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Abstract
We analyze the control problem of the stochastic Navier–Stokes equations in multi-
dimensional domains considered in Benner and Trautwein (Math Nachr 292(7):1444–
1461, 2019) restricted to noise terms defined by a Q-Wiener process. The cost
functional related to this control problem is nonconvex. Using a stochastic maximum
principle, we derive a necessary optimality condition to obtain explicit formulas the
optimal controls have to satisfy. Moreover, we show that the optimal controls satisfy
a sufficient optimality condition. As a consequence, we are able to solve uniquely
control problems constrained by the stochastic Navier–Stokes equations especially
for two-dimensional as well as for three-dimensional domains.
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optimization · Maximum principle
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1 Introduction

In this paper, we discuss an optimal control problem for the unsteady Navier–Stokes
equations influenced by noise terms. Concerning fluid dynamics, noise may enter the
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system due to structural vibration, wind gusts, and other environmental effects. As a
consequence, the velocity field of the fluid may show an undesired behavior. The aim
is to control these velocity fields affected by noise in a desired way, where we incor-
porate physical requirements, such as drag minimization, lift enhancement, mixing
enhancement, turbulence minimization, and stabilization, see [1] and the references
therein.

In the last decades, existence and uniqueness results of solutions to the stochastic
Navier–Stokes equations have been studied extensively. Unique weak solutions of the
stochastic Navier–Stokes equations exist only for two-dimensional domains. In [2,3],
weak solutions are considered with noise terms given by Wiener processes. Weak
solutions with Lévy noise are considered in [4,5]. For three-dimensional domains,
uniqueness is still an open problem and weak solutions are introduced as martingale
solutions, see [6–10]. Another approach uses the theory of semigroups leading to
solutions in a mild sense. The existence and uniqueness of a mild solution over an
arbitrary time interval can be obtained under certain additional assumptions, see [11,
12]. In general, a unique mild solution of the stochastic Navier–Stokes equations
does not exist. Thus, stopping times are required to define local mild solutions. For
the local mild solution with additive noise given by Wiener processes, we refer to
[13]. In [14,15], the stochastic Navier–Stokes equations with additive Lévy noise are
considered. A generalization tomultiplicative Lévy noise can be found in [16]. In [17],
an existence and uniqueness result for strong pathwise solutions is given. For further
definitions of solutions to the fractional stochastic Navier–Stokes equations, we refer
to [12].

The control problem considered in this paper is motivated by common control
strategies. In [18–21], the problem is formulated as a tracking type problem arising
in data assimilation. Approaches that minimize the enstrophy can be found in [1,22–
24]. In [25], the cost functional combines both strategies by introducing weights. The
shortcoming of these papers is the restriction to two-dimensional domains. In [26,
27], optimal control problems for the stochastic Navier–Stokes equations in bounded
three-dimensional domains are considered, where the state equation is defined as a
martingale solution. Recall that themartingale solution for bounded three-dimensional
domains is not unique and thus, only existence results can be obtained.

To overcome these issues, we consider a generalization of the control problems
mentioned above. Such a control problem was introduced in [16]. Here, the solution
of the stochastic Navier–Stokes equations is given by a local mild solution, which
covers especially two as well as three-dimensional domains. Hence, a unique solution
exists up to a stopping time and by definition, the solution as well as the stopping
time dependent on the control. Consequently, the cost functional related to the control
problem has to incorporate a suitable stopping time to be well defined. This leads
us to a nonconvex optimization problem, which represents the main difficulty here.
The existence and uniqueness result of an optimal control is proved in [16]. In this
paper, we use a stochastic maximum principle to obtain an explicit formula the optimal
control has to satisfy. For that purpose, we first calculate the Gâteaux derivative of
the stochastic Navier–Stokes equations, which is given by the linearized stochastic
Navier–Stokes equations. For the deterministic case, we refer to [28]. As a conse-
quence, we get the Gâteaux derivative of the cost functional and hence, the necessary
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optimality condition results in a variational inequality, see [28,29]. To derive a formula
for the optimal control based on this variational inequality, we apply a duality prin-
ciple providing a relation between the linearized stochastic Navier–Stokes equations
and the corresponding adjoint equation. Since the control problem is constrained by a
SPDE driven bymultiplicative noise, the adjoint equation becomes a backward SPDE.
In general, existence and uniqueness results of mild solutions to backward SPDEs are
mainly based on a martingale representation theorem, see [30]. These martingale rep-
resentation theorems are only available for infinite dimensional Wiener processes and
real valued Lévy processes, see [31–33]. Thus, we restrict the problem to noise terms
defined by a Q-Wiener process. In general, a duality principle for SPDEs is based on
an Itô product formula, which is not applicable for mild solutions. Here, we approx-
imate the local mild solutions of the linearized stochastic Navier–Stokes equations
and the mild solution of the adjoint equation by strong formulations. Therefore, the
duality principle holds for the strong formulations and due to suitable convergence
results, we obtain the desired result. Based on the variational inequality and the duality
principle, we derive an explicit formula the optimal control has to satisfy. Moreover,
we show that the Gâteaux derivatives and the Fréchet derivatives of the cost functional
up to order two coincides. Hence, we obtain that the optimal controls also satisfies a
sufficient optimality condition provided in [34].

The main contribution of this paper is to solve the control problem introduced in
[16] using a stochastic maximum principle. Thus, we are able to control the stochastic
Navier–Stokes equations in multi-dimensional domains uniquely. As a consequence,
the controlled velocity field satisfies a system of coupled forward and backward
stochastic partial differential equations.

The paper is organized as follows. In Sect. 2, we discuss the functional analytic
background, which is standard in the literature on mild solutions to the Navier–Stokes
equations. Moreover, a brief introduction on stochastic integrals subject to Q-Wiener
processes is given. An existence and uniqueness result as well as some properties of
the local mild solution to the stochastic Navier–Stokes equations are stated in Sect. 3.
Section 4 addresses the cost functional related to the control problem. We calculate
the Gâteaux derivatives as well as the Fréchet derivatives of the cost functional up to
order two, which enables us to derive necessary and sufficient optimality conditions.
Section 5 is devoted to the derivation of the explicit formula of the optimal control.

