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Abstract

Life history strategies are fundamental to the ecology and evolution of organisms and are impor-
tant for understanding extinction risk and responses to global change. Using global datasets and
a multiple response modelling framework we show that trait-climate interactions are associated
with life history strategies for a diverse range of plant species at the global scale. Our modelling
framework informs our understanding of trade-offs and positive correlations between elements of
life history after accounting for environmental context and evolutionary and trait-based con-
straints. Interactions between plant traits and climatic context were needed to explain variation in
age at maturity, distribution of mortality across the lifespan and generation times of species.
Mean age at maturity and the distribution of mortality across plants’ lifespan were under evolu-
tionary constraints. These findings provide empirical support for the theoretical expectation that
climatic context is key to understanding trait to life history relationships globally.
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INTRODUCTION

‘Life history theory tries to explain how evolution
designs organisms to achieve reproductive success. The
design is a solution to an ecological problem posed by
the environment and subject to constraints intrinsic to
the organism’. Stearns (2000).

Life history theory is explicitly integrative, taking into
account the environment as well as evolutionary, morphologi-
cal and physiological constraints (Partridge & Harvey 1988;
Stearns 1992). Lifetime reproductive success is determined by
key life history elements such as age at reproduction, quantity
of offspring and reproductive lifespan, which are themselves
underpinned by vital rates such as survival, growth and repro-
duction. Trade-offs in energy and resource allocation between

these vital rates limit the range of viable life history strategies,
meaning that there can be no ‘Darwinian demon’ which max-
imises growth, reproduction and survival simultaneously (Par-
tridge & Harvey 1988; Stearns 1992). Classical life history
theory focused on optimisation theory and suggested that
there is a single optimal life history strategy in a given envi-
ronment (Stearns 1992). More contemporary approaches, sug-
gest that multiple life history solutions exist in a given
environment, allowing stable co-existence of a diverse range
of strategies (e.g. Evolutionarily Stable Strategies, Mirmirani
& Oster 1978, and- adaptive performance landscapes, Arnold
2003). These theoretical frameworks are in keeping with the
observation that very different life history strategies often
occur together in natural environments, for example short-
lived herbaceous species and long-lived trees in forests (Silver-
town et al. 1993). This divergence in life history strategies also
occurs between closely related species (M€unzbergov�a 2013).
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Conversely, very different growth forms can give rise to simi-
lar life histories (Salguero-G�omez et al. 2016). Here we pro-
pose a framework that enables the explanation of life history
strategy variation within and across environments from widely
available species trait data within phylogenetic constraints.
Understanding how plant ‘functional traits’ such as plant

size, leaf area and seed-size influence fitness through their
effects on vital rates is a core aim of functional ecology
(Violle et al. 2007; Laughlin et al. 2020; Swenson et al. 2020).
The assumption that plant demographic performance can be
predicted from functional traits is central to its application in
community ecology and ecosystem dynamics (McGill et al.
2006; Westoby & Wright 2006; Salguero-G�omez et al. 2018).
However, despite being a key foundation of trait-based ecol-
ogy, evidence underpinning the relationships between plant
traits and vital rates or life history is mixed (Yang et al. 2018;
Laughlin et al. 2020; Swenson et al. 2020), with studies finding
relatively weak relationships at global scales (Adler et al.
2014; Paine et al. 2015; Che-Castaldo et al. 2018; de Jonge
et al. 2018; Yang et al. 2018).
Two potential reasons for weak trait-life history relation-

ships at global scales are: (1) environmental context depen-
dency and (2) the multivariate nature of both life history
strategies and functional trait syndromes at an organismal
scale. Life history evolution occurs in response to a given
environmental context (Partridge & Harvey 1988; Stearns
1992); hence, the relationship between functional traits and
life history or vital rates is likely to differ depending on the
environmental context and may even change direction (Yang
et al. 2018; Laughlin et al. 2020; Swenson et al. 2020). For
example, high leaf mass per unit area (LMA) is considered
adaptive in arid environments due to higher water use effi-
ciency, but this represents a trade-off with N use efficiency
and photosynthetic rates; meaning that lower LMA is more
adaptive in wetter environments (Reich et al. 2003). Similarly,
height may be adaptive in areas with high resource availability
and competitors as it facilitates competition for light, but may
reduce survival in freezing environments due to hydraulic fail-
ure in woody tissues (Zanne et al. 2014). While, the climate
dependency of trait to vital rate relationships is fundamental
to functional ecology (Reich et al. 2003), how this climatic
contingency affects life history strategies at global scales is not
well understood. Empirically, environmental context depen-
dency of trait-life history relationships have recently been
shown to be important in explaining the competitive dynamics
of both annual plant species and trees under different climatic
conditions (Zambrano et al. 2017; P�erez-Ramos et al. 2019),
and rates of vegetative reproduction in different habitats
across a broad range of plant taxa in botanic gardens (Pist�on
et al. 2019). At global scales climate differences are at their
largest, and therefore incorporating interactions between traits
and climate is likely to be fundamental to understanding trait
to life history relationships at these scales.
As selection occurs at the level of the individual or pheno-

type (Lande & Arnold 1983) and strong covariances and
trade-offs exist between life history elements (Franco & Silver-
town 1996; Salguero-G�omez et al. 2016; Healy et al. 2019)
multivariate response models are needed to properly reflect
the underlying genetic and evolutionary processes (Blows

