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1. Introduction and summary

Critical behavior, scaling and universality are landmarks that stand out from the

messy reality of materials. It is unlikely in the space of possibilities that such behavior

occurs at weak coupling, but it is possible and examples exist. Typically, however,

such behavior happens at moderate or strong coupling, and then inferring the physics

becomes difficult.

A concrete example where quantum criticality, and scaling, may be realized, is in

strange metals, that include high-Tc superconductors, [1, 2, 3, 4, 5]. The scaling of the

DC conductivity in the cuprates, has been since the start, one of the basic hallmarks,
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exhibiting linear resistivity at optimal doping over a large range of temperatures, [6]-

[12]. More recent and refined data on the DC conductivity in clean materials, and

a novel parametrization indicated an unusual low-temperature asymptotic behavior

and the existence of a line of quantum critical points, [9]. Similar evidence for a line

of critical points was found in other cases, [13, 14].

The magnetoresistance of related materials has indicated also exotic behavior

and a different scaling of the Hall angle in the overdoped regime, [15]-[25]. New

measurements of the magnetoresistance in strong magnetic fields, have also indicated

scaling both in pnictides, [26, 27], and cuprates, [28].

Studies of the AC conductivity, [29], have also produced scaling in ω, in an

intermediate range of frequencies. Although, it is typical for critical theories to

induce a scaling in the AC conductivity in the far IR, it is unusual that such scale

should survive and be visible at higher frequencies. Further experiments have shown

similar scaling of the AC conductivity in other strange metals, [30, 31].

Despite the wealth of experimental indications of scaling phenomena, progress in

theory has been slower. The main reason is that few scale invariant quantum critical

points were known in two spatial dimensions and none that is non gaussian. This has

changed with the AdS/CFT correspondence, [32], also known as holography. This

emergent in string theory, provided a valuable tool in analysing quantum field theories

at strong coupling and was especially successful in describing scale invariant, strongly

coupled theories at finite density. This has led to a classification of quantum critical

behavior at string coupling, as a function of the symmetries, [33]-[37]. Moreover, it

provides techniques for calculating the quantum effective potential at finite density

and temperature, [38], that provides a powerful tool in studying phase transitions. A

wide spectrum of condensed matter problems was addressed using these techniques,

and this progress is summarized in reviews and lectures, [39]-[42], as well as in books,

[43]-[46]. A recent overview of the progress in the field can be found in [47].

In the context of holography, studies have indicated that the behavior of fermions

and their correlations at strong coupling may be radically different from that at weak

coupling, [48, 49]. This gave in particular, a class of realizations of the marginal Fermi

liquid, [48], realizing correlators that were associated with the linear behavior of the

DC conductivity, [50]. Further holographic studies have analysed the constraints on

the realization of a linear in T DC conductivity and provided explicit examples, [51,

52, 53]. In particular, in [52] the model exhibits non-relativistic z = 2 Schrodinger

symmetry, and reproduces the T + T 2 behavior of the DC conductivity, [9], and

a Hall angle and magnetoresistance that are in agreement with data at very low

temperatures, [19]. Moreover, it realized the idea of a line of quantum critical points,

suggested in [9] and predicted scaling relations in th presence of the magnetic field.

The scaling properties in the presence of magnetic fields are nicely described by

holographic critical theories. In general charge dynamics is described by the DBI

action, and its scaling analysis in the presence of magnetic fields has yielded a rich
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collection of scaling behaviors, [52, 54]. In one particular case, such a scaling behavior

matches the one seen in the pnictides and cuprates, [26, 27, 28].

The scaling of the AC conductivity observed in [29] has been tougher to crack.

A conventional approach suggested that it may arise from the interaction of the

fermions with a Bose sector other than the phonons, [55]. In holography it has

been studied since [33] observed that in scaling critical geometries, there is also a

scaling AC conductivity and computed the scaling exponent, as a function of the

other critical exponents, for the case where the EM gauge boson is the same as the

one that seeds the scaling IR geometry. This issue was further studied in [36]. It was

then shown that one could also have intermediate regimes which have also scaling

properties, and they may affect the intermediate scaling of the AC conductivity, [56].

A definitive study has been done in [57]. There, the model of [52] was analyzed

by computing its AC conductivity in its various regimes. A related study of scaling

was done in [58].

1.1 On the scaling of the holographic AC conductivity

The first theory that was analyzed in [57] was the holographic DBI theory of a strange

metal, proposed in [52]. This theory has several parameters, but the physics depends

only on two scaling variables, t that is proportional to the temperature, and J that

is proportional to the charge density. They both take all positive real values. The

doping parameters is part of both scaling variables.

The T + T 2 behavior of the resistivity in [9] and the T + T 2 behavior of the

inverse Hall angle, observed in [19] at very low temperatures T < 30K, where a single

scattering rate is present, were successfully described in this theory. The model is

also in accord with the distinct origin of the criticality at very low temperatures

advertised in [10], while the higher temperature, T > 100K, scaling has different

behaviors between the linear temperature resistivity and the quadratic temperature

inverse Hall angle, signaling two scattering rates [20]. This regime in the model is

different however from what experiments show about the cuprates.

In addition to the resistivity and inverse Hall angle, very good agreement was

also found with experimental results of the Hall Coefficient, magnetoresistance and

Köhler rule on various high-Tc cuprates, [9],[15]-[25]. The model provided also a

change of paradigm from the notion of a quantum critical point, as it is quantum

critical at T → 0 on the entire overdoped region as suggested by the data of [9].

The DC conductivity of this theory, as is usual in quantum critical theories, has

two contributions, [52]. One, that we call the Drude contribution, is related to

momentum dissipation in the standard fashion, although here there are no weakly

coupled quasiparticles. The other is independent of the charge density and is the

Quantum Critical contribution.

There are two main regimes on the (t, J) plane. They are best described by a

parameter q that is a function of t, J and distinguishes between the two regimes.
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When q & 1 the DC conductivity is dominated by the Drude (drag) contribution.

When q . 1 the DC conductivity is dominated by the Quantum Critical contribution.

As the drag contribution to the conductivity is proportional to charge density, it

follows that at zero charge density (J = 0) we are always in the QC/PP regime.

These two regimes are shown in figure 1.

• In the Drude regime (q ≫ 1), when t ≪ 1 the resistivity is linear in t (and

consequently in the temperature). This is the linear regime. When t ≫ 1, the

resistivity is quadratic in t. This is the quadratic regime.

• In the Quantum Critical regime, (q ≪ 1), when t ≪ 1 the resistivity behaves

as ρ ∼ t−
3
2 . This is regime I. When t ≫ 1 the resistivity behaves as ρ ∼ t−

1
2 .

