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S1 Generalizing Vegetation Indices with Kernels

The new family of nonlinear vegetation indices is based on kernel methods (38, 24), a machine learn-
ing methodology to derive nonlinear algorithms from linear ones while still resorting to linear algebra
operations. We first review the main theoretical properties of feature maps and kernel functions. Then
we exemplify the framework of kernel-based vegetation indices and illustrate it with the particular
case of the NDVI.

S1.1 Feature maps and kernel functions

Deriving nonlinear (kernel) indices requires the definition of a feature mapping ¢(-) to a Hilbert space
‘H endorsed with the kernel reproducing property.

Definition S1.1 Reproducing kernel Hilbert space (RKHS). Given a Hilbert space H with functions
over %, ie. f:RY — R, the function k(-,-) : R? x RY — R is called reproducing kernel of H if
k(z,-) € H, and H is a RKHS.

Property S1.1 Properties of Hilbert spaces. A Hilbert space H is a space endorsed with an inner
product. Let H be a vector space over . A function (-, )3, : H X H + is said to be an inner product
onHif: (1) (a fit+aafs, g)n = ar(fi, )u+a(fe, 9w (2) (f, 9)n = (g, f)a; and (3) {f, f)u > 0,
and (f, f)n =0 iff f =0.

Property S1.2 Reproducing property. If Vo € RY and Vf € H then f(x) = (f,k(z,-)) and the
product (k(-,z),k(, 2))y = k(x, 2). This is the reproducing property of the kernel. A function f can
thus be represented as a linear function defined by an inner product in the vector space H.

S1.2 An illustrative example: NDVI

n—r

The normalized difference vegetation index is defined as NDVI = e
flectances in the NIR and the red bands, respectively. This is a difference-ratio operation: the differ-
ence in the numerator can be cast as the ‘physical’ component, while the sum in the denominator is a

where n and r are the re-

‘normalization’ factor. For the formulation of the kernel NDVI let us treat the two components sepa-
rately. Given scalars n,r € R, d = 1, let us define a feature map ¢ — ¢(n) € H with an associated
reproducing kernel k(n, -) = (¢(n), -)x, likewise for 7. Now let us define two feature maps that work
on the joint (n, r) feature vector:

((n, 7)) == ¢(n) —o(r) €H and  ¢((n,1)) = d(n) + o(r) € H,

with associated physical and normalization kernels:

m((n,r), (n,7)) =@ ((n,7)),d((n, 7))
t((n,r), (n, 7)) =(e((n, 1)), o((n, 7)) = k(n,n) + k(r,r) + k(n,7) + k(r,n).
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We can estimate the kernel NDVI transformation for (7, ) simply as:

_m((n,7),(n,r))  k(n, k) —k(n,r)
KNDVI = (((n,r), (n,7))  k(n,n) +k(n,r)

Property S1.3 All kernels in kNDVI are positive definite. By construction ¢ leads to a positive defi-
nite kernel k. The difference between feature maps in 1) might not lead to a valid kernel because the
third property of kernel functions in S1.1 could be violated because m could be negative in principle.
The kernel is however symmetric since m((n,r), (n,r)) = m((r,n), (r,n)), and positive by construc-
tion, since (p(n) — ¢(r), p(n) — ¢(r))n = ||¢p(n) — ¢(r)||3, > 0. Actually, for the particular case of
the RBF kernel function, we have k(x,x) = 1, and therefore m((n,r), (n,r)) = 2(1—k(n,r)) > 0 by
construction since 0 < k(n,r) < 1. Also note that m((n,r), (n,r)) = 0 iff n = r so that k(n,r) = 1.
Following similar arguments, the summation feature map p also leads trivially to a positive definite
kernel { and (((n,r), (n,r)) = 2(1 + k(n,r)) > 0. In conclusion, all defined feature maps ¢, 1 and
@ need to lead to positive definite kernels k, m and ( respectively, and the multiplication (ratio) of
kernels is a valid kernel too thus the kNDVI is a valid kernel.

S1.3 The choice of the kernel function

The core of any kernel method in general, and the kKNDVI in particular, is the appropriate definition
of the kernel function, k(a, b). Popular examples of valid reproducing kernels are the linear kernel,
k(a,b) = ab, the polynomial k(a,b) = (ab+ 1)?, p € Z™, and the radial basis function (RBF) kernel,
k(a,b) = exp(—5=(a — b)?), 0 € RY.

Property S1.4 NDVI is equivalent to kKNDVI with a linear kernel function. In the linear kernel, the
associated RKHS is the space R, and kNDVI trivially reduces to the standard linear NDVI:
immn—nr n

KNDVI - 27" _ NpvI
nn+nr n—+r

Property S1.5 Higher moments kernels. In polynomial kernels of degree p, kNDVI effectively only
accounts for moments up to order p:
(nn)? —(nr)?  nP—1?

KNDVI "2 - :
(nn)P+(nryp  nP+4rp

For the Gaussian kernel, the RKHS is of infinite dimension and kNDVI measures higher order spectral
dependencies between the reflectances in the NIR and the red channels. In addition, note that for RBF
kernel above, self-similarity k(a,a) = 1, and thus the kNDVI measure simply reduces to

2
vpyr ke L= k) (=Y.
1+ k(n,r) 20




S1.4 Prescription and interpretation of the kernel parameter

In kernel methods, setting the kernel parameters is critical and has an important impact in the solution
(25). We used in all our experiments the RBF and set the lengthscale parameter o to the average value
between NIR and red, o = 0.5(n + r). This prescription of ¢ is a reasonable choice; note that o
should reflect the notion of similarity between input data (in our case, NIR and red reflectances). It
is customary in the kernel methods literature to fix it to the average distance among objects (here the
reflectances in NIR and red channels). This choice can be also interpreted as a rough estimation of
the pixel’s albedo, see Fig. S1: higher o are automatically selected for bare soils.

