envelope C2-TM regions compared with accessory
gene regions. Despite similar recombination patterns in many recombinants, no clearly supported circulating recombinant
form (CRF) was found, there was limited evidence of the transmission of breakpoints, and the vast majority (153/164; 93 per
cent) of the A1/D recombinants appear to be unique recombinant forms. Thus, recombination is pervasive with clear biases
in breakpoint location, but CRFs are not a significant feature, characteristic of a complex, and diverse epidemic.
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1. Introduction

Human immunodeficiency virus (HIV) is a highly diverse retro-
virus at both the within-individual and population level (Smyth,
Davenport, and Mak 2012). The HIV reverse transcriptase (RT) is
error-prone resulting in a high mutation rate. RT also facilitates
recombination via template switching between the two RNA
genomes packaged inside the virion (Hu and Hughes 2012). The
diversity of HIV allows the virus to evade host defenses, accrue
drug resistance mutations, and prevent effective vaccine devel-
opment (Rambaut et al. 2004).

HIV-1 Group M group contains the greatest genetic diversity.
This group likely diversified in Kinshasa (Democratic Republic
of Congo or DRC) from the 1920s to the 1960s, before rapidly
expanding into global susceptible populations (Korber 2000;
Worobey et al. 2008; Faria et al. 2014). Forming phylogenetically
distinct clades, the subtypes A–D, F–H, J, and K (and sub-
subtypes within e.g. A1), are found globally but frequently have
broad geographic associations, mainly as the result of founder
effects (Rambaut et al. 2001; Archer and Robertson 2007).
Meanwhile, the DRC retained as much diversity as the global
pandemic (Niama et al. 2006). As they spread, the subtypes al-
most certainly underwent extensive recombination throughout
their evolution including at an early stage (Kalish et al. 2004;
Ward et al. 2013; Olabode et al. 2019).

Recombination between different HIV variants occurs in
individuals with dual infection (Robertson et al. 1995), either ac-
quired simultaneously (co-infection) or sequentially (superin-
fection). This gives rise to unique recombinant forms (URFs)
especially in regions where more than one subtype is common
(Yebra et al. 2015; Bbosa et al. 2019). If three or more recombi-
nant genomes without direct epidemiological linkage are found,
they may be defined as a circulating recombinant form (CRF)
(Robertson 2000). In addition, recombination between viruses of
the same subtype (intra-subtype) occurs (Kraft et al. 2012), espe-
cially where there are high rates of dual infections (Taylor and
Korber 2005), although as it is more difficult to detect due to the
similarity of the recombining sequences (Yang et al. 2005) it is
therefore less well documented.

HIV-1 subtypes represent major clades that have a lengthy
period of distinct identity, thus assigning sequences to subtypes
is inherently a phylogenetic problem. Correctly placing sequen-
ces into clades of ancestral diversity relies on the availability of
representative reference sequences, that themselves are unrec-
ombined and correctly classified. It is made challenging by
growing global diversity, the accumulation of drug resistance
mutations (essentially equating to convergent evolution), and
in particular, widespread recombination. Manual phylogenetics

has been described as a ‘gold standard’ for subtype classifica-
tion (Pineda-Pe~na et al. 2013; Fabeni et al. 2017), but a number of
automated tools exist (de Oliveira et al. 2005; Struck et al. 2014)
which are particularly useful in subtyping large datasets and
databases.

Automated subtyping methods have good accuracy com-
pared to manual phylogenetics in the case of the simple ‘pure’
subtype using just the pol region (Pineda-Pe~na et al. 2013; Fabeni
et al. 2017), although a similar assessment has not been under-
taken for whole-genome tools. Agreement between methods is
better for certain subtypes (e.g. B or C), whilst more challenging
for others (e.g. A or D), and novel recombinants with sections of
different phylogenetic history are a particular source of disagree-
ment (Gifford et al. 2006), highlighting the inherent difficulties in
classifying recombinant sequences. The description of new CRFs
for instance, typically involves showing that sequences form a
monophyletic cluster amongst a background of other sequences,
followed by a ‘boot-scanning’ sliding window approach
(Salminen et al. 1995) to find putative sections of different sub-
types, and then a more detailed and laborious confirmation by
hand: for example (Carr et al. 1998; Foster et al. 2014).