This is regime II.

In the t → 0 limit the theory has an effective Lifshitz exponent z = 2 while as

t→ ∞ it crosses over to an effective relativistic Lifshitz exponent, z = 1, [52]. What

we find in our analysis is as follows:

1. A generalized relaxation time τ can be defined by the IR expansion of the AC

conductivity,

σ(ω) ≈ σDC

(
1 + i τ ω +O(ω2)

)
(1.1)

In the presence of a Drude peak, this is the conventional definition of an as-

sociated relaxation time. When there is no Drude peak present, τ is still

well-defined, although in that case the interpretation as a relaxation time is

lost.

In [57] an analytical formula for τ was given. It simplifies for large and small

values of the scaling temperature variable t. In the regime I

τ ∼
√
t (1.2)

while in the regime II (with t≫ 1) τ is set by the inverse of the temperature

τ ≃ 1

t
(1.3)

2. In the Drude regime (q ≫ 1) where the dominant mechanism for the con-

ductivity is momentum dissipation, there is a clear Drude peak in the AC

conductivity.

In the Quantum Critical regime there is no Drude peak and we have an inco-

herent AC conductivity.
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3. At zero charge density (this is the Quantum Critical regime) there is a scaling

tail for the AC conductivity that behaves as

|σ| ∼
(

ω

teff

)− 1
3

, Arg(σ) ≃ π

6
(1.4)

For finite charge density, this tail survives not only in the Quantum Critical

regime but also in parts of the Drude regime.

4. This scaling tail of the AC conductivity generalizes to more general scaling

holographic geometries, as previously described in [33, 36]. In this case, the

theory was taken to have T = 0 and no momentum dissipation.

In particular, for a metric with Lifshitz exponent z, hyperscaling violation expo-

nent θ and conduction exponent ζ , [35, 36] with d spatial boundary dimensions,

we find that in general

|σ| ∼ ωm , Arg(σ) ≃ −π m
2

(1.5)

with

m =

∣
∣
∣
∣

z + ζ − 2

z

∣
∣
∣
∣
− 1 , (1.6)

There are several constraints in the parameters of this formula that are detailed

in [57]. This formula is valid when the associated charge density does not

support the IR geometry. In this case the scaling exponent can become negative

but is also m ≥ −1.

5. In the special case where the associated gauge field seeds the IR scaling geom-

etry, the exponent m takes the value

m =
∣
∣
∣
3z − 2 + d− θ

z

∣
∣
∣− 1 (1.7)

and is always positive.

6. An important question is whether the scaling of the AC conductivity described

above, for the general scaling geometries, is controlled by the dynamics of the

charge density, or it is decided by the neutral system. What was found in

[57] is that it is the neutral system that decides the exponent m. The charges

contribution is almost always subdominant.

The results of [57] have positively indicated that holographic Quantum critical

theories at finite density and T = 0, in the absence of momentum dissipation have a

scaling IR AC conductivity, roughly of the type seen in experiments.

There is however, an important difference, with the AC conductivity seen in

experiments as one needs to turn on non-zero temperature and momentum dissipation

and see to what extend this scaling survives these effects. It must also appear in the

mid-frequency range roughly T ≪ ω ≪ µ.
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Figure 1: The parameter landscape of the DBI Theory and the regimes for the DC

conductivity

1.2 Results and Outlook

In this paper we take the first step towards understanding how the scaling of the AC

conductivity survives the effects of temperature and momentum dissipation. The

example we analyze is the simplest possible one: the UV theory is a Conformal Field

Theory1 (CFT). The holographic theory this is associated with the four-dimensional

Anti-de Sitter geometry (AdS4). The IR theory is also a CFT but dominated by

charge density and has scale invariance in time only. It is associated with the two-

dimensional Anti-de Sitter geometry, (AdS2).

There is a characteristic scale that controls the passage from AdS4 to AdS2 (at

T=0) and this is the charge density (or chemical potential µ). We also add momen-

tum dissipation. This introduces a new characteristic (mass) scale, k that competes

with the charge density. We have in total three scales, µ, T and k. Therefore this

theory depends on two dimensionless ratios, τ and κ that control the importance of

temperature and momentum dissipation,

τ = 2π
T

µ
, κ ≡ k

µ
(1.8)

1The UV theory is assumed to be Lorentz invariant. The charge density breaks the Lorentz-

invariance. The IR theory has an emergent scale invariance in time only.
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Moreover, we define the following quantity, related to momentum dissipation

λ ≡
√

k

2µ
=

√
κ

2
. (1.9)

The theory at τ = κ = 0 has two scaling regimes. In the UV regime the scaling

exponent is m = 0 (z = 1, ζ = 0 in (1.6). It is a well known result that in a Lorentz-

invariant and scale invariant theory at zero density, in d = 2 the conductivity is a

(dimensionless) constant. We normalize, without loss of generality this constant to

one. In the IR, m = 2 (z = 1, d = 2, θ = 2 in (1.7).

We generically find four distinct regimes.

• The Drude regime for
ω

µ
≪ λ .

In this regime momentum dissipation produces a Drude peak2.

• The temperature dominated regime:

λ≪ ω

µ
≪ τ .

Here thermal effects dominate the AC conductivity.

• The scaling (intermediate) regime:

max {τ, λ} ≪ ω

µ
≪ 1 .

In this regime, if it exists, the AC conductivity is showing its ω2 IR scaling,

unmasked. It exists only if max {τ, λ} is sufficiently smaller that one.

• The UV regime,
ω

µ
≫ 1 .

In this regime the AC conductivity is that of the UV theory, ie, a constant. It

has been normalized to 1.

The four regimes along with the real part of the AC conductivity are summarized

in the table below.

We conclude that our expectations are verified in the simple example that has

been analyzed here. The next step is a choice of theory with non-trivial scaling

exponents that provide a negative value for the AC exponent m, and study similarly

the effects of temperature and momentum dissipation on the visibility of scaling of

the AC conductivity. Moreover, this mechanism must be implemented in the more

complex context of a theory which contains the competition of phases, giving rise to

the strange metal phase diagram, along the lines of [59].

2As before, this is despite the fact that there are no quasi-particles in the holographic theory.
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Regime frequency Re[σ]

Drude ω
µ
≪ λ κ2

κ4+12ω2/µ2

temperature-dominated λ≪ ω
µ
≪ τ 1

3
τ 2

scaling max {τ, λ} ≪ ω
µ
≪ 1 1

3

(
ω
µ

)2

UV ω
µ
≫ 1 1

The paper is organised as follows, In Sect. 2 we introduce the holographic model

in consideration and discuss its black-hole solution and equilibrium properties. In

Sect. 3 we compute the frequency dependence of the conductivity in three different

regimes, the first case corresponds with the momentum conserving zero temperature

case. Then, we switch temperature on and study the conditions for scaling conduc-

tivities in the IR regime. As a last step we include relaxation of momentum and

study all the possibilities in the IR conductivity. We close our analysis with section

4, where our conclusions are presented and where we discuss possible generalizations.

