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Symmetry deduction from spectral fluctuations in complex quantum systems
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The spectral fluctuations of complex quantum systems, in appropriate limit, are known to be
consistent with that obtained from random matrices. However, this relation between the spectral
fluctuations of physical systems and random matrices is valid only if the spectra are desymmetrized.
This implies that the fluctuation properties of the spectra are affected by the discrete symmetries
of the system. In this work, it is shown that in the chaotic limit the fluctuation characteristics
and symmetry structure for any arbitrary sequence of measured or computed levels can be inferred
from its higher-order spectral statistics without desymmetrization. In particular, we consider a
spectrum composed of k > 0 independent level sequences with each sequence having the same level
density. The k-th order spacing ratio distribution of such a composite spectrum is identical to its
nearest neighbor counterpart with modified Dyson index k. This is demonstrated for the spectra
obtained from random matrices, quantum billiards, spin chains and experimentally measured nuclear

resonances with disparate symmetry features.

Spectral fluctuations in complex quantum systems are
analyzed using the theoretical framework of random ma-
trix theory (RMT) in many areas of physics [1-5]. These
include few-body systems studied in quantum chaos ﬂa]
to interacting many-body systems in condensed matter
physics [7], nuclear [§] and atomic physics [9]. These fluc-
tuations carry signatures of the distinct phases observed
in the physical systems, viz., integrable or chaotic limit of
the underlying classical system [10], metallic or insulat-
ing phaseii?], localized or thermal phase of many-body
systems [12], low-lying shell model or mixing regime of
nuclear spectra ﬂﬂ, @] Indeed, the level spacing distri-
bution of the desymmetrized eigenlevels is a popular di-
agnostic tool to discriminate the between phases of phys-
ical systems in many areas of physics, and remarkably
even outside of physics [4, ].

Beginning with the Wigner surmise ﬂﬂ] in the con-
text of nuclear spectra, the present consensus is that
the spectral fluctuations of complex quantum systems,
in suitable limit, display level repulsion consistent with
that of an appropriately chosen ensemble of random ma-
trices. For the special case of quantum chaotic systems,
the Bohigas-Giannoni-Schmidt (BGS) conjecture encap-
sulates this connection between the spectra from phys-
ical systems and random matrices @] This has been
amply verified in experiments [21], simulations [22] and
derives some theoretical support based on semiclassical

techniques [23).

Discrete symmetries of the system, i.e., invariance of
the potential under parity, reflection, rotation, are crucial
in realizing this connection between spectral fluctuations
and dynamical phases. In the presence of symmetries,
the Hilbert space of the system splits into invariant sub-
spaces or the Hamiltonian matrix H becomes block di-
agonal, i.e., H = H1 ® Ha & ... Hy,, with each block
Hi,© = 1,2...m characterized by good quantum numbers

corresponding to the respective symmetries ﬂa] This is
schematically shown for chaotic billiards, with m = 4
symmetry sectors, in Fig. [[l To compute any measure of
spectral fluctuation, all the discrete levels must be drawn
from the same subspace (shown as blocks in Fig. Ii(a)). If
symmetries are ignored and levels from different blocks
are superposed, as depicted in Fig. [(c), the genuine
correlation between levels (that should have produced
level repulsion) is masked by near-degeneracies resulting
in level clustering. This effect becomes even more dom-
inant as the number of superposed spectra m increases.
This is misleading since level clustering is also a spectral
signature of integrable systems [24)].

This implies that the level correlations are sensitive to
the presence or absence of symmetries. It is then rea-
sonable to expect that fluctuations of composite spec-
tra, superposed from many independent blocks, contain
information about the entire system’s symmetry struc-
ture. However, any measure based on the nearest neigh-
bor (NN) fluctuations, such as the popular NN level
spacing distribution, will always tend to the Poissonion
limit (level clustering) due to the superposition of non-
interacting blocks ﬂﬁ] In this work, rigorous numerical
evidence is presented to show that the higher-order level
spacing ratio not only identifies the true fluctuation char-
acter, viz, level clustering or repulsion, but also allows us
to deduce quantitative information about the symmetry
structure of the composite Hamiltonian matrix H.