SCUEAL (Kosakovsky Pond et al. 2009) is an automated tool,
which finds the most likely subtype or recombinant mosaic with
a model-based evaluation. Briefly, a reference set of pure sub-
types and CRF genomes is used to make a reference alignment,
tree, and an inferred root sequence which remains constant for
each query and model proposal. The query sequence is then
aligned to the inferred root sequence, grafted to the reference set
to make a three-taxon tree, and the maximum-likelihood place-
ment is found. A genetic algorithm acts upon a population of
models to create mosaic suggestions for a fixed number of break-
points. BIC is used to assess the fitness of models in the popula-
tion, which evolve until there is no improvement after several
generations (the stopping criteria). Additional breakpoints may
be added until there is no further BIC improvement (and a step-
down verification). Model averaged support for the best mosaic
is found using the sum of Akaike weights of all concordant pro-
posed models. A 95% confidence interval for the breakpoint loca-
tion is found using a similar principle.

In Uganda, HIV was prevalent by the early 1980s (Serwadda
et al. 1985). Two circulating subtypes (A1 and D) are present at
similar frequencies in the population (Yirrell et al. 1998, 2002),
alongside unique A1/D recombinants (Eshleman et al. 2002).
These two subtypes are thought to represent independent intro-
ductions of HIV diversity into Uganda, with A1 having arrived
first via the rural south-west in the 1950s or 60s, followed later
by subtype D about 10 years later (Yebra et al. 2015). There were
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already reports of growing numbers of AIDS cases (then identi-
fied as aggressive Kaposi’s sarcoma or slim disease) in the rural
Rakai region of south western Uganda in the 1970s (Serwadda
et al. 1986; Kuhanen 2010). Surveillance studies found seroposi-
tivity in 1987 in pregnant women attending hospitals in the cap-
ital, Kampala, was 24.1 per cent (Carswell 1987). Today the adult
prevalence is estimated to be within 5.7 and 6.2 per cent (Joint
United Nations Programme on HIV/AIDS 2019; Ministry of
Health Uganda 2019). Dual infections can be found in female
sex workers (Ssemwanga et al. 2012; Redd et al. 2014) and also
at substantial levels in general population and low risk rural
cohorts (Kiwanuka et al. 2010; Ssemwanga et al. 2011; Redd
et al. 2012). Therefore, subtypes A1 and D have been co-
circulating in Uganda for perhaps as long as 50 years, with high
rates of incidence and dual infection, providing ample opportu-
nity for recombination to occur.

The PANGEA-HIV project (Pillay et al. 2015) was set up with
the aims of using phylogenetics to better understand the dy-
namics and drivers of ongoing transmission in African HIV epi-
demics and has generated large numbers of near full-length
genome sequences. The data generated with samples obtained
by MRC/UVRI in Uganda presented an opportunity to study the
prevalence of recombinants and the distribution of their break-
point locations along the genome in a population setting, using
numerical breakpoint locations from SCUEAL models.

2. Methods
2.1 Sample collection

Samples were collected by the MRC/UVRI and LSHTM Uganda
Research Unit between 2007 and 2017 from sites and cohorts
across southern Uganda. These included the Masaka District in
the rural South West, female sex workers from Kampala, and
people living in fishing communities on the shores and islands
around Lake Victoria. Ethical approval was given by the Uganda
Virus Research Institute Research and Ethics Committee (UVRI-
REC, Federal Wide Assurance (FWA) No. 00001354), the Uganda
National Council for Science and Technology (UNCST FWA No.
00001293), and the University of Edinburgh School of Biological
Sciences Ethics Committee (12 June 2018). All participants were
recruited voluntarily and provided written informed consent.

2.2 Sequencing and alignment

Viral RNA was extracted from plasma by automated extraction.
Near full-length HIV-1 genomes were reverse transcribed and
amplified in four overlapping amplicons using a one-step RT-
PCR protocol and a pan-HIV-1 primer set (Gall et al. 2012).
Amplicons were pooled in equimolar amounts and sequenced
using Illumina MiSeq 250-bp paired-end technology as previ-
ously described in Gall et al. (2014).