2. The Reissner-Nördstrom black-hole and the AdS2 IR-scaling

asymptotics

We consider a 2+1 (scale invariant) Conformal Field Theory (CFT) with a (global)

conserved U(1) charge in a flat Minkowski space-time. The conserved charge allows

us to consider the theory at finite charge density, a context relevant for addressing

many-body problems. Our scale invariant Quantum Field Theory (QFT) is not a

generic relativistic theory: it is a large-N theory at nearly infinite coupling constant.

Here N is the number of colors and unlike other Large-N examples used in condensed

matter physics, it includes an SU(N) gauge interaction that makes the theory much

more complex.

Such large-N gauge theories at strong coupling are known as “holographic”, as

they are dual to gravitational theories in higher dimensions (typically one-higher

dimension) on nontrivial geometric spaces that are asymptotic to Anti De Sitter

space. In our example, the dual gravitational theory will have 3+1 dimensions. The

(3+1)-dimensional spaces that are relevant, have always a boundary that has the

same geometry as the space on which the QFT lives. In our case the boundary will

be flat (2+1)-dimensional Minkowski space. The AdS/CFT correspondence and the

associated applications to condensed matter problems are treated in several extensive

references, [39]-[46].

As a starting point, we introduce the gravitational action for the system in

consideration, which consists of a (bulk)3 gravitational Einstein-Maxwell theory in

3 + 1 space-time dimensions, coupled to a set of axion fields4 responsible for the
3In this work, by bulk we mean the (3+1)-dimensional space where the gravitational theory

lives, whereas the boundary is (2+1)-dimensional and is the space on which the dual QFT lives.
4In this work, we refer to axion fields, as scalar bulk fields without a potential.
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non-conservation of momentum in the boundary field theory, [60]-[64].

Einstein-Maxwell theory in 3+1 dimensions is the holographic (bulk) description

of the universal sector of a holographic (2+1)-dimensional CFT. It contains a metric,

gµν , dual to the energy-momentum tensor of the CFT, and a gauge field, Aµ, dual to

the conserved U(1) current. We have also introduced a source of momentum dissi-

pation in the theory, that is generated by two scalar fields, φ1,2, without a potential.

Such fields, that we call axions, implement a source of momentum dissipation in the

continuum limit.

The action for the bulk theory is

S =
1

16πGN

∫

d4x
√−g

(

R +
6

L2
− L2

4
FµνF

µν − 1

2

2∑

n=1

∂µφn∂
µφn

)

. (2.1)

where R is the Ricci scalar of the bulk metric and

Fµν = ∂µAν − ∂νAµ (2.2)

is the field strength of the bulk gauge field.

The equations of motions are derived in appendix A. Solutions to the equations

of motion which are asymptotically AdS, and have specific boundary conditions at

the AdS boundary, are interpreted as saddle points of the CFT.

The theory in (2.1) admits a charged black-hole solution of the form

ds2 =
L2

r2

(

−f(r)dt2 + dx2 + dy2 +
1

f(r)
dr2
)

, (2.3)

At = ψ(r) , φ1 = k x , φ2 = k y , (2.4)

where

f(r) = 1 +
1

4
q2r4 − 1

2
k2r2 −mr3 , (2.5)

ψ(r) = µ− q r , (2.6)

and q,m are proportional to the charge and energy density of the system respec-

tively.5 Here, x, y are cartesian coordinates in space, t is the time, and r is the

holographic coordinate. The boundary of the bulk space is at r = 0.

The two scalars have linear solutions that break translational invariance in the

spatial directions and therefore provide a source of momentum dissipation. We have

chosen the parameters of that solution so that rotational invariance remains intact

(mostly for simplicity). We can generalize this to a solution where momentum dissi-

pation is different along different spatial directions. The regularity condition at the

horizon implies that

q =
µ

r0
, (2.7)

5This black-hole solution is the saddle point that described the ground state of the theory at

finite temperature and U(1) charge.
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where r0 is the horizon radius.

At this point, it is important to review the parameters that enter in the solution6.

First of all the gravitational action has two dimensionfull parameters. One is the

bulk Newton’s constant GN and the other is the AdS curvature length L. The

dimensionless number is
L2

GN
∼ N2 ≫ 1 (2.8)

where N2 is the number of adjoint degrees of freedom of the quantum field theory.

Only L enters the solution. The rest of the parameters involve:

• The mass of the black-hole, m, which gives the energy of the canonical ensem-

ble.

• The charge q, with dimension of mass2, that determines the charge density of

the dual CFT.

• The parameter µ with dimension of mass, that determines the chemical poten-

tials of the dual CFT. It is related to the charge density via the relation in (2.7).

• The parameter k, with dimension of mass (or inverse length), that controls the

breaking of translation invariance and therefore the rate of momentum dissipation

in the system.

• The temperature T of the ensemble is fixed and related to the other parameters

in a way we shall describe below.

The horizon radius r0 is related also to other parameters of the solution. In order

to fix the value of r0 in terms of the physical scaling parameters T, µ, k we need to

solve for the condition f(r0) = 0, where r0 is given by the smallest positive solution7

of the polynomial in x

1 +
1

4
q2x4 − 1

2
k2x2 −mx3 = 0 , (2.9)

For q 6= 0, the polynomial (2.9), always has exactly two positive real roots r1, r2. As

long as the following inequality is satisfied

108m2 > k2
(
k4 − 36q2

)
+
(
k4 + 12q2

)3/2
, (2.10)

the other two roots are complex. If (2.10) is not satisfied, the other two roots are

also real, but negative, hence they do not affect us, since r is nonnegative in our

coordinate system. We can now factorize the blackening factor as follows

f(r) =

(

1− r

r1

)(

1− r

r2

)(

1 +
r1 + r2
r1r2

r +
r21 + r1r2 + r22

r21r
2
2

r2
)

, (2.11)

6We use units where c = ~ = 1.
7Notice that the boundary is sitting at r = 0, and the outer horizon corresponds with the

smallest positive solution of f(r0).
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where the two positive real roots r1, r2 satisfy

1

2
k2 +

1

4
q2r1r2 =

1

r22
+

1

r1r2
+

1

r22
, m =

r31 + r21r2 + r1r
2
2 + r32

r31r
3
2

. (2.12)

Finally we identify r0 = min(r1, r2) with the black-hole horizon, and r⋆ = max(r1, r2)

as the interior (Cauchy) horizon8 characteristic of charged black-holes. The Hawking

temperature for such a black-hole reads

T =
1

4πr0

(

3− 1

2
k2r20 −

1

4
q2r40

)

, (2.13)

which can be shown to be positive definite, after using the left equation of Eq. (2.12)

to construct the following relation

1

2
k2r20 +

q2r40
4

≤ 1

2
k2r20 +

q2r30r⋆
4

=
r20
r2⋆

+
r0
r⋆

+ 1 ≤ 3. (2.14)

The inequality is saturated at extremality (r0 = r⋆) where the temperature vanishes.