Interestingly, by virtue of this approximation, the simplified kNDVI is a convenient double non-
linear transformation of NDVI as it reduces to kKNDVI = tanh(NDVI?). First NDVI is squared, and
then the result is squashed with a sigmoid function. On the one hand, the squared NDVI has been
proposed in (/7) as a proxy of fAPAR times LUE, and hence very useful to estimate GPP. On the
other hand, the tanh function allows to improve sensitivity at high values, such as in managed crop-
lands, and reduce the well-known bias of NDVTI at low values, where photosynthetic activity is low or
non-existent.

The parameter o directly affects the
nonlinearity and may have a strong im-
pact on the index performance. In
our experiments, however, we used the

60 Sop

mean heuristic that worked very well.
Actually, optimizing o per biome or cli-
matic region to approximate GPP, LAI
pr SIF did not improve the results much
over the proposed heuristic (results not
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Figure S1: Distribution of the kernel parameter o computed
as the average of NIR and red, 0 = 0.5(n + r) over the 506

MODIS images (2007-2017) used in the SIF experiment. lenging cases of arid, dry, densely and

sparsely vegetated regions. The pre-
scribed parameter stretches the predictions to account for high dynamic ranges (e.g for GPP esti-
mation in Fig. 3 and for LAl in Fig. S8), while reducing bias and saturation problems. This behaviour
is explained by looking at the sensitivity of the index to NDVI, see S2 and Fig. S3. The suggested
o = 0.5(n + r) actually leads to virtually no sensitivity to sparsely vegetated regions (low NDVI,
avoiding the bias problem), that varies roughly linearly with NDVI for mixed-pixels (moderate NDVI)
and that decreases for highly vegetated regions (high NDVI, reducing the NDVI saturation problem).
This, in turn, has a positive effect in terms of error propagation, see S2.5.



S1.5 Generalizing standard vegetation indices with kernel methods

The kernel methodology can be readily applied to any vegetation index available in the literature,

provided that it can be expressed as a function of dot products between spectral channels. Table S1

shows some illustrative examples of kernelized indices.

Firstly, one has then to select an appropriate kernel function k& (e.g. linear, polynomial, or RBF).

We recommend the Gaussian kernel -RBF kernel- function because it captures all higher-order re-

lations between the spectral channels involved, it only contains one hyperparameter to choose, and

generally gives good results in many applications. Secondly, one has to choose, or optimize, the ker-

nel parameter(s). This can be very challenging and problem dependent. While for the kNDVI the

prescription of setting the o parameter as the average between NIR and red reflectances worked very

well, this can be troublesome in other ‘kernelized’ indices because of the nature of relations between

the involved channels.

Table S1: Examples of vegetation indices and their kernel versions.

Indices |Example | VI \ Kernelized VI
Ratio GI (39) g; m
Percentage | IPVI (40) gl lj—1 22 z%gl, gl?: ]Igg% - §2§
2-bands | NDVI (3) ] 5; " Rg | G;(g]g 5; RJ;))JF k]gé Rg)))
1— Ry 1 21) = 2R, B2
3-bands | EVI(9) Ry + C1RRI2_—]%2R3 + L | k(Ri,R1) + C1k]<f(§1’7}§2))_—kc(3§1(’%2,)}33> +k(1, L)
3-bands | VARI (41) }% k(Ry, R1) 4‘213(231,52]%2—}5)31, R3)
Area NAOC (42) 1- ﬁ)\i/\l) 1= k(Rj}EQ)()\Z 7— A1)




S2 Mathematical properties of KNDVI

We give some mathematical properties of the kernel NDVI that ensure its generality: the kKNDVI
generalizes NDVI and NIRy, it captures all (infinite) higher-order moments of the NIR and red band
relations when the RBF kernel function is used, the kKNDVI adapts to sparsely-vs-densely vegetated
areas by means of the kernel parameter, and the index propagates less uncertainty in the spectral
bands.

Property S2.1 A kernel vegetation index generalizes its original vegetation index counterpart. The
kernel version of an index reduces to the standard counterpart when linear kernels are used. As an
example, using the linear kernels k(n,r) = n r and k(n,n) = n n into Eq. (1), it is easy to show that
the kNDVI reduces to the standard NDVI.

Property S2.2 The NIR, in (20) is a particular case of kKNDVI. The NIR, index proposed in (20)
departs from the standard NDVI and assumes that pixel reflectance x is composed of a portion § of
vegetation and 1 — § of soil, i.e. v = dz¥ + (1 — 0)x® for every wavelength \. Then, by assuming that
the soil component remains roughly constant across the spectrum, n° = r°, and that for the vegetation
component the NIR reflectance is typically much higher than the red reflectance, n® > r*, one can
show that NIR, = én" ~ NDVI x n. Now, it is easy to show that there exist a o parameter in the
proposed kNDVI that yields the same result as NIR,. Essentially, using an RBF kernel in the kKNDVI
and isolating o from the equation

1—
KNDVI = ————=
1+ k(n,r)

it is easy to show that using

°- \/ 2 /atanh(NDVI )

returns NIR,, and therefore demostrating how n, is a particular case of kNDVI.