2007; Hadfield & Nakagawa 2010; Swenson et al. 2020). By
contrast, linear regression models which implicitly assume a
direct relationship between an individual functional trait and
life history metrics (e.g. between seed-size and fecundity) can-
not account for the strong trade-offs and covariances which
exist between life-history metrics (Blows 2007; Swenson et al.
2020). Furthermore, the use of multiple functional traits as
predictors of life history variables allows for there to be multi-
ple solutions to the problem of optimising fitness in a single
environment (Arnold 2003; Laughlin & Messier 2015; Swen-
son et al. 2020). This incorporation of the multidimensional
nature of the phenotype-fitness relationship has recently been
successfully demonstrated within habitats for forest and grass-
land species (e.g. Godoy et al. 2015; R€uger et al. 2018; Bre-
itschwerdt et al. 2019; P�erez-Ramos et al. 2019).
Variation in life history strategies is constrained by phyloge-

netic history, and whilst this has been investigated (e.g. Burns
et al. 2010; Salguero-G�omez et al. 2016; Che-Castaldo et al.
2018), it is rarely examined together with multivariate life his-
tory, traits and environmental context. This is particularly
important as both life history and traits are phylogenetically
constrained.
Understanding the extent to which life history strategies are

explained by traits, environment and evolutionary factors is
also of great practical importance. The quantification of life
history is inherently data hungry, and deriving plant popula-
tion matrices from which life history metrics are derived
requires intensive longitudinal fieldwork (Salguero-G�omez
et al. 2018). The recent collation of detailed life history infor-
mation in the form of plant population matrices for several
hundred species greatly advances the scope for comparative
analyses (Salguero-Gomez et al. 2015). However, functional
trait data remain much more widely available with data on
key traits now available for hundreds of thousands of species
(e.g. Enquist et al. 2016; Kattge et al. 2020). Thus, robust
models of life history from functional traits, phylogeny and
environmental context, could facilitate the estimation of life
history metrics for many more species.
Here, we propose a model framework that specifically tests

how climate influences trait to life history relationships at glo-
bal scales (Fig. 1), whilst accounting for the relationships
between individual components of life history strategies (e.g.
reproduction, age at maturity, lifespan) and the phylogenetic
relationships between species. Whilst relationships between
functional traits and climate, and the covariation of func-
tional traits are well documented (e.g. Wright et al. 2004;
Chave et al. 2009; Zanne et al. 2014; D�ıaz et al. 2016; Moles
2018; Boonman et al. 2020), the novelty of our work lies in
the application of a multidimensional holistic framework to
understand how traits and climate relate to life history strate-
gies across a diverse range of plant growth forms at global
scales. Specifically, we provide a global test of this framework
using data compiled from the largest available databases of
plant traits (TRY, BIEN and primary literature), plant
demography (COMPADRE) and broad-scale climate vari-
ables (Worldclim and CGIAR) for 80 plant species of world-
wide. From previous work we expect phylogeny to structure
plant life history strategies (Burns et al. 2010; Salguero-
G�omez et al. 2016; Che-Castaldo et al. 2018). We expect
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relatively weak relationships with climate variables and func-
tional traits when these are considered separately or additively
in the model (Paine et al. 2015; Coutts et al. 2016; Yang
et al. 2018). The absence of an interaction between climate
and functional traits would be consistent with the idea that
there is a single global relationship between functional traits
and life history strategies, meaning that relationships between
functional traits and life history (e.g. taller species have
slower life history strategies) could be generalised to other
locations irrespective of differences in climate. We expect that
including an interaction between traits and climate will
improve our capacity to explain life history strategies, because
of underlying differences in functional trait to vital rate and
life history relationships along environmental gradients. This
interaction would indicate that the relationship between func-
tional traits and emergent life history strategies differs
between climatic contexts at the global scale.

MATERIAL AND METHODS

Overview

To examine the relationships between traits, climate, phy-
logeny and life history strategies we integrated data from mul-
tiple data sources. Climate and life history metrics were
matched for location at a 5 km scale, but due to a lack of co-
location of trait data with demographic data, traits were used
as species mean values. We then used a Bayesian multi-re-
sponse mixed modelling approach to predict life history
response variables as a function of traits, climate and phy-
logeny, together with the residual covariance between the life
history response metrics. This multivariate model is based on
the statistical framework for comparative biology presented
by Hadfield & Nakagawa (2010), which to our knowledge has
not been previously applied in the context of global plant life
history evolution.

Data collation and derivation

Species selection
Species in this study were selected on the basis of the avail-
ability of high quality demographic matrix model data in the
COMPADRE database of plant demography (Salguero-
Gomez et al. 2015) together with matching species trait data
for key functional traits (see details below).