In addition, the black-hole mass can be written as

m =
4− 2r20k

2 + r20µ
2

4r30
. (2.15)

Considering we are interested in exploring the low temperature properties of the

geometry and the optical conductivity, it is convenient to introduce the scaling (di-

mensionless) variables

τ = 2π
T

µ
, κ =

k

µ
. (2.16)

In terms of the dimensionless temperature τ and momentum relaxing parameter κ,

the black-hole horizon radius r0 can be written as

µr0 ≡ F (τ, κ) =
6√

6κ2 + 4τ 2 + 3 + 2τ
. (2.17)

Therefore, the corresponding thermodynamic quantities, energy density ǫ, entropy

density s and charge density q, take the following form

µ−3ǫ = 2F (τ, κ)−3+
1− 2κ2

2
F (τ, κ)−1 , µ−2s = 4πF (τ, κ)−2 , µ−2q = F (τ, κ)−1

(2.18)

8Notice that in our coordinates the boundary sits at r = 0.
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2.1 The IR (near-extremal) AdS2 geometry

As it is well known, [48], the zero temperature near-horizon geometry of this black-

hole is AdS2 × R
2. To make this manifest, we rewrite the blackening factor f as

follows

f(R) = 2τF 2 R

L2µ
+
F 3 ((κ2 + 1)F − 4τ)

2

R2

µ2L4
+
F 4 (2τ − (κ2 + 2)F )

3

R3

µ3L6
+
F 6

4

R4

µ4L8
,

(2.19)

with

R =
L2

r20
(r0 − r) (2.20)

and F the function defined in (2.17). In terms of the new radial coordinate R, the

metric reads

ds2 =
L6

r20(L
2 − r0R)2

(

−f(R) dt2 + r40
L4

dR2

f(R)

)

+
L6

r20(L
2 − r0R)2

d~x2 . (2.21)

At zero temperature (τ = 0) and in the region where R ≪ µL2, the space-time is

approximately AdS2 × R
2:

ds2 = − R2

L2
IR

dt2 +
L2
IR

R2
dR2 +

L2

r20
d~x2 , (2.22)

with the AdS2 radius given by

L2
IR =

1 + 2κ2

1 + κ2
L2

6
. (2.23)

If τ is finite but small, in the region near the horizon

R

µL2
≪ 1, (2.24)

we obtain an AdS2 × R2 black hole

ds2 = −g(R)dt2 + dR2

g(R)
+
L2

r20
d~x2, (2.25)

where

g(R) =
R2

L2
IR

(

1− 6 + 8κ2

(1 + κ2)
√
3 + 6κ2

τ −R−1 2τ
√
3 + 6κ2

3(1 + κ2)

)

+O(τ 2). (2.26)

In the intermediate region

τ
L2
IR

L2
≪ R

µL2
≪ 1, (2.27)

we have

g(R) ≈ R2

L2
IR

(

1− τ
2(4κ2 + 3)

(1 + κ2)
√
3 + 6κ2

)

=
R2

L′2
IR

, (2.28)
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where we defined

L′2
IR = L2

IR

(

1 + τ
2(4κ2 + 3)

(1 + κ2)
√
3 + 6κ2

+O(τ 2)

)

. (2.29)

Therefore in the region (2.27) we still have an AdS2 × R
2 geometry

ds2 = − R2

L′2
IR

dt2 +
L′2
IR

R2
dR2 +

L2

r20
d~x2. (2.30)

with a modification to the AdS2 radius stemming from the blackening factor of the

AdS2 black hole.

3. The AC conductivity and its critical IR scaling

We now study the AC conductivity of our theory, and in particular its scaling form

in appropriate frequency ranges.

In order to understand the conditions under which scaling tails appear in the

system, we consider first the zero temperature (τ = 0) and momentum conserving

case (κ = 0).

To compute the AC conductivity, we introduce perturbations propagating on the

extremal (τ = 0) Reissner-Nördstrom black-hole solution, and use linear response,

following the prescription introduced in [65].

After studying the zero temperature case, we turn-on a small temperature in the

system. In the last step, in addition to the temperature, we also include momentum

relaxation.

3.1 IR scaling of the AC conductivity

We begin with vanishing temperature and absence of momentum relaxation. The

background is equivalent to the extremal AdS-Reissner-Nördstrom black-hole which

has no independent dimensionless parameters. The fluctuation equation relevant

for the computation of the electrical conductivity reads (see Appendix B for the

derivation)

fa′′x + f ′a′x + 12

(
w2

f
− ρ2

)

ax = 0 , (3.1)

where the frequency is measured in units of chemical potential

w =
ω

µ
(3.2)

and

f(ρ) = (1− ρ)2(1 + 2ρ+ 3ρ2) , ρ = r/r0 . (3.3)
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Figure 2: Frequency dependence of the conductivity at τ = κ = 0. The real part

(left) shows the scaling behaviour Re[σ] ∼ w2. On the contrary, the imaginary part

(Right) shows a Im[σ] ∼ w−1 divergence, indicating the presence of a δ(w) in the real

part, as required by momentum conservation. The black dashed line corresponds to

the fitting Re[σ] = w2/3 and Im[σ] = 1/(2
√
3w).

