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Electromagnetic gyrokinetic simulation of high temperature plasma is required to predict confinement in
magnetic fusion devices and has posed challenges for existing codes. In this paper, we demonstrate successful
global gyrokinetic simulation of the ITG-KBM transition in a toroidal fusion plasma test case using the
mixed variables/pullback transformation (MV/PT) scheme with the particle-in-cell codes XGC and ORBS,
and compare to results from a conventional continuum code from the literature. The MV /PT scheme combines
explicit time integration with mitigation of the well-known electromagnetic gyrokinetic ‘cancellation problem.’
We calculate eigenmodes in the electrostatic and parallel vector potentials, and find good agreement in growth
rate, real frequency, and the normalized plasma pressure of mode transition.

Introduction Gyrokinetics is a reduced model of plasma
dynamics that decouples the fast gyromotion from the
slower gyrocentre motion'. It is valid for modelling
plasma phenomena with a frequency much lower than
the gyrofrequency and length scales comparable to the
gyroradius. It has been widely applied for numerically
to fusion plasmas. Reduced dimensionality and elimi-
nation of high frequency dynamics minimises computa-
tional cost while accurately representing dominant trans-
port mechanisms. This means in particular turbulent
transport in tokamaks and stellarators. Early work typi-
cally modelled the slower thermal ions in the electrostatic
approximation, with an adiabatic approximation for the
electron density response. Recently several codes model
kinetic electrons and magnetic fluctuations globally to
the last closed flux surface. These include ORB5%3, EU-
TERPE*®, GEM®, GENE” and GKW?.

XGC is a gyrokinetic code originally designed for mod-
elling the edge region of tokamaks to the first wall® !l
It is also fully capable of conventional core region mod-
elling in tokamaks and, recently, stellarators'? !4, Most
XGC simulations have been electrostatic, with adiabatic
or kinetic electrons. To include fluctuations in the par-
allel vector potential, three approaches have been taken
in XGC. One is to model electrons as a fluid, allowing
the use of the electromagnetic gyrokinetic equations of
motion and Ampére’s law in the v, formulation®'®. An-
other is solving the gyrokinetic Vlasov-Maxwell system
in the v)| formulation with implicit methods to calculate
the fluctuating vector potential'®. The third, here, is to
use the mixed formulation®'7"'8. These equations can be
solved explicitly, but introduce a ‘cancellation problem’
arising from the skin terms in Ampére’s law. An accurate
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cancellation of the corresponding mixed variables current
component is necessary, which can be large relative to the
total mixed variables current.

The mixed variables/pullback  transformation
(MV/PT) scheme minimises these current contri-
butions and introduces an analytical simplification in
the gyrokinetic equations of motion?. In previous work,
the implementation of this scheme in the ORB5 code
has been described in detail®>. The MV /PT scheme has
now also been implemented in XGC.

Electromagnetic microturbulence is an important
transport mechanism that can be modelled with a global
gyrokinetic code. Microturbulence is known to be the
main cause of transport in tokamaks in reactor-relevant
operation. It is also known that the character of mi-
croturbulence can change substantially with finite nor-
malised plasma pressure, 3 = 2uonT/B?, requiring an
electromagnetic treatment. The toroidal branch of the
ion temperature gradient-driven mode (ITG) is typically
suppressed at finite 8, but can become subdominant to
the kinetic ballooning mode (KBM), both driven by the
ion temperature gradient. An accurate treatment of this
physics is needed to predict experimental transport. A
linear benchmark case for this phenomenon has been per-
formed by a number of global electromagnetic gyroki-
netic codes'®. Key quantities include the growth rates
and real frequencies of the modes calculated for differ-
ent normalised plasma pressure profiles, the calculated
eigenmode structures, and the location of the ITG-KBM
transition in terms of the normalised plasma pressure.

In previous work, the new MV/PT scheme was not
used. Here, we use this case to verify the scheme using
separate implementations in two gyrokinetic particle-in-
cell codes, XGC and ORB5. This is also a first verifica-
tion of the global electromagnetic capability of the XGC
code. The XGC code has substantial numerical differ-
ences to other gyrokinetic particle-in-cell codes. Being



designed for edge simulations, it uses an unstructured
mesh to permit simulations through the separatrix and
including X-points.