Consensus sequences were generated from short reads us-
ing an in-house de novo assembly pipeline as follows.
Trimmomatic (Bolger, Lohse, and Usadel 2014) was used to trim
reads using a mean Phred quality score cut-off of 30. Human
reads were removed by mapping to a smalt [www.sanger.ac.uk/
science/tools/smalt-0; last accessed 7 January 2020], index con-
sisting of HIV genomes [downloaded from GenBank: www.ncbi.
nlm.nih.gov/genbank; last accessed 7 January 2020], and the hg38
human assembly [downloaded from Ensembl: ensembl.org; last
accessed 7 January 2020]: read pairs where either or both reads
mapped to hg38 were removed. De novo assembly was then per-
formed using Iterative Virus Assembler (Hunt et al. 2015),

and contigs aligned to their closest viral reference using lastz
(Harris 2007). Custom Perl scripts were then used to concatenate
contigs into draft genomes and subsequently generate consen-
sus sequences by a process of iterative mapping using smalt
and SAMtools (Li et al. 2009). We applied a read depth cut-off of
�20 reads to these final genomic sequences before subsequent
analyses.

In total 1,277 consensus genome sequences were produced
at the Wellcome Sanger Institute, following the above protocol.
In addition, 603 consensus genomes were produced using a
similar approach by the Africa Centre (Durban, South Africa).
After removal of duplicates the dataset comprised 1,857 sequen-
ces. Of these, 1,472 (79.3 per cent) were over 5,000 bp, 1,218 (65.6
per cent) were over 6,000 bp, 797 (42.9 per cent) were over
7,000 bp, and 465 (25.0 per cent) were near full length at over
8,000 bp which were used in the breakpoint analyses. Of these
last, 371 were sequenced at the Wellcome Sanger Institute and
94 sequenced at the Africa Centre. The consensus sequences
were aligned using MAFFT (Katoh and Standley 2013), and
where necessary manually edited after visual inspection. The
alignment starts from the first codon of gag (HXB2, 790) and
ends at the last codon of nef (HXB2, 9,415). Hypervariable loops
1þ 2, 4, and 5 in env (HXB2 6,615–6,812; 7,377–7,478; 7,599–7,637)
were removed from the alignment as these can rarely be aligned
with confidence (Simmonds et al. 1990). The sequences are sub-
mitted to Genbank under the accession numbers MN788736:
MN790202.

2.3 Subtyping

Preliminary subtyping investigations were carried out with
COMET (Struck et al. 2014), REGA (de Oliveira et al. 2005), and
SCUEAL (Kosakovsky Pond et al. 2009). To compare the three,
which have very different outputs, the results had to simplified.
Our comparison of these three methods (Supplementary Table
S1) found overall agreement to be 36 per cent (40 per cent of
sequences agreed between two methods, and 24 per cent had
no agreement). Where there was agreement between the three
methods, these sequences tended to be pure subtypes (81 per
cent), while disagreements were more common for recombi-
nants, and any sequences with large gaps. Arau, Martins, and
Oso (2019) carried out a similar comparison, but used different
simplification rules, and therefore found different degrees of
agreement. Of these methods however, only SCUEAL outputs
breakpoint location numerically. For that reason, subtyping and
breakpoint detection were undertaken with SCUEAL imple-
mented locally using 218 full-length subtypes and CRFs as refer-
ences (accession numbers in Supplementary Table S2), allowing
the programme to find recombinant fragments of 300 bp and
above, with a maximum number of ten breakpoints. The genetic
algorithm population size was set to 128 models and was said
to have converged after no score improvements in fifty genera-
tions. A validation exercise was undertaken by creating ten ran-
dom A1/D in silico recombinants and analysing them one
hundred times in SCUEAL to test its reliability and accuracy
(Supplementary Fig. S1). The raw SCUEAL output was edited in
R (R Core Team 2019) using the packages ape v.5.3 (Paradis and
Schliep 2019), and seqinr v.3.6-1 (Charif and Lobry 2007) to make
the following adjustments. First, SCUEAL reports breakpoints at
the location in the individual sequence, not the alignment, so
these were adjusted to correspond to alignment positions.
Second, phylogenetic subtyping methods sometimes have diffi-
culty distinguishing subtypes B and D in recombinants, owing to
their closer common ancestry than other subtypes (Korber 2000).
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As no pure subtype B sequences have been observed from
Uganda (Lihana et al. 2012) and subtype B was only ever seen as
fragments in complex recombinants, B calls were changed to D.
Similarly, we did not attempt to distinguish A2 fragments from
A1, as while A1 has been established in Uganda for decades,
other A lineages have not been described. Confidence intervals
of individual breakpoints have been stripped for clarity. Intra-
subtype breakpoints were also removed.

