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Accurate time-delay measurement is at the core of many modern technologies. Here, we present a temporal-
mode demultiplexing scheme that achieves the ultimate quantum precision for the simultaneous estimation of
the temporal centroid, the time offset, and the relative intensities of an incoherent mixture of ultrashort pulses
at the single-photon level. We experimentally resolve temporal separations ten times smaller than the pulse
duration, as well as imbalanced intensities differing by a factor of 102. This represents an improvement of more
than an order of magnitude over the best standard methods based on intensity detection.

INTRODUCTION

The measurement of the time delay between two clocks is
of paramount importance for many applications, from naviga-
tion and global positioning [1] to tests of general relativity [2],
long baseline interferometry [3], optical coherence tomogra-
phy [4], and gravitational wave detection [5], to cite but a few.
With optical pulses emitted from coherent or partially coher-
ent sources, the timing information can be measured through
established interferometric methods and conventional photo-
detection, such as Fourier-transform interferometry [6]. Dis-
tance information can be extracted from timing information
using the time-of-flight principle [7], which detects reflections
off of distant objects. In these cases and others, the main goal
of a timing measurement is to estimate specific properties of
a received signal consisting of multiple pulses, such as rel-
ative time delays, centroids, and relative intensities, and not
necessarily full temporal profile reconstruction.

In many settings, the optical pulses being measured share
little or no coherence. This happens with, for example, re-
mote clocks (e.g GPS), incoherent excitations in biological
samples, condensed matter physics, and astronomical obser-
vations [8]. In the absence of coherence, interferometric meth-
ods like FROG [9] and SPIDER [10] cannot be exploited, and
the estimation precision of tools that directly measure tempo-
ral intensity, such as streak cameras [11], and time-to-space
conversion [12], is reduced dramatically (see Appendix A).

In the spatial domain, this problem has been dubbed as
Rayleigh’s curse [13]. In our context it can be formulated as
the limits in estimating the temporal separation τ between op-
tical pulses [14]: For intensity-only direct-detection schemes
in the instructive case of two mutually incoherent pulses with
equal intensities, the information gained per photon detected
(quantified by the Fisher information) decreases quadratically
with τ . This implies that the variance of the estimation of τ di-
verges as the pulse separation approaches zero, as can be for-
malized through the Cramér-Rao lower bound (CRLB) [15].

Employing appropriate strategies (such as homodyne detec-
tion [16]), the measurable timing sensitivity can be enhanced

by a factor 1/
√

N, where N is the mean total photon number of
photons measured in the experiment during the detection time.
This is the famous standard quantum limit [17], which can be
even surpassed to the ultimate Heisenberg scaling 1/N [18].
Detecting more photons, however, is not always possible; in
many photon-starved applications, such as astronomy or bio-
logical imaging, where longer measurement times suffer from
drifts and instabilities.

Rayleigh’s curse is not integral to the problem, but rather an
artifact of only considering the intensity of the field. By opti-
mizing over all possible quantum measurements via the quan-
tum Fisher information [19], it can be shown that the precision
of an optimal measurement maintains a fairly constant value
for any pulse separation τ . In other words, the divergence
can be averted using phase-sensitive measurements, despite
the incoherent nature of the sources. This information is al-
ways available, no matter how small τ becomes. Experiments
projecting onto tailored optical field modes have demonstrated
considerably better precision than the direct-detection CRLB
in both the spatial [20–22] and the time domain [14].