For the extremal black-hole, the horizon is located at (µr0)
2 = 12. In particular,

equation (3.1) has an irregular singular point at ρ = 1, implying a near-horizon

behaviour given by

ax ∼ (1− ρ)−4
√
3/9iwe

iw√
3(1−ρ) . (3.4)

After numerically solving the differential equation with the near-horizon condition

(3.4), the frequency dependence of the conductivity can be computed. The results

are shown in Fig. 2. As expected, for w ≪ 1 the AdS2 geometry dominates and an

IR scaling emerges. By fitting the numerical data, the conductivity can be written

as

σ(w) =
1

3
w2 +

1

2
√
3

(

δ(w) +
i

w

)

+ · · · , w → 0 (3.5)

in agreement with the general scaling exponents derived in [57]. We have also in-

cluded the δ-function in the real part, which is there, due to the 1/w pole in the

imaginary part. To finish the numerical analysis of the conductivity, we proceed

to plot the absolute value |σ| and the argument arg σ as shown in Fig. 3. In the

left plot, the 1/w pole of the imaginary part dominates over the w2 scaling of the

real part. In the right plot, the argument takes the value arg σ = π/2 in the IR,

consistent with

arg σ ≈ arctan

√
3

2w3
≈ π

2
− 2w3

√
3
+ · · · . (3.6)

On the contrary in the UV region (w ≫ 1) the behaviour is determined by the

asymptotic AdS4 region

σ(w) = 1, Arg(σ) = 0. (3.7)
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Figure 3: Absolute value (Left) and argument of the conductivity (Right) at zero

temperature momentum breaking parameter (τ = κ = 0). The dashed line shows a

fitting with |σ| = 1
2
√
3w

and arg[σ] = π
2
respectively.

3.2 Temperature versus critical IR scaling of the AC conductivity

Having understood the zero temperature conductivity, we now introduce a non-

vanishing τ , while keeping κ = 0. In this case τ is the only dimensionless parameter.

Therefore, the conductivity depends parametrically only on the dimensionless tem-

perature τ .

The equation of motion for the fluctuating gauge field reads (see Appendix B)

fa′′x + f ′a′x + F 2

(
w2

f
− z2

)

ax = 0 , (3.8)

with the blackening factor

f(ρ) = 1− ρ3 +
1

4
F 2ρ3(ρ− 1) . (3.9)

The IR conductivity can be studied analytically for w ≪ 1. For concreteness we

show here the result and refer the reader to Appendix B.1 for the details of the

computation. In the regime w ≪ 1, the conductivity reads

σ(w) ≈ σQ +D

(

δ(w) +
i

w

)

, (3.10)

where

σQ =

(
12− F 2

3(4 + F 2)

)2

, D =
4F

3(4 + F 2)
. (3.11)

In particular, in the regime of interest (τ ≪ 1), the low-frequency conductivity takes

the simple form

σ(w) ≈ 1

3
τ 2 +

i

2
√
3w

. (3.12)
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Figure 4: Finite temperature conductivity at zero momentum relaxation parameter

(κ = 0). In the left plot we show the real part for several values of the temperature

τ . The δ(w) in the real part is not drawn. In the right plot the imaginary part is

shown. The dots represent numerical data, while the continuous lines are given by

(3.13). The black dashed line in the real part corresponds to Re(σ) = 1
3
w2.

Having understood the small frequency analysis, we proceed to solve numerically Eq.

(3.8), and show the results in Fig. 4. In the left plot, we observe how temperature

introduces the constant offset (σQ) to the real part. We shall refer to the regime

where this constant value dominates as the temperature-dominated regime. If the

condition τ ≪ w ≪ 1 is satisfied, we notice the emergence of the AdS2 scaling

∼ w2. For high enough temperatures, the temperature-dominated regime “covers”

the scaling regime and, thus, the latter is not visible. Given this behaviour, we

propose the following form for the low-frequency conductivity

σ(w) ≈ σQ +D

(

δ(w) + i
1

w

)

+
1

3
w2, (3.13)

which is shown as continuous lines in figures 4 and 5.

In addition, we plot the absolute value and argument of the conductivity for

different temperatures in Fig. 5. In this case, as it also happens at zero temperature,

the 1/w imaginary part of the conductivity always dominates in the IR part of the

absolute value of the conductivity. This is easy to see from Eq. (3.13). For the w2

term to “win” over D/w we need D ≪ w3. However, for τ ≪ 1, we have D ≈ 0.29 ≫
w3. Finally, the argument has a similar behaviour to the zero-temperature case at

small frequencies. For τ ≪ 1 it reads

arg(σ) =
π

2
− 2√

3
w(w2 + τ 2) + · · · . (3.14)
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Figure 5: The absolute value and argument of the conductivity at κ = 0 and at

various value of τ . The dots show the numerical data, while the continuous lines are

given by (3.13).

3.3 Momentum dissipation versus IR scaling of the AC conductivity

The last case to be considered is the general case of finite temperature and momentum

relaxing parameter. The system is controlled by the two dimensionless parameters

τ, κ. For the present case, the gauge field couples to the scalar and metric sector (see

Appendix B), therefore we need to solve the system of equations

wF 2

ρ2f
(wχ− iκhxt ) +

(
ρ−2fχ′)′ = 0 , (3.15)

−iρ
2F 2w

f
ax +

iw

f
hx

′

t − κχ′ = 0 , (3.16)

−hx′

t +
w2F 2ax

f
+ (fa′x)

′
= 0 , (3.17)

where the blackening factor takes the form

f(ρ) = (1− ρ)(1 + ρ+ ρ2 − 1

2
κ2F 2ρ2 − 1

4
F 2ρ3) . (3.18)

In appendix B.2 we solve the fluctuation equation perturbatively for w ≪ F−1 and

κ≪ F−1. The conductivity in this limit is given by (B.64)

σ(w) ≈ D

Γ− iw
+ σQ, (3.19)

where

σQ =

(
12− F 2

3(4 + F 2)

)2

, D =
4F

3(4 + F 2)
, Γ = κ2D . (3.20)
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Figure 6: The real part, imaginary part, absolute value and argument of the con-

ductivity at τ = 2π · 10−3 and for various values of κ. The dots show the numerical

data, while the continuous lines are given by (3.19).

Actually, in the κ ≪ 1 and τ ≪ 1 limit, the leading behavior of the coefficients is

given by,

D =
1

2
√
3

, Γ =
κ2

2
√
3

, σQ =
τ 2

3
. (3.21)

Since for κ ≪ 1, τ ≪ 1 we have F−1 ≃ 0.3, the approximation is valid in the region

of interest (w ≪ 1).

After the approximate analytic analysis, we solve numerically for the conduc-

tivity, and show the results in Fig. 6. For the computation of the conductivity we

fixed τ = 2π · 10−3, and analyse the transport coefficient for several values of κ. In

order to fit the numerical data, in addition to the analytically computed conductivity

(Eq. (3.19)) we add to the real part the power-law 1/3w2, and show the function as

continuous lines in figure 6. In particular, we observe that for κ = 0.1 the fit is not

very good. This is because we are approaching the boundary of the validity region

of the formula Eq. (3.19) (κ≪ F−1 ∼ 0.3).