Functional traits
Four commonly measured functional traits were chosen based
their relevance to describing life history strategies of plants
and on their availability across taxa: mean adult height (m),
seed mass (mg), leaf dry mass per unit area (LMA; mg/mm2)
and leaf area (mm2) (D�ıaz et al. 2016). Plant height and seed
mass were chosen to represent a spectrum of plant structure
and size (from short species with low stem density and small
seeds to larger species with high stem density and large seeds)
(D�ıaz et al. 2016). Plant height is associated with the ability to
compete for light resources, whole-plant fecundity and plant
dispersal (Moles 2018). Seed dry mass is associated with post
germination establishment, seed longevity and dispersal,
although its relationship with dispersal is strongly mediated
by height (Tamme et al. 2014; Moles 2018). LMA was chosen
for its relationship to leaf investment strategies described in
the ‘Leaf Economics Spectrum’ (Westoby et al. 2002; Reich
et al. 2003; Wright et al. 2004). High LMA values are corre-
lated with low leaf nutrient concentrations and lower rates of
photosynthesis, but longer leaf lifespans and greater protec-
tion against abiotic stress (Wright et al. 2004). From a life his-
tory perspective high LMA could confer advantages to species
with slower life-histories as these are more likely to benefit
from more conservative allocation of energy and resources.
Leaf area is associated with the surface area available for
light-interception, thermodynamics, water-use efficiency and
vulnerability to herbivory (Niinemets et al. 2006; Moles 2018),
and has been previously shown to be relatively uncorrelated
with LMA and the Leaf Economics Spectrum (Laughlin 2014;
D�ıaz et al. 2016). Functionally, higher leaf area could be
expected to be associated with faster life-histories due to

FIGURE 1 Conceptual illustration of model framework and alternative

hypotheses. Four candidate models were compared based on a priori

hypotheses: (a) traits only (traits explain life history strategies in the

absence of climate information), (b) climate only (climate explains life

history strategies in the absence of trait information), (c) traits and

climate (traits and climate additively predict life history but do not

interact) and (d) traits interact with climate (life history strategies are

predicted by the interaction between traits and climate, that is, the effect

of traits depend on climatic conditions). Grey boxes below show the

random effects which were included in all models, these were the

phylogenetic relationships between species, and the residual covariance

structure between life history metrics. Images are for illustrative purposes

only.
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greater photosynthetic capacity and lower stress tolerance.
Furthermore, plant height, woodiness, leaf area and seed dry
mass tend to be positively related across species because of
allometric constraints (Cornelissen 1999; D�ıaz et al. 2016).
Data for functional traits were obtained from the TRY Plant
Trait Database (Kattge et al. 2011, 2020) and the Botanical
Information and Ecology Network BIEN (Enquist et al. 2016)
and further individual studies sourced from the literature and
the Dryad data repository (see Appendix S1 in Supporting
Information for a full list of data sources).

Functional traits – calculation and criteria for
inclusion. Measurements of functional traits were only
included from healthy adult plants in datasets. Experimental
conditions (e.g. greenhouse/climate chambers) were only
included where these were designed to mimic field conditions.
Modelled or extrapolated values were excluded. For each
functional trait the final mean value for each species used in
further analyses was calculated by taking the mean value
across all study locations of that species. This prevented the
individual studies or locations with many records from having
a disproportionate effect.
In order to derive two key axes of trait variation for further

analyses we conducted a PCA on the natural log transformed
functional trait metrics (height, leaf area, leaf mass per unit
area and seed mass) (package ‘vegan’; Oksanen et al. 2017).
This step was necessary to reduce the number of explanatory
variables in the model given our sample size, while maintain-
ing information from all four functional trait variables of
interest. These axes closely resemble those previously
described for the entire TRY database in D�ıaz et al. 2016
(Appendix S2). These axes described a total of 82.5% of vari-
ation in the functional trait data, and hereafter are referred to
as the ‘PC1 - Size and structure’ (50.1%) and ‘PC2 – Leaf
traits’ (32.5%).

Life history metrics
Six life history metrics were chosen to represent the core ele-
ments of variation in plant life history strategies (Salguero-
G�omez et al. 2016). Age at maturity, mature lifespan and gen-
eration time were chosen to represent different, but related,
aspects of the pace of plant life-histories (slow-to-fast life-his-
tories). While, annual reproduction, inequality of reproduc-
tion across lifespan and distribution of mortality across
lifespan represent variation in reproduction and mortality risk
across the lifespan (Salguero-G�omez et al. 2016; Healy et al.
2019).

Life history metrics – criteria for inclusion. All life history
metrics were calculated from population level matrix
population models in the COMPADRE database vr. 4.0.1
(Salguero-Gomez et al. 2015). Studies were included only
from vascular plant species in unmanipulated outdoor
environments. In addition, matrices were only included where
they: (1) were separable into individual matrices representing
growth/survival and fecundity (i.e. U and F sub-matrices), (2)
did not include clonality (due to conceptual difficulties in
calculating lifespan and individuality in clonally reproducing
species), and (3) were primitive, irreducible and ergodic.

Where original authors provided individual matrices per year
per location these matrices were used and pooled matrices
across multiple populations were only used where no
individual population matrices were available. The accuracy
of all matrices was checked against the original sources, and
where there were differences between the COMPADRE data
and the original publications the data in the original
publications was used.

Preparation of matrix population models. To produce one
matrix per population, individual matrices were averaged
across years within populations prior to the calculation of the
life history metrics. In four species, matrix transitions were
longer than one year in duration, and matrices were converted
to annual time-steps prior to the calculation of life history
metrics (Appendix S3). All other species had annual
transitions.