Property S2.3 Any kernelized vegetation index with a Gaussian kernel exploits all relations between
the considered spectral bands. We show that replacing a dot product with a kernel function, in par-
ticular the Gaussian RBF kernel function, allows us to account for all higher-order moments of sim-
ilarity between the involved spectral bands. Let us assume the kernel k(a,b) = (¢(a), (b)) =
exp(—y(a — b)?), where for simplicity we define v = 1/(20%) > 0. Then, the explicit feature map ¢
is infinite dimensional, and can be expressed as

o(a) = exp(—a)|1 \/21:7 SOl JOs ] "

Note that the kernel k(n,r) = (¢(n), ¢(r))y is thus a dot product between infinite-dimensional ex-
pansions of both n and r, and thus the kernel summarizes the all higher order differences between the
NIR and red reflectance bands as k(n,r) = ;< (—1)'"v"(n — r)* /¢!




Figure S2 compares the correlation between SIF and different indices (NDVI, and kKNDVI with
polynomial and RBF kernels). Using a polynomial kernel for KNDVI with p = 1 recovers the solution
of NDVI, while as p increases, higher order relations between the red and NIR bands are captured.
In the limit, using the RBF kernel exploits all higher order relations and shows the best correlation,
improving results over NIRv.
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Figure S2: Correlation coefficient R (average and standard deviation) between SIF and the considered
indices: NDVI, kNDVI with polynomial and RBF kernels, and NIRv.

Property S2.4 Sensitivity maps of the index. The derivative of the kNDVI with respect its linear
counterpart NDVI, can be easily computed from the complete expression of kNDVI,

2 2
kNDVI = tanh ((n—r) ) = tanh ((NDVI> ), 4)
20 2T

where for convenience we used a lengthscale parameter o that scales linearly with the average of NIR

and red reflectances o = T(n + r). The derivative can be readily obtained:

dkNDVI 1 )
NDVT = 353(1 — KNDVE) NDVI.

Note that with our recommended value T = 0.5, the index largely simplifies, KNDVI = tanh(NDVIQ)

and the derivative becomes “XBYL — 2(1 — KNDVI?) NDVI.

The value, and thus the sensitivity, of the new index strongly depends of the selected o (through
7) parameter, see Fig. S3. The higher the o (or 7) value, the lower the derivative and hence more
sensitive to densely vegetated regions. On the contrary, the lower the o (or 7) value, the more sensitive
will be the kernel index to sparsely vegetated regions. The selection of o has an impact on the
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Figure S3: Derivative (sensitivity) of KNDVI and NIRv with respect NDVI (right) and dependence
of the indices with NDVI (left) for different values of 7 o« ¢ (we assumed an arbitrary value of NIR
reflectance of 0.5 for the NIRv illustration purposes).

desaturation effect of the index. Lower values of 7 would increase the sensitivity to soils and sparsely
vegetated pixels. A 7 = 0.25 would lead to Gaussian-like sensitivity around NDVI=0.4 but would
emphasize too much the lower values and would not reduce the saturation of NDVTI at high values.
The suggested 7 = 0.5, on the contrary, leads to virtually no sensitivity to sparsely vegetated regions
(low NDVI, avoiding the bias problem), then varies roughly linearly with NDVI for mixed-pixels
(moderate NDVI) and then decreases for highly vegetated regions (high NDVI, reducing the NDVI
saturation problem). Note that, unlike NIRv whose sensitivity increases linearly with NIR, the KNDVI
with ¢ = 0.5(n + r) copes with the saturation problem with a nonlinear function. In principle, one
could optimize the 7 value per biome of climatic region to increase the sensitivity or reduce the bias.
In our experiments, however, 7 = 0.5 showed a good compromise between accuracy and simplicity.

Property S2.5 Error propagation. Let us compare the indices in terms of uncertainty propagation
in the spectral bands. Given the transformation kNDVI = tanh(((n — r)/(20))?), and independent
distortions in each channel with standard deviations o, and o,, one can calculate the first order linear
approximation of the error propagation by using the variance formula:

dkNDVI\® , (dkNDVI\® ,
— +———)o
dn dr

n T

o?(kNDVI) = (

where the derivatives of kNDVI with respect the reflectances of the NIR and the red bands are:

2 2
dkNDVI (n— T)sechQ n—r and dkNDVI (n — r>sech2 n—r '
dn 202 20 dr 202 20

The error propagation for the NDVI involve

dNDVI 2r? J dNDVI 2n?
prmnd an e
dn (n+1r)? dr (n+r)?




and for the NIRv involve

dNIRv ~ (n*+2nr —r?) dNIRv 2n?
b an = — .
dn (n+1)? dr (n+1)?

See a comparison between the three indices in Fig. S4. Results suggest that the KNDVI propagates
a lower amount of error than the rest of the indices, especially resistant to increased noise variance,
which may result in more robust estimates.
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Figure S4: Density p of the propagated errors by all indices (c2[NDVI], 0?[NIRv] and o?[KNDVI])
over a uniform grid of 10* combinations of NIR and red reflectance values, and fixing o,, = o, to 0.01
(a), 0.05 (b) and 0.1 (c¢) standard deviation of additive white Gaussian noise (distortion/error level) in
each channel.



S3 IGBP groups

Table S2: IGBP classification.

Class | IGBP Acronym
0 Water WAT
1 Evergreen Needleleaf Forest ENF
2 Evergreen Broadleaf Forest EBF
3 Deciduous Needleleaf Forest DNF
4 Deciduous Broadleaf Forest DBF
5 Mixed Forest MF
6 Close Shrublands CSH
7 Open Shrublands OSH
8 Woody savannas WSA
9 Savannas SAV
10 | Grasslands GRA
11 | Permanent wetlands WET
12 | Croplands CRO
13 | Urban and built-up URB
14 | Cropland/Natural vegetation mosaic | CVM
15 | Snow and ice SNO
16 | Barren or sparsely vegetated BSV

Table S3: The considered IGBP classes and their grouping in our study.