Numerical model XGC is a whole volume, total-f gy-
rokinetic PIC code!'!. In this paper, we use its core delta-
f capability, although the MV /PT scheme is applicable
for full-f simulations and is being verified for the edge
region with XGC. This paper also considers only perpen-
dicular magnetic perturbations, 6B| = 0. Ampére’s law
must now be solved to calculate A, and corresponding
magnetic fluctuation terms newly appear in the gyroki-
netic equations of motion. In the mixed formulation,
the parallel vector potential is further separated into two
components, Aj| = A‘(‘h) + A‘(s)”’lg. These components
correspond to the total vector potential in the Hamil-
tonian (pj;) and symplectic (v)) respectively, hence the
superscripts h and s.

In the mixed formulation, Ampére’s law with the long-
wavelength approximation is
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where s is the species subscript, pg is the permeability
of free space, ng the background density, g, the species
charge, m; the species mass, ;)| the perturbed mixed
formulation current, and () the gyroaverage operator.
The skin terms are Y ”""qs, where the electron skin
term dominates with factor 1 /ms. These give rise to the
cancellation problem as they must cancel a large non-
physical components of the MV, which is only the phys-

ical current for A ‘ = 0. The problem is mitigated by
minimisation of AH as a fraction of A)|, in the MV/PT

scheme by updating A‘(‘S ) to accurately predict the evo-
lution of A|| and by periodic resetting via the pullback
transformation.

The A splitting introduces an additional degree of
freedom and therefore requires an additional equation.
We take advantage of this to predict Aj by introducing

a new Ohm’s law-like equation for the evolution of A|(|s ).
Unlike in a fluid hybrid model, this does not truncate

the physics, as any inaccuracy is corrected by solving
Ampére’s law. We use the equation,

Al Jot = -V 16. (2)

It accurately predicts the evolution of Aj for many
modes, such as ideal kinetic-MHD modes. It also allows
analytical cancellation of the often large V| ¢ term in the
PIC weight evolution equation?.

Since the division of A into h and s components is

arbitrary, A|(|} ") can be set to zero at each timestep, pro-

vided A|(s) and the marker weights are consistently up-
dated (pullback). In the linear delta-f formulation, the

pullback equation is,?,

&S (40, 3)
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where v|| is the symplectic (AI(I ) = 0) or physical velocity,
7‘558 < Al(lh)> is the mixed variables velocity.

The equations of motion have been recast in the p
formalism used by XGC as
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and
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is the species gyroradius,
and B is the equilibrium magnetlc field strength. Field
equations are solved with the PETSc library. The per-
turbed distribution function evolves as,
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In these equations, P =

where the subscript 1 denotes the perturbed equations of
motion, i.e. including only terms first order in ¢ and A}
In this work, perturbed terms are dropped on the left-
hand side, meaning simulations are inherently linear and
cannot saturate. The distribution function is discretised
with markers in the Klimontovich representation.

There are some key differences between ORB53 and
XGC. ORBS5 pushes markers and solves for the perturbed
fields in magnetic coordinates except for an area near
the axis. XGC pushes markers in polar coordinates, and
solves for field perturbations on an unstructured, approx-
imately field-following triangular mesh°. Parallel deriva-
tives of field quantities in XGC are performed using fi-
nite differencing. The field-alignedness property of mesh
nodes is improves accuracy of interpolation and deriva-
tives in the parallel direction. It cannot be enforced over
the entire area of the mesh; interpolation is otherwise
performed between neighbouring nodes in barycentric co-
ordinates.

ITG-KBM benchmark We perform a benchmark with
drift-kinetic electrons as described in Section IV C of
reference Ref.'?. The geometry is Cyclone Base Case-
like, with inverse aspect ratio a/Ry = 0.36, axis magnetic



field strength is By = 2.0 T and safety factor profile is
q(r) = 2.52(r/a)* — 0.16(r/a) + 0.86.
The gradients are defined analytically by the equations

AJA(ro) = exp {—HAWA“ tanh (T _ TO)} (9)

Lref WACL
and
Lyes/La = fiacosh™> (W) (10)

The profile of normalised plasma pressure, (3, is varied
by scaling the density. For this benchmark, L,.r =
Ro = 1.67 m, Rr; = KRTe = 696, WTZ' = WTe = 03,
Bni = Ene = 2.23 and W,,; = W,,. = 0.3. The absolute
values of the gradients are maximised at ro/a = 0.5. We
define B,¢s as the normalised plasma pressure at this lo-
cation. Temperature at this location is Tr.cy = 2.14 keV.
The ions are deuterons. The simulated negative charge
species has a mass twice that of physical electrons; the
simulation m;/m. is equal to mp/me.