2 Preliminaries

In this section, we introduce the basic notation. We state some auxiliary properties of
operators arising in the stochastic Navier–Stokes equations. These operators are given
by the Stokes operator as well as the bilinear operator corresponding to the convection
term.Moreover, we introduce the resolvent operator.Wewill use these properties in the
following sections frequently. Furthermore, we give a brief introduction to stochastic
integrals related to a Hilbert space valued Wiener process.
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2.1 Functional Background

Throughout this paper, let D ⊂ R
n , n ≥ 2, be a bounded and connected domain with

sufficiently smooth boundary ∂D. For s ≥ 0, let Hs(D) denote the usual Sobolev
space and for s ≥ 1

2 let Hs
0 (D) = {y ∈ Hs(D) : y = 0 on ∂D}. We introduce the

following spaces:

H = Completion of {y ∈ (C∞
0 (D))n : div y = 0 in D} in (L2(D))n

=
{
y ∈ (L2(D))n : div y = 0 in D, y · η = 0 on ∂D

}
,

V = Completion of {y ∈ (C∞
0 (D))n : div y = 0 in D} in

(
H1(D)

)n

=
{
y ∈

(
H1
0 (D)

)n : div y = 0 in D
}

,

where η denotes the unit outward normal to ∂D. The space H equipped with the inner
product

〈y, z〉H = 〈y, z〉(L2(D))n =
∫

D

n∑
i=1

yi (x)zi (x) dx

for every y = (y1, . . . , yn), z = (z1, . . . , zn) ∈ H becomes a Hilbert space. We set

D j y = ( ∂ | j |
∂x

j1
1 ···∂x jn

n
y1, . . . ,

∂ | j |
∂x

j1
1 ···∂x jn

n
yn) with | j | = ∑n

i=1 ji for x = (x1, . . . , xn) ∈
D and y = (y1, . . . , yn) ∈ V . Then the space V equipped with the inner product

〈y, z〉V =
∑
| j |≤1

〈D j y, D j z〉(L2(D))n

for every y, z ∈ V becomes a Hilbert space. The norms in H and V are denoted
by ‖ · ‖H and ‖ · ‖V , respectively. Furthermore, we get the orthogonal Helmholtz
decomposition

(L2(D))n = H ⊕ {∇ y : y ∈ H1(D)},

where ⊕ denotes the direct sum. In [35], it is shown that there exists an orthogonal
projection Π : (L2(D))n → H . We define the Stokes operator A : D(A) ⊂ H → H
with D(A) = (H2(D)

)n ∩ V by

Ay = −ΠΔy

for every y ∈ D(A). The Stokes operator A is positive, self-adjoint, and has a bounded
inverse. Moreover, the operator −A is the infinitesimal generator of an analytic semi-
group (e−At )t≥0 such that

∥∥e−At
∥∥L(H)

≤ 1 for all t ≥ 0. Formore details, see [36–39].
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Hence, we can introduce fractional powers of the Stokes operator, see [39–41]. For
α > 0, we define

A−α = 1

Γ (α)

∞∫

0

tα−1e−Atdt,

where Γ (·) denotes the gamma function. The operator A−α is linear, bounded, and
one-to-one in H . Hence, we define for all α > 0

Aα = (A−α
)−1

.

Moreover, we set A0 = I , where I is the identity operator on H . For α > 0, the
operator Aα is linear and closed on H with dense domain given by the range of A−α .
Next, we provide some useful properties frequently used in this paper.

Lemma 1 [40, Section 2.6] Let A : D(A) ⊂ H → H be the Stokes operator. Then

(i) we have Aα+β y = AαAβ y for all α, β ∈ R and every y ∈ D(Aγ ), where
γ = max{α, β, α + β},

(ii) e−At : H → D(Aα) for all t > 0 and α ≥ 0,
(iii) we have Aαe−At y = e−At Aα y for every y ∈ D(Aα) with α ∈ R,
(iv) the operator Aαe−At is linear and bounded for all t > 0 and there exist constants

Mα, θ > 0 such that

∥∥∥Aαe−At
∥∥∥L(H)

≤ Mαt
−αe−θ t ,

(v) 0 ≤ β ≤ α ≤ 1 implies D(Aα) ⊂ D(Aβ) and there exists a constant C > 0 such
that for every y ∈ D(Aα)

∥∥Aβ y
∥∥
H ≤ C

∥∥Aα y
∥∥
H .

As a consequence of the previous lemma, we obtain that the space D(Aα) for all
α ≥ 0 equipped with the inner product

〈y, z〉D(Aα) = 〈Aα y, Aαz〉H
for every y, z ∈ D(Aα) becomes a Hilbert space. In this paper, the space D(Aα) with
α ∈ (0, 1) is used frequently. A concrete characterization in term of Sobolev spaces
can be found in [12,36,41]. We get the following result as a direct consequence of the
fact that the Stokes operator A is self-adjoint.

Lemma 2 Let A : D(A) ⊂ H → H be the Stokes operator. Then, the operator Aα is
self-adjoint for all α ∈ R.

Next, we define the bilinear operator B(y, z) = Π(y · ∇)z for certain y, z ∈ H . If
y = z, then we write B(y) = B(y, y).
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Lemma 3 [38, Lemma 2.2] Let 0 ≤ δ < 1
2 + n

4 . If y ∈ D(Aα1) and z ∈ D(Aα2), then
we have

∥∥A−δB(y, z)
∥∥
H ≤ M̃

∥∥Aα1 y
∥∥
H

∥∥Aα2 z
∥∥
H

with some constant M̃ = M̃δ,α1,α2 , provided that α1, α2 > 0, δ + α2 > 1
2 , and

δ + α1 + α2 ≥ n
4 + 1

2 .

Corollary 1 Let α1, α2, and δ be as in Lemma 3. For every y, z ∈ D(Aβ) with β =
max{α1, α2}, we have

∥∥A−δ(B(y) − B(z))
∥∥
H

≤ M̃(
∥∥Aα1 y

∥∥
H

∥∥Aα2(y − z)
∥∥
H + ∥∥Aα1(y − z)

∥∥
H

∥∥Aα2 z
∥∥
H ).

Finally, we introduce the resolvent operator and state some basic properties. For
more details, see [40]. Let λ ∈ C such that λI + A is invertible, i.e. (λI + A)−1 is a
linear and bounded operator. Then the operator R(λ;−A) = (λI + A)−1 is called the
resolvent operator. The operator R(λ;−A) maps H into D(A) and using the closed
graph theorem, we can conclude that the operator AR(λ;−A) is linear and bounded
on H . Moreover, we have the following representation:

R(λ;−A) =
∞∫

0

e−λr e−Ardr . (1)

For all λ ∈ R with λ > 0, we get

‖R(λ;−A)‖L(H) ≤ 1

λ

and since the semigroup (e−At )t≥0 is self-adjoint, the operator R(λ;−A) is self-adjoint
as well. Let R(λ) : H → D(A) be defined by R(λ) = λR(λ;−A). Hence, we get for
all λ > 0

‖R(λ)‖L(H) ≤ 1. (2)

By Lemma 1 (iii) and Eq. (1), we obtain for every y ∈ D(Aα) with α ∈ R

AαR(λ)y = R(λ)Aα y. (3)

Moreover, we get for every y ∈ H

lim
λ→∞ ‖R(λ)y − y‖H = 0. (4)
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2.2 Stochastic Processes and the Stochastic Integral

Throughout this paper, let (Ω,F ,P) be a complete probability space endowed with
a filtration (Ft )t≥0 satisfying Ft = ⋂

s>t Fs for all t ≥ 0 and F0 contains all sets
of F with P-measure 0. Let E be a separable Hilbert space. We denote by L(E) the
space of linear and bounded operators defined on E . Let Q ∈ L(E) be a symmetric
and nonnegative operator such that Tr Q < ∞.