Class | Name Acronym | IGBP classes cf. S2 merged
C1 | Needleleaf Forest NF 143
C2 | Evergreen Broadleaf Forest EBF 2
C3 | Deciduous Broadleaf Forest DBF 4
C4 | Mixed forest MF 5
C5 | Shrublands SH 6+7
C6 | Savannas SAV 8+9
C7 | Herbaceous GRA 10
C8 | Cultivated CRO 12




S4 Correlation with remotely-sensed Leaf Area Index (LAI)

LAl is a key biophysical parameter for both Earth vegetation modelling and monitoring. Many studies
have reported nonlinear empirical relations between NDVI and LAI. However, it is acknowledged
that this relation varies temporally according to the phenological development of plants and trees, as
well as with the changing environmental conditions (43). The correlation of kKNDVI with LAI, also
compared to both NDVI and NIRvy, is presented here.

S4.1 LAI data and surface reflectances

The MCD43A4 and MCD15A3H MODIS v006 products were used as reflectance data and LAI es-
timates, respectively. Both satellite products are provided at 500 m spatial resolution and gener-
ated combining data from Terra and Aqua spacecrafts. They are disseminated from the Land Pro-
cesses Distributed Active Archive Center (LP DAAC) also available at Google Earth Engine (GEE).
MCD43A4 offers a daily global Bidirectional Reflectance Distribution Function (BRDF) product
from a Nadir view in seven MODIS land bands (red, near infrared, blue, green, short wave infrared-1,
short wave infrared-2, and middle wave infrared). The MCD43A2 MODIS product, which contains
the quality information for the corresponding MCD43A4 product, was also used for avoiding low-
quality BRDF estimates. The MCD15A3H collection 6 product provides LAI estimates every 4 days,
and uses for the retrieval a look-up-table (LUT) approach simulated from a 3-D radiative transfer
model. The product also provides with a quality flag information of the LAI estimates.

S4.2 Processing

We used GEE for processing the MODIS products’ time series over 445 global biome-representative
sites from July 4, 2002 to March 14, 2017. The selected sites belong to the BEnchmark Land Multisite
ANalysis and Intercomparison of Products dataset (BELMANIP) (44). It was built using 420 sites
from existing experimental networks (FLUXNET, AERONET, VALERI, BigFoot, etc) completed
with selected sites from the GLC2000 land cover map. The updated one, BELMANIP2.1 dataset
complements BELMANIP by adding 25 sites corresponding to bare soil areas (deserts) and tropical
forests (Figure S5). Site selection was performed by keeping the same proportion of biome types
within the selected sites as within the 10°-width latitudinal bands. Attention was paid so that the sites
were homogeneous over a 10x 10 km? area, almost flat, and with a minimum proportion of urban
area and permanent water bodies.

Since the used MODIS products differ in temporal frequency of production, only coincident dates
among them were selected. The MCD43A4 was used to compute the indices after filtering non-valid
pixels. This was carried out excluding clouds, cloud shadows, snow, as well as poor-quality BRDF
parameter retrievals according to the pixel-based quality flag provided by the MCD43A2 MODIS
product, which is also available in GEE. In addition, only LAI estimates provided by the MCD15A3H
main algorithm were used, and intentionally filtered out estimates from the back-up algorithm as they
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Figure S5: Location of the BELMANIP2.1 sites and associated biomes.

internally use NDVI and related biophysical parameters. Hence, we did not use MODIS-derived
LAI estimates that can be affected by NDVI to avoid biased results and conclusions. This yielded
60,078 observations. LAI correlations with kKNDVI, NIRv, and NDVI, were computed using these
observations in the temporal domain. Lastly, the correlations are also reported per global biomes.

S4.3 Results

We evaluated our proposed kKNDVI as a proxy for LAI over a large dataset of MODIS LAI estimates.
Results indicate that kKNDVI (R=0.81) correlates better with the MODIS LAI product than NDVI
(R =0.74) and NIRv (R=0.76), see details in Table S4. These results are observed over all biomes

and conditions (Fig. S6).
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Figure S6: Boxplots of the averaged correlations between LAI and NDVI, NIRv and, kNDVI per

biome type.



Table S4: Correlation coefficient between the three vegetation indices (NDVI, NIRv, kNDVI) and
LAI per biome. Darker green indicates higher correlation values.

LAI

Biome| NDVI | NIRv |kNDVI
C1|NF 0.75 0.79 0.82
C2|EBF 0.41 0.43 0.45
C3|DBF 0.87 0.88 0.91
C4/MF 0.85 0.86 0.89
C5|SH 0.63 0.67 0.79
C6|SAV 0.86 0.87 0.89
C7/GRA 0.74 0.79 0.89

cs/cro | 090 | 093 -

ALL 0.74 0.76 0.81

Assessment per biome type reveals KNDVI as the most correlated index wih LAI (see Fig. S6).
In general the correlations are high, except over EBF the correlation is clearly lower. This can be due
to the fact that the MODIS LAI retrieval rate of the main algorithm is very low in the case of EBF
caused by reflectance saturation (45). In addition, the distribution of correlations reveals that KNDVI
outperforms both NDVI and NIRv (Fig. S7).

Figure S7: Estimated density of the correlation coefficient between the indices and LAIL.