The XGC mesh used has ~ 1.9 x 10% nodes, with a
minimum spacing at the gradient peak of ~ 2 mm, rising
gradually to ~ 4 mm outside the region 0.15 < s < 0.6.
2 mm corresponds to approximately half the thermal ion
gyroradius around the peak gradient region. Nodes are
placed on flux surfaces, with 248 surfaces in the range
0.0 < s < 1.0. The number of nodes on each surface
therefore varies, with the larger number of nodes per flux
surface in the region 0.15 < s < 0.6, where the mode is
expected to be located. In this region, there are around
1000 nodes per surface, which is sufficient to resolve all
poloidal modes permitted by the filter. Fourier filtering
is applied to the fields at each solver step. In this case, all
toroidal modes other than the desired n = 19 are filtered
out. Poloidally, in XGC a filter is applied following the
line of resonance mg = gn, with poloidal mode numbers
outside the range mo — 5 < m < mg + 5 filtered out.

The toroidal gyrokinetic simulation domain is a 1/19th
wedge of the tokamak. The gyrokinetic simulation
toroidal grid resolution is therefore Npn; = 16. This
would correspond to a hypothetical full-torus resolution
of Npn; = 304. The computational cost of the gyrokinetic
simulation does not scale with this full-torus resolution.

The XGC mesh is constructed with field-aligned nodes,
the spacing dependent upon the full-torus angular sep-
aration of mesh planes, which here is 27/304 rad. This
mesh generation toroidal resolution is used for determin-
ing node placement, and is not required to be equal to
the toroidal resolution of the gyrokinetic simulation. The
simulation is then performed in a 1/19 wedge of the toka-
mak, such that the field-alignedness property holds for a
toroidal grid resolution of N,j; = 16. The n = 1 mode
within the simulation domain therefore corresponds to
the full-torus n = 19 mode.

Convergence To determine adequate numerical reso-
lution for the benchmark with XGC, we perform con-
vergence scans in particle number and timestep. The
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FIG. 1: Top, convergence of the full MV/PT scheme
implemented in XGC in timestep for the B..y = 2.5% and
Bres = 1.75% cases; bottom, convergence of the full MV/PT
scheme implemented in XGC in marker number for the
Bres = 2.5% case with timestep ~ 19 ns.

MV/PT version with Ohm’s law predictor, in partic-
ular, permits poorly converged simulations with larger
timesteps.  The pure Hamiltonian scheme and the
MV/PT formulation without Ohm’s law predictor, on
the other hand, tend to fail within a few timesteps if the
simulation is not well converged in timestep. In Figure 1
(top), we test convergence in timestep for the MV/PT
formulation with Ohm’s law predictor. We use two dif-
ferent cases, one in which f,.f is close to the transition
and another where it is deep in the KBM regime. In both
cases, growth rates are well converged with a timestep of
around 20 ns, whereas without the Ohm’s law predictor
a timestep of 4 ns is required for a functional simulation.
Mode real frequencies, not shown, are approximately the
same in all of these simulations, and therefore were not
useful for testing convergence. In Figure 1 (bottom), we
test convergence in numerical markers per grid triangle
for the case deep in the KBM regime. The simulation is
converged in growth rate at order 10 markers per cell.

Benchmark results The benchmark is run with XGC
and ORB5. ORBS5 has previously performed this bench-



mark with the electromagnetic gyrokinetic equations in
the p, formulation'®, and here it is repeated with the
mixed variables/pullback transformation scheme?. With
XGC, the benchmark is performed with timestep At ~
19 ns and marker density Nptl/Ntri ~ 20. Diagnostic
quantities for comparison include the linear growth rate,
real frequency, and mode structures at given parameters,
and the location of the ITG-KBM transition in terms of
Bres. In figure 2 we show the linear growth rates and
real frequencies calculated by XGC in comparison with
the published results from the global version of GENE!,
and ORB5. The GENE growth rate and real frequency
quantities are tabulated in Table V in Ref.!

As previously known, key physics features are the sup-
pression of the toroidal ITG by finite § and possible
dominance of KBM at higher 8. The mode can be iden-
tified by its real frequency. The toroidal ITG is sup-
pressed with increasing ;. until the KBM becomes the
fastest growing mode, identified by the sudden large in-
crease in the real frequency. The KBM linear growth rate
then increases rapidly with 3,y while real frequency de-
creases moderately. Good qualitative agreement is found
between all the codes. Quantitative agreement is bet-
ter between the two MV /PT-based particle-in-cell codes.
The calculated transition point appears to be somewhat
lower in ;.. ¢ using these two codes than the conventional
continuum code GENE.