This result obviates the need for symmetry decompo-
sition of quantum systems, allows for the analysis of any
arbitrary sequence of experimentally observed levels with
unknown symmetry structure, and is also of considerable
interest in RMT HE] Let G be a random matrix such
that G = G1 & G2 & ... Gy, a superposition of m blocks
each of which is a Gaussian random matrix with identical
level density. Given an arbitrary sequence of eigenvalues


http://arxiv.org/abs/1808.08541v4

(a) (b)

Ao s O ©H =

I =

+
+

+

- (©

FIG. 1. (a) A schematic of the Hamiltonian matrix for stadium billiards with each block characterized by a good quantum
number. (b) The potential for the stadium billiard with one of its eigenstates superposed on it. The bottom part shows a

desymmetrized version of the same eigenstate indicating one possible relation to the blocks in the Hamiltonian in (
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Schematic of the eigenlevels arising from each symmetry block, H1 (red coloured levels) to Ha (green). The levels of H in the
last column are a superposition of all these desymmetrized levels.

of G, the fluctuation properties and the block structure of
G can be inferred from its higher-order fluctuation statis-
tics. The proposed method is straightforward, involving
only the calculation of spacing ratios. This is in contrast
to the cumbersome methods proposed earlier based on
two-level cluster function and requiring regression to de-
duce m from any composite spectrum |1, , , ], all of
which require unfolding as the first step.

Consider a sequence of eigenvalues F;,¢ = 1,2,... N
of a quantum operator or a random matrix. Spectral
fluctuations are relatively easier to analyze using spacing
ratios defined as r; = %,z =1,2---N -2 m],
as spacing ratios are independent of the local density of
states and hence do not require spectral unfolding. For
random matrix ensembles with Dyson index 5 = 1,2 and
4, corresponding respectively to the Gaussian orthogo-
nal, unitary and symplectic ensembles, the distribution
of spacing ratios is given by HE]

(r+1r2)8
1+7r+ 7-2)1-1—35/2’

P(r,3) = cﬁ( (1)
where C is a constant, as listed in Ref. @] These RMT
models are applicable to Hamiltonians with time-reversal
invariance (TRI) (8 = 1), without TRI (8 = 2) and TRI
with spin-1/2 interactions (8 = 4). The main focus of
this paper is on RMT models applicable to Hamiltoni-
ans with TRI (8 = 1). For integrable systems, the ratio
distribution becomes Pp(r) = 1/(1 + 7)%. Recently, an
expression for nearest neighbor spacing ratio distribution
has been obtained taking into account the spectral transi-
tion from integrable to chaotic limits, and also crossovers
from one symmetry class to another @]

As motivation, in Fig. 2 the numerically computed

distribution of NN spacing ratios P(r) is shown for cir-
cular (integrable) [31] and stadium (chaotic) [32] bil-
liards. The integrable billiards (Fig. 2la)) expectedly
agrees with Pp(r). Note that stadium billiard has Cs,
point group symmetry with four irreducible representa-
tions (irreps). If the spectra from each irrep is analyzed
separately, by BGS conjecture, an agreement with P(r, 1)
of GOE is observed (Fig. 2lc)). However, in Fig. 2(b),
the spectra from all the irreps is superposed, and hence
the ratio distribution is closer to Pp(r) with pronounced
deviation from P(r,1). In quantum systems with chaotic
limit, as demonstrated below, the true character of their
spectral fluctuations and the number m of independent
spectra superposed can all be inferred using only the
higher-order spacing ratio (HOSR) distributions without
apriori knowledge of its symmetry structure.