We show the temporal evolution of the considered indices and LAI over both cultivated and herba-
ceous areas, see Fig. S8. The time series reveal that KNDVI follows similarly the LAI temporal be-
haviour whereas NDVI performance is worse mainly in sparse vegetation periods. The index actually



adapts better to phenological cycles, and is more sensitive to low vegetation too (see Fig. S8). The
kNDVI values are close to zero when no (or sparse) vegetation is present, whereas NDVI systemat-
ically retrieves values around 0.2. This highlights the normalization power of KNDVI in very early
phenological stages that present high brightness variability in the underlying soil background.
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Figure S8: Time series over a cultivated area (top) and an herbaceous area (bottom) in the BELMA-
NIP2.1 collection during the period 2013-2016.



S5 Additional analysis of GPP results

S5.1 Quantification of tower-level correlations per biome type

The per biome type assessment reveals that KNDVI generally outperforms the rest of VIs to predict
GPP estimates over 4 of 7 considered biomes types (see Fig. S9). Correlations are moderate to high
in all biomes, except for the EBF biome type where none of the considered VI performs adequately.
This can be attributed to reflectance saturation issues (45)
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Figure S9: Boxplots of correlations between GPP and NDVI, NIRv and, kKNDVI per biome type.

S5.2  On the linearization effect of normalizing GPP with radiation

Here we compare the effect of normalizing the GPP by PAR on the indices performance. Table S5
shows the results of association between the different indices (NDVI, NIRv and kNDVI) on both
situations (GPP and GPP/PAR). In the comparison we used different measures of association (that
is, statistical dependence) both linear and nonlinear; Pearson’s correlation coefficient R; Spearman’s
correlation coefficient, RS (26); Mutual information, MI (27); and Distance Correlation, DC (28).
Such analysis is imperative to have a clear view of the impact of the normalization on the indices.

S5.2.1 On the linearization via normalization versus the implicit linearization via kernels.

Results suggest that normalizing GPP by PAR has an obvious linearization effect since differences
between indices are smaller independently of the dependence measure used (note that while tempt-
ing, one should not compare the scores obtained in the normalized versus the unnormalized case as
a nonlinear transformation is applied and they cast different problems now). It is also observed that
such normalization affects NIRv the most, which yields virtually no numerical difference with NDVI.



Table S5: Average results obtained with different measures of dependence between the indices and
GPP or GPP/PAR.

GPP GPP/PAR
NDVI | NIRv [ kKNDVI| NDVI | NIRv | KNDVI
R 0.59 0.68 0.68 0.58 0.58 0.60
RS 0.62 0.66 0.63 0.58 0.56 0.58
MI 0.31 0.46 0.47 0.33 0.34 0.36
DC 0.64 0.71 0.71 0.65 0.65 0.66

A noticeable gain is still obtained with the proposed kKNDVI. After all, kernel methods in general, and
the KNDVI in particular, implement the original operation —the NDVI- in a feature space where NIR
and red have been mapped to. The KNDVI is a linear operation in that space, which is nonlinear in the
original (bands) input space. The simplicity and elegance of the framework allows us to accomplish
the ever-sought linearization transformation implicitly. This means that no ad hoc parametric trans-
formations are needed, just the kernel trick (25, 46). But, this also implies that virtually no gain over
other indices will be obtained when the relation between the bands and the parameter of interest is
linear, such as for instance after PAR normalization or when working (averaging) over larger spatial
or temporal scales (see S6.3). Our results showed that the KNDVI improved results in all cases but,
as expected, the gain was moderate when the domain was previously linearized.

S5.2.2  On the linear versus nonlinear regime

GPP is routinely estimated from satellite data with the light use efficiency (LUE) model (47,48,49,50).
It is a simple model which consists of the product of the photosynthetically active radiation (PAR), the
fraction of PAR absorbed by the vegetation (FAPAR), and an energy conversion efficiency factor or
LUE. Within the LUE modelling logic, the fAPAR (often calculated as a linear function of the NDVI)
is in charge of capturing the dynamics in photosynthetic biomass (green leaves, green stems, and
shoots), while the LUE and PAR variables provide the relationship between GPP and light. However,
the LUE model assumes a linear relationship between the GPP and the absorbed PAR, which is valid in
a broad range of biomes and environmental conditions but breaks at high temporal resolutions (daily
variation) due to nonlinear asymptotic light saturation effects, which is not the case of the present
study. This seems to be the reason why the weekly GPP/PAR appears not to be greatly benefited by
using higher-order (nonlinear) approaches like the KNDVI.



S6 Additional analysis of SIF results

S6.1 Spatial correlations

An alternative study with SIF was done computing the Taple S6: Spatial correlation coefficients
spatial correlation and averaging results through time. between the vegetation indices and SIF
The overall average correlation over the 506 images (16- per biome. Greener colors indicate higher
daily, 0.5°), see Table S6, shows outstanding results of correlations.

kKNDVI (R = 0.84) over NDVI (R = 0.69), and im- Spatial SIF
proves performance over NIRv (R = 0.81). The kNDVI Biome| NDVI | NIRv |KNDVI
excels in characterizing all vegetation types (gains in R of c1lNE 0.63 0.80 074
+21.7% over NDVI and +3.7 over NIRv). Interestingly, C2|EBE 0.65 079 0.81
in needle-leaf forests, kNDVI largely improves NDVI

(gain of +18.5%) but performs slightly worse than NIRv C3DBE | 049 053 051
(-6.7%). Accuracy of the kKNDVI (R = 0.82) is also C4|MF 0.59 0.75 0.77
higher than NDVI (R = 0.64) or NIRv (R = 0.80) at  |C5|SH 065 | 082 | 0.84
different latitudes, yet far more noticeable in higher lati- C6|SAV 077 | 083 | 0.84
tudes (> 30°). This matches results when disaggregated C7|GRA 0.72 0.82 0.84
by climatic zones (Koppen regions): the index achieves C8|CRO 0.71 0.83 0.85
averaged improvements in correlation above +35% with ALL 0.69 0.81 0.84
regard to the NDVI and around +3% over NIRv in cold
regions.