We observe that the formula

σ(w) ≈ D

Γ− iw
+ σQ +

1

3
w2 (3.22)

approximates well the numerical data as long as κ≪ F−1 ∼ 0.3,

We study now the conditions for the scaling of the AC conductivity to be visible.

To do so, we write the real part for τ ≪ 1, κ≪ 1, w ≪ 1 as follows

Re[σ] ≈ κ2

κ4 + 12w2
︸ ︷︷ ︸

Drude

+
τ 2

3
︸︷︷︸

temperature

+
w2

3
︸︷︷︸

scaling

. (3.23)
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Figure 7: The real part, imaginary part, absolute value and argument of the con-

ductivity at τ = 2π · 10−3 and for various values of κ. The dots show the numerical

data, while the continuous lines are given by (3.19).

We observe a ’Drude peak’ as long as κ 6= 0, which dominates for small enough

frequency. As w increases, either the scaling or temperature terms starts to dominate.

Therefore we divide the analysis in the following two cases9

• Temperature dominated λ≪ τ ≪ 1: In this case, as we turn the frequency

on, the temperature term in Eq. (3.23) is the first one to start dominating

over the Drude term at frequencies of order w ∼ κ/(2τ). Then, as we keep

increasing w, the scaling term becomes dominant. The temperature-dominated

behaviour appears for frequencies κ/(2τ) ≪ w ≪ τ , while the scaling in the

conductivity is visible for τ ≪ w ≪ 1. In particular, in the left plot of figure 8

we tuned the parameters to sit within this regime (κ = 10−7 , τ = 2π × 10−3)

and we notice the three well defined regions, Drude, temperature dominated

and scaling respectively, in consistency with this classification.

• Drude dominated τ ≪ λ ≪ 1: This case is characterized by the ’Drude

peak’ covering the flat region, but not the scaling regime. In fact, when w ∼ λ

the scaling contribution in the conductivity starts dominating as can be seen

in the right plot of Fig. 8.

The previous analysis suggests that as long as τ ≪ 1 and λ ≪ 1, the critical

scaling will be visible within the window

max {τ, λ} ≪ w ≪ 1. (3.24)

9We only study the cases where the scaling survives. If either the temperature or the momentum

relaxing parameter are large enough, the critical scaling power-law is no-longer visible in the AC

conductivity.
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Figure 8: Real part of the conductivity as a function of the frequency. Left plot

shows the conductivity for the case in which λ ≪ τ ≪ 1. The Drude peak turns

into the “flat” temperature-dominated behavior, which gives its turn to the scaling

behavior ∼ w2, before reaching the UV at w > 1. The vertical lines correspond to
κ

(2τ)
and τ from left to right. On the contrary the right plot corresponds to regime

τ ≪ λ ≪ 1. The Drude peak shows a transitions directly to the ∼ w2 scaling

behavior. The dashes show the numerical data, while the continuous line is given by

(3.23). The vertical line corresponds to λ =
√

κ
2
.

Finally, to extract the behaviour of the absolute value and argument of the

conductivity we proceed to write the full conductivity as follows

σ =
DΓ

Γ2 + w2
+ σQ +

1

3
w2 + i

Dw

Γ2 + w2
+ · · · . (3.25)

However, in the region given by Eq. (3.24) where the scaling is visible, the conduc-

tivity takes the approximate form

σ ≈ 1

3
w2 + i

D

w
+ · · · , (3.26)

which automatically implies that the imaginary part will be dominant in the absolute

value of the conductivity because D ≈ 1
2
√
3
and the frequency is w ≪ 0.1. On the

other hand, the argument at zero frequency vanishes as

Arg[σ] ≈ arctan
2
√
3w

κ2
, (3.27)

and approaches Arg[σ] ≈ π/2 when the frequency is within the values given by the

interval (3.24).

4. Conclusions

Several strongly coupled holographic theories exhibit an AC conductivity that is a

scaling function of the frequency ω in the IR regime, [33, 57].
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We embarked here in a study of how non-zero temperature, and momentum

dissipation affect the visibility of scaling in the AC conductivity. In this paper

we have studied perhaps the simplest holographic theory at finite density, a 2+1

dimensional (relativistic) CFT.

Such a theory is known to exhibit an unexpected 1-dimensional scale invariance

in the IR at finite density, [48]. This invariance is intimately tied to the appearance

of the AdS2 geometry in the near-horizon region of the near-extremal AdS-Reissner-

Nördstrom black hole.

We have studied the effects that temperature and relaxation of momentum has

on near-extremal black-holes with AdS2 geometry. We have shown, that as long as

the condition

max {τ, λ} ≪ w ≪ 1, (4.1)

is satisfied, the real part of the electrical conductivity will show the critical scaling

behaviour determined by the AdS2 near-horizon geometry. In (4.1), τ is the dimen-

sionless temperature, λ =
√

κ/2, where κ is the dimensionless momentum dissipation

coefficient, and w is the rescaled frequency, as defined in (2.16), (1.9) and (3.2). The

imaginary part of the conductivity is generically dominated by the Drude peak in

this example.

The next step is to investigate more complex holographic systems that have a

a closer resemblance to strange metals, where σ(ω) ∼ ω−a with 0 < a < 1, [57].

We shall investigate the emergence of a scaling regime at finite temperature and

momentum dissipation. In such cases, we also expect that the imaginary part f the

conductivity will be dominated by the scaling mechanism like the real part.
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Appendix

A. Equations of Motion

In this appendix, we list the equations of motion stemming from the action (2.1).

Taking variations of the action respect to metric, gauge and scalar fields we

obtain the following set of equations of motions

Rµν = − 3

L2
gµν +

1

2
(∂µφ1∂νφ1 + ∂µφ2∂νφ2) +

1

2

[

F ρ
µ Fνρ −

gµν
4
F 2
]

(A.1a)

∇µF
µν = 0 (A.1b)

∇µ∇µφi = 0, i = 1, 2 (A.1c)

where the covariant derivatives are defined with the Christoffel connection.

We consider static, rotationally-symmetric (in the x − y plane) solutions, with

translational symmetry broken only by the axion fields

ds2 = −D(r)dt2 +B(r)dr2 + C(r)dxidx
i, φi = kxi, Aµ = (At(r), 0, 0, 0), (A.2)

where i = x, y above. Substituting the ansatz (A.2) into (A.1) we obtain the following

set of independent equations (the scalar equation of motion are identically satisfied)

6

L2
B + L2A

′2
t

2D
+
B′D′

2BD
− C ′D′

CD
+
D′2

2D2
− D′′

D
= 0 (A.3a)

− 2
C ′′

C ′ +
C ′

C
+
B′

B
+
D′

D
= 0 (A.3b)

k2
B

C
− 6

L2
B +

L2A′2
t

2D
− B′C ′

2BC
+
C ′D′

2CD
+
C ′′

C
= 0 (A.3c)

(
CA′

t√
BD

)′

= 0. (A.3d)

We are interested in asymptotically AdS4 solutions. Under this requirement, the

regular solution of (A.3) is given by (2.3)-(2.6).