These results are as interesting as they are important, but
they apply exclusively to signals of equal strength. Here, we
consider a more broadly applicable multiparameter scenario
in which the pulses might have different intensities. This can
occur whenever an incoherently backscattered echo pulse is
measured relative to a reference, e.g. in lidar ranging applica-
tions. This involves the simultaneous estimation of the tem-
poral centroid, the time offset, and the relative intensities of
the two pulses. Typically, when trying to estimate multiple
parameters, there is a trade-off in the precision with which
different parameters may be estimated; when the protocol is
optimized for one parameter, its performance in estimating the
remaining ones deteriorates. The underlying reason for this is
an incompatibility of the quantum measurements required to
simultaneously optimize the estimation of multiple parame-
ters, meaning that it may not be possible to estimate all pa-
rameters optimally at the same time [23, 24]. The theory of
multiparameter estimation has attracted considerable interest
during recent years, with promise for a variety of important
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FIG. 1. Experimental concept. Two mutually incoherent light pulses can be characterized by a temporal separation, τ , a joint temporal centroid
position, τ0, and imbalanced intensities parametrized by q. The task is to find a measurement that facilitates the simultaneous estimation of all
three parameters with the best possible precision. The right bottom panel shows the temporal envelopes of the projections used for our optimal
estimation.

applications [25, 26]. To date, few recipes to saturate the ul-
timate precision bounds are known, and experimental demon-
strations remain challenging [27, 28].

In this work, we experimentally achieve the ultimate quan-
tum limits for multiparameter timing estimation. We explic-
itly show that tailored strategies lead to a significant improve-
ment in precision over direct detection for any number of pho-
tons. This constitutes not only a unique demonstration of
multiparameter estimation at the quantum limit, but it works
precisely in the regime in which classical detection entirely
fails, thus solving the outstanding challenge of measuring ex-
tremely small time delays between faint, mutually incoherent
pulses.

It is worth stressing that our method is clearly distinct
from existing approaches that use quantum resources, such as
squeezing or entanglement, to achieve better scaling of the
measurement precision with respect to the number of pho-
tons [18]. These approaches rely on highly fragile probes,
which are often not compatible with real-life conditions, such
as strong losses within the system. In contrast, our approach
focuses on performing an ideal measurement, making it ver-
satile in both real-life applications and under extreme condi-
tions, such as the faint-light astronomical measurements.

OPTIMAL MEASUREMENTS

In the following, we briefly lay out the theory underlying
our approach. A schematic setup is depicted in Fig 1(a). Two
pulses of identical amplitude shape ψ(t), but different intensi-
ties, overlap with a time offset τ between them. In the case of
direct detection, the signal acquired by a detector with perfect
temporal resolution is

I(t) = q |ψ(t)|2 +(1−q) |ψ(t− τ)|2 , (1)

where q is the imbalance parameter q that accounts for the
different intensities. Note that we have assumed an incoher-
ent mixture of the pulses [29], which is a good model for the

common situation in which, e.g., one of the pulses is produced
from the reflection of an incoherent scatterer. In our experi-
ment, this incoherent signal is created by mixing the measure-
ment outcomes of positively and negatively shifted pulses in
time. To be specific, we focus on the case of Gaussian pulses,
with temporal amplitude

ψ(t± τ/2) =
1

(2πσ2
τ )

1
4

exp

[
− (t− τ0± τ/2)2

4σ2
τ

]
, (2)

στ being the root-mean-square (RMS) width.
Our goal is the simultaneous estimation of τ , q and the cen-

troid τ0. The solution to this problem is to use phase-sensitive
projections onto specifically designed temporal modes that
are sketched in Fig. 1(b). An optimal measurement basis is
always given by the successive derivatives of the amplitude
pulse shape [30, 31]: in our case, this basis is just the Hermite-
Gauss modes {HGn}. Following the procedure outlined in
Ref. [30], it is enough with four mode projections n= 0, . . . ,3,
which turn out to be
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(3)

To perform such projective measurements we use a quan-
tum pulse gate [32–34], which is a reconfigurable temporal-
mode demultiplexer shown in Fig. 1(c). Gating pulses prop-
agate through an optically nonlinear waveguide and interact
with the incoherent near-infrared pulses to create an output
signal at green wavelengths. Detecting the output photons cor-
respond to a projective measurement along a certain temporal-
mode set by the gating pulse. This method combines the ad-
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FIG. 2. Experimental setup. The input pulses with different time
delays and intensities are carved from an attenuated broadband OPO
at 1540 nm, using a Fourier-plane liquid-crystal spatial light modu-
lator. Gating pulses with superpositions of Hermite-Gauss functions
are shaped by a similar pulse shaper. We then mix the gating and
input pulses in a PPLN waveguide, followed by bandpass filter and
a silicon avalanche photo-diode (SiAPD) to count the up-converted
green photons. Neutral density filter (NDF), dichroic mirror (DM).

vantage of the enhanced precision of phase-sensitive measure-
ments with the simplicity and efficiency of photon counting at
visible wavelengths.