S6.2 Monthly and seasonal correlations

Figure S10 shows the obtained correlations between the indices and SIF for the whole period 2007-
2018 grouped by month and season. kKNDVI and NIRv perform similarly in all cases and much better
than NDVI. A noticeable gain is observed during the SON months and Fall season.
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Figure S10: Monthly correlations between the index and SIF for all considered biomes and all 10
years of data (left) and analysis per season (right).



S6.3 Impact of spatial and temporal scales

We analyze here the correlation between SIF and the indices at different temporal (biweekly, monthly
and bimonthly) and spatial (0.5, 1, 2) scales, see Fig. S11. Results confirm that kKNDVI is more
competitive at finer temporal resolutions with a noticeable advantage over NDVI (+15%) and NIRv
(+4%), but the gain over NIRv disappears at bimonthly scales. A broader spatial aggregation tends to
improve results of all indices and kKNDVTI outperforms the others independently of the spatial scale.
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Figure S11: Average global correlation between the indices and SIF at different temporal (biweekly,
monthly and bimonthly) and spatial (0.5, 1, 2) scales.

S6.4 On the linearization effect of normalizing SIF with radiation

Here we study the impact of considering SIF normalized by radiation instead of the raw SIF (to
create an expression of “SIF efficiency”). In our study we approximated PAR with the cos(SZA)
and studied the effect of such normalization, PAR/cos(SZA), on the results. The idea behind this is
to ‘discount’ the associations due to seasonality. In the unnormalized case, the nonlinear similarity
measures (Spearman, mutual information, and distance correlation) agree with Pearson’s correlation,
and are favourable to KNDVI, see Table S7. When SIF is normalized, all measures still indicate that
the proposed kNDVI aligns better, yet results are deemed similar to NIRv. Note that kernel methods
in general, and kNDVI in particular, solve a linear problem in a nonlinearly transformed space. Since
the main effect of dividing SIF by the cos(SZA) is to linearize the problem, getting rid of the strong
nonlinear seasonal cycle that dominates the distribution, a significant improvement over NIRv is not
expected. Yet, still for all measures the index tends to generalize (improve) both indices. These results
are also observed per biome (see Table S8), climate zone (see Table S9) and latitude (see Table S10).



Table S7: Average results over time obtained with different measures of dependence between the
indices and SIF or SIF/cos(SZA) as a proxy to PAR normalization. Greener colors indicate higher
values of linear and nonlinear association.

SIF SIF/cos(SZA)
NDVI | NIRv [ KNDVI | NDVI | NIRv | kKNDVI
R 0.54 0.63 0.65 0.55 0.58 0.59
RS 0.53 0.62 0.65 0.55 0.58 0.59
MI 0.33 0.43 0.45 0.34 0.37 0.38
DC 0.59 0.65 0.67 0.60 0.62 0.63

Table S8: Averaged temporal correlation between the indices and SIF/cos(SZA) per biome. Greener
colors indicate better linear and nonlinear association values.

R RS MI DC

Biome |NDVI| NIRv [KNDVI| NDVI | NIRv |[kKNDVI| NDVI | NIRv [kNDVI| NDVI | NIRv (KNDVI
Cl1 NF 0.65 0.69 0.70 0.67 0.69 0.70 0.39 0.44 0.44 0.69 0.71 0.71
C2 EBF 0.65 0.69 0.69 0.67 0.70 0.70 0.41 0.46 0.46 0.69 0.72 0.72
C3 DBF 0.46 0.45 0.40 0.47 0.45 0.39 0.21 0.21 0.19 0.49 0.47 0.44
C4 MF 0.60 0.64 0.65 0.61 0.64 0.64 0.38 0.42 0.43 0.64 0.66 0.66
C5 SH 0.63 0.66 0.67 0.63 0.66 0.66 0.39 0.43 0.43 0.67 0.69 0.69
Co SAV 0.57 0.56 0.55 0.57 0.56 0.54 0.34 0.34 0.34 0.60 0.59 0.59
C7 GRA 0.50 0.55 0.58 0.50 0.55 0.58 0.29 0.33 0.34 0.55 0.58 0.60
C8 CRO 0.54 0.59 0.61 0.55 0.59 0.60 0.30 0.34 0.35 0.58 0.61 0.62

ALL 0.55 0.58 0.59 0.55 0.58 0.59 0.34 0.37 0.37 0.60 0.62 0.62




Table S9: Correlation between the indices and SIF (left) or SIF/cos(SZA) (right) per climate zone.
Greener colors indicate higher correlations.

SIF SIF/cos(SZA)
Climatic zone | NDVI | NIRv | KNDVI | NDVI | NIRv | kNDVI
A- Tropical 0.59 0.68 0.69 0.61 0.65 0.65
B- Arid 0.47 0.55 0.61 0.49 0.51 0.56
C- Temperate | 0.61 0.72 0.74 0.61 0.63 0.65
D- Cold 051 0.59 0.66 0.53 0.55 0.62
E- Polar 0.66 0.74 0.77 0.70 0.72 0.72

Table S10: Temporal correlation between the indices SIF (left) or SIF/cos(SZA) (right) per latitude.
Greener colors indicate higher correlations.