2.4 Identification of transmitted breakpoints

A maximum-likelihood tree of all A1/D recombinant genomes,
three A1 sequences, and three D sequences was constructed us-
ing IQ-TREE (Nguyen et al. 2015) with fast model selection
(Kalyaanamoorthy et al. 2017), to identify any obvious CRFs. The
SCUEAL assessment was plotted alongside the phylogenetic
tree using R packages ape v.5.3 (Paradis and Schliep 2019) and
phytools v.0.6-99 (Revell 2012). Similarly, a second tree was also
constructed including the non-A1/D recombinants.

To distinguish between transmitted breakpoints and inde-
pendent recombination events, we used a window-based ap-
proach to find pairs of sections of the genome linked by a low
genetic distance. If a given pair of genomes contained multiple
consecutive linked windows and a similar breakpoint was also
found inside one of these windows, it was taken as evidence for
a transmitted breakpoint.

Custom R scripts were used to split genomes into 27 non-
overlapping 300 bp windows and to find linkage with a thresh-
old of 2 per cent divergence using the TN93 nucleotide distance
(Tamura and Nei 1993). This is similar to the HIV-TRACE ap-
proach (Kosakovsky Pond et al. 2018), but considers multiple
windows instead of the whole sequence. This approach was
tested with randomly generated recombinants (see
Supplementary Fig. S2), and it was shown that at the 2 per cent
level, some references would be linked in some single windows.
This 2 per cent threshold was slightly higher than the usual 1.5
per cent threshold often used in studies of transmission clus-
ters using pol sequences for example (Mehta et al. 2015). There
is no set distance that a pair of CRF genomes might be linked to
each other: it will depend on the time since recombination and
subsequent spread (younger CRFs should have lower thresh-
olds). The purpose of this linkage was not to find recent

transmission pairs, but to find sections of the genome that were
related and shared a clearly transmitted breakpoint. All of the
A1/D recombinant pairs linked by more than two out of twenty-
seven windows at the 2 per cent level were examined. Where
there was evidence for transmitted breakpoints between pairs
of genomes, only one genome was kept in the subsequent gen-
eralized linear model (GLM) analysis to avoid issues of non-
independence.

2.5 Recombination pattern classification

To classify A1/D recombinant genomes, each genome was
transformed into binary characters identifying subtype at each
nucleotide position (A1 recorded as 0, D recorded as 1). A
Euclidean distance matrix was generated from the recoded data
and K-means clusters were found using the kmeans function
from the package stats v.3.6.0 (part of base R) and the algorithm
of Hartigan and Wong (1979), which divides the data into groups
by minimizing within-cluster variation. The optimal value of K
was judged with the gap statistic (Tibshirani, Walther, and
Hastie 2001), and the elbow and silhouette methods using the
cluster v.2.0.8 (Maechler et al. 2019) and factoextra v.1.0.5
(Kassambara and Mundt 2017) R packages.

2.6 Breakpoint and genome location model framework

Breakpoints of all inter-subtype recombinant genomes at differ-
ent genome positions were analysed using a generalized linear
model in R. The binary response was presence or absence of a
breakpoint, aggregated for each window of the genome, trans-
formed with the logit link. Genomes were divided into twenty-
seven windows of 300 bp in length. The first window did not
contain breakpoints (as the minimum length to assign a sub-
type was constrained to 300 bp), and the last window was fewer
than 300 bp. Both were removed from the analysis. Following
the genome K-means clustering result, the genome regions
were defined into three broad regions of the genome. These
were 1, windows containing gag–pol (windows 1–13), 2, a cus-
tom region of envelope (C2-TM, from C2 of gp120 to the trans-
membrane region of gp41, windows 19–22), and 3, accessory
gene regions (vif, vpr, vpu, 14–18) and the cytoplasmic tail of
gp41 plus nef 22–26.