EXPERIMENTAL SETUP

Our experimental apparatus is sketched in Fig. 2. A
titanium-sapphire oscillator and an optical parametric oscil-
lator (OPO) are used to generate 150 fs long pulses at 862 nm
and 1540 nm, respectively, with a repetition rate of 80 MHz.
A commercial fiber-coupled pulse shaper carves two Gaussian
pulses with durations of 1.57 ps from the OPO, one of which
receives a positive time shift of τ/2, whereas the other one
receives a negative time shift of −τ/2. These input pulses
are also attenuated to a mean value of two photons per pulse.
Ten pulse separations ranging from 0 to τ and six imbalance
parameter q ranging from 0.125 to 0.75 were programmed
during the experiment. Without loss of generality, we keep
the centroid position, τ0, set at zero. Positively and nega-
tively shifted pulses are measured separately, then an inco-
herent mixture of the two pulses, as in Eq. (1), is generated
by mixing the individual measurement outcomes in data post-
processing. This ensures that no spurious coherence can enter
the measurements.

The gating pulses, with a central wavelength of 862 nm,
are shaped into the measurement modes, using a free space
Fourier-plane spatial light modulator. The input pulses and
the gating pulses are then sent to a quantum pulse gate [32–
34]. As mentioned, this device is a mode-selective frequency
converter which facilitates projections onto arbitrary temporal
modes that are user-chosen and defined by the temporal-mode

p1 p2

p4p3

FIG. 3. Measurement model. The panels show the mean measure-
ment responses of our four measurement channels for a selected
range of parameters. In all panels τ0 = 0 and q = 0.125 (blue dots),
q= 0.25 (orange squares), and q= 0.5 (green triangles). The curves
show the corresponding responses of the theoretical detection model
(4) used for multiparameter estimation.

of the gating pulses.
Our quantum pulse gate is a 35 mm long titanium-

indiffused periodically poled lithium niobate (PPLN) waveg-
uide with a poling period of 4.4 µm. Propagation of the opti-
cal fields in the fundamental spatial mode of the waveguide is
assured by the waveguide geometry for the input signal and by
optical mode matching for the gating field. The gating pulses
have a pulse energy of 100 pJ which provides a conversion
efficiency of 40%, excluding collection and detection losses.
The sum-frequency generated light at 553 nm is filtered with
a 4 f setup to discard the phasematching sidelobes with a tight
bandwidth of 17 GHz and then coupled to a single-mode fiber
and detected with an off-the-shelf silicon avalanche photodi-
ode.

In our current quantum pulse gate implementation, the four
modes are measured sequentially. This is not a fundamental
limitation of the device; with a multiplexing scheme one can
measure many modes in parallel, which can enable a single-
shot multiparameter estimation [35]. To collect statistics, each
setting of input pulses and gating pulses was measured 100
times, with a total measurement time of 2 microsecond per
setting. As our experiment is very sensitive to the smallest
temporal drifts between input signal and gating field—after
all, it was designed for exactly this purpose—special care was
taken to limit temperature fluctuations of the measurement
setup to below 0.1◦ C.