SIF SIE/cos(SZA)
Latitude range | NDVI | NIRv | KNDVI | NDVI | NIRv | kNDVI
60 30 0.43 0.54 0.59 0.53 0.53 0.49
30 0 050 | 057 0.58 0.52 0.52 0.52
0 30 0.65 0.73 0.75 0.66 0.69 0.70
30 60 0.53 0.61 0.67 0.53 0.58 0.62
60 90 064 | 072 0.73 0.65 0.68 0.69




S7 Dependence between the index and in-situ Chlorophyll con-
tent, LAIl and FVC

We quantitatively assess the performance of kKNDVI in real in situ measurements of chlorophyll con-
tent (Chl-a), leaf-area index (LAI) and fractional vegetation cover (FVC). For this purpose, we will
use the SPARC dataset (57, 52). The SPectra bARrax Campaign (SPARC) field dataset encompasses
different crop types, growing phases, canopy geometries and soil conditions. The SPARC-2003 cam-
paign took place from 12 to 14 July in Barrax, La Mancha, Spain (coordinates 30°3’N, 28°6’W, 700
m altitude). Bio-geophysical parameters have been measured within a total of 108 Elementary Sam-
pling Units (ESUs) for different crop types (garlic, alfalfa, onion, sunflower, corn, potato, sugar beet,
vineyard and wheat). An ESU refers to a plot, which is sized compatible with pixel dimensions of
about 20 m x 20 m. In the analysis no differentiation between crops was made.

The data used in this study were obtained

_ ) in two terrestrial campaigns in Barrax, Spain.
Table S11: Linear and nonlinear dependence mea-

sures between the vegetation indices and the biophys-
ical parameter.

The test area has a rectangular form and an
extent of 5 km x 10 km, and is character-
ized by a flat morphology and large, uni-

NDVI NIRv | kNDVI form land-use units. The region consists of

LAI 0.71 0.72 0.78 approximately 65% dry land and 35% irri-

& |fAPAR 0.75 0.83 0.86 gated land. Several instruments were used
FVC 0.85 0.86 0.88 to measure the variables: a calibrated CCM-
LAI 0.45 0.52 0.50 200 Chlorophyll Content Meter for Chl-a, the

£ |fAPAR 0.70 0.83 0.85 LiCor LAI-2000 for LAI, and hemispherical
FVC 0.63 0.79 0.81 photographs taken with a digital camera with
LAI 0.33 0.37 0.47 a fish-eye lens for FVC. Simultaneously we

E [APAR 0.41 0.59 0.67 used satellite images from the CHRIS sen-
VG 0.63 0.66 s sor. CHRIS measures over the visible/ near-
LAT NG " o infrared spectra from 400 to 1050 nm. For

o this study, we used CHRIS data in Mode 1 (62
A [fAPAR Wi L. D bands, full spectral information) for the four
FvC 0.82 0.85 0.86 campaign days, where in sifu measurements

0 LAI 9.44 9.95 9.00 of surface properties were measured in con-
E fAPAR 1.00 0.83 0.77 junction with the satellite overpass. The im-
FVC 0.17 0.16 0.15 ages were geometrically and atmospherically

corrected. Three sets of 135 measurements
were collected in total. Results are shown in Table S11, where again kKNDVI is a better proxy of
the different in sifru measurements of biophysical parameters, independently of the adopted measure:
higher values of Pearson’s correlation R; Spearman’s correlation, RS; Mutual information, MI; and
Distance Correlation, DC; and lower values of MSE of a linear fit indicate better performance.



S8 Crop yield estimation

Accurate and timely crop yield estimation is currently one of the major challenges in agricultural re-
search and of paramount interest to governments, public administrations, and farm managers (53, 54,
55). Earth observation (EO) data has opened new ways for efficient agricultural mapping, crop mon-
itoring and assessment, as it allows deriving spatially explicit and temporally resolved maps of pro-
duction and yield (56, 57). Most studies on the use EO data for crop estimation are centered on visible
and infrared sensors. Actually, optical vegetation indices are easy to compute and useful to monitor
the quantity, quality and behavior of the vegetation representing the intra-annual vegetation dynam-
ics (58, 59, 60). Among the most widely used VIs, the NDVI has been extensively and successfully
used in agricultural mapping and monitoring, as well as in many crop yield studies (61,62, 63, 64, 65).

We used five years of Multi-angle Imaging Spectro-
Radiometer (MISR) data over the state of Kansas (US)
in the “corn belt” and derived weekly averaged time se-
ries of NDVI, NIRV and kNDVT at county scale. A total
of 79 time series with co-located yield were used for 13

Table S12: Correlation coefficient be-
tween the estimated and the surveyed
crop yield in two settings: (left) using the
year time series in a multivariate linear
regression (MLR); and (right) maximum counties. The goal is to estimate the crop yield of both
correlation between the weekly observa- corn and wheat from the time series. The target yield

tion and the yield. comes from the U.S. Department of Agriculture (USDA)
| | MLR | Ry (Week) | records. To evaluate the indices, we developed an ex-
Corn tremely simple crop yield estimation model: the index
NDVI | 0.5591 | 0.1960 (23) time series were used as a feature vector to fit a linear re-

NIRv | 0.5967 | 0.2446 (29)
kNDVI | 0.6157 | 0.2775 (29)
Wheat
NDVI | 0.7001 | 0.1591 (39)

NIRv | 0.7195 | 0.3134 (39) o L
KNDVI | 0.7530 | 0.3598 (39) estimation power. Results are given in Table S12. In both

approaches, the KNDVI improves results over the other
indices.

gression model. We then computed the correlation coeffi-
cient between the estimated and the surveyed USDA crop

yield. We also measured the maximum correlation ob-

tained between each index and the yield, as a measure of




The RMSE (bushels/acre) of each model can be translated into actual production (in bushels)
by normalizing over the acres planted. Information obtained from USDA.gov. Results are shown in
Table S13, and reveal that the lower error obtained by using kNDVTI in the linear prediction model gen-
erally translates into lower production estimates (around 330’000 bushels/year of corn and 400’000
bushels/year of wheat) compared to the standard NDVI.