B. Derivation and analysis of the AC conductivity

In this appendix, we derive the equations that determine the AC conductivity in our

theory. This is done by deriving the equations of the linear fluctuations around the

solutions that perturb the charge density, solving them and then extracting the IR

limit of the current-current correlator from the near-boundary expansion.
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To study the linear response of the system, we introduce the relevant fluctuating

fields, [66],

δAx = ax(r)e
−iωt, δgxt =

r2

L2
hxt (r)e

−iωt, δφ1 = χ(r)e−iωt. (B.1)

The linearised equations of motion, for the fluctuations, stemming from the equations

(A.1), are

ω

r2f(r)
(ωχ(r)− ikhxt (r)) +

(
r−2f(r)χ′(r)

)′
= 0 (B.2a)

ir2ωA′
t(r)

f(r)
ax(r) +

iω

f(r)
hx

′

t (r)− kχ′(r) = 0 (B.2b)

A′
t(r)h

x′

t (r) +
ω2ax(r)

f(r)
+ (f(r)a′x(r))

′
= 0. (B.2c)

B.1 Small frequency solution without momentum dissipation

Starting from (B.2), we set k = 0 and define the following dimensionless variables

τ = 2π
T

µ
, w =

ω

µ
. (B.3)

The equations (B.2) can be decoupled to obtain a single equation that governs the

fluctuation of the gauge field

fa′′x + f ′a′x + r20

(
w2

f
− ρ2

)

ax = 0, (B.4)

where we are using the rescaled radial coordinate

ρ =
r

r0
(B.5)

and the blackening factor is

f(ρ) = (1− ρ)(1 + ρ+ ρ2 − 1

4
r20ρ

3). (B.6)

We now change variables by transforming ax as follows,

ax = g(ρ)Y (ρ), g(ρ) = 1− 4r20
12 + 3r20

ρ (B.7)

to obtain

(fg2Y ′)′ + r20
w2

f
g2Y = 0. (B.8)
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We now set

Y = f(ρ)iwr0/f ′(1)X(ρ), (B.9)

to remove the leading behavior at the horizon and obtain an equation for X(ρ)

X ′′+

((

1 +
iw

τ

)
f ′

f
+

2g′

g

)

X ′+

(

r20
w2

f 2
− w2f ′2

4τ 2f 2
+
iwf ′g′

τfg
+
iwf ′′

2τf

)

X = 0. (B.10)

Once the solution for X(ρ) is found, then the conductivity is obtained from the

near-boundary behavior, and is given by

σ(w) = − i

wr0

(

g′(0) +
X ′(0)

X(0)

)

. (B.11)

We can find a perturbative solution in the IR by expanding X for small w as

follows

X(ρ) = X0(ρ) + wX1(ρ) + w2X2(ρ) + w3X3(ρ) + · · · . (B.12)

The equations at each order in w are

(fg2X ′
0)

′ = 0 (B.13)

(fg2X ′
1)

′ = −i(g2X2
0f

′)′/X0 (B.14)

(fg2X ′
2)

′ = −i(g2X2
1f

′)′/X1 − g2X0((4πτ)
2r20 − f ′2)/f (B.15)

(fg2X ′
3)

′ = −i(g2X2
2f

′)′/X2 − g2X1((4πτ)
2r20 − f ′2)/f (B.16)

· · · (B.17)

(fg2X ′
n)

′ = −i(g2X2
n−1f

′)′/Xn−1 − g2Xn−2((4πτ)
2r20 − f ′2)/f. (B.18)

We define the following function,

Hn =

∫ ρ

1

(−i(g2X2
nf

′)′/Xn − g2Xn−1((2τ)
2r20 − f ′2)/f) dρ. (B.19)

Then the solution for Xn can be found recursively by

Xn =

∫ ρ

0

Hn−1

g2f
dρ. (B.20)

The solution for X0 which is regular at the horizon is just a constant X0 = c.

Then X1 is

X1(ρ) = −ic
∫ ρ

0

2τg(1)2 + g(ρ′)2f ′(ρ′)

f(ρ′)g(ρ′)2
dρ′. (B.21)

To first order in w, the conductivity is given by

σ(ω) = −ig
′(0)

r0w
+ g(1)2 +O(w). (B.22)

The real part reads

Re[σ(ω)] = (2τ)2

(

2(
√

(2τ)2 + 3− 2τ)

3(4 + 2(2τ)2 − 4τ
√

(2τ)2 + 3)

)2

+O(w2). (B.23)
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B.2 The small frequency behavior with weak momentum dissipation

Starting with the system (B.2) we define the dimensionless variables

ω̃ = ωr0 , k̃ = kr0 , q̃ = −qr20 (B.24)

and use the radial coordinate

ρ =
r

r0
(B.25)

to obtain

f (fa′x)
′
+ q̃fh′xt + ω̃2ax = 0 (B.26a)

ρ2f(fρ−2χ′)′ + ω̃2χ− iω̃k̃hxt = 0 (B.26b)

iω̃h′xt − k̃fχ′ + iq̃ω̃ρ2ax = 0, (B.26c)

where

f(ρ) = (1− ρ)(1 + ρ+ ρ2 − 1

2
κ2r20ρ

2 − 1

4
r20ρ

3). (B.27)

In order to decouple (B.26b), we define the following functions, [67],

φ± =
h′xt
ρ2

+ q̃ax +
C±

ρ
ax, (B.28)

where

C± =
6k̃2 − 3q̃2 − 12

8q̃
±

√

64k̃2q̃2 + (12− 6k̃2 + 3q̃2)2

8q̃
. (B.29)

We obtain a decoupled system for φ±

(ρ2fφ′
±)

′ +

(
ρ2ω2

f
+ λ±ρ

)

φ± = 0, (B.30)

where

λ+ =
C+f

′ + ρ(C− + q̃ρ)(k̃2 − C+q̃ρ)

C+ − C−
(B.31)

λ− =
−C−f

′ − ρ(C+ + q̃ρ)(k̃2 − C−q̃ρ)

C+ − C−
. (B.32)

To first non-trivial order in k̃ we have

λ+ = k̃2
(
ρ(−12 − 3q̃2 + 4ρq̃2)

12 + 3q̃2

)

+O(k̃4) (B.33)

λ− = −3

4
ρ2(4 + q̃2) + k̃2

(
ρ(−24 − 6q̃2 + (36 + q̃2)ρ)

24 + 6q̃2

)

+O(k̃4). (B.34)
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We also write f as follows

f(ρ) = f0(ρ) + k̃2f1(ρ), (B.35)

where

f0(ρ) = (1− ρ)

(

1 + ρ+ ρ2 − 1

4
q̃2ρ3

)

, f1(ρ) = −1

2
ρ2(1− ρ). (B.36)

• We start from the equation for φ+ (B.28). Using

φ+ = ψf
iω

f ′(1) (B.37)

removes the leading behavior at the horizon. Now ψ must be regular at the

horizon.