Calculation of life history metrics. Age at maturity was
calculated as the mean age at which first reproduction occurs
among individuals that survive to reproductive age (Caswell
2001). Mature lifespan was defined as the mean lifespan of
individuals in the population conditional on having survived
to mean sexual maturity (R package ‘Mage’; Jones &
Salguero-G�omez 2016). Generation time is a measure of how
long it would take for a cohort to replace itself based on its
asymptotic growth rate and net reproductive rate, and is thus
a population level metric influenced by both survival and
reproduction (package ‘popbio’; Stubben & Milligan 2007).
Annual reproduction was defined as the mean number of new
aboveground individuals produced annually by a population
at its stable stage distribution (SSD). Inequality of
reproduction across lifespan was measured using the Gini
coefficient of inequality of annual reproductive output across
the lifespan (package ‘ineq’; Zeileis 2014). The Gini coefficient
of inequality ranges from 0 to 1, with 0 representing an equal
spread (e.g. iteroparous species that reproduce every year) and
1 being completely unequal (e.g. semelparous species with a
single reproductive event). Populations with annual life-cycles
were assigned a Gini coefficient of 1 reflecting their
semelparous life-cycles (model results were not qualitatively
different when populations with annual life-cycles were
omitted, Appendix S4). Reproductive output in each time step
was based on age specific fecundity curves (‘mx curves’,
function ‘makeLifeTable’, R package ‘Mage’ with
modification to allow reproduction in the first time step). The
distribution of mortality across lifespan was measured as the
median/maximum lifespan of species, giving a range of values
between 0 and 1. Values close to 1 indicate that juvenile
mortality is low relative to the lifespan of the species, while
low values indicate high mortality in juvenile stages relative to
lifespan (see Appendix S3 for details).
All life history metrics were calculated from the first above-

ground stage to allow appropriate comparison between studies
with and without seed-stages. Following the calculation of
each life history metric at the population level, values for pop-
ulations of the same species within studies in the same habi-
tats and within 5 km were averaged to match the spatial scale
of the climate data and enable the modelling of demographic
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metrics as a function of climate. Where populations
were > 5km apart or from different habitats (13 species) the
life history metrics were not averaged, and instead a single
population was chosen at random.

Climate data
Two climate variables representing key drivers of plant physi-
ological rates, temperature and water availability, were
derived for each population location. Climate variables were
extracted as a mean value from a 2.5 km radius around each
COMPADRE study location (package ‘raster’; Hijmans
2017). Given collinearity of many climate variables, the size of
the dataset (80 species), and the risk of losing generality
through over-parameterisation, we decided a priori that tem-
perature and water availability were the most appropriate cli-
mate variables for this study.
Temperature data were extracted from WorldClim Version

2.0 at 30 arc-second resolution (Fick & Hijmans 2017). We
used a single composite temperature variable represented by
the first PCA axis calculated from the temperature variables
(Bio1-Bio7) in WorldClim. This temperature axis explained
68.0% of the variation in temperature data at our sites and
represents a gradient from cooler, seasonably-variable, tem-
perate climates to hot, less-seasonal, tropical climates (follow-
ing Coutts et al. 2016).
We used the Global Aridity Index to quantify moisture

availability. The Global Aridity Index quantifies precipitation
deficit over atmospheric water demand (Trabucco & Zomer
2009). We log-transformed the Aridity Index as we expected
the influence of water stress to be higher where water is limit-
ing (Levine et al. 2008; Coutts et al. 2016). Hereafter, we refer
to this variable as ‘moisture availability’ to reflect the direc-
tion of the variable (i.e. higher values indicate more humid
conditions). Moisture availability and the temperature PCA
were not significantly correlated in our dataset (non-paramet-
ric Spearman’s Rho = 0.053, p = 0.639, n = 80).
Data on all variables were available for 80 species (Fig. 2).

Mean annual temperatures of the study sites ranged from
�3.6 to 28.1, and the moisture availability included arid,
semi-arid, dry sub-humid and humid zones (Trabucco &

Zomer 2009). See Appendix S5 for species list with associated
plant growth forms, habitats and basic climate information
from demographic study locations.

Phylogeny
Phylogenetic relationships between species were quantified
using a time-calibrated phylogeny of 32 223 vascular land
plant species (Zanne et al. 2014). Twelve species which were
present in our dataset but absent from the phylogeny were
added to this tree by placing them in the location of the most
closely related species in the same genus based on literature
(Conti et al. 1999; Calvi~no & Downie 2007; Jacquemyn et al.
2011; Jin et al. 2014; Simon et al. 2016, see Appendix S5).
For seven of these species a detailed phylogeny for the genus
could not be found and the species location was assigned ran-
domly within the genus. All species which were absent from
our dataset were dropped from the phylogeny (package ‘ape’;
Paradis & Schliep 2018).

Statistical analysis

Multi-response mixed modelling
To model the relationships between functional traits, climate,
phylogeny and life history strategies a Bayesian Multi-re-
sponse generalised linear model framework was used (Fig. 1).
This approach allows for the explicit incorporation of both
phylogenetic structure and the estimation of covariances
between the multiple response variables, in conjunction with
the estimation of the fixed effects (i.e. functional traits and cli-
mate).
To satisfy the normality assumptions all life history metrics

(except the Gini Index of inequality of reproduction across
lifespan) were natural log transformed. The Gini Index was
square-root transformed for the same reasons. All variables
were rescaled to a mean of 0 and expressed in units of stan-
dard deviation.