To this end, we consider non-overlapping k-th order
spacing ratio, defined as

El

(k)
k) _ Sitk _ Eigor — Eigk —
T; _sz(-k) T L,k=1,2,3,.... (2)

In what follows, spectra from m independent blocks
are superposed, and its distribution of k-th order spac-
ing ratios is denoted by P*(r,3,m). We consider only
B8 = 1. For the special case involving NN ratios, we
denote PY(r,3,1) = P(r,3). The motivation for con-
sidering higher-order fluctuation statistics arises from a
seminal result conjectured in Ref. ﬂﬁ] and proved by
Gunson M] for the case of circular ensembles of RMT.
If two independent spectra from the circular orthogonal
ensemble (COE) are superposed, upon integrating out
every alternate eigenvalue, the joint probability distribu-
tion of the remaining eigenvalues follow circular unitary
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FIG. 2. Distribution of the NN spacing ratios (histograms)
P(r) for the (a) circular, (b) stadium, and (c) desymmetrized
stadium billiards. The dashed (red) line is Pp(r) and the solid
(blue) curve is the Wigner surmise for ratios. The inset shows
the shape of billiards and a typical eigenfunction superposed
on it to emphasize its symmetry structure.

ensemble (CUE) statistics. In terms of higher-order mea-
sures, this result states that the second order statistics of
two superposed COE spectra converges to NN statistics
of CUE. This is reflected in the distribution of spacings
and spacing ratios as well. In the limit of large matrix
dimensions, this result holds for Gaussian ensembles too
yielding P?(r, 1,2) = P(r,2) for two superposed spectra.
If the order of each of the m GOE matrices is the same,
then this may be generalized for the superposition of m
GOE spectra as

P*(r,1,m) = P(r,3'), where ' =m =k, (3)

implying that its k-th order spacing ratio distribution
converges to NN statistics P(r, ') with 8/ = k. Equa-
tion [ is the main result of the paper, and is well sup-
ported by numerical experiments involving a small num-
ber of mixed symmetries (up to m = 5). In contrast,
irrespective of how many uncorrelated spectra are super-
posed corresponding to integrable systems, the k-th or-
der spacing ratio distribution can be obtained (details in
supplementary information [35]) as

_ ph—1
Ph(r) = ZF 1! (1)

[(F—1)12 (1 + )2k’

For k = 1, this reduces to ﬁ, the correct limit for
the NN spacing ratio for uncorrelated spectra. We note
that Eq. [Blis reminiscent of a scaling relation reported
recently in Ref. [34].

For the superposition of m = 2 to 5 independent GOE
spectra, validity of Eq. Blis verified in Fig. B]. In this
figure, an excellent agreement is observed between his-
tograms obtained from the computed eigenvalues of GOE
matrices and the solid line representing P(r, 5’ = k). For
uncorrelated eigenvalues, a similar agreement with Eq.
[ is observed. In order to independently obtain a best
quantitative estimate for 5’ in Eq. [B] for a given super-
position of m spectra, we compute

D(B/):Z ’Igﬁs(m,l,m)—f(m,ﬁ/)‘. (5)
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FIG. 3. Distribution of k-th order spacing ratios (histograms)
for a superposition of m GOE spectra, each obtained from
matrix of order N = 40000, shown for m = 2 to 5. The solid
curve is P(r,’), with 8° = k. The insets show D(/3) whose
minimum correctly coincides with the expected value of m.
The p-values from KS test are also given.

In this, I}, (r,1,m) and I(r, ") represents the cumula-
tive distribution functions corresponding respectively to
the observed histogram P¥(r,1,m) and the postulated
function P(r,3’). If the minima of D(8’) occurs at, say,
B = By, then fy is the best estimate consistent with the
observed data. As seen in the insets of Fig. Bl the min-
ima in D(f’) coincides with the value of m, the number
of superposed spectra. This is further corroborated by
the Kolmogorov-Smirnov (KS) test [37] at a significance
level of 0.05 for each case. The p-value, as anticipated, is
maximum at the same value of m.