To construct an unbiased estimator resilient to the imperfect
selectivity of our device, we use calibration data to perform
measurement tomography of our technique [36]. In particular,
approximating the measurement responses; i.e., the probabil-
ities p j(τ,q,τ0,) ( j = 1, . . . ,4) of the four implemented pro-
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FIG. 4. Experimental results for the simultaneous estimation of the time offset τ̂ , the relative intensities q̂ and the temporal centroid τ̂0 of
the incoherent mixture of two Gaussian pulses. Dimensionless time is obtained by scaling the time by the pulse width σt . Orange lines show
true values of the corresponding measured parameters. Blue dots and error bars show the sample means and standard deviations over 100
estimates, each based on about 69000 detections. The shaded areas in all the plots represent the Cramér-Rao lower bounds for direct intensity
measurements corresponding to the same total number of photon counts.

jective measurements, by low-order polynomials quantities τ

and τ0,

p j =c0 j + c1 jτ0 + c2 jτ + c3 jq+ c4 jτ
2
0 + c5 jτ0τ

+c6 jτ0q+ c7 jτ
2 + c8 jτq+ c9 jτ0τq , (4)

the unknown coefficients cα j are estimated from data aver-
aged over 100 repetitions using the generalized least squares
(GLS) estimator from about 23 million total detections. This
provides a theoretical description of the measurement appara-
tus and confirms that targeted optimality conditions, namely
the (nearly) zero overlap of two of the measurement channels
with the fundamental Gaussian mode, are obeyed by the lab-
oratory setup.

Our measurement model is used, in turn, for constructing
multiparameter estimates from individual measurement runs,
each comprising about 23 thousands of detections. In this
case, constrained GLS estimation is applied for inverting the
nonlinear system (4) to ensure that the physical constraints
τ̂ ≥ 0 and 0 ≤ q̂ ≤ 1 are obeyed by the estimates. As non-
negativity of τ makes the corresponding estimator τ̂ biased

for very small separations, slight violations of the quantum
CRLB might be seen in such extreme cases.

The results are shown in Fig. 3, which presents the re-
sponses of our four measurement channels. Notice the real-
ized measurement has two “dark” channels with almost no
intensity in the limit τ → 0, as required by optimality criteria
granting superior performance of the quantum measurement
over best intensity based inference.

RESULTS AND DISCUSSION

In Fig. 4 we present our experimental results for the the
simultaneous estimation of the three parameters: time delay
(τ̂), intensity imbalance (q̂) and time-delay centroid (τ̂0). The
solid orange lines are the programmed true values of the vari-
ables, whereas the shaded regions mark the precision limits
of incoherent direct detection, as derived directly from the
CRLB.

For very small time separations, no meaningful information
can be extracted from direct measurements, particularly in the
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FIG. 5. Precision of the method. Variances of the estimator τ̂ (blue
circles) and q̂ (red squares) from our experimental data. Thick lines
give the quantum CRLB, and thin lines correspond to the direct-
detection CRLB. The data corresponds to q = 0.125 and 69000 ef-
fective detections.

case of strong imbalance between the intensities of the two
signal pulses. The blue dots are the estimates retrieved from
our measurements. The corresponding errors are computed
from maximum likelihood.

In Fig. 5 we plot the variances of the estimators τ̂ and
q̂ from our experimental data. A clear separation is seen
between the direct-detection CRLB and the true quantum
CRLB. The experimental data strongly outperforms direct-
detection strategies and approaches the quantum CRLB for
all measured separations and imbalance parameters, confirm-
ing that we have indeed implemented an ideal measurement
that yields the maximum achievable information for this mul-
tiparameter estimation problem. We also note that, for some
values of τ , the variances are slightly below the CRLB: this
is due to the systematic errors in producing the signal state.
At very small true separations (τ <∼ 0.2 in our dimensionless
units) the estimator becomes biased, and the CRLB must be
adapted [37].

These results demonstrate that mode-selective time mea-
surements in the proper optimal modes constitute a unique
tool for precision parameter estimation problems where in-
tensity measurements fail. Notably, the absolute time and fre-
quency scales accessible are not strongly dependent on the
scale of the measurement pulses, but rather on the exact im-
plementation of the mode-sensitive detector [38]. In our real-
ization, this corresponds to time and frequency scales of 30 fs
and 17 GHz, respectively.