In figure 3 we show poloidal cross-sections calculated
by XGC and ORB5 at zero toroidal angle of the elec-
trostatic potential, ¢, and parallel vector potential, Aj
calculated by XGC in the B,y = 0.5% ITG case. Fig-
ure 4 shows the corresponding plots for the KBM at
Bref = 2.5% calculated by XGC and ORB5. In figure 5,
the poloidally averaged squared electrostatic and paralle
vector potentials are plotted, as calculated by XGC for
the Brey = 1.3% case. This can be compared with Fig. 12
b) and d) in Ref.1? Characteristic spike structures are vis-
ible just below the critical 5, which is an expected result
of kinetic electron physics at the mode rational surfaces,
where the electron evolution diverges most strongly from
the adiabatic limit. Appearance of current sheets on the
mode rational surfaces can be noticed from the A|| spikes,
which have a stablising effect on the ITG mode.

Conclusion In this paper we report on the implementa-
tion in the XGC code!! of the mixed variables/pullback
transformation (MV/PT) formulation? of the electro-
magnetic gyrokinetic equations! for simulation of high
temperature magnetic confinement fusion plasmas. This
technique involves a variable splitting of the parallel vec-
tor potential between symplectic and Hamiltonian parts.
Pullback transformation is then performed as part of the
numerical scheme to accumulate the parallel vector po-
tential in the relatively benign symplectic component.
An Ohm’s law predictor can optionally be used to es-
timate some remaining component of the Hamiltonian
part of the parallel vector potential, and to simplify the
weight evolution equation by an analytical cancellation
of a generally large term.
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FIG. 2: Comparison of the growth rates and real mode
frequencies calculated by the XGC and ORB5 mixed
variables/pullback explicit electromagnetic implementations,
and the continuum GENE global version for a range of
reference position beta values in the CYCLONE-like case.

# §=0.5%

z(m)

12141618 2 22
r(m)
A %1072

12141618 2 22
r(m)

FIG. 3: Poloidal cross-sections of the perturbed
electrostatic (top) and parallel vector (bottom) potentials as
calculated with XGC (left) and ORB5 (right) for the ITG
mode at f = 0.5%. In these linear simulations, ¢ and A,
units are arbitrary.
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FIG. 4: Poloidal cross-sections of the perturbed
electrostatic (top) and parallel vector (bottom) potentials as
calculated with XGC (left) and ORB5 (right) for the KBM

mode at 8 = 2.5%. In these linear simulations, ¢ and A,
units are arbitrary.
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FIG. 5: Poloidally averaged squared perturbed electrostatic
(left) and parallel vector (right) potentials as calculated by
XGC for the Bref = 1.3% ITG case. Dashed lines represent,

from left to right, the rational surfaces at
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This implementation had also previously been intro-
duced in the ORB5 code®. In this paper, we report
results of a standard benchmark case performed with
the MV/PT formulation by XGC and ORB5'. Re-
sults for this benchmark from ORB5 with a Hamiltonian
formulation were previously reported in the literature;
the MV/PT results are reported here for the first time.
The benchmark tests the transition from the electrostatic
ion temperature gradient-driven mode regime to the ki-
netic ballooning mode regime in a standard aspect ratio
Ro/ag ~ 3.0) circular tokamak with experimentally rele-
vant plasma profiles. Relevant benchmark quantities are
the growth rates, real frequencies and eigenstructures of
the dominant mode at different values of the normalised
plasma pressure (), varied by scaling the density profile.
Another relevant benchmark quantity is the location of
the transition region in 3.

Good agreement is found in growth rate and real fre-
quency between XGC and ORB5 using the MV /PT for-
mulation, and between both codes and the continuum
gyrokinetic code GENE (whose formulation is described
in detailed publications™?!); GENE results are tabulated
in the literature'®. This comparison is the most compre-
hensive to be published and with the most challenging
and physically relevant comparison case for the MV /PT

formulation. It gives confidence in the correctness of the
explicit electromagnetic implementation in the XGC code
and the applicability of the MV /PT approach to electro-
magnetic gyrokinetic PIC simulation.

The non-linear form* of the MV /PT scheme has been
implemented for XGC and turbulence simulations at-
tempted?? 24, The scheme is compatible with XGC’s
total-f capability!!. Electromagnetic gyrokinetic sim-
ulations of the whole tokamak are in sight. Resolving
low toroidal mode number modes will be important and
has been challenging in the past; the MV /PT scheme has
simulated the linear n = 1 internal kink mode in tokamak
geometry®, and the nonlinear collisionless tearing mode
in slab geometry?.
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