A complete picture is revealed in Fig. Ml for a super-
position of m = 4 independent GOE spectra, where the
computed histogram for the k-th order ratio is shown for
k = 2 to 7. Based on Eq. Bl we expect it to be consis-
tent with P(r, 8’ = 4). For each k, P*(r,1,4) is matched
against the corresponding P(r, "), and D(3’) is calcu-
lated. Both visually and quantitatively (the minima of
D(f') in Fig. l(e)), best agreement is observed for k = 4,
verifying the main result in Eq. Significantly, for the
superposed spectra, Eqs. BH4l can be used to infer the
correct nature of spectral fluctuations (level repulsion or
clustering) and also to determine the number of super-
posed independent blocks for a random matrix or the
number of diagonal blocks in the Hamiltonian matrix of
a complex quantum system, if the system is chaotic. In
what follows, the result in Egs. will be applied to
chaotic systems possessing different symmetries, notably
billiards and spin chains, and most importantly to the
experimentally measured data of nuclear resonances.

First we consider quantum billiards, in which a free
particle is confined in a cavity defined by a variety of
boundaries @], whose eigenspectrum is obtained by solv-
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FIG. 4. (a-f) Computed k-th order spacing ratio distribution
(histogram) for superposed spectra from four GOE matrices
of order N = 40000. Note that the best agreement with
P(r,3’" = k) (blue line) obtained only for 8’ = k = 4, and is
confirmed by the p-value from the KS test, displaying maxima
at 8’ = 4. (g) D(8') vs. ' has minima at 3’ = 4. Both D(8')
and p indicate the validity of Eq.

ing the Helmholtz equation with Dirichlet boundary con-
ditions. They are popular models in Hamiltonian chaos
and mesoscopic physics @] and have experimentally-
realized variants @] Modifying the boundary or shape
of the billiard changes its symmetry and also drives it
from integrability to chaos. For a billiard whose bound-
ary is parameterized by 7(¢) = ro(1 + € cos ¢), as € varies
from 0 to 1, the system transitions from integrable to
chaotic dynamics. For ¢ = 0, a circular billiard shown
in Fig. Bla) is obtained. This is an integrable system
and its higher-order spacings are in agreement with Eq.
[ (Sce Ref. [35]). For € = 1, the cardioid billiard is ob-
tained ], possessing two irreps due to reflection sym-
metry about the horizontal axis. Thus, eigenlevels ob-
tained disregarding symmetry would correspond to a su-
perposition of two GOE spectra. As anticipated by Eq.
Bl its second order distribution P?(r,1,2) is consistent
with P(r,2) (Fig. Ela)). A billiard with three irreps,
similar in shape to one that has been experimentally re-
alized @], is obtained by parameterizing its boundary as
r(¢) = r9(1+ 0.3 cos(3¢)). This model, with symmetries
ignored and after removing degeneracies arising from the
two-dimensional irreps, corresponds to a superposition of
three chaotic spectra and the best match for P3(r,1,3)
is provided by P(r,3) (Fig. E(b)). A chaotic billiard
with four irreps is the well-studied Bunimovich stadium
billiard [43] shown in Fig. Blc). This has reflection sym-
metry about x and y axes and, in accordance with Eq. [3]
P*¥(r,1,4) displays the best correspondence with P(r, 3')
for k = 8/ = 4 (Fig. Bl(c)). For all of these cases, insets
in Fig. B show that the minima of D(8’) coincides with

FIG. 5. HOSR distribution (histogram) for the billiards fam-
ily in which spectra from (a) k =2, (b) k=3 and (c¢) k =4
irreps are superposed. The higher-order distributions are con-
sistent with P(r,8’), and 8’ = k as dictated by Eq. The
insets display D(f’) and its minimum indicates the correct
number of irreps in the system. Also shown is the shape of
billiards with an arbitrarily chosen chaotic eigenstate to high-
light its symmetry.