Table S13: Translation of RMSE (bushels/acre) into bushels for the particular example of using a

linear regression for yield estimation over Kansas.

Corn NDVI NIRv kNDVI
RMSE (bushels/acre) 15.9352 16.123 15.8321
RMSE (bushels) 52108104 | 52722210 | 51770967
Diff relative to NDVI (bushels) - 614106 -337137
Wheat NDVI NIRv kNDVI
RMSE (bushels/acre) 8.3266 8.7451 8.2861
RMSE (bushels) 83682330 | 87888255 | 83275305
Diff relative to NDVI (bushels) - 4205925 | -407025




S9 Change detection

We show results of applying vegetation indices in the detection of changes in multispectral Sentinel-
2b images. Two scenes are considered: natural floods caused by cyclone Debbie in Australia 2017,
and consequences of wildfires in a mountainous area of California (USA), see Fig. S12. Following the
standard change vector analysis (CVA) procedure, we used the absolute difference of the vegetation
indices between the pre- and post-event dates as the anomaly detector.

California, ¢, California, - Australia, ¢, Australia, ¢,

B U 0 B

Figure S12: RGB composite S2-b pre- and post-event images of California wildfires (left) and Aus-
tralia floods (right). The changed area boundary is highlighted in white, and used for computing the
ROC and AUC. Credits: Images are freely available from ESA Copernicus Hub.

Figure S13 shows the Receiver Operating Curves (ROCs) of the indices, the area under the curves
(AUC), and the change detection maps. It can be noted that the KNDVI achieves an improved detection
performance over NDVI and NIRv, especially noticeable in the false positive rate regimes. This can
be confirmed in the detection images, where KNDVI provides sharper detection maps.

NDVI

kNDVI ROC

104

T
10 10
False positive rate

False positive rate

Figure S13: Difference maps by each index for California wildfires (top row) and Australia floods
(bottom row) scenes. The difference is taken as the change indicator to compute the ROC and AUC
(right plots).



S10 Source code implementation

The kernel-based vegetation indices can be easily programmed and applied. Here we give imple-
mentations in standard programming languages: MATLAB, R, Python, Julia, IDL and Google Earth
engine (GEE) code. In all cases, and for illustration purposes, we used the standard RBF kernel
function in the KNDVIL.

S10.1 MATLAB

Given the NIR and RED values for a particular pixel in scalar MATLAB variables xn and xr, the
kNDVI is computed as:

sigma = 1.0;
knr = exp (- (xn-xr) "2/ (2+«sigma”2));
kndvi = (l-knr)/ (l+knr);

Listing 1: MATLAB code snippet for the kKNDVI index

which can be easily computed for a whole image using right array divisions on bands.

The kernel parameter ¢ was fixed to 1 for illustration purposes. In our experiments we used a
common heuristic in machine learning that fixes o to the mean distance between the involved objects
in the kernel similarity measure, in our case the NIR and red bands. Optimization of o, e.g. per
biome or climatic region, is also possible. However, this simple heuristic performed very well in our
experiments.

S10.2 R

sigma <- 1
knr <- exp (- (xn-xr) "2/ (2xsigma”2))
kndvi <- (l1l-knr) / (l+knr)

Listing 2: R code snippet for the KNDVI index
S10.3 Python

import numpy as np

sigma = 1.0
knr = np.exp (- (xn—-xr)**2/ (2«sigmax*2))
kndvi = (l-knr) / (1l+knr)

Listing 3: Python code snippet for the kKNDVI index

S10.4 Julia

sigma = 1.0
knr = exp (- (xn-xr) "2 / (2xsigma”2))



kndvi = (1-knr) / (l+knr)
Listing 4: Julia code snippet for the KNDVI index

S10.5 IDL

Similarly to the MATLAB code, given an image loaded in IDL environment and the NIR and RED
bands assigned to nir and red variables, the KNDVI is computed as:

sigma = 1
k = exp(-( nirx1.0-red ) "2/ (2+sigma”2))
kKNDVI = (1-k)/ (1+k)

Listing 5: IDL code snippet for the KNDVI index

S10.6 Google Earth Engine (GEE)

Given the NIR and red bands identified by the variables nir and red, the kKNDVI is computed using
a map function defined as:

var addKNDVI = function (image) {
// Compute D2 a rename it to d2
var D2 = nir.subtract (red) .pow(2)
.select ([0],['d2"']);

// Gamma, defined as 1/sigma”2
var gamma = ee.Number (4e6) .multiply (-2.0);

// Compute kernel (k) and KNDVI
var k = D2.divide (gamma) .exp () ;
var kndvi = ee.Image.constant (1)
.subtract (k) .divide (
ee.Image.constant (1) .add (k))
.select ([0], ["knd']);

return image.addBands (kndvi) ;

Listing 6: GEE/JavaScript code snippet for the KNDVI index

We provide a simple demo in the following GEE link that computes and compares time series of
NDVI, NIRv and kNDVI vegetation indices in selected areas of interest.
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