Model construction and selection. Four candidate models of
life history variation were constructed based on a priori
hypotheses about the potential roles of climate, traits and

Silene acualis
Sarracenia purpurea

Saxifraga tridactylites
Saxifraga aizoides

Swietenia macrophylla

Epipactis atrorubens

Atriplex vesicaria

Petrophile pulchella

Avicennia germinansAtriplex canescens

Vouacapoua americana

Generation time

Age at maturity

-2               -1                0                1                2

(b)

Annual forb Graminoid Shrub
Forb TreePalm

Annual reproduction

Mature lifespan

Inequality of
reproduction

Distribution
of mortality

Life history PC1

Li
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to
ry
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C

2

(a)

Bertholletia excelsa

-2

1

2

0

-1

FIGURE 2 Locations of life history studies in (a) life history PCA space and (b) geographic space. Colours and point types represent the predominant

growth form of each species. The life history PCA is for visualisation of the life history metrics and species’ growth forms and is not used in the model.

The PCA was conducted on the natural log of all life history metrics, except for ‘Inequality of reproduction’ which was square root transformed for

normality. All metrics were standardised to units of deviation and mean centred prior to PCA. Named species in b) are those mentioned in the main text.
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their interactions (Fig. 1). The most complex model included
two PCA axes representing plant functional traits (PC1 –
Size and structure, and PC2 – Leaf traits) and two climate
variables (Temperature PCA1 and Moisture availability), and
the pairwise interaction of each functional trait axis with
each climate variable. In all models, phylogeny was fitted as
a random variable with a separate variance estimated for its
association with each life history metric, and a residual
covariance matrix was fitted to account for the covariance
between life history metrics and residual variation within life
history metrics (Hadfield 2010). This residual covariance
matrix was fully parameterised, such that variance explained
could differ both within life history metrics and between
pairs of metrics. Model fitting was conducted using the R
package ‘MCMCglmm’, with priors for multivariate
responses and phylogeny based on Hadfield (2010).
Alternative models were compared using Deviance
Information Criteria (DIC), a hierarchical generalisation of
the Akaike Information Criteria for Bayesian models
(Spiegelhalter et al. 2002).
As the candidate model with lowest DIC value was the

most complex of our alternative hypotheses ‘Traits in interac-
tion with climate’, we further improved final model parsimony
by removing individual interaction terms between trait axes
and climate variables to reach the final model with the lowest
DIC. For further details on model selection and validation,
which followed Gelman & Rubin 1992; Plummer et al. 2006;
Hadfield 2010, see Appendix S3.
The variance in life history metrics explained by the final

model (i.e. traits, climate and phylogeny), was calculated as
described for conditional R2 values in Nakagawa & Schiel-
zeth, 2013. The residual covariance between life history met-
rics was included in the residual variance component of the
calculation, and as such is not included as part of the reported
variance explained by the model (see Appendix S3).
All statistical analysis was conducted in R 3.5.0 (R Core

Team) (for further details see Appendix S3). R scripts and
datasets available at https://doi.org/10.5281/zenodo.4457447

RESULTS

The model which best explained the life history metrics
included interactions between climate and functional traits,
indicating climate dependency in the relationship between
traits and life history strategies (DIC = 643.5). This model
had a much lower DIC than the null model containing only
phylogeny and residual covariance structure (DIC = 838.6;
DDIC = 195.1). By contrast, models which included as fixed
effects only traits (DIC = 852.2), only climate (DIC = 866.3)
or traits and climate without an interaction (DIC = 849.0)
performed worse than the null model (Appendix S6). Esti-
mates of model coefficients differed slightly between compet-
ing models, but the overall direction of the coefficients did
not.
The most parsimonious model contained interactions

between the Size and structure trait axis (PC1) and each of
the climate variables (Temperature PCA and Moisture avail-
ability), together with a main effect of the Leaf traits axis
(PC2). Although the Leaf traits axis was retained in the final

model (DDIC 3.35), all credible intervals of model coefficients
overlapped zero (Fig. 3). Inferences about the importance of
variables from model coefficients in Fig. 3 are difficult
because of the complexity of the model framework, for more
inferences about the relative importance of variables in the
model see DIC model selection tables (Appendix S6). The
variance in life history strategies explained by the final model
including traits, climate and phylogeny was 69.7%.

Traits and climate

The utility of functional traits and climate for predicting life
history metrics differed depending on the life history metric.
Posterior mean coefficients for traits with credible intervals
not overlapping zero were observed for biological timing met-
rics (age at maturity, generation time, mature lifespan) and
for the distribution of mortality across lifespan, but not for
fecundity related metrics (annual reproduction and inequality
of reproduction across lifespan; Fig 3). For a full list of model
coefficients and credible intervals see Appendix S7.
The plant size and structure axis was particularly important