B = k, the number of irreps.
Next, a spin-1/2 chain with the Hamiltonian [44]

L-1
H = [Juy(SFSFr + SYSY) + J.57S7]
i=1

L2
0 Y [0y (STSTyg + SStya) + JLS7STL] (6)
i1

is considered, where L is the number of sites, J,, and J,
are the NN coupling strengths in three directions (cou-
pling along = and y being the same), and J;, and J.
are the next NN coupling strengths. This system is in-
tegrable for 7 = 0 (as shown in Fig. 1 in Ref. [35]), and
chaotic for n 2 0.2. The total spin in the z-direction,
S., is conserved and the Hamiltonian is block diagonal
in S, basis, each block corresponding to a given value of
S.. However, other symmetries that exist in this system
would erroneously lead to fluctuation statistics appearing
to be integrable in this subspace (not shown here). For
odd number of sites (Lyqq), on computing the HOSRs and
comparing with corresponding P(r,3’), k = ' = 2 has
the best match (Fig. [B(a)). But for even number of sites
(Leven), HOSRs correspond to k = 8’ = 4 (Fig. B(b)).
This is because for Lyqq or Leyen, the parity operator
(with eigenvalues 1) commutes with H, leading to two
invariant subspaces in a given S, block. For L.ye,, an
additional rotational symmetry exists (with eigenvalues
+1) for the corresponding operator giving rise to four
irreps. The other parameters used in Figs. [Bla,b) are
oy = Jpyy = 1.0, J, = J, = 0.5, with Leyen, = 14 and
L,qq = 15. For these systems, KS test results given in

| provide yet another verification of the scaling rela-
tion.

Even for systems whose Hamiltonian is not well-
defined or unknown as in the case of complex nuclei,
experimentally observed nuclear resonance data can be
analyzed to characterize its fluctuation statistics and find
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FIG. 6. HOSR distribution computed for the spin-1/2 chain
Hamiltonian in Eq. [6] with (a) odd number of sites with two
irreps and (b) even number of sites with four irreps. The
insets show D(r, ') and its minima identifies the number of
irreps.

its number of irreps. It is assumed that the system being
observed is in the putative regime in which RMT results
can be applied. We consider a sequence of experimentally
observed neutron resonances for T'a'®! nucleus @] whose
NN spacing distribution, discussed in Ref. ﬂﬂ], does not
match the Wigner surmise. On calculating HOSR distri-
butions, remarkably, Eq. Bl holds good for k& = 2, further
confirmed by the minima of D(f’) for 5/ = 2 in Fig.
[[ and the corresponding KS test results. This indicates
the presence of two independent symmetry sectors, and is
indeed the case, as confirmed in Refs. ﬂﬂ, ] This mea-
sured sequence consists of a superposition of levels having
angular momentum J = 3 and 4, and when symmetry de-
composed, are in broad agreement with Wigner surmise.
Clearly, for an arbitrary sequence of measured levels, if
random matrix description is valid, HOSRs based on Eq.
can unambiguously identify the true fluctuation char-
acter and the number of symmetry sectors.

In experiments, often measurement errors lead to miss-
ing levels [46] and hence incorrect identification of the
fluctuation character and number of irreps. The robust-
ness of Eq. [B]to missing levels in a superposition of GOE
spectra was tested in two ways; (a) by randomly deleting
levels, (b) by preferentially deleting one of a pair that is
nearly degenerate. Upon computing D(3’) in each case
(details in [35]), the scaling in Eq. [ holds good even if
20 — 30% (40%) of the levels are removed through ran-
dom deletions (deletion of near-degenerate levels). This
is because higher-order fluctuations are unaffectected by,
and hence largely insensitive to, randomly missing levels.
This virtue is inherent to this method and has practical
significance for analyzing experimental data.