We expand ψ for small ω̃, k̃ as follows

ψ = ψ0 + ω̃ψ1 + k̃2ψ2 +O(ω̃2, k̃4, ω̃k̃2). (B.38)

The equation for ψ0 is

r2f0ψ
′
0 = c0 (B.39)

for which regularity at the horizon implies c0 = 0, hence ψ0 is constant. Using

this fact we obtain the following equations for ψ1, ψ2:

(ρ2f0ψ
′
1)

′ +
iψ0

f ′
0(1)

(ρ2f ′
0)

′ = 0 (B.40a)

(ρ2f0ψ
′
2)

′ + ρψ0B1 = 0 , B1 =
ρ(−12 − 3q̃2 + 4ρq̃2)

12 + 3q̃2
. (B.40b)

From (B.40a) we find

ψ1 = iψ0

∫ ρ

1

1

f0

(
1

ρ2
− f ′

0

f ′
0(1)

)

dρ ≡ iψ0P1(ρ). (B.41)

From (B.40b) we find

ψ2 = −ψ0P2(ρ) , P2(ρ) =
4(ρ− 1)

(12 + 3q̃2)ρ
. (B.42)

• Now we find a perturbative solution for φ−. We first use the transformation

φ− = gY (B.43)

with

g =
1

ρ
− 4q̃2

3(4 + q̃2)
(B.44)
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so that the coefficient of Y vanishes at the limit ω̃ → 0 , k̃ → 0. We use

Y = Xf
iω

f ′(1) (B.45)

to remove the leading behavior at the horizon. We require that X is regular at

the horizon and expand it as follows

X = X0 + ω̃X1 + k̃2X2 +O(ω̃2, k̃4, ω̃k̃2). (B.46)

For X0 we find

ρ2f0g
2X ′

0 = c (B.47)

which, by regularity at the horizon, implies that X0 is constant. Using this

fact we obtain the following equations

(ρ2f0g
2X ′

1)
′ +

iX0

f ′
0(1)

(ρ2f ′
0g

2)′ = 0 (B.48a)

(ρ2f0g
2X ′

2)
′ + ρX0B2 = 0 , B2 =

2ρq̃2(36 + q̃2)(q̃2(4ρ− 3)− 12)

27(4 + q̃2)3
. (B.48b)

From (B.48a) we obtain

X1 = iX0

∫ ρ

0

(
g(1)2

ρ2f0g2
− f ′

0

f0f
′
0(1)

)

≡ iX0Q1(ρ). (B.49)

From (B.48b) we find

X2 = −X0Q2(ρ) , Q2(ρ) =
8q̃2(36 + q̃2)

3(4 + q̃2)(−12 + q̃2(−3 + 4ρ))2
. (B.50)

• We now need to fix the integration constants X0, ψ0 in terms of the boundary

values

a(0)x = ax(0) , χ(0) = χ(0) , h
x(0)
t = hxt (0). (B.51)

The system (B.26) implies the equation

fρ2
(
ρ−2h′xt + q̃ax

)′
+ k̃2hxt + ik̃ω̃χ = 0. (B.52)

Using (B.28) and (B.52) we find

f
(
ρ2φ′

± − C±a
′
xρ+ C±ax

)
= k̃2hxt + ik̃ω̃χ. (B.53)

Near the boundary we obtain

lim
ρ→0

(ρ2φ′
±) = −C±a

(0)
x + k̃2h

x(0)
t + ik̃ω̃χ(0). (B.54)
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The expansion of φ± near the boundary is10

φ± = −W±

ρ
+D± + · · · (B.55)

where

W+ = ψ0(iω̃ − 4k̃2

12 + 3q̃2
) +O(ω̃2, ω̃k̃2, k̃4) (B.56a)

W− = −X0 +O(ω̃2, ω̃k̃2, k̃4) (B.56b)

D+ = ψ0 +O(ω̃, k̃2) (B.56c)

D− = X0

(

− 4q̃2

12 + 3q̃2
+ iω̃

(q̃2 − 12)2

(12 + 3q̃2)2
− k̃2

8q̃2(36 + q̃2)

(12 + 3q̃2)3

)

+O(ω̃2, ω̃k̃2, k̃4).

(B.56d)

Then (B.54) implies

W± = −C±a
(0)
x + k̃2h

x(0)
t + ik̃ω̃χ(0) +O(ω̃2, ω̃k̃2, k̃4), (B.57)

therefore

ψ0 =
−C+a

(0)
x + k̃2h

x(0)
t + ik̃ω̃χ(0)

iω̃ − k̃2 4
12+3q̃2

+O(ω̃2, ω̃k̃2, k̃4) (B.58)

X0 = C−a
(0)
x − k̃2h

x(0)
t − ik̃ω̃χ(0) +O(ω̃2, ω̃k̃2, k̃4). (B.59)

From (B.28) we can solve for ax:

ax = ρ
φ− − φ+

C− − C+
(B.60)

which implies

a′x(0) =
D− −D+

C− − C+

, (B.61)

where D± are given in (B.56). Using also (B.29), we obtain the terms relevant

to the electric conductivity

δa′x(0)/δa
(0)
x = iω̃

(12− q̃2)2

(12 + 3q̃2)2
− 4iω̃q̃2

(12 + 3q̃2)iω̃ − 4k̃2
+O(ω̃2, ω̃k̃2, k̃4) (B.62)

hence

σ(ω̃) =

q̃2

k̃2

1− (12+3q̃2)

4k̃2
iω̃

+
(12− q̃2)2

(12 + 3q̃2)2
. (B.63)

Now using (B.24) we can write (B.63) as follows

σ(w) =
D

Γ− iw
+ σQ, (B.64)

where

D =
4r0

12 + 3r20
, Γ = κ2D , σQ =

(
12− r20
12 + 3r20

)2

. (B.65)

10there are no logarithms in the expansion; one can check from the solution that φ′
± do not

contain any 1/ρ terms.
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