as a predictor of biological timings, with later age at maturity,
longer generation times (i.e. the expected number of years
taken for a population to replace itself) and longer mature
lifespan associated with larger plant size. A positive interac-
tion between the size and structure axis and the temperature
PCA was evident for age at maturity and generation time
(Fig. 4). Larger species were older at maturity and had longer
generation times in hotter less seasonal climates, but this rela-
tionship was flatter in cold and seasonal climates (b = 0.55,
CI (0.08, 1.01), and b = 0.37, CI (0.02, 0.80)) for this interac-
tion in age at maturity and generation time respectively, com-
pare contours in Fig. 4a and b at cool seasonal vs. hot stable
conditions). In our dataset this relationship relates to the
capacity of short species in very cold climates to exhibit very
slow life histories similar to those of tall species in warmer cli-
mates. For example, Epipactis atrorubens and Sarracenia pur-
purea had ages at maturity above the 75th percentile in the
dataset (13.0 and 13.3 years repectively), and the high Arctic
and tundra cushion plant Silene acaulis had generation times
above the 75th percentile (295.8 years). Mean annual tempera-
tures in the demographic study locations for each of these
three species were �0.8, �0.6 and �3.1 °C respectively. In hot
stable climates, similar ages at maturity and generation times
were seen in the tree species Avicennia germinans (age at matu-
rity 10.4 years) and Vouacapoua americana (generation time
of 295.5 years). Mean annual temperatures in the demo-
graphic study locations for each of these species were 24.1
and 25.3 °C respectively.
There was an additive effect of the size and structure axis and

moisture availability on generation time with plants in areas
with greater moisture availability having longer generation
times (b = 0.22, CI (0.03, 0.41)). Moisture availability was also
important in determining the mature lifespan of species and
showed an additive effect with size and structure, meaning that
both greater moisture availability and larger size and structure
were associated with longer mature lifespans (b = 0.22, CI
(0.03, 0.43), b = 0.66, CI (0.13, 1.25)) for moisture availability
and the size and structure axis respectively; Fig. 3).
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The distribution of mortality across lifespan was associated
with size and structure in interaction with both the tempera-
ture PCA axis and moisture availability. In hotter less sea-
sonal climates low median/max ratios (i.e. high juvenile
mortality relative to the lifespan) were observed in plants with
larger size and structure, whilst in cooler seasonal climates
low values were observed in smaller plants (b = �0.70, CI
(�1.13, �0.21), Fig. 4c). This effect is primarily driven by the
high maximum lifespans associated with these species, and less
variance was evident in the median lifespans. This is exempli-
fied in the dataset by high juvenile mortality in large long-
lived trees in hot climates such as Avicennia germinans and

Bertholletia excelsa (median/max = 0.003 and 0.030 respec-
tively), and the comparably low median/max ratios observed
in the small long-lived herbaceous plant species Silene acaulis
or the alpine Saxifraga aizoides in very cold climates (me-
dian/max = 0.007 and 0.023 respectively).
In the case of the interaction between ‘size and structure’

and moisture availability, low median/max values (i.e. high
juvenile mortality relative to the lifespan) were associated with
small plants in environments with high moisture availability,
whereas larger plants had lower median/max ratios in drier
environments (b = 0.57, CI (0.13, 0.97), Fig. 4d). Trees mea-
sured in drier environments such as Swietenia macrophylla

FIGURE 4 Contour plots illustrating interactions between plant traits and climate, and their association with life history metrics (a) ‘Age at maturity’ (b)

‘generation time’ (c) and (d) ‘distribution of mortality’. Colour scales show marginal estimated mean predictions for each response variable across the range

of trait (‘Size and structure PC1’, y axis) and climate data (‘Temperature PC1’ or ‘Moisture availability’, x axes) observed in the dataset. All other variables

were set at their mean value for marginal predictions. On the plotted log scale, ‘distribution of mortality’ values of zero indicate species with a median

lifespan equal to the maximum lifespan (e.g. annuals), and increasingly negative values indicate lower median lifespans relative to the maximum (e.g. higher

juvenile mortality). Only response variables with trait-climate interaction coefficients with credible intervals not overlapping 0 are plotted.
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(median/max = 0.02) had lower ratios than similarly sized
trees measured in wetter climates such Vouacapoua americana
(median/max = 0.05), although both have relatively low ratios
characteristic of longer-lived species. Among medium sized
shrub species there was no clear pattern in median/max ratios
with moisture availability. For example, the arid shrubland
species Atriplex vesicaria and Atriplex canescens exhibited the
second and third lowest med/max ratios of shrub species
(both 0.04), but the lowest ratio was exhibited by the temper-
ate shrub species Petrophile pulchella (0.02). In small herba-
ceous species the pattern was reversed with the lowest ratios
observed in long-lived species in areas of high moisture avail-
ability, with for example the moist alpine Saxifraga aizoides
having a much lower ratio than its congener Saxifraga tri-
dactylites in drier areas (median/max = 0.007 and 0.500
respectively).

Residual covariance of life history metrics

The final model indicated strong residual covariance of life
history metrics after accounting for functional traits, climate
and phylogeny. Indeed, of the 15 pairwise combinations of life
history metrics only two pairs had credible intervals for resid-
ual covariance which overlapped with zero (Fig. 5,
Appendix S8).

Phylogeny

Phylogenetic constraints on life history metrics were evident
for age at maturity and distribution of mortality across lifes-
pan, indicating that values for these metrics are conserved
between closely related species (b = 2.4, CI (1.5, 3.6), and
b = 1.5, CI (0.7, 2.8) respectively). Estimates of the variance
explained by phylogeny for all other life history metrics were
small with lower credible intervals approaching zero
(Appendix S9).