To summarize, quantum systems must be symmetry
decomposed to reveal its true spectral fluctuation char-
acteristics. This also implies that the fluctuations carry
symmetry information, though extracting it unambigu-
ously from NN fluctuation statistics is non-trivial. As
demonstrated in this work, the higher order spacing ra-
tio distributions can reveal, apart from the fluctuation
characteristics, quantitative information about symme-
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FIG. 7. (a-d) The k-th order spacing ratio distribution (his-
togram) for experimentally observed nuclear resonances for
Tantalum (Taml)7 showing the best correspondence for k = 2.
The broken line is P(r, 3 = k). The p-value from KS test
shows a maximum at ' = 2. (e) D(B’) shows minima at
B = 2, reinforcing the validity of Eq.

try structure. For a superposition of k independent spec-
tra (with identical level densities) drawn from an ensem-
ble of RMT, the central result (Eq. Bl relates the k-
th order spacing ratio distribution for random matrices
with Dyson index S = 1 to the corresponding nearest
neighbor statistics with 8/ = k. For quantum systems
in the classically chaotic limit and in the regime of ap-
plicability of Wigner-Dyson ensembles of RMT, this el-
egant relation determines the number of irreps (or di-
agonal blocks) present in a Hamiltonian matrix. This
is exploited to analyze any arbitrary sequence of ex-
perimentally measured or computed levels, even if the
system’s Hamiltonian and symmetry structure are un-
known. This technique requires neither unfolding nor
free-parameter estimation, nor computation of cumber-
some correlation or power spectral functions and hence
straightforward to implement. Further, for uncorrelated
eigenvalues, the HOSR distribution has been derived and
can be used as a test of integrability. These results
are demonstrated using disparate physical systems like
quantum billiards, spin chains and experimentally mea-
sured nuclear resonances. It must be remarked that just
as Bohigas-Giannoni-Schmidt conjecture @] is valid for
quantum systems in their chaotic limit, the results pre-
sented here too are strictly valid in the same regime in
which RMT is applicable. In principle, this approach
may be extended to weakly chaotic or mixed systems
(outside of RMT regime) by considering a broader class
of higher-order spacing ratios and these results will be
reported elsewhere.
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Supplemental Material

HIGHER ORDER DISTRIBUTION OF SPACING RATIOS FOR A SEQUENCE OF UNCORRELATED
EIGENVALUES (EIGENVALUES OF INTEGRABLE QUANTUM SYSTEMS)

Analytical expression

For a given sequence of uncorrelated eigenvalues, E1 < Ey < --- Ey, the spacings between nearest neighbours is
defined as s; = E;11 — Fy,i = 1,2,--- N. The distribution of these spacings is of the form P(s) = e~ %, and hence
distributions of spacings and spacing ratios for integrable quantum systems are termed Poissonian.

The ratios of nearest neighbour spacings for these systems are defined as r; = s;41/8;,4 = 1,2,--- N, and the
distribution of these ratios is of the form P(r) = 1/(1 + r)2[1].

Ratios of higher order spacings may be defined as
sF)

FE; —F; .
R il s L L LI L (7)
S; v v

To obtain a form for the distribution of #(*), the higher order spacings may be expressed in terms of nearest
neighbour spacings as

Sl(-k) = EH_/C - Ez' (8)
=FEitk — Eivk—1+ Eiyg—1 — Eiyp—2+ -+ E;
=S+ -+ Si+1 + Si.

Then the distribution of s(-k) may be calculated as the distribution of a sum of k£ random variables s;, each of which

( ) s

is distributed as P(s) = e~*. For simplicity, s, is denoted as z below. The distribution of z is given by

e—zzk—l

P =T

9)

Then the distribution of higher order spacing ratios is simply the distribution of the quotient of two random
variables, each of which is distributed as Eq. @ This distribution may be calculated as

PO () = / 12| P(r2) P(2)d (10)

Substituting for P(z) and P(rz) from Eq. [0

—rz (,r,z)k—l e—zzk—l

Pf(’k)(’”):/o 41 =T G
k—1

_r ko1 s r+1
_m/o z e 2tz (11)