In summary, our results show that multiparameter esti-
mation in the time-frequency domain can benefit greatly
from quantum-inspired techniques and analysis. By exploit-
ing time-frequency mode-selective measurements, we have
shown that multiple parameters, including sub-pulse-width
separations, relative intensities, and delay-pulse centroid, can
be estimated simultaneously with precision below the stan-
dard CRLB. By adapting these techniques to different scales,
this method could find immediate practical use in atomic
and stellar spectral characterization and time-of-flight imag-
ing and spectroscopy.
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APPENDIX A: ULTIMATE LIMITS OF THE STANDARD
MEASUREMENTS OF ULTRASHORT PULSES

In order to characterize the temporal shape of an ultrashort
pulse it is often convenient to combine the pulse with itself.
Varying the delay between the pulse copies and measuring the
signal at each delay gives an estimate of the pulse duration.
These autocorrelation measurements have limitations: to esti-
mate the duration requires assuming a particular pulse shape,
and the phase of the pulse electric field cannot be measured at
all.

A variety of methods have been devised to bypass these
drawbacks. We will focus here to one of the most popu-
lar, the so-called frequency-resolved optical gating (FROG),
although our analysis can be extended to other similar tech-
niques. FROG and autocorrelation share the idea of combin-
ing a pulse with itself in a nonlinear medium. But FROG mea-
sures the spectrum of the signal at each delay T (hence the
term frequency-resolved), instead of just the intensity. This
measurement creates a spectrogram of the pulse; i.e.,

IFROG(ω,T ) = |Esig(ω,T )|2 =
∣∣∣∣
∫ +∞

−∞

Esig(t,T )e−iωt dt
∣∣∣∣
2

,

(5)
where Esig is the signal field from the nonlinear interac-
tion. This field depends on the original pulse and the non-
linear process employed. For the common case in which the
second-harmonic generation is used, we have that Esig(t,T ) =
E(t)E(t−T ), so that

ISHG FROG(ω,T ) =
∣∣∣∣
∫ +∞

−∞

E(t)E(t−T ) e−iωt dt
∣∣∣∣
2

, (6)

which can be used to determine the complex electric field as a
function of time or frequency.

FROG is currently one of the most widespread techniques
for measuring ultrashort laser pulses. It allows for the use of a
phase-retrieval algorithm to retrieve the precise pulse intensity
and phase vs. time.

Now, let us imagine that we use FROG for resolving the
temporal separation τ between two incoherent pulses. To sim-
plify the problem, we take both pulses to be of identical shape
E(t). The basic signal is then

E(t− τ/2)+ eiφ E(t + τ/2) , (7)
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where we have to average over φ to take into account that we
are dealing with an incoherent mixture. The corresponding
spectrogram reads

I(ω,T,τ) = 2cos(τT ) ISHG FROG(ω,T )+A(τ)A(−τ) , (8)

with

A(τ) =
∫ +∞

−∞

E(t− τ/2)E(t + τ/2−T )e−iωt dt . (9)

Since τ is the variable of interest, we write I(τ) ≡ I(ω,T,τ).
The crucial observation for what follows is that the series ex-
pansion of I(τ) in terms of τ has no linear term; that is, the
detected signal depends quadratically on τ:

I(τ) = I(0)+ τ
2I′′(0) . (10)

We can then estimate the uncertainty in our measurement via
simple linear error propagation; we get for the variances

∆
2
τ =

∆2I
(∂τ I)2 . (11)

But, since ∂τ I goes to zero for small τ , the uncertainty di-
verges and the method does suffer from Rayleigh’s curse.
Hence, established pulse characterization methods fail when
operated on incoherent pulse mixtures and other methods have
to be used; e.g., the approach demonstrated in the main text.
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ski, P. Ablewski, M. Bober, R. Ciuryło, A. Cygan, D. Lisak,
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