DISCUSSION

Our results demonstrate the importance of climate depen-
dency in trait to life history relationships across plant species
at the global scale. Models containing trait-climate interac-
tions in addition to phylogeny performed better than those
containing only phylogeny, but models with only main effects
of traits and climate without this interaction did not perform
better than a model with phylogeny alone. As expected, life
history metrics showed residual covariances after accounting
for phylogenetic history, morphological traits and climate
(Fig. 5). This provides further empirical support for the use of
multivariate frameworks in life history analyses, and supports
the view that simple-one-to-one matching of functional traits
to individual life history metrics or vital rates is biologically
unrealistic (Blows 2007; Laughlin & Messier 2015; Swenson
et al. 2020). Phylogenetic constraints were also important for
age at maturity and the distribution of mortality across lifes-
pans.
The observed interaction between traits and climate is evi-

dent in the relationship of plant size and structure (height
and seed size) with life history metrics related to biological

timings and the distribution of mortality. Slower life history
strategies, with older ages at maturity and longer generation
times, were positively correlated with plant height and seed
size in hotter more stable climates, but in cold seasonal cli-
mates this correlation was not evident. Slower life-histories
were also associated with lower median/max lifespans (i.e.
higher juvenile mortality relative to maximum lifespan),
which was primarily driven by the greater variation in maxi-
mum lifespan across plant species. High plant height and
large seed size are adaptative in hot, moist, resource rich
environments where biotic competition is high (Moles 2018;
Boonman et al. 2020), height is important in competing for
light, and larger seeds show higher establishment under biotic
competition and shade (Westoby et al. 2002). However, both
height and seed size have associated resource costs (Chave
et al. 2009; Moles 2018), and in freezing environments woodi-
ness and height are associated with loss of hydraulic function
(Zanne et al. 2014). Conversely, herbaceous species in extreme
cold environments survive by senescing cheaper non-woody
tissues, exhibiting long periods of below-ground dormancy,
and/or avoiding extreme air temperatures beneath a snow
layer (Zanne et al. 2014; Alahuhta et al. 2017). The novelty
of our findings is in linking these trait-climate patterns to life
history strategies and demonstrating that shorter species char-
acteristic of colder regions can exhibit slow life-histories more
usually associated with larger woody plants in warmer
regions.
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Previous authors have demonstrated a correlation between
LMA and life history in plant species, suggesting that species
with low LMA tend to have faster life-histories (Adler et al.
2014; R€uger et al. 2018). Our results are ambiguous on this
point. The leaf-traits PCA axis was retained in the model after
model selection by DIC, suggesting that leaf-traits do con-
tribute to the explanation of multivariate variation in life his-
tory strategy. However, the credible intervals overlapped with
zero for all individual life history metrics meaning that these
relationships must be interpreted with caution. Despite this
caveat the direction of the model coefficients for leaf-traits is
in keeping with prior findings, with negative coefficients for
generation time and mature lifespan indicating that faster life-
histories are weakly correlated with higher leaf-area and lower
LMA in our dataset. Larger sample sizes may be needed to
investigate this further. The use of PCA axes to represent
functional traits in our model has the effect of separating the
effects of plant size (PCA 1) from those of leaf traits LMA
and leaf area (PCA 2). Both leaf area and LMA are positively
correlated with size (Appendix S2, D�ıaz et al 2016). Hence,
previous univariate approaches may find stronger associations
between high LMA and slower life histories because the effect
of plant size has not been accounted for separately (Adler
et al. 2014). Results of multivariate approaches in tropical for-
ests may suggest that this association between leaf traits and
life-history strategies is stronger within similar environmental
conditions (R€uger et al. 2018).
The predictability of life history metrics differed greatly

between the types of metrics used, with biological timings and
distribution of mortality being more predictable from traits,
climate and phylogeny than those related to fecundity. In par-
ticular, we did not observe any significant association between
annual fecundity and inequality of reproduction across the
lifespan and our trait and climate variables. Plant fecundity,
in general, shows high-levels of intraspecific and inter-annual
variation (Burns et al. 2010; Che-Castaldo et al. 2018);
whereas biological timing metrics, such as age at maturity
may be more conserved within species (Healy et al. 2019). Pre-
vious research has reported associations between plant height
and both seed size and number, leading to an expectation that
fecundity metrics would be linked to plant size (Pierce et al.
2014; Moles 2018). However, the relationships between large
seed-size and survival in different environments are strongest
in the establishment phase, and do not necessarily translate
into higher survival at maturity. Furthermore, advantages of
large seed size are traded off against the numeric advantages
of having many small seeds (Moles & Westoby 2004; Moles
2018). As the fecundity metrics in this study are calculated
from the first above ground stage, and thus implicitly include
seed survival, germination and establishment, differences in
size-survival relationships at each stage together with trade-
offs in seed-number may obscure any overall pattern in our
dataset.
Despite the lack of explanatory power for annual reproduc-

tion, our models are useful for explaining generation time.
Generation time in this analysis is a compound metric,
describing the length of time taken for a population to replace
itself under asymptotic dynamics. This duration is influenced
by the joint effects of annual reproduction, survival rates and

age at maturity (Caswell 2001). Generation time is useful for
understanding the potential recovery rates of populations fol-
lowing disturbance, and, in combination with age at maturity,
is useful in predicting species recovery trajectories. We demon-
strate that combining phylogenetic information with the size
and structure of species may be useful in inferring generation
times, but only when used in combination with climatic infor-
mation.