This can be evaluated in terms of the incomplete gamma function I'(x) as

I'(2k rh=1
A= g >)'2<1+r>
(2k 1)' rk=1

For k =1, it reduces to the familiar form



For k = 2,
2) 6r
PR (r) = = (13)
for k =3,
3 30T2
PR = G (14)
and for k = 4,
(4) 14073
Ppi(r) = EDE (15)

Comparison of analytical form of Plgk)(r) with results from physical systems

(©)
=4
spin chain ®
J'l — circular billiard
\ =4
L e
2 4 6

FIG. 8. Higher order spacing ratio distributions for £k = 2 to 4, for uncorrelated eigenvalues (upper panel, indigo), circular
billiards (lower panel, red) and integrable spin chain obtained by setting 7 = 0 in Eq. 6 of the main paper (lower panel, black).
The corresponding analytical result (Eq. 4 in the main paper) is also shown in all cases (upper and lower panels, broken blue
curve).

RESULTS OF KOLMOGOROV-SMIRNOV TEST FOR BILLIARDS AND SPIN CHAINS OF
DIFFERENT IRREPS

The p-values of the Kolmogorov-Smirnov (KS) test for the billiards corresponding to Fig. 5 of the main text, as
well as the spin chains corresponding to Fig. 6 of the main text, are given below. This further confirms the validity
of the main result of the paper. In general, at 5% significance level, the KS-test could not reject the hypothesis that
the data are consistent with the distribution in Eq. 3, which is the main result of this paper.



System |k| p
210.735
Billiards |3|0.671
410.706
Spin chain 210730
410.929

TABLE I. The p-values (p) for the KS test at a significance level of 0.05, for the billiards in Fig. 5 and the spin chains in Fig.
6 of the main text corresponding to the superposition of k irreducible representations.

EFFECT OF MISSING LEVELS

The effect of missing levels in a given sequence of superposed spectra is studied in two ways. First, by randomly
deleting a fixed percentage of levels, and then calculating higher order spacing ratios, from a superpostion of GOE
spectra of dimension N = 40000. Second, in experiments it is often difficult to resolve near-degeneracies in a spectrum.
Again, this leads to the problem of missing levels, which is simulated by deleting a fixed percentage of one of two
nearly-degenerate eigenvalues randomly in a superposition of GOE spectra, as before. In each case, D(3’) is calculated,
and the value of 3’ corresponding to the minima of D(’) corresponds to the best fit.

e-e nearly degenerate levels (m=2)
+—e randomly missed levels (m=2)
5+ e - nearly degenerate levels (m=4)
+—e randomly missed levels (m=4)

0 . | . | . |
0 10 20 30 40

% of missing levels

FIG. 9. ' (for which D(#’) is minimum) as a function of percentage of missing levels (diamonds) and a percentage of
near-degeneracies (circles), obtained by evaluating the second (fourth) order spacing ratio distribution for a superposition of
two(four) GOE spectra, plotted in red(blue).

Fig. @ shows the value of 8’ (evaluated in steps of 0.1) plotted against the percentage of missing levels (diamonds)
as well as nearly degenerate levels (circles), when P¥(r,1,m) is evaluated for a superposition of m GOE spectra, where
m = 2 (blue) and m = 4 (red). According to Eq. 4 of the main paper, namely, P*(r,1,m) = P(r,8'), where 8 =
m = k, the expected value of 5’ is 2 (for k = 2) and 4 (for k = 4) respectively. For the case where a percentage of
levels are randomly deleted (full lines with diamonds), it may be observed that assuming even a 10% fluctuation in
the numerical evaluation of 3, a significant deviation from the predicted 8’ occurs only when about 20% of the levels
are missing. A similar behavior was seen for spin chains with 2 and 4 irreps as well (not shown). However, the value
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of 8/ remains robust against randomly deleting upto 45% of levels which differ in magnitude with one of their nearest
neighbours by a factor of 10~4. This is shown by the dashed lies with circles.
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