Definition 1 [42, Definition 4.2] An E-valued stochastic process (W (t))t≥0 is called
a Q-Wiener process if

– W (0) = 0;
– (W (t))t≥0 has continuous trajectories;
– (W (t))t≥0 has independent increments;
– the distribution ofW (t)−W (s) is a Gaussian measure with mean 0 and covariance

(t − s)Q for 0 ≤ s ≤ t .

Next, we give a definition of predictable processes, which are important to construct
the stochastic integral. Let P denote the smallest σ -field of subsets of [0, T ] × Ω .

Definition 2 [42] A stochastic process (X(t))t∈[0,T ] taking values in the measurable
space (X ,B(X )) is called predictable if it is a measurable mapping from ([0, T ] ×
Ω,P) to (X ,B(X )).

For the covarianceoperatorQ ∈ L(E)of an E-valuedQ-Wiener process (W (t))t≥0,
there exists a unique operator Q1/2 ∈ L(E) such that Q1/2 ◦ Q1/2 = Q. We
denote by L(HS)(Q1/2(E);H) the space of Hilbert-Schmidt operators mapping
from Q1/2(E) into another separable Hilbert space H. Let (Φ(t))t∈[0,T ] be a pre-
dictable stochastic process with values in the space L(HS)(Q1/2(E);H) such that

E
∫ T
0 ‖Φ(t)‖2L(HS)(Q1/2(E);H)

dt < ∞. Then one can define the stochastic integral

ψ(t) =
t∫

0

Φ(s) dW (s)

for all t ∈ [0, T ] and we have

E ‖ψ(t)‖2H = E

t∫

0

‖Φ(s)‖2L(HS)(Q1/2(E);H)
ds.

When dealing with a closed operatorA : D(A) ⊂ H → H, the following proposition
is useful.
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Proposition 1 [42, Proposition 4.15] IfΦ(t)y ∈ D(A) for every y ∈ E, all t ∈ [0, T ],
and P-almost surely,

E

T∫

0

‖Φ(t)‖2L(HS)(Q1/2(E);H)
dt < ∞ and E

T∫

0

‖AΦ(t)‖2L(HS)(Q1/2(E);H)
dt < ∞,

then we have P-a.s.
∫ T
0 Φ(t) dW (t) ∈ D(A) and

A
T∫

0

Φ(t) dW (t) =
T∫

0

AΦ(t) dW (t).

In this paper, we use the following maximal inequality frequently.

Proposition 2 [43, Proposition 1.3 (ii)] Let (S(t))t≥0 be a C0-semigroup in H such
that ‖S(t)‖L(H) ≤ 1 for all t ≥ 0. If k ∈ (0,∞), then

E sup
t∈[0,T ]

∥∥∥∥∥∥

t∫

0

S(t − s)Φ(s) dW (s)

∥∥∥∥∥∥

k

H
≤ ckk E

⎛
⎝

T∫

0

‖Φ(t)‖2L(HS)(Q1/2(E);H)
dt

⎞
⎠

k/2

,

where ck > 0 is a constant.

Next, we state a product formula for infinite dimensional stochastic processes,
which we use to obtain a duality principle. The formula is an immediate consequence
of the Itô formula, see [31, Theorem 2.9].

Lemma 4 For i = 1, 2, assume that X0
i are F0-measurable random variables with

values in H, ( fi (t))t∈[0,T ] are Ft -adapted processes with values in H such that

E
∫ T
0 ‖ fi (t)‖Hdt < ∞, and (Φi (t))t∈[0,T ] are predictable processes with values in

L(HS)(Q1/2(E);H) such thatE
∫ T
0 ‖Φi (t)‖2L(HS)(Q1/2(E);H)

dt < ∞. For i = 1, 2, let

(Xi (t))t∈[0,T ] satisfy for all t ∈ [0, T ] and P-a.s.

Xi (t) = X0
i +

t∫

0

fi (s) ds +
t∫

0

Φi (s) dW (s).

Then we have for all t ∈ [0, T ] and P-a.s.

〈X1(t), X2(t)〉H =
〈
X0
1, X

0
2

〉
H +

t∫

0

[〈X1(s), f2(s)〉H + 〈X2(s), f1(s)〉H
]
ds

+
t∫

0

〈Φ1(s),Φ2(s)〉L(HS)(Q1/2(E);H) ds
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+
t∫

0

〈X1(s),Φ2(s) dW (s)〉H +
t∫

0

〈X2(s),Φ1(s) dW (s)〉H .

Finally, we state a martingale representation theorem for Q-Wiener processes,
which we use to construct solutions of backward SPDEs. Since Q ∈ L(E) is a
symmetric and nonnegative operator such that Tr Q < ∞, there exists a complete
orthonormal system (ek)k∈N in E and a bounded sequence of nonnegative real num-
bers (μk)k∈N such that Qek = μkek for each k ∈ N. Then for arbitrary t ≥ 0, the
Q-Wiener process (W (t))t≥0 has the expansion

W (t) =
∞∑
k=1

√
μkwk(t)ek,

where (wk(t))t≥0, k ∈ N, are mutually independent real valued Brownian motions.
The convergence is in L2(Ω). Furthermore, we assume that the complete probability
space (Ω,F ,P) is endowed with the filtration Ft = σ {⋃∞

k=1 Fk
t }, where Fk

t =
σ {wk(s) : 0 ≤ s ≤ t} for t ≥ 0 and we require that the σ -algebraF satisfiesF = FT .
Then we have the following martingale representation theorem.

Proposition 3 [31, Theorem 2.5] Let the process (M(t))t∈[0,T ] be a continuous Ft -
martingale with values in H such that E‖M(t)‖2H < ∞ for all t ∈ [0, T ]. Then
there exists a unique predictable process (Φ(t))t∈[0,T ] with values in the space

L(HS)(Q1/2(E);H) such that E
∫ T
0 ‖Φ(t)‖2L(HS)(Q1/2(E);H)

dt < ∞ and we have for

all t ∈ [0, T ] and P-a.s.

M(t) = EM(0) +
t∫

0

Φ(s) dW (s).

3 Stochastic Navier–Stokes Equations

In this section, we recall briefly the existence and uniqueness result of a local mild
solution to the stochastic Navier–Stokes equations as shown in [12,16]. Moreover, we
state some useful properties.

Let the space Lk
F (Ω; Lr ([0, T ]; D(Aβ))) contain all Ft -adapted stochastic pro-

cesses (u(t))t∈[0,T ] with values in D(Aβ) such that E(
∫ T
0 ‖u(t)‖rD(Aβ)

dt)k/r < ∞
with k, r ∈ [0,∞) and β ∈ R. The space Lk

F (Ω; Lr ([0, T ]; D(Aβ))) equipped with
the norm

‖u‖k
Lk
F (Ω;Lr ([0,T ];D(Aβ)))

= E

⎛
⎝

T∫

0

‖u(t)‖rD(Aβ)
dt

⎞
⎠

k/r
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for every u ∈ Lk
F (Ω; Lr ([0, T ]; D(Aβ))) becomes a Banach space. We consider the

following Navier–Stokes equations with Dirichlet boundary condition:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂t
y + (y · ∇)y + ∇ p − νΔy = f in (0, T ) × D × Ω,

div y = 0 in (0, T ) × D × Ω,

y = 0 on (0, T ) × ∂D,

y(0, x, ω) = ξ(x, ω) in D × Ω,

where y = y(t, x, ω) ∈ R
n denotes the velocity field with F0-measurable initial

value ξ(x, ω) ∈ R
n and p = p(t, x, ω) ∈ R describes the pressure of the fluid. The

parameter ν > 0 is the viscosity parameter (for the sake of simplicity, we assume
ν = 1) and f = f (t, x, ω, y) ∈ R

n is the external random force dependent on the
velocity field. Here, we assume that the external random force can be decomposed as
the sum of a control term and a noise term. Using the spaces and operators introduced
in Sect. 2.1, we obtain the stochastic Navier–Stokes equations in D(Aα):

{
dy(t) = −[Ay(t) + B(y(t)) − Fu(t)] dt + G(y(t)) dW (t),

y(0) = ξ,
(5)

where u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) and F : D(Aβ) → D(Aβ) is a linear and

bounded operator. The process (W (t))t≥0 is a Q-Wiener process with values in H and
covariance operator Q ∈ L(H). Moreover, we assume that the operator G : H →
L(HS)(Q1/2(H); D(Aα)) is linear and bounded. Since the nonlinear operator B is
only locally Lipschitz continuous, we can not ensure the existence and uniqueness of
a mild solution over an arbitrary time interval [0, T ] in general. Thus, we need the
following definition of a local mild solution.

Definition 3 [12, Definition 3.2] Let τ be a stopping time taking values in (0, T ] and
(τm)m∈N be an increasing sequence of stopping times taking values in [0, T ] satisfying

lim
m→∞ τm = τ.

A predictable process (y(t))t∈[0,τ ) with values in D(Aα) is called a local mild solution
of system (5) if for fixed m ∈ N

E sup
t∈[0,τm )

‖y(t)‖2D(Aα) < ∞

and we have for each m ∈ N, all t ∈ [0, T ], and P-a.s.

y(t ∧ τm) = e−A(t∧τm )ξ −
t∧τm∫

0

Aδe−A(t∧τm−s)A−δB(y(s)) ds
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+
t∧τm∫

0

e−A(t∧τm−s)Fu(s) ds + Iτm (G(y))(t ∧ τm),

where t ∧ τm = min{t, τm} and

Iτm (G(y))(t) =
t∫

0

1[0,τm )(s)e
−A(t−s)G(y(s)) dW (s).

Remark 1 The stopped stochastic convolution (Iτm (G(y))(t ∧ τm))t∈[0,T ] is well
defined according to [44, Appendix].

The proof of the existence and uniqueness of a local mild solution to system (5) is
done in two steps. First, we consider a modified system to obtain a mild solution well
defined over the whole time interval [0, T ]. Second, we introduce suitable stopping
times such that the mild solution of the modified system and the local mild solution
of system (5) coincides. We introduce the following modified system in D(Aα):

{
dym(t) = −[Aym(t) + B(πm(ym(t))) − Fu(t)] dt + G(ym(t)) dW (t),

ym(0) = ξ,
(6)

where m ∈ N and πm : D(Aα) → D(Aα) is defined by

πm(y) =
{
y ‖y‖D(Aα) ≤ m,

m‖y‖−1
D(Aα)y ‖y‖D(Aα) > m.

(7)

Then we get for every y, z ∈ D(Aα)

‖πm(y)‖D(Aα) ≤ min{m, ‖y‖D(Aα)}, (8)

‖πm(y) − πm(z)‖D(Aα) ≤ 2‖y − z‖D(Aα). (9)

Definition 4 A predictable process (ym(t))t∈[0,T ] with values in D(Aα) is called a
mild solution of system (6) if

E sup
t∈[0,T ]

‖ym(t)‖2D(Aα) < ∞

and we have for all t ∈ [0, T ] and P-a.s.

ym(t) = e−Atξ −
t∫

0

Aδe−A(t−s)A−δB(πm(ym(s))) ds +
t∫

0

e−A(t−s)Fu(s) ds

+
t∫

0

e−A(t−s)G(ym(s)) dW (s).
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Theorem 1 Let the parameters α ∈ (0, 1) and δ ∈ [0, 1) satisfy 1 > δ + α > 1
2

and δ + 2α ≥ n
4 + 1

2 . Furthermore, let u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) be fixed for

β ∈ [0, α] such that α − β < 1
2 . Then for fixed m ∈ N and any ξ ∈ L2(Ω; D(Aα)),

there exists a unique mild solution (ym(t))t∈[0,T ] of system (6). Moreover, the process
(ym(t))t∈[0,T ] has a continuous modification.

Proof For the existence and uniqueness of a mild solution (ym(t))t∈[0,T ] to system
(6), we can follow [16, Theorem 4.6]. Since E supt∈[0,T ] ‖ym(t)‖2D(Aα) < ∞ and the
operator G is linear and bounded, we can conclude that the stochastic convolution has
a continuous modification, see [42, Theorem 6.10]. Hence, the process (ym(t))t∈[0,T ]
has a continuous modification as well. ��

Next, we define a sequence of stopping times (τm)m∈N by

τm = inf{t ∈ (0, T ) : ‖ym(t)‖D(Aα) > m} ∧ T (10)

P-a.s. with the usual condition that inf{∅} = +∞. Since the sequence (τm)m∈N is
increasing and bounded, there exists a stopping time τ with values in (0, T ] such that
limm→∞ τm = τ . We get the following result.

Theorem 2 Let the parameters α ∈ (0, 1) and δ ∈ [0, 1) satisfy 1 > δ + α > 1
2

and δ + 2α ≥ n
4 + 1

2 . Furthermore, assume that u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) be

fixed for β ∈ [0, α] such that α − β < 1
2 . Then for any ξ ∈ L2(Ω; D(Aα)), there

exists a unique local mild solution (y(t))t∈[0,τ ) of system (5). Moreover, the process
(y(t))t∈[0,τ ) has a continuous modification.

Proof We can follow [16, Theorem 4.7]. ��
Remark 2 It suffices to assume that the operator G satisfies a growth condition and a
Lipschitz condition, see [42]. In this paper, the additional assumptions are necessary
to derive the Gâteaux derivative of the local mild solution (y(t))t∈[0,τ ) to system (5).

Next, we show some useful properties. In what follows, we assume that the initial
value ξ is fixed, the parameters α ∈ (0, 1), δ ∈ [0, 1), and β ∈ [0, α] satisfy the
assumptions of Theorem 1 and the stopping times (τm)m∈N are given by equation
(10). To illustrate the dependence on the control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))),
let us denote by (ym(t; u))t∈[0,T ] and (y(t; u))t∈[0,τ u) the mild solution of system (6)
and the local mild solution of system (5), respectively. Note that the stopping times
(τ um)m∈N and τ u depend on the control as well. Whenever these processes and these
stopping times are considered for fixed control, we use the notation introduced above.
We have the following continuity property.

Lemma 5 For fixed m ∈ N, let the stochastic process (ym(t; u))t∈[0,T ] be the mild
solution of system (6) corresponding to the control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))).
If u1, u2 ∈ Lk

F (Ω; L2([0, T ]; D(Aβ))) with k ≥ 2, then there exists a constant c > 0
such that

E sup
t∈[0,T ]

‖ym(t; u1) − ym(t; u2)‖kD(Aα) ≤ c ‖u1 − u2‖kLk
F (Ω;L2([0,T ];D(Aβ)))

.
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Proof For k = 2, a proof can be found in [16, Lemma 5.3]. The generalization is
immediate. ��

By definition, we have for all t ∈ [0, τ um) and P-a.s. y(t; u) = ym(t; u). Hence, a
similar result of the previous lemma holds for the local mild solution of system (5).
In the following lemmas, we show some useful properties of the stopping times.

Lemma 6 [16, Lemma 5.4] For fixed m ∈ N, let (ym(t; u))t∈[0,T ] be the mild solution
of system (6) corresponding to the control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) and let
the stopping time τ um be given by (10). Then we have

lim
u1→u2

P
(
τ u1m �= τ u2m

) = 0.

Lemma 7 For fixed m ∈ N, let (ym(t; u))t∈[0,T ] be the mild solution of system (6)
corresponding to the control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) and let the stopping

time τ um be given by (10). If u1, u2 ∈ Lk+1
F (Ω; L2([0, T ]; D(Aβ))) for k ≥ 1, then

lim
θ→0

P

(
τ
u1
m �= τ

u1+θu2
m

)

θk
= 0.

Proof The result can be obtained similarly to Lemma 6. ��

4 The Control Problem and a Necessary Optimality Condition

In this section, we introduce the control problem and the related cost functional. Based
on the existence and uniqueness result stated in Theorem 2, we can formulate the
control problem as a nonconvex optimization problem. Consequently, the necessary
and the sufficient optimality condition has to be treated separately. First, we calculate
the Gâteaux derivative of the local mild solution of the stochastic Navier–Stokes
equations (5), which is given by the local mild solution of the linearized equations.
Hence, we can state a necessary optimality condition as a variational inequality using
the Gâteaux derivative of the cost functional. Moreover, we calculate the second order
Gâteaux derivative of the cost functional,which coincideswith its second order Fréchet
derivative. This enables us to obtain a sufficient optimality condition.

We introduce the cost functional Jm : L2
F (Ω; L2([0, T ]; D(Aβ))) → R given by

Jm(u) = 1

2
E

τ um∫

0

∥∥Aγ (y(t; u) − yd(t))
∥∥2
H dt + 1

2
E

T∫

0

∥∥Aβu(t)
∥∥2
H dt, (11)

where m ∈ N and γ ∈ [0, α]. Moreover, the process (y(t; u))t∈[0,τ u) is the local mild
solution of system (5) corresponding to the control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ)))

and yd ∈ L2([0, T ]; D(Aγ )) is a given desired velocity field. The set of admissible
controls U is a nonempty, closed, bounded, and convex subset of the Hilbert space
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L2
F (Ω; L2([0, T ]; D(Aβ))) such that 0 ∈ U .We note that the values of the parameters

α ∈ (0, 1) and β ∈ [0, α] are determined in Section 3. The task is to find a control
um ∈ U such that

Jm(um) = inf
u∈U Jm(u).

The control um ∈ U is called an optimal control. Note that for γ = 0, the formulation
coincides with a tracking problem, see [18–21]. For γ = 1

2 and yd = 0, we minimize
the enstrophy, see [1,22,24]. Hence, we formulated a generalized cost functional,
which incorporates common control problems in fluid dynamics.

Since the velocity field as well as the stopping times are nonconvex with respect
to the control, we formulated a control problem using a nonconvex cost functional.
However, we have the following existence and uniqueness result.

Theorem 3 [16, Theorem 5.2] Let the functional Jm be given by (11). Then there exists
a unique optimal control um ∈ U.

4.1 Linearized Stochastic Navier–Stokes Equations

We introduce the following system in D(Aα):

⎧⎪⎨
⎪⎩

dz(t) = −[Az(t) + B(z(t), y(t)) + B(y(t), z(t))

− Fv(t)] dt + G(z(t)) dW (t),

z(0) = 0,

(12)

where v ∈ L2
F (Ω; L2([0, T ]; D(Aβ))), the process (y(t))t∈[0,τ ) is the local mild

solution of system (5) and the process (W (t))t≥0 is a Q-Wiener process with values
in H and covariance operator Q ∈ L(H). The operators A, B, F,G are introduced in
Sects. 2.1 and 3, respectively.

Definition 5 Let τ be a predictable stopping time taking values in (0, T ] and (τm)m∈N
be an increasing sequence of stopping times taking values in [0, T ] satisfying

lim
m→∞ τm = τ.

A predictable process (z(t))t∈[0,τ ) with values in D(Aα) is called a local mild solution
of system (12) if for fixed m ∈ N

E sup
t∈[0,τm )

‖z(t)‖2D(Aα) < ∞

and we have for each m ∈ N, all t ∈ [0, T ], and P-a.s.

z(t ∧ τm) = −
t∧τm∫

0

Aδe−A(t∧τm−s)A−δ [B(z(s), y(s)) + B(y(s), z(s))] ds
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+
t∧τm∫

0

e−A(t∧τm−s)Fv(s) ds +
t∧τm∫

0

e−A(t∧τm−s)G(z(s)) dW (s).

Similarly to Sect. 3, we first consider the following system in D(Aα):

⎧⎪⎨
⎪⎩

dzm(t) = −[Azm(t) + B(zm(t), πm(ym(t))) + B(πm(ym(t)), zm(t))

− Fv(t)] dt + G(zm(t)) dW (t),

zm(0) = 0,

(13)

where the process (ym(t))t∈[0,T ] is the mild solution of system (6) and πm is given by
(7).

Definition 6 A predictable process (zm(t))t∈[0,T ] with values in D(Aα) is called a
mild solution of system (13) if

E sup
t∈[0,T ]

‖zm(t)‖2D(Aα) < ∞

and we have for all t ∈ [0, T ] and P-a.s.

zm(t) = −
t∫

0

Aδe−A(t−s)A−δ [B(zm(s), πm(ym(s))) + B(πm(ym(s)), zm(s))] ds

+
t∫

0

e−A(t−s)Fv(s) ds +
t∫

0

e−A(t−s)G(zm(s)) dW (s).

The existence and uniqueness of the mild solution (ym(t))t∈[0,T ] to system (6) for
fixed m ∈ N and fixed control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) results from Theo-
rem 1. Recall that the initial value ξ ∈ L2(Ω; D(Aα)) is fixed as well. Thus, we get
the existence and uniqueness of a mild solution (zm(t))t∈[0,T ] of system (13) with
fixed v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))), which can be obtained similarly to Theorem
1. Due to Theorem 2, we get the existence and uniqueness of the local mild solu-
tion (y(t))t∈[0,τ ) to system (6) for fixed control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))).
Note that the initial value ξ ∈ L2(Ω; D(Aα)) is fixed. Hence, we obtain the exis-
tence and uniqueness of a local mild solution (z(t))t∈[0,τ ) of system (12) with fixed
v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) and stopping times (τm)m∈N given by equation (10),
which can be obtained similarly to Theorem 2.

Next, we show some properties, which we use to calculate the Gâteaux derivative
of the cost functional (11). Note that the solutions of system (5) and system (6) depend
on the control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). Hence, the solutions of system (12)
and system (13) depends on the control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) as well as
on the control v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). Let us denote these solutions by
(z(t; u, v))t∈[0,τ ) and (zm(t; u, v))t∈[0,T ]. Whenever these processes is considered for
fixed controls, we use the notation introduced above.
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Lemma 8 For fixed m ∈ N, let the process (zm(t; u, v))t∈[0,T ] be the mild solution
of system (13) corresponding to the controls u, v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). If
v ∈ Lk

F (Ω; L2([0, T ]; D(Aβ))) for k ≥ 2, then there exists a constant c̃ > 0 such
that

E sup
t∈[0,T ]

‖zm(t; u, v)‖kD(Aα) ≤ c̃ ‖v‖k
Lk
F (Ω;L2([0,T ];D(Aβ)))

. (14)

Proof To simplify the notation, we omit the dependence on the controls. Let
(ym(t))t∈[0,T ] be the mild solution of system (6) corresponding to the control u ∈
L2
F (Ω; L2([0, T ]; D(Aβ))). Recall that the operators F : D(Aβ) → D(Aβ) and

G : H → L(HS)(Q1/2(H); D(Aα)) are bounded. Let T1 ∈ (0, T ]. By Lemmas 1,
3, Proposition 2, inequality (8), and the Cauchy-Schwarz inequality, there exist con-
stants CT1 , C̃T > 0 depending on T1 and T , respectively, such that

E sup
t∈[0,T1]

‖zm(t)‖kD(Aα)

≤ 4k−1
E sup

t∈[0,T1]

⎛
⎝

t∫

0

∥∥∥Aα+δe−A(t−s)A−δB(zm(s), πm(ym(s)))
∥∥∥
H
ds

⎞
⎠

k

+ 4k−1
E sup

t∈[0,T1]

⎛
⎝

t∫

0

∥∥∥Aα+δe−A(t−s)A−δB(πm(ym(s)), zm(s))
∥∥∥
H
ds

⎞
⎠

k

+ 4k−1
E sup

t∈[0,T1]

⎛
⎝

t∫

0

∥∥∥Aα−βe−A(t−s)AβFv(s)
∥∥∥
H
ds

⎞
⎠

k

+ 4k−1
E sup

t∈[0,T1]

∥∥∥∥∥∥

t∫

0

e−A(t−s)AαG(zm(s)) dW (s)

∥∥∥∥∥∥

k

H

≤ CT1E sup
t∈[0,T1]

‖zm(t)‖kD(Aα) + C̃T E

⎛
⎝

T∫

0

‖v(t)‖2D(Aβ)
dt

⎞
⎠

k/2

.

We choose T1 ∈ (0, T ] such that CT1 < 1. Then we have

E sup
t∈[0,T1]

‖zm(t)‖kD(Aα) ≤ c1 E

⎛
⎝

T∫

0

‖v(t)‖2D(Aβ)
dt

⎞
⎠

k/2

,

where c1 = C̃T
1−CT1

. By definition, we have for all t ∈ [T1, T ] and P-a.s.
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zm(t) = e−A(t−T1)zm(T1)

−
t∫

T1

Aδe−A(t−s)A−δ [B(zm(s), πm(ym(s))) + B(πm(ym(s)), zm(s))] ds

+
t∫

T1

e−A(t−s)Fv(s) ds +
t∫

T1

e−A(t−s)G(zm(s)) dW (s).

Again, we find T2 ∈ [T1, T ] such that

E sup
t∈[T1,T2]

‖zm(t)‖kD(Aα) ≤ c2E

⎛
⎝

T∫

0

‖v(t)‖2D(Aβ)
dt

⎞
⎠

k/2

,

where c2 > 0 is a constant. By continuing, we obtain inequality (14). ��
The following properties can be obtained similarly to the previous lemma.

Lemma 9 For fixed m ∈ N, let the process (zm(t; u, v))t∈[0,T ] be the mild solution of
system (12) corresponding to the controls u, v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). Then
we have for every u, v1, v2 ∈ L2

F (Ω; L2([0, T ]; D(Aβ))), all a, b ∈ R, all t ∈ [0, T ],
and P-a.s.

zm(t; u, a v1 + b v2) = a zm(t; u, v1) + b zm(t; u, v2).

Lemma 10 For fixed m ∈ N, let (zm(t; u, v))t∈[0,τ u) be the mild solution of system
(13) corresponding to the controls u, v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). Then there
exists a constant c > 0 such that for every u1, u2 ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) and
every v ∈ L4

F (Ω; L2([0, T ]; D(Aβ)))

E sup
t∈[0,T ]

‖zm(t; u1, v) − zm(t; u2, v)‖2D(Aα)

≤ c ‖v‖2
L4
F (Ω;L2([0,T ];D(Aβ)))

‖u1 − u2‖L2
F (Ω;L2([0,T ];D(Aβ))).

Proof We give an outline of the proof in order to clarify the need for the assumption
v ∈ L4

F (Ω; L2([0, T ]; D(Aβ))). Let T1 ∈ (0, T ]. By Lemmas 1, 3, the inequalities
(8) and (9), Proposition 2 with k = 2 and the Cauchy-Schwarz inequality, there exist
constants CT1 , C̃T > 0 depending on T1 and T , respectively, such that

E sup
t∈[0,T1]

‖zm(t; u1, v) − zm(t; u2, v)‖2D(Aα)

≤ CT1E sup
t∈[0,T1]

‖zm(t; u1, v) − zm(t; u2, v)‖2D(Aα)
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+ C̃T

(
E sup

t∈[0,T ]
‖zm(t; u2, v)‖4D(Aα)

)1/2

∗
(
E sup

t∈[0,T ]
‖ym(t; u1) − ym(t; u2)‖2D(Aα)

)1/2

.

Using Lemma 5 with k = 2 and Lemma 8 with k = 4, there exists a constant C̃T > 0
depending on T such that

E sup
t∈[0,T1]

‖zm(t; u1, v) − zm(t; u2, v)‖2D(Aα)

≤ CT1E sup
t∈[0,T1,m ]

‖zm(t; u1, v) − zm(t; u2, v)‖2D(Aα)

+ C̃T

⎛
⎜⎜⎝E

⎛
⎜⎝

T∫

0

‖v(t)‖2D(Aβ)
dt

⎞
⎟⎠
2
⎞
⎟⎟⎠

1/2⎛
⎜⎝E

T∫

0

‖u1(t) − u2(t)‖D(Aβ)and we have for2dt

⎞
⎟⎠
1/2

.

We choose T1 ∈ (0, T ] such that CT1 < 1. Then we infer

E sup
t∈[0,T1]

‖zm(t; u1, v) − zm(t; u2, v)‖2D(Aα)

≤ c1

⎛
⎜⎝E

⎛
⎝

T∫

0

‖v(t)‖2D(Aβ)
dt

⎞
⎠
2⎞
⎟⎠

1/2⎛
⎝E

T∫

0

‖u1(t) − u2(t)‖2D(Aβ)
dt

⎞
⎠

1/2

,

where c1 = C̃T
1−CT1

. Similarly to Lemma 8, we can conclude that the result holds

for the whole time interval [0, T ]. ��
By definition, we have for all t ∈ [0, τ um) and P-a.s. z(t; u, v) = zm(t; u, v). Hence,

one can easily obtain similar results for the local mild solution of system (12).

4.2 The Derivatives of the Cost Functional

Let X ,Y and Z be arbitrary Banach spaces. For a mapping f : M ⊂ X → Y
with M nonempty and open, we denote the Gâteaux derivative and the Fréchet
derivative at x ∈ M in direction h ∈ X by dG f (x)[h] and dF f (x)[h], respec-
tively. Derivatives of order k ∈ N at x ∈ M in directions h1, . . . , hk ∈ X are
represented by (dG f (x))k[h1, . . . , hk] and (dF f (x))k[h1, . . . , hk]. For a mapping
f : MX×MY → Z withMX ⊂ X ,MY ⊂ Y nonempty and open, we denote the partial
Gâteaux derivative and the partial Fréchet derivative at x ∈ MX in direction h ∈ X for
fixed y ∈ MY by dGx f (x, y)[h] and dF

x f (x, y)[h], respectively. Analogously, the par-
tial Gâteaux derivative and the partial Fréchet derivative at y ∈ My in direction h ∈ Y
for fixed x ∈ MX are represented by dGy f (x, y)[h] and dF

y f (x, y)[h], respectively.
First, we show that the local mild solution of system (12) is the partial Gâteaux

derivative of the local mild solution to system (5) with respect to the control variable.
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Theorem 4 Let the processes (y(t; u))t∈[0,τ u) and (z(t; u, v))t∈[0,τ u) be the local mild
solutions of system (5) and system (12), respectively, corresponding to the controls
u, v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). Then the Gâteaux derivative of y(t; u) at u ∈
L2
F (Ω; L2([0, T ]; D(Aβ))) in direction v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) satisfies
for all t ∈ [0, τ um) with m ∈ N fixed and P-a.s.

dGu y(t; u)[v] = z(t; u, v).

Proof First, we assume that v ∈ L4
F (Ω; L2([0, T ]; D(Aβ))). Since B is bilinear on

D(Aα) × D(Aα) and F : D(Aβ) → D(Aβ) and G : H → L(HS)(Q1/2(H); D(Aα))

are linear, we find for all θ ∈ R\{0}, all t ∈ [0, τ um ∧ τ u+θv
m ) and P-a.s.

1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

= −
t∫

0

Aδe−A(t−s)A−δB

(
y(s; u + θv),

1

θ
[y(s; u + θv) − y(s; u)] − z(s; u, v)

)
ds

−
t∫

0

Aδe−A(t−s)A−δB

(
1

θ
[y(s; u + θv) − y(s; u)] − z(s; u, v); y(s; u)

)
ds

−
t∫

0

Aδe−A(t−s)A−δB(y(s; u + θv) − y(s; u), z(s; u, v)) ds

+
t∫

0

e−A(t−s)G

(
1

θ
[y(s; u + θv) − y(s; u)] − z(s; u, v)

)
dW (s). (15)

Next, let 0 = T0 < T1 < · · · < Tl = T be a partition of the time interval [0, T ],
which we specify below. Since the stopping time τ um ∧ τ u+θv

m takes values in [0, T ],
we have P-a.s. and for all θ ∈ R\{0}

1
τ um∧τ u+θv

m ∈[0,T1](ω) +
l−1∑
j=1

1
τ um∧τ u+θv

m ∈(Tj ,Tj+1](ω) = 1, (16)

where 1 denotes the indicator function. We set

10 = 1
τ um∧τ u+θv

m ∈[0,T1], 1 j = 1
τ um∧τ u+θv

m ∈(Tj ,Tj+1]

for j = 1, . . . , l − 1. Furthermore, let (ym(t; u∗))t∈[0,T ] and (zm(t; u∗, v∗))t∈[0,T ]
be the mild solutions of system (6) and system (13), respectively, corresponding to
the controls u∗, v∗ ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). By definition, we have for every
u∗ ∈ L2

F (Ω; L2([0, T ]; D(Aβ))), all t ∈ [0, τ u∗
m ), and P-a.s.

y(t; u∗) = ym(t; u∗), z(t; u∗, v∗) = zm(t; u∗, v∗),
‖y(t; u∗)‖D(Aα) ≤ m.
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Recall that the operator G : H → L(HS)(Q1/2(H); D(Aα)) is bounded. By Eq. (15),
Lemmas 1, 3, Proposition 2, Lemma8with k = 4, and theCauchy–Schwarz inequality,
there exists constant CT1 > 0 depending on T1 and a constant C̃ > 0 independent of
T1 such that for all θ ∈ R\{0} and for j = 1, . . . , l − 1

E

[
1 j sup

t∈[0,T1]

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

]

≤ CT1E

[
1 j sup

t∈[0,T1]

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

]

+ C̃

(
E sup

t∈[0,T1]
‖ym(t; u + θv) − ym(t; u)‖2D(Aα)

)1/2

.

We choose T1 ∈ (0, T ] such that CT1 < 1. Then we find for all θ ∈ R\{0} and for
j = 1, . . . , l − 1

E

[
1 j sup

t∈[0,T1]

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

]

≤ c1

(
E sup

t∈[0,T1]
‖ym(t; u + θv) − ym(t; u)‖2D(Aα)

)1/2

,

where c1 = C̃
1−CT1

. Using Lemma 5 with k = 2, we obtain for j = 1, ..., l − 1

lim
θ→0

E

[
1 j sup

t∈[0,T1]

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

]
= 0. (17)

Similarly, we get

lim
θ→0

E

⎡
⎣10 sup

t∈[0,τ um∧τ u+θv
m )

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

⎤
⎦ = 0.

By definition, we have for all t ∈ [T1, T ], P-almost surely, and for i = 1, 2

y(t ∧ τ uim ; ui ) = e−A(t∧τ
ui
m −T1∧τ

ui
m )y(T1 ∧ τ uim ; ui )

−
t∧τ

ui
m∫

T1∧τ
ui
m

Aδe−A(t∧τ
ui
m −s)A−δB(y(s; ui )) ds
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+
t∧τ

ui
m∫

T1∧τ
ui
m

e−A(t∧τ
ui
m −s)Fui (s) ds

+
t∧τ

ui
m∫

T1∧τ
ui
m

e−A(t∧τ
ui
m −s)G(y(s; ui )) dW (s),

where u1 = u + θv and u2 = u, and

z(t ∧ τ um; u, v)

= e−A(t∧τ um−T1∧τ um )z(T1 ∧ τ um; u, v)

−
t∧τ um∫

T1∧τ um

Aδe−A(t∧τ um−s)A−δ [B(z(s; u, v), y(s; u)) + B(y(s; u), z(s; u, v))] ds

+
t∧τ um∫

T1∧τ um

e−A(t∧τ um−s)Fv(s) ds +
t∧τ um∫

T1∧τ um

e−A(t∧τ um−s)G(z(s; u, v)) dW (s).

Again, we find T2 ∈ [T1, T ] such that for j = 2 . . . , l − 1

lim
θ→0

E

[
1 j sup

t∈[T1,T2]

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

]
= 0

and

lim
θ→0

E

⎡
⎣11 sup

t∈[T1,τ um∧τ u+θv
m )

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

⎤
⎦ = 0.

Using equality (17) for j = 1, we obtain

lim
θ→0

E

⎡
⎣11 sup

t∈[0,τ um∧τ u+θv
m )

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

⎤
⎦ = 0.

By continuing, we obtain for j = 0, 1, . . . , l − 1

lim
θ→0

E

⎡
⎣1 j sup

t∈[0,τ um∧τ u+θv
m )

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

⎤
⎦ = 0.
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Due to Eq. (16), we have

lim
θ→0

E sup
t∈[0,τ um∧τ u+θv

m )

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

=
l−1∑
j=0

lim
θ→0

E

⎡
⎣1 j sup

t∈[0,τ um∧τ u+θv
m )

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

⎤
⎦ = 0.

Therefore, the Gâteaux derivative of y(t; u) at u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) in

direction v ∈ L4
F (Ω; L2([0, T ]; D(Aβ))) satisfies for all t ∈ [0, τ um ∧ τ u+θv

m ) and
P-a.s.

dGu y(t; u)[v] = z(t; u, v). (18)

Note that by Lemma 6, we have limθ→0 P(τ um �= τ u+θv
m ) = 0. Moreover, the operator

dGu y(t; u) is linear and bounded due to Lemma 8 with k = 4 and Lemma 9. Since
L4
F (Ω; L2([0, T ]; D(Aβ))) is dense in L2

F (Ω; L2([0, T ]; D(Aβ))), the equation (18)
holds for v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). ��
This enables us to calculate the Gâteaux derivative of the cost functional.

Theorem 5 Let the functional Jm : L2
F (Ω; L2([0, T ]; D(Aβ))) → R be defined by

(11). Then the Gâteaux derivative at u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) in direction

v ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) satisfies

dG Jm(u)[v] = E

τ um∫

0

〈
Aγ (y(t; u) − yd(t)), A

γ z(t; u, v)
〉
H dt

+ E

T∫

0

〈
Aβu(t), Aβv(t)

〉
H dt,

where the process (z(t; u, v))t∈[0,τ u) is the local mild solution of system (12) corre-
sponding to the controls u, v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))).

Proof We define the functionals Φ1, Φ2 : L2
F (Ω; L2([0, T ]; D(Aβ))) → R by

Φ1(u) = 1

2
E

τ um∫

0

∥∥Aγ (y(t; u) − yd(t))
∥∥2
H dt, Φ2(u) = 1

2
E

T∫

0

∥∥Aβu(t)
∥∥2
H dt .

First, we derive the Gâteaux derivative of Φ1 at u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) in

direction v ∈ L2
F (Ω; L2([0, T ]; D(Aβ))). We set

z̃θ (t; u, v) = 1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)