Figure 1. Subtype distribution in the 5,000 bp and above genomes, n¼1,472, and the near full length 8,000 bp and above dataset, n¼465.
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3. Results
3.1 Subtype distribution

The MRC PANGEA-HIV genome dataset comprised 1,857
sequences, of which 1,472 were over 5,000 bp and 465 were over
8,000 bp. The subtype distribution for the 5,000 bp dataset was:
411 (27.9 per cent) A1, 235 (16.0 per cent) D, 25 (1.7 per cent) C,
472 (32.1 per cent) A1/D, 63 (4.3 per cent) A1/C, 25 (1.7 per cent)
C/D, 54 (3.7 per cent) A1/C/D, and 187 (12.7 per cent) complex. Of
the 465 near full-length genomes, 233 (50.1 per cent) were ‘pure’
containing only one subtype (143 A1; 82 D; 8 C), while 232 (49.9
per cent) were inter-subtype recombinants (164 A1/D; 13 A1/C;

9 C/D; 13 A1/C/D; and 33 other complex recombinants Fig. 1).
SCUEAL called more ‘complex’ and ‘other’ subtypes in the
5,000 bp dataset than the more complete sequences, which may
be due to gaps in the sequence. Excluding the ‘complex’ cate-
gory however, there was no difference in subtype proportions
between these two datasets (v2¼ 4.19, df ¼ 6, P¼ 0.65), and the
ratio of A1 to D genomes was similar (1.743:1 in the 8,000 bp and
1.748:1 in the 5,000 bp dataset), confirming a lack of bias in suc-
cessful sequencing by subtype or recombinant status. For the
remaining analyses, we used the near full-length genome data-
set where subtype and location of breakpoints could be most ac-
curately determined.

Figure 2. Maximum-likelihood reconstruction of the A1/D recombinants using IQ-TREE and their SCUEAL subtype (right). One triplet (Rec-105 to Rec-107), and a

few cherries can be seen (e.g. Rec-153 and Rec-154). Some examples of convergent recombination patterns include Rec-116 and Rec-147, Rec-8 and Rec-160, Rec-29 and

Rec-158.
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3.2 Identification of CRFs and transmitted breakpoints

A maximum-likelihood tree of the A1/D recombinants with
three A1 and D pure sequences was constructed (Fig. 2). A simi-
lar figure is presented for non-A1/D recombinants (n¼ 68) in
Supplementary Fig. S3. Although the overall phylogeny is con-
founded by the violation of the key assumption that there are
no recombinants, any CRF should form a clear monophyletic
cluster.

Midpoint rooting broadly splits the tree into genomes pre-
dominantly containing subtype D, and those predominantly
containing subtype A1 (the three references of each subtype fall
within these respective groups). There are a few closely related
cherries, and one closely related triplet (Fig. 2). Notably, some
recombinants with a similar recombinant pattern can be found
on altogether different parts of the tree, showing clear evidence
of convergent recombination (e.g. Rec-116 and Rec-147, Rec-8
and Rec-160, Rec-29 and Rec-158).

We then used a window-based approach to find consecutive
genetically linked windows that contained similar breakpoints,
in an attempt to distinguish transmitted and unique break-
points. Of the 164 A1/D recombinants, there were twelve single
pairs, linked at a 2 per cent threshold in a minimum of two out
of twenty-seven windows (Fig. 3). There were also pairs forming
a triplet (boxed), which had a similar recombination pattern in
all three sequences and was tightly linked in multiple windows.
However, there is epidemiological linkage of two of these
sequences (data not shown) and therefore it does not meet the
requirements of a CRF.

Pairs 1–3 were linked in twenty-seven/twenty-seven win-
dows and are likely to have been transmitted relatively recently.
Pair 2 has an almost identical subtype result and those break-
points were probably transmitted. Other matching breakpoints
outside of linked windows (e.g. in pair 4 or 6) could represent

transmitted breakpoints whose windows have diverged suffi-
ciently to indicate an older common ancestor.

Assuming there is evidence for transmitted breakpoints in
pairs 1–12 (the A1/D pairs) and the triplet, there are fourteen A1/D
genomes that have evidence for being transmitted wholly or par-
tially, and these pairs and triplet can be found as closely linked
tips in the phylogenetic tree (Fig. 2). Overall, as the vast majority
of the A1/D genomes (150/164; 91 per cent) lack linkage with other
genomes, we see no evidence for large-scale transmission of indi-
vidual recombinants such as would be recognized as a CRF, and
so all should be considered URFs. Linked windows with non-
matching breakpoints (e.g. pairs 1, 3, 5) are likely to represent
competing SCUEAL models with similar likelihoods, perhaps in
regions where divergent subtypes are more similar.

3.3 Recombinant groupings

The A1/D recombinants were placed into groups to highlight
similarities in recombination patterns. This was done by put-
ting subtype identity at each position along each genome
through a K-means clustering algorithm. The optimum number
of groups was found to be nine. Figure 4 shows a representation
of the 164 A1/D recombinant genomes placed into these nine
groups (see Supplementary Figs S4–S6 for justification of, and
alternative values of K). Group 1 contains mostly subtype D (in
orange) with small sections of subtype A1 (in blue), whereas
group 9 contains mostly subtype A1 with small sections of sub-
type D. In the remaining groups it is notable that a section of en-
velope appears to be inherited intact in many A1/D
recombinants. This was observed in both directions, where sub-
type A1 envelope was found on a background of subtype D
(groups 3–5), and subtype D envelope was found on a back-
ground of subtype A1 (groups 6 and 7). The part of envelope

Figure 3. Pairs of genomes linked by a distance of less than 2 per cent genetic distance (TN93) in two or more 300 bp windows along the genome. The matching win-

dows are shown with open clear boxes, and the SCUEAL subtyping result for the genome pairs are in colour (blue for subtype A1 and orange for subtype D).
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these groups have in common spans from the C2 part of gp120
through to the transmembrane domain of gp41 (abbreviated C2-
TM). In groups 7 and 8 the intact region of envelope extended
into nef and there also appeared to be sections of subtype D RT
(within pol) with A1 subtype either side.

3.4 Breakpoint distribution

The distribution of breakpoints along the genome for the A1/D
genomes (n¼ 164) and all other inter-subtype recombinants
genomes (n¼ 68) is shown in 300 bp windows in Fig. 5a. The two
distributions were strongly positively correlated (Pearson corre-
lation, R2¼ 0.91, df ¼25, P< 0.001).

Both distributions show a relatively large frequency of
breakpoints in the accessory gene region (covering vif, vpu, vpr,
tat1, rev1, and genome positions 4,200–5,700), lower levels of re-
combination in the gag–pol region, and a particularly low level
of recombination in the envelope region which was also seen in
the K-means clustering result (Fig. 4). Figure 5b shows the

distribution within envelope at a finer scale (100 bp windows)
and a lower frequency of recombination within the C2-TM re-
gion (windows 20–23).

Table 1 shows the GLM summary. Regions of the genome
containing gag–pol had significantly (P< 0.001) fewer break-
points per 300 bp window per genome than the accessory gene
region, as did the C2-TM region (P< 0.001). On the data scale the
model finds the following estimates of breakpoint per 300 bp
window per genome: gag–pol 0.073 (95% CI 0.064–0.083), env-C2-
TM 0.046 (95% CI 0.035–0.062), and the accessory regions 0.166
(95% CI 0.150–0.182).

4. Discussion

Multiple studies using single gene regions for example (Yirrell
et al. 1998, 2002; Kaleebu et al. 2000) have previously described
the HIV diversity in Uganda as predominantly subtypes A1, D,
and A1/D recombinants (including A1/D URFs (Eshleman et al.
2002)). A more recent study suggests that in the pol region,
around 15 per cent of sequences are detectable inter-subtype
recombinants (Bbosa et al. 2019), however, near full-length
genomes reveal substantial additional recombination: we ob-
serve here that around half (49.9 per cent) of the genomes are
inter-subtype recombinants, and that most of these are URFs.
Earlier small-scale studies of full-length genomes from Uganda
have also shown high numbers of inter-subtype recombinants
for example (14/46; 30 per cent) (Harris et al. 2002) and (92/200;
46 per cent) (Lee et al. 2017), also predominantly containing A1
and D subtypes.

This dataset, containing large numbers of near full-length
sequences from a country already known to contain high num-
bers of unique recombinants, provided a difficult subtyping
challenge. SCUEAL is an automated tool, unique in its ability to
find a model-based assessment of recombination, including
breakpoint locations. We have tested SCUEAL against in silico
PANGEA subtypes A1 and D recombinant sequences, and found
it to perform extremely well. Further to this, extensive tests
were included in the original SCUEAL publication (Kosakovsky
Pond et al. 2009), including a test against simulated recombi-
nants, of database sequences, and in a comparison with the
boot-scanning tool REGA. While it was shown to perform very
well under a wide range of scenarios, accuracy wanes under the
most complex scenarios, for instance those with more break-
points, with closely related recombining sequences, and short
fragments. Whilst SCUEAL is an extremely powerful model-
based estimation of recombinant history, it is probabilistic, and
should be interpreted as such.

According to the SCUEAL models of this dataset, there are
significantly lower levels of recombination breakpoints in the
gag–pol and envelope C2-TM regions compared with the acces-
sory gene regions of the genome. The pattern of breakpoint fre-
quency along the genome is remarkably similar to those in CRFs
and URFs from publicly available datasets (Fan, Negroni, and
Robertson 2007). These authors were the first to hypothesize
that envelope is often inherited intact, being transferred into
new genomes as an integral unit (Archer et al. 2008). Functional
constraints of protein and RNA folding could drive these pat-
terns, as has been shown in vitro (Galli et al. 2010), and this
appears particularly pertinent in the envelope region, where the
K-means clustering and GLM result showed that the C2-TM re-
gion is often inherited intact. The gp120 protein is essential for
cellular entry and for outcompeting other strains (Marozsan
et al. 2005), and its recombination is likely to come up
against functional constraints (Simon-Loriere et al. 2009). The

Figure 4. Recombination pattern of the A1/D recombinant genomes (n¼164).

Genome position is on the x-axis and each horizontal bar is an individual ge-

nome recombination pattern. Segments of orange colour represent subtype D,

while blue colouration represents subtype A1.
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(a)

(b)

Figure 5. (a) Distribution of inter-subtype recombination breakpoints divided into 300 bp bins in A1/D recombinants (n¼164) and all other inter-subtype recombinant

genomes (n¼68). Genome position numbering corresponds to the alignment as described in Section 2. (b) Distribution of breakpoints in the envelope region.

Breakpoints have been binned into 100 bp regions and the finer sub-structure of gp120 and gp41 is shown.
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three-dimensional structure of envelope shows the interde-
pendence of the gp120 and gp41 proteins, and the disruption of
internal residue contacts is expected to decrease the fitness of
recombinants (Woo, Robertson, and Lovell 2014). The intricate
interdependences of env proteins have been further demon-
strated in vitro (Bagaya et al. 2015), and also by computational
simulations of protein folding (Golden et al. 2014).

Sequence identity (Baird et al. 2006; Archer et al. 2008) and
RNA structure (Galetto et al. 2004) have been shown to predict
recombination frequency along the HIV genome. RNA struc-
tures have also been shown to potentially enable the recombi-
nation of envelope (Simon-Loriere et al. 2010), and in particular,
a hairpin in C2 is identified as a driver of recombination. This
mechanistic explanation of recombination in envelope, taken
together with the seemingly universal breakpoint pattern and
in the global CRF datasets, may suggest the genome recombina-
tion pattern and the recombination of C2-TM as an integral unit
as observed here, is not unique to Uganda, but may be general-
ized to other population settings.

Finding potential CRFs among a myriad of recombinant
genomes is not straightforward as standard phylogenies are vi-
olated by recombination, but sequences that have a more recent
common ancestor (such as CRFs) should be identifiable as a
cluster. However, independent recombination events with con-
vergent recombination patterns involving the same subtypes
and breakpoints will be difficult to distinguish from CRFs that
originated years or decades ago. It is also possible that some re-
combination events are sequential, where recombinant
genomes undergo new recombination, creating breakpoints of
different ages in the same genome.

We searched all recombinant sequences for shared break-
points which would suggest recombinants had been transmitted.
The error associated with breakpoint assignment in SCUEAL will
be related to diversity in the surrounding region. Any case where
transmission of a recombinant had occurred would lead to the
flanking sequences either side of the breakpoint being homolo-
gous even if subsequent recombination caused the descendent
sequences to be relocated in the phylogeny. Given the difficulty of
applying phylogenetic approaches we estimated simple genetic
identity across the breakpoint between putative examples of
transmitted recombinants. This revealed a small number which
could be assigned to linked pairs. Overall 91 per cent of these
recombinants are unique, as previously seen in pol sequences
(Yebra et al. 2015), and parallels the general low frequency of
transmission pairs in the Ugandan general population (Bbosa
et al. 2019). A high prevalence of URFs in Uganda and neighbour-
ing Kenya has been seen in earlier studies (Harris et al. 2002; Yang
et al. 2004; Lee et al. 2017) pointing to their continual creation,
which would require a relatively high dual infection rate. In gen-
eral, this would be expected to be found in transmission networks
of higher degree than observed here (we found only twelve linked
pairs and a triplet in a pool of 164 A1/D recombinants). It appears
from this inconsistency that the HIV transmission network struc-
ture in Uganda is more complex than generally thought.

This study collapses quasi-species diversity into single consen-
sus genomes, which may obscure recombinational variants. This
would be particularly true in recent superinfections where it might
be possible to find the parental strains alongside a multitude of
recombinants. Song et al. (2018) skilfully made use of single-
genome sequencing to explore recombination within an infection.
Applied in this context it might allow us to distinguish older trans-
mitted recombinants from those de novo within-patient.

The distinct lack of CRFs in the dataset suggests recombinants
are unable to establish in any appreciable way. A recombinant
might be transmitted widely if it has some biological advantage
(Turk and Carobene 2015) or after going through a bottleneck in a
new susceptible population for example CRF01_AE (Li et al. 2017),
but neither appears to hold true in this already established and
diverse epidemic. However, since the sampling density is low and
only a small sample of closely linked pairs of genomes was found,
our findings could also be consistent with the presence of circu-
lating recombinants at low frequency.

Recombination is an important evolutionary force, observ-
able at every scale, from within-patient (Song et al. 2018) to
deep in HIV evolutionary history, before even the divergence of
the subtypes (Olabode et al. 2019). Significant efforts have been
made to quantify the general population level of recombination
in HIV-1 using coalescent-based estimators (McVean, Awadalla,
and Fearnhead 2002; Taylor and Korber 2005) which concluded
that it can be extremely high, particularly in comparison with
other viruses with comparable levels of population nucleotide
diversity (e.g. HCV). Taylor and Korber extended their analysis
to estimate possible levels of superinfection consistent with
both the within-individual recombination level they inferred
and that of the frequency of recombination inferred at the pop-
ulation level. They suggested that the superinfection level could
be as high as 15 per cent in some combinations of parameter
values. However, as they pointed out, they did not consider
non-random mixing in the population, which generally applies
to sexual networks (Liljeros et al. 2001).

Here, we have shown pervasive levels of inter-subtype re-
combination in Uganda. While at the population level some pat-
terns of recombination breakpoints are more prevalent than
expected, the effect is not large, and certainly has not given rise
to outgrowth of any particular recombinant, or CRF, as the great
majority are unique. A major assumption of any phylogenetic
analysis is that no recombination between sequences has taken
place. The greatest impact of the inferred high level of recombi-
nation in the dataset therefore appears to lie on the reconstruc-
tion and interpretation of HIV phylogenies. This may be
especially true for sequences with overlooked intra-subtype
recombination.
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GenBank under accession numbers MN788736: MN790202. The
whole-genome version of SCUEAL is available on Github
(https://github.com/veg/hyphy-analyses).

Supplementary data

Supplementary data are available at Virus Evolution online.
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