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Abstract. Most manual communicative gestures that humans produce cannot be
looked up in a dictionary, as these manual gestures inherit their meaning in large
part from the communicative context and are not conventionalized. However, it is
understudied to what extent the communicative signal as such—bodily postures
in movement, or kinematics—can inform about gesture semantics. Can we con-
struct, in principle, a distribution-based semantics of gesture kinematics, similar
to howword vectorizationmethods in NLP (Natural language Processing) are now
widely used to study semantic properties in text and speech? For such a project
to get off the ground, we need to know the extent to which semantically similar
gestures are more likely to be kinematically similar. In study 1 we assess whether
semantic word2vec distances between the conveyed concepts participants were
explicitly instructed to convey in silent gestures, relate to the kinematic distances
of these gestures as obtained from Dynamic Time Warping (DTW). In a second
director-matcher dyadic study we assess kinematic similarity between sponta-
neous co-speech gestures produced between interacting participants. Participants
were asked before and after they interacted how they would name the objects.
The semantic distances between the resulting names were related to the gesture
kinematic distances of gestures that were made in the context of conveying those
objects in the interaction.Wefind that the gestures’ semantic relatedness is reliably
predictive of kinematic relatedness across these highly divergent studies, which
suggests that the development of an NLP method of deriving semantic related-
ness from kinematics is a promising avenue for future developments in automated
multimodal recognition. Deeper implications for statistical learning processes in
multimodal language are discussed.
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1 Introduction

Humans exploit a multitude of embodied means of communication, where each mode
of communication has its own semiotic affordances. Manual and whole-body commu-
nicative movements, such as co-speech gestures or signs in a sign language, have been
suggested to leverage iconicity to convey meaning [1–3]. Iconicity is a special type of
referential act, as the form of the message can inform more directly about the content of
the message as compared to arbitrary symbols, by establishing a spatio-temporal resem-
blance between form and referent; for example, by moving in a way that resembles
brushing one’s teeth (form), one can convey a meaning related to brushing one’s teeth
(content). What is particularly astonishing is that during spoken language manual iconic
references are spontaneously constructed, in a way that does not necessarily need to be
repeated later when the referent is mentioned again [4], nor does it need to be replicated
exactly when gestured about it in a similar context by someone else [5]. Thus even when
two gestures have a similar meaning and occur in a similar speech context, they do not
need to be replicated in form. This “repetition without repetition” [6]—a good charac-
terization of humanmovement in general—is one of the reasons why the iconic meaning
of gestures is generally held to be unformalizable in a dictionary-like way [7, 8], with the
exception of more conventionalized emblem gestures (e.g., “thumbs up”; e.g., [8, 9]).
To complicate matters further, gestures’ meaning is dependent on what is said in speech
during gesturing, as well as the wider pragmatic context. All these considerations might
temper expectations of whether information about the gesture’s content can be derived
from the gesture’s form—bodily postures in motion, i.e., kinematics.

It is however an assumption that the kinematics of gestures are poorly informative
of the meaning of a depicting or iconic gesture. Though it is undeniable there is a lot
of variance in gestures’ form to meaning mapping, at some level there is invariance
that allows depicting gestures to depict, some kind of abstract structural similarity at a
minimum [10]. It is also possible that gestures are semantically associated by the mode
of representation [11, 12] they share (which is not the same as, but related to certain
kinematic properties such as handshape). For example, it has been shown that gestures
for manipulable objects are likely to be of the type “acting” (e.g., moving your hand
as if you are brushing your teeth to depict toothbrush) compared to gestures depicting
non-manipulable objects (which are more likely to be “drawn”, e.g. tracing the shape of
a house with the hands or index fingers) [3]. Gaining empirical insight in whether we can
glean some semantic information from kinematics in a statistical fashion, is an impor-
tant project as it would not only calibrate our deep theoretical convictions about how
gesture kinematics convey meaning, but it would also pave the way for computer scien-
tists to develop natural language processing (NLP) algorithms tailored for iconic gesture
kinematics vis-à-vis semantics. Modern NLP procedures such as word embedding vec-
torization (word2vec) operate on the assumption of distributional semantics, holding
simply that tokens that co-occur in similar contexts are likely semantically related. In
the current study we will assess another assumption that could be powerfully leveraged
by NLP procedures tailored to gesture semantics: Do gestures that semantically relate
to one another move as one another?
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If gestures do indeed show such statistical dependencies in form and meaning on the
level of interrelationships, they offer a source of simplification of content that is similar
in nature to statistical dependencies that characterize linguistic systems in general and
are exploited by NLP [13]. Note though, that distributional semantics is something
that simplifies the learning of a language for humans too, as for example an infant
can leverage a language’s syntactic, semantic, and phonological co-dependencies via
statistical learning [14]. Similarly, the current investigation of potential statistical co-
dependencies between semantic and kinematic relatedness in gestures are key for coming
to an understanding of how humans really learn and use language, which is a sense-
making process steeped in a rich multimodal context of different forms of expression
[15].