Limitations and ways forward

Our approach to modelling multivariate life history variation
provides useful insights into the relative importance of traits,
climate and evolutionary history influencing life history strate-
gies across a global suite of plant species. However, despite
using the largest available dataset of plant matrix models
(COMPADRE), we were limited to 80 species for which both
reliable matrix models and corresponding trait data were
available. Increasing overlap between global datasets on life
history and functional traits is crucial to further explore rela-
tionships between life history, traits, environment and evolu-
tionary relatedness.
In order not to over-parameterise our model we chose not

to include more environmental parameters such as soil types,
pH, microclimates, land-use, habitat, intra and interspecific
competition and disturbance regimes which are also likely to
influence plant life history strategies (Silvertown et al. 1993;
Kunstler et al. 2016; Liu et al. 2016; Teller et al. 2016; Treur-
nicht et al. 2016; Miedema et al. 2019; P�erez-Ramos et al.
2019; Pist�on et al. 2019). For similar reasons, we focused on
the most frequently measured plant traits (D�ıaz et al. 2016;
Moles 2018), however, the inclusion of physiological and
chemical traits (Funk et al. 2016) and morphological traits
from other plant organs such as roots and floral structures
(Laughlin 2014; Pist�on et al. 2019), would be likely to increase
the explanatory power of the model. A strength of our model
framework is that these additional variables can be easily
added as explanatory variables to test novel hypotheses as
more data become available.
Our dataset is primarily composed of trees, shrubs and

herbaceous perennials, with only two graminoid species, four
annuals and one palm, and no data on other plant growth
forms such as lianas, epiphytes, parasitic plants, mosses, liver-
worts, ferns and algae (Fig. 2). Our life history metrics span a
wide range of climates, with mean temperatures ranging from
�3.6°C to 28.1°C, and the moisture availability included arid,
semi-arid, dry sub-humid and humid zones (Trabucco &
Zomer 2009). However, geographically, our dataset shows
similar biases to many biodiversity datasets (Collen et al.
2008; Stephenson et al. 2017; Tydecks et al. 2018), with the
best coverage in Europe and North America, a few studies
from Australia, New Zealand and South America, only one
study from Asia and none from Africa. Combined, these taxo-
nomic and geographic biases suggest that data is most needed
for species from arid environments (only 2 species from arid
zones), and larger species in very cold environments. These
limitations are unlikely to affect the main pattern of the data
which relates to the trend towards slower life histories in small
species in colder climates, but they do limit our ability to
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draw inferences about larger species very cold environments,
and all species in very hot arid environments. Therefore, as
with many areas of ecology the highest priority for increasing
geographic data coverage should be in equatorial regions
which support the highest richness of plant species, arid areas
and throughout the continents of Africa, Asia and South
America. This will require better ongoing investment and inte-
gration of biodiversity studies in these regions (Collen et al.
2008; Stephenson et al. 2017; Tydecks et al. 2018).
Functional traits vary across species ranges (Albert et al.

2010; Siefert et al. 2015) and are important in mediating plant
fitness responses to climate (Henn et al. 2018), but trait data
is rarely available from the same locations as detailed life his-
tory studies (Salguero-G�omez et al. 2018). For this reason we
used species-level means for functional traits in this study.
The overlap between life history and functional trait data is
primarily limited by the time intensive nature of creating pop-
ulation matrix models. Therefore, targeted measurements of
key plant traits for species and locations for which demo-
graphic population matrix models already exist or are being
conducted are could lead to rapid gains in the prediction of
life history strategies by providing population specific esti-
mates of plant traits (Salguero-G�omez et al. 2018). In parallel,
long term demographic studies with spatial replication across
climates will enable a greater understanding of the extent of
intraspecific variation in life history strategies (e.g. Smith
et al. 2020). Alternatively, sources of information on key life
history metrics such as lifespan, age at maturity and annual
reproduction, compiled data from floras, forestry, horticulture
and/or botanical gardens could also provide rapid gains.
However, this will require a trade-off in terms detail and type
of life history metrics which can be obtained.

CONCLUSION

Our framework integrates traits, climate, evolutionary history
and emergent life history strategies into a single model at the
global scale, in a way which is compatible with the fundamen-
tal principles of life history theory. Thus, it enables us to
explicitly test how multivariate life history strategies are
related to functional traits in ecological contexts, whilst incor-
porating phylogenetic history and the multivariate trade-offs
between life history metrics. Our findings provide empirical
support for the expectation that climatic context is key to
understanding trait to life history relationships, and that the
expectation of simple relationships between functional traits
and life history across environments is unrealistic. Importantly,
the inclusion of this interaction between traits and climate
enabled the explanation of life history strategies, even though
neither functional traits nor climate alone were useful in
explaining life history after phylogeny had been accounted for.
At present the generality of our findings, particularly in very

hot arid areas, remains limited by the availability of overlap-
ping data on detailed life history metrics and less studied
functional traits, particularly from key climatic regions and
taxonomic groups. Therefore, we second the call of previous
authors for greater collaboration between trait ecologists,
demographers and evolutionary biologists to increase the
overlap between trait and demographic databases, particularly

for understudied regions and taxa (Reich et al. 2003; Coutts
et al. 2016; Moles 2018; Salguero-G�omez et al. 2018; Swenson
et al. 2020). These collaborations will be essential in answering
fundamental questions of both trait-based ecology and life
history evolution at the global scale.
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