1.1 Current Investigation

In two motion-tracking studies we assess whether the semantic (dis)similarity between
concepts that are putatively conveyed by gestures, are related to the (dis)similarity of
the gesture’s kinematics. We computed word2vec distances between verbal labels of
the concepts conveyed by gestures, and we computed kinematic distances using a well-
known time-series comparison algorithm called Dynamic Time Warping (see e.g., [16–
18]). By computing all possible distances between conveyed concepts, as well as gesture
kinematics, we essentially map out a semantic and kinematic space that can be probed
for covariances [13, 16, 19, 20].

For a large-scale charades-style study 1withmore than 400 participants, the concepts
that were conveyed were defined from the outset, as participants were asked to convey
in their own way a particular concept with a silent gesture (i.e., without speech) to a
robot who was tasked to recognize the gesture [21]. Silent gestures are an idealized test
case for us as they are designed to be maximally informative in that modality, and the
structured nature of the interaction allows us to more definitively identify the semantic
targets of the gestures.

However, silent gestures are not a common mode of expression in humans (note,
signs in sign languages are not the same as silent gestures; for an introduction see [22]).
Indeed, in most cases, gestures are generated spontaneously in the context of concurrent
speech. There, speech often shares a communicative load with co-speech gestures, and
verbally situates what is meant with a gesture [7]. Whatever semantic-kinematic scaling
pattern we might find for highly communicatively exaggerated silent gestures, need thus
not be replicated for co-speech gestures which perform their referential duties in a more
speech-situated way.

In study 2, we opportunistically analyze dyadic interactions from a smaller lab study
[23]. Dyads performed a director-matcher task, in which they took turns to describe
and find images of novel 3D objects (‘Fribbles’ [24]). For each Fribble, we analyzed
the gestural movements produced by both participants in the context of referring to that
Fribble. Before and after the interaction, participants were individually asked to come up
with a verbal label/name (henceforth “name”) for each Fribble (1–3 words) that would
enable their partner to identify the correct Fribble. This allows us, similarly to study 1,
to relate gesture kinematic differences to possible semantic word2vec differences of the
Fribble names before as well as after the interaction task. Importantly, with regards to
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study 1, we will analyze kinematic and semantic distances between individuals in a pair,
such that we assess how gesture differences between Fribble i and j between participants
in a pair relate to naming differences between participants for those Fribbles i and j. We
thus analyze shared semantic and kinematic spaces, in search for covariances in their
geometry.

2 General Approach

In both studies we computed the semantic (Ds) and kinematic spaces (Dg). Seman-
tic spaces comprised semantic distances between concepts (study 1) or object names
(study 2). Kinematic spaces comprised kinematic distances between the sets of gestures
produced for two concepts (study 1) or two objects (study 2).

We used word2vec to compute semantic distances (1 - cosine similarity) between
concepts that were (putatively) conveyed in gesture. To determine semantic dissimilarity
between concepts we used SNAUT [25] to compute cosine similarity based on a Dutch
model CoNLL17 [26]1.

For the kinematic distance computation, we use Dynamic Time Warping (DTW).
DTW is a well-known time series comparison algorithm, and it measures the invariance
of time series under variations in time shifts. It does this byfinding awarping line between
time series, by constructing amatrix containing all distances between time series’ values.
The warping line is a trajectory over adjacent cells of the matrix which seeks the lowest
distances between the time series values (see for details, [17, 18]). Conceptually, this
amounts to aligning the time series through warping and then calculating the distances
(or error) still remaining. The distance score is then normalized for the lengths of the
time series, so that the possible amount of accumulated error is similar for time series of
different lengths. The time series canbemultivariate (e.g., horizontal andvertical position
of a body part through time) such that theDTW is performed in amultidimensional space
(for a visual explanation see, [16]). In essence the distance scores that are computed
provide a summary value of the differences between two time series. In our case a time
series defined the kinematic x, y, and z trajectory of a body part.Weused an unconstrained
version of DTW [17] implemented in R-package ‘dtw’, whereby beginning and trailing
ends were not force aligned, thereby circumventing issues of discrepant errors that can
be produced when the start and end points of the meaningful part of an event in a time
series are not well defined [27]2.

Given the exploratory nature of the current analysis, and given that we will be testing
our hypothesis in two datasets, we will treat kinematic-semantic effects as statistically
reliable at an Alpha of <0.025(0.05/2) .

Anonymized data and scripts supporting this report can be retrieved from our Open
Science Framework page (https://osf.io/yu7kq/).

1 The model used for word2vec can be downloaded here: http://vectors.nlpl.eu/repository/.
2 For a visual example of how time series are compared byDynamic TimeWarping, see our supple-
mental figure https://osf.io/dz9vx/. This example from study 1, shows the vertical displacement
of the left hand tip for three compared gestures that conveyed the concept “airplane”.

https://osf.io/yu7kq/
http://vectors.nlpl.eu/repository/
https://osf.io/dz9vx/
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2.1 Study 1

Study 1 utilizes the ‘NEMO-Lowlands iconic gesture dataset’ [21] for which 3D kine-
matic data (Microsoft Kinect V2. sampling at 30 Hz) was collected for 3715 gestures
performed by 433 participants (children and adults) conveying 35 different concepts
(organized within 5 themes containing 7 concepts each: e.g., animals, musical instru-
ments). Participantswere taskedwith conveying a concept to a robotwith a silent gesture,
much like playing charades. The robot was tasked with recognizing the gesture via a
kinematic comparison with a stored lexicon. If it could not recognize the gesture, the
participant was asked to perform the gesture again and such trials were also included in
the final gesture dataset. Importantly, participants were not instructed how to gesture,
and creatively produced a silent gesture for the requested concepts3.

We computed the semantic distance for each pair of concepts using word2vec, rang-
ing from a semantic dissimilarity or distance of 0 (minimum) to 1 (maximum). These
semantic dissimilarity scores filled a symmetrical 35 × 35 semantic distance matrix Ds

(without diagonal values) containing comparisons between each concept ci and concept
cj:

Ds
i,j = 1 − cosine_similarity

(
ci, cj

)
, i �= j

Gesture kinematic distance scores filled a similar 35× 35 matrix,Dg, with distances
between all combinations of gestures belonging to concepts i and j, calculated using
dynamic time warping:

Dg
i,j = ave

ni,mj∑

ki,lj

ave
p∑

o=1

dtw
(
tkio, tlj lo

)
, i �= j

Kinematic distances (Di,j)were computed between all combinations of gestures ki for
concept i, and gestures lj for concept j, except not for when i = j (i.e., no diagonal values
were computed). The computations were performed for all combinations of gesture set ni
and gesture set mj, and then averaged. A dynamic time warping algorithm [‘dtw(query,
referent)’] was used, where for each referent gesture ki and each query gesture lj a
multivariate time series t was submitted, containing the x, y, and z trajectories for key
point o (e.g., o = left wrist x, y, z). The computed distances were averaged over the total
of p = 5 key points. We have previously observed that these body parts (as indexed by
key points), left/right hand tip, left/right wrist, and head, are important for assessing the
variance in silent gesture [22]. Note that each time series submitted to DTW was first z-
scaled and centered, and time series were smoothed with a 3rd order Kolmogorov-Golai
filter with a span of 2 frames (a type of Gaussian moving average filter).

Since we use an unconstrained version of DTW, computations can yield asymmetric
results depending on which time series is set as the referent, so for each DTW distance
calculation we computed the distance twice by interchanging the referent and query
time series and then averaging, yielding a single distance score. Please see our OSF

3 Due to time constraints, participants only performedgestures for five randomly selected concepts.
The repetition rate due to the robot’s failure to recognize the gesture was 79%.
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page (https://osf.io/39ck2/) for the R code generating the kinematic matrix from the
time series.

In sum, our analyses yielded a semantic distance matrixDs and a similarly formatted
kinematic distance matrix Dg containing information about semantic and kinematic
(dis)similarity between each combination of 2 of the 35 concepts. This then allows us
to assess whether semantic dissimilarity between concepts is related to the kinematic
dissimilarity of the associated gestures. Figure 1 provides a geometric representation of
the procedure’s logic.

Fig. 1. Here the geometric/network representation is shown (using t-distributed stochastic neigh-
bor embedding, for 2D projection throughmultidimensional scaling [28]) of the kinematic (above)
and semantic distances between concepts conveyed by participants in the NEMO-Lowlands
dataset. Examples of matches and a mismatch are highlighted, where matches (black boxes a-
c) indicate that concepts that were kinematically alike were also semantically alike (e.g., spoon
and scissors), and two red boxes (d) showing examples where concepts were kinematically dis-
similar but semantically similar (e.g., stairs and toothbrush). Note that it could also be the other
way around, such that there is high kinematic similarity but low semantic similarity (though we
did not find this in the current dataset). (Color figure online)

https://osf.io/39ck2/


Semantically Related Gestures Move Alike 275

2.2 Results Study 1

We performed mixed linear regression (see Fig. 2; analysis script: https://osf.io/kvmfc/)
to assess whether semantic distances would scale with kinematic distances, with ran-
dom intercepts for the concept that is used as reference (models with random slopes for
the effect of semantic distance did not converge). Relative to a base model predicting
the overall mean of kinematic distance, a model including semantic distance was reli-
ably better in explaining variance, Chi-squared change (1) = 16.23, p < .001; Model
coefficient semantic distance b = 0.033, t (560) = 191.43, p< .001, Cohen’s d = 0.34.

Fig. 2. Relations between semantic and kinematic distances are shown, overall slope and the
simple correlation coefficient is given with colored points indicating the referent object (e.g.,
plane, bird) (panel a). Panel (b) shows separate slopes for each concept. Panel (c) shows different
colors and slopes for the within top-down category (e.g., transportation-transportation) or between
category comparisons (e.g., static object-transportation), and panel (d) shows different colors and
slopes for within bottom-up category (e.g. cluster1-cluster1) and between category (e.g., cluster1-
cluster2) comparisons. We can see that there is a positive relation between semantic and kinematic
distance, which is globally sustained, such that within and between categories that positive relation
persists. This indicates that gesture comparisons within a similar domain (either defined through
some thematization by the researcher, or based on the structure of the data) are as likely to be
related to semantic distance aswhen those comparisons aremade across domains. Note further that
it seems that semantic distances in panel (c) are lower for within category comparisons, suggesting
that top-down categories are reflected in the semantic word2vec results (this aligns with Fig. 1
showing that categories tend to cluster in semantic space).

https://osf.io/kvmfc/
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It is possible that this general weak but highly reliable relation between semantic
vs. kinematic distance mainly relies on comparisons between concepts that are highly
dissimilar, so that, say, the kinematic distance between two concepts that are within
the same category (e.g., bus and train are in the category transportation) does not scale
with semantic distance. To assess this, we compared the relation between kinematic vs.
semantic distance for comparisons that are within a defined category versus between
different categories. Firstly, we can use the top-down categories (e.g., transportation,
musical instruments) that were used to group the stimulus set for the original study
[21]. Secondly we used a bottom-up categorization approach, by performing k-means
clustering analysis on the semantic distance matrices, where the optimal cluster amount
was pre-determined by assessing the cluster amount with the highest average silhouette
(i.e., silhouette method; yielding 2 clusters).

Furthermixed regressionmodeling onto kinematic distancewas performedby adding
within/between category comparisons to the previous model containing semantic dis-
tances, as well as adding an interaction between semantic distance and within/between
category. For the top-down category, neither a model adding within/between category
as a predictor, Chi-squared change (1) = 0.0005, p = .982, nor a model with category
x semantic distance interaction, Chi-squared change (1) = 0.113, p = .737, improved
predictions. For the bottom-up category, adding within/between category as a main
effect improved the model relative to a model with only semantic distance, Chi-squared
change (1) = 8.50, p = .004. Adding an interaction did not further improve the model,
Chi-squared change (1) = 0.17, p = .674. The statistically reliable model coefficients,
indicated the main effect of semantic distance, b = 0.020, t (559) = 166.29, p < .001,
Cohen’s d = 0.18, as well as a main effect of category, bwithin vs. between = −0.006, t
(559) = −2.92, p < .001, Cohen’s d = −0.25. The main effect of bottom-up category,
indicates that when comparisons are made between concepts that are within a semantic
cluster, those gestures are also more likely to have a lower kinematic distance. The lack
of an interaction effect of category with semantic distance, indicates that the kinematic-
semantic scaling effects holds locally (within categories) and globally (between cate-
gories), suggesting that there is no clear overarching category that drives the current
effects. If this would be the case we would have found that the semantic-kinematic
scaling relation would be absent for within category comparisons.

To conclude,weobtain evidence that silent gestures have aweakbut reliable tendency
to be more kinematically dissimilar if the concepts they are supposed to convey are also
more semantically dissimilar.

3 Study 2

In study 2, therewere 13 pairs, consisting of 26 participants (11women and 15men,Mage
= 22 years, Rangeage = 18–32 years). This is subset of the original data (20 pairs), as we
only included data for which we also have some human gesture annotations for, which
we could relate to our automatic processing. The participants were randomly grouped
into 13 pairs (5 female dyads, 3 male dyads, and 5 mixed dyads) who performed a
director-matcher task. The interlocutors took turns to describe and find images of novel
3Dobjects (‘Fribbles’ [24]). In each trial, a single Fribblewas highlighted for the director,
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and participants worked together so that the matcher could identify this object among a
set of 16 Fribbles on their screen (note that the order in which Fribbles were presented
was not the same for the director and matcher). Matchers indicated their selection by
saying the corresponding position label out loud, and used a button box to move to
the next trial. There were six consecutive rounds, consisting of 16 trials each (one for
each Fribble). Participants switched director-matcher roles every trial. Participants were
instructed to communicate in any way they wanted (i.e., there was no explicit instruction
to gesture). Figure 3 provides an overview of the 16 Fribbles used and the setup of the
experiment.

Fig. 3. This participant was explaining how this Fribble (the one with a black rectangle around
it on the right) has “on the right side sort of a square tower”, producing a gesture that would be a
member of the set of gestures she would produce for that Fribble.

During each trial we have information about which Fribble was the object to be
communicated and thus all gestural kinematics that occurred in that trial are likely
to be about that Fribble (henceforth target Fribble). Before and after the interaction,
participantswere individually asked to come upwith a verbal label/name for each Fribble
(1–3 words) that would enable their partner to identify the correct Fribble (henceforth
‘naming task’). In order to enable word2vec processing for these names, spelling errors
were corrected and compounds not available in the word2vec corpus were split up (see
https://osf.io/x8bpq/ for further details on this cleaning procedure).

Similar to study 1, Kinect collected motion tracking data at 25 Hz, and traces were
similarly smoothed with a Kolmogorov-Golai filter (span = 2, degree = 3).

Since we are now working with spontaneous, interactive data (where people move
their body freely, though they are not constantly gesturing), we need an automatic way
to detect potential gestures during the interactions. We used a custom-made automatic
movement detection algorithm to identify potential iconic gestures,whichwas developed
for this dataset (also see Fig. 4). This is a very simple rule-based approach, similar in
nature to other gesture detectors [25], where we used the following rules:

1. A movement event is detected when the body part exceeds 15 cm per second speed
(15 cm/s is a common movement start threshold, e.g., [26]).

2. If themovement event is next to another detectedmovement eventwithin 250ms, then
they are merged as a single movement event. Note that for each gesture movement

https://osf.io/x8bpq/
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two or multiple velocity peaks will often be observed: as the movement initiates,
performs a stroke, potentially holds still, and detracts. The appropriate time interval
for merging will treat these segments as a single event.

3. If a movement lasts less than 200 ms, it is ignored. This way very short movements
were filtered out (but if there are many such short movements they will be merged
as per rule 2 and treated as a relevant movement).

4. Gesture space is confined to movement above the person-specific -1 SD from the
mean of vertical displacement. Participants in our study need to raise their hands
to show their gestures to their interlocutor. This also prevents that button presses
needed to move between trials were considered as gestures.

Fig. 4. Example automated gesture coding from time series. The upper panel shows for the right
hand tip the three position traces (x = horizontal, y = depth, z = vertical), with the vertical
axis representing the cm space (position traces are centered), and on the horizontal axis time in
milliseconds. The vertical threshold line shows that whenever the z-trace is above this threshold,
our autocoder will consider a movement as potentially relevant. In the lower panel, we have the
3D speed time series which are derived from the upper panel position traces. The vertical axis
indicates speed in centimeters per second (cm/s). The autocoding event detections are shown in
light red and the iconic gesture strokes as coded by a human annotator are shown in grey. The
autocoder detects 5 gestures here, while the human coder detected 4 gesture strokes (note that
they do not all overlap).

Note further, that for this current analysis we will only consider a subset of detected
movements thatwere at least 500ms in duration, aswe ideallywant to capturemovements
that are likelymore complex and representational gestures, in contrast to gestures that are
of a beat-like or very simple quality, which are known to take often less than 500 ms [29,
30]. Furtherwe only consider right-handedmovements, so as to ensure that differences in
kinematics are not due to differences in hand used for gesturing, as well as for simplicity.

Note that the current automatic movement detection is a very crude and an imper-
fect way to identify communicative gestures, and rule-based approaches are known to
have a relatively large number of false positives [31]. To verify the performance of our
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algorithm, we compared its output to human-coded iconic gestures for this data; we test
against human-coded iconic gestures rather than all gestures, as iconic gestures are the
gestures that are of interest for the current analysis (rather than e.g., beat-like gestures).
Iconic gestures were coded for a subset of the current data (i.e., for 8 out of the 16 Frib-
bles in the first two rounds of the interaction). Only the stroke phase was annotated, for
the left and right hand separately. We found that the number of iconic gestures detected
per participant by the human coder was positively related to the number of auto-coded
gestures, r = .60, p< .001. In terms of overlap in time of human-coded and auto-coded
gesture events there was 65.2% accuracy (true positive = 70%, false positive = 86%,
true negative = 93%, false negative = 1%).

The total number of auto-detected gestures (henceforth gestures) that were produced
was 1429,M (SD, min, max) = 208.84 (75.35, 65, 306) gestures per participant (i.e., an
average of 13 gestures per Fribble). The average time of a gesture was M = 1368 ms
(SD = 1558 ms).

We used the same approach to construct semantic and kinematic matrices as in study
1, with some slight modifications. Semantic distances were computed for the names
from the pre and post naming task separately, each matrix Ds

pre and Ds
post containing

information about semantic distances between names of Fribble i to j (but not for identical
Fribbles, i.e., i �= j). Therewere 16different Fribbles, yielding16×16distancematrices
for each pair. These distancematriceswere thus computed between participants in a dyad.
See Fig. 5 for an explanation.

For the kinematics (see https://osf.io/a6veq/ for script) we only submit right-hand
related key points, with additional more fine-grained information about hand posture.
Therefore, we selected x, y, z traces for key points of the hand tip and thumb, and the
Euclidean distance over time between hand-tip and thumb. Again we z-normalized and
centered the movement traces before submitting to DTW. The distance matrices for
kinematics were also computed between participants in a dyad (as the semantic distance
matrices). Further note, that when there were no gestures detected for a particular Fribble
i, then no kinematic distance scores could be computed for any comparison that involved
Fribble i, and the kinematic distance matrix would contain a missing value for that
comparison.

Thus we will analyze the relation between the semantic distances and the kinematic
distances between participants, both for naming in the pre as well as the post-test.

3.1 Results Study 2

We performed mixed regression analysis (analysis script: https://osf.io/a657t/), whereby
we predict kinematic distances based on semantic distance of pre- and post-naming (in
two different analyses). The names and kinematics were repeatedly generated per pair
and between Fribbles, and therefore we added Pair nested in Fribble comparison (e.g.,
Fribble comparison 1:2) as random intercept. See Fig. 6 for the graphical results.

Between-participant kinematic distances were not better predicted by pre-interaction
naming semantic distances, as compared to a base model predicting the overall mean,
Chi-squared change (1) = 0.06, p = .812. However, post-interaction naming semantic
distances as a predictor improved predictions as compared to a base model, Chi-squared
change (1) = 6.32, p = .012. The resulting model showed that post-naming semantic

https://osf.io/a6veq/
https://osf.io/a657t/
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Fig. 5. Example of distance matrix data is shown as colored maps with lower distance scores in
darker blue, with 16 rows and columns for each matrix, as there were 16 different Fribbles in
total. Each comparison assesses for Fribble i for participant a (Fribblea i), versus Fribble j for
participant b (Fribbleb j) within a dyad the distances between the naming/kinematics between
participants for each comparison between two Fribbles. This means that the upper and lower tri-
angles of the matrix are asymmetrical and provide meaningful information regarding the distances
in naming/kinematics between interlocutors within the dyad. For the analysis, similar to study 1,
we only assess the relation between the off-diagonal cells of the pre and post naming distances
with that of the off-diagonal of kinematic distances. Diagonals are in principle computable, and
this would be measuring alignment between participants, but we are interested in the relation
between gestures that convey different concepts and their semantic-kinematic relatedness.

distances reliably predicted kinematic distances between participants,b=0.045, t (2583)
= 2.15, p = .012, Cohen’s d = .10. This means that Fribbles that had semantically more
similar names produced after interaction by the interlocutors also were more likely to
elicit gestures with similar gesture kinematics between interlocutors.
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Fig. 6. Scatter plot for the relation between semantic distance between names of Fribble i versus
j (pre- and post-interaction) and the kinematic distance between the set of gestures produced for
Fribble i versus the set of gestures produced for Fribble j. This means that when a participant
“a” showed a higher dissimilarity with “b” on the post naming for Fribble ia versus jb, then they
also tended to have a more dissimilar set of gestures for Fribble ia versus jb. It can be seen that
the pre-interaction names do not show any positive kinematic-semantic scaling relation, while the
post-interaction names are related to the kinematic distances computed from gestures produced
during the interaction.

4 Discussion

In this study we assessed whether gestures that are more similar in kinematics, are
likely to convey more similar meanings. We provide evidence that there is indeed a
weak statistical dependency between gestures’ form (i.e., kinematics) and their (puta-
tive) meanings. We show this form-meaning relation in two studies, which were highly
divergent in design. In a charades-style study 1, participants interacting with a robot
were explicitly instructed to convey one of 35 concepts using silent gestures (i.e., with-
out any speech). In a director-matcher style study 2, participants were interacting in
dyads, producing spontaneous co-speech gestures when trying to refer to novel objects.
Participants were asked to verbally name these novel objects before and after interacting
with their partner. In both studies we obtain that the difference in the gestures’ putative
referential content (either the concepts to be conveyed, or the post-interaction naming of
the objects) scales with the dissimilarity between the form of the gestures that certainly
targeted (study 1) or were likely to target (study 2) that referential content. Thus in both
silent gestures and gestures produced with speech, the kinematic space seems to co-vary
with the putative semantic space.

There are some crucial caveats to the current report that need to bementioned. Firstly,
we should not confuse the semantics of a gesture with our measurement of the seman-
tics, using word2vec distance calculations of the instructed (study 1) or post-interaction
elicited (study 2) conceptualizations of the referential targets. Thus we should remind
ourselves that when we say that two gestures’ meanings are similar, we should actually
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say that the concepts that those gestures putatively signal show up in similar contexts
in a corpus of Dutch webtexts (i.e., the word2vec model we used; [26]). Furthermore,
there are also other measurements for semantic distance computations that possibly
yield different results, e.g., [32], and it is an interesting avenue for future research to
see how gesture kinematics relates to these different semantic distance quantifications
[33]. This goes the other way too, such that there are different ways to compute the
kinematic distances [e.g., 19, 34] for different gesture-relevant motion variables [e.g.,
35] and more research is needed to benchmark different approaches for understanding
semantic properties of communicative gesture kinematics.

Additionally, the way the putatively conveyed concept is determined in study 1 and
2 is dramatically different. In study 1 it is more clear and defined from the outset, but
in study 2 participants are asked to produce a name for novel objects, such that their
partner would be able to identify the object. This naming was performed before and after
interacting about those objects with their partner. The kinematic space was only related
to the names after the interaction, and these names were not pre-given but likely created
through communicative interaction. Thus while we can say that in study 1 gestures that
convey more similar concepts are also more likely to be more kinematically similar,
for study 2 we must reiterate that kinematically similar gestures for two objects x and
y produced by two interlocutors (in interaction), forges a context for those persons
to name these two objects similarly. Thus it seems that gestures between participants
can constrain—or are correlated to another process that constrains (e.g., speech)—the
between-subject semantic space that is constructed through the interaction. We do not
find this to be the case the other way around, as the semantic space verbally constructed
before interaction (i.e., based on pre-interaction naming) did not relate to the kinematic
space constructed gesturally.

It is clear that more research is needed to understand these effects vis-à-vis the
semantic and kinematic relation of gestures in these highly different contexts of study 1
and 2.Weplanmore follow-up analyses taking into account semantic content of gestures’
co-occurrent speech, as well as arguably more objective visual differences between the
referential targets themselves (e.g., are Fribble objects that look alike also gestured about
more similarly?). However, for the current report we simply need to appreciate the now
promising possibility that gesture kinematic (dis-)similarity spaces are informative about
their semantic relatedness. Implications are easily derivable from this finding alone.

For example, consider a humanoid whose job it is to recognize a gesture’s meaning
based on kinematics as to respond appropriately (as was the setup for study 1, [21]).
The current results suggest that information about an undetermined gesture’s meaning
can be derived by comparing it to a stored lexicon of gesture kinematics of which the
semantic content is determined. Though certainly no definitive meaning can be derived,
the current statistical relation offers promise for acquiring some initial semantic gist of
a semantically undefined gesture based on kinematic similarities computed against a
library of representative set of gesture kinematics. The crucial importance of the current
findings is that such a gesture kinematic lexicon does not need to contain a semantically
similar or identical gesture to provide someminimal semantic gist about the semantically
undefined gesture. It merely needs a computation of form similarity against its database
of representative gesture kinematics. This also means that a humanoid without any such
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lexicon, with enough training, can at least derive some information about which gestures
are more likely to be semantically related. A humanoid can build its kinematic space
from the bottom up, by detecting gestures in interaction, construct a kinematic similarity
space over time, and infer from the distance matrices which gestures are likely to be
semantically related (given the assumption that kinematic space and semantic space tend
to align). Moreover, the humanoid’s own gesture generation process may be tailored
such that there is some weak dependency between the kinematics of gestures that are
related in content, thus optimizing its gesture behavior to cohere in a similar way as
human gesture does [36–38]. The current findings thus provide an exciting proof-of-
concept that continuous communicative bodily movements that co-vary in kinematic
structure, also co-vary inmeaning. This can be exploited by the field of machine learning
which is known to productively leverageweak statistical dependencies to gauge semantic
properties of communicative tokens (e.g., word2vec).

Note further that the principle of distributional semantics is said to provide an impor-
tant bootstrapping mechanism for acquiring language in human infants (and language
learners in general), as statistical dependencies yield some information about the possi-
ble meaning of an unknown word given its contextual or form vicinity to other words
for which the meaning is more determined [26, 39]. Word learning is facilitated in this
way, as language learners do not need explicit training on the meaning of each and every
word, but can exploit statistical dependencies that structure the language [40, 41]. Here
we show a statistical dependency that is similar in spirit, but for continuous communica-
tive movements: the similarity between the putative semantic content of one gesture and
that of another, can be predicted to some extent based on theirmovement similarity alone.
It thereby offers a promising indication that gestures’ contents too are to some extent
more easily learnable based on their covariance in form. It opens up the possibility that
gestures, similar to other forms of human communication, are not simply one-shot com-
municative patterns, but to some statistical extent constellated forms of expressions with
language-like systematic properties amenable to geometric/network analysis performed
on the level of interrelationships between communicative tokens [13, 29, 42].

Additionally, the potential of multimodal learning should be underlined here, as co-
speech gesture kinematic interrelationships are informative about semantic space and
therefore also likely co-informative about co-occurrent speech which you may not know
the meaning of. Thus when learning a new language, gestures can come to reduce the
potential meaning space of the entire communicative expression (i.e., including speech),
reducing the complexity of word learning too. This mechanism can be related to another
putative function of iconicity in gestures as a powerful starting point in acquiring lan-
guage [43], as kinematics are informative about a referent given the kinematics structures
by association through form-meaning resemblance (e.g., a digging movement may sig-
nal the referent of the word DIGGING in its close resemblance to the actual action of
digging). However, this particular way of constraining semantics via iconicity neces-
sitates some basic mapping on the part of the observer, so as to complete the iconic
reference between form and meaning. The current kinematic-semantic scaling provides
in potential a more indirect or bottom up statistical route to reduce the semantic space
to likely meanings, namely by recognizing similarities of a gesture’s form with other
forms previously encountered, one can reduce the meaning space if the kinematic space
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and semantic space tend to be co-varying. Thus the current geometric relations between
gesture kinematic and semantic space are a possible statistical route for constraining
potential meanings from detecting covariances between form alone, at least in artifi-
cial agents, but potentially this is exploited by human infants and/or second-language
learners too.

Though promising, the statistical dependency is currently underspecified in terms of
howsuchdependencies emerge in the humanecologyof gesture. It remains unclearwhich
particular kinematic features tend to co-vary with semantic content. So we are not sure
at what level of similarity or analogy gesture kinematics relate as they do semantically
[44]. It is further not clear whether the semantic content co-varies with kinematics
because the gestures are part of some kind of overarching movement type (e.g., static
handshape, continuous movement, etc.) or mode of representation (acting, representing,
drawing or personification; [11]) whichmay co-varywith semantic categories. Indeed, in
previous research it has been shown that e.g., gestures representing manipulable objects
are most likely to have ‘acting’ as mode of representation, while gestures depicting
animals are more likely to recruit ‘personification’, as observed by human annotators
[3]. We tried to assess in study 1 whether it is indeed the case that the reported effects
might be due to local covariance of different gesture classes, leading to global kinematic-
semantic differences between classes. Namely, if gestures are kinematically grouped by
an overarching category, then within that class there should be no relation between
gesture kinematic and semantic similarity. The results however, indicate that semantic-
kinematic distance persisted both for comparisons within and between gesture classes,
irrespective of whether we construct such classes based on human-defined themes, or
empirically based kinematic cluster assignment.We hope the current contribution invites
further network-topological study [13, 45] of the current geometrical scaling of gesture
semantic and kinematic spaces so as to find the right level of granularity at which these
spaces co-vary.

To conclude, the current results suggest a persistent scaling relation between gesture
form andmeaning distributions.We look forward to researching this more deeply from a
cognitive science perspective, but we hope that theHCI aswell asmachine learning com-
munity could one day leverage covariances that we have identified between kinematic
and semantic spaces, in the employment and development of an automatic detection of
a gesture’s meaning via principles of distributional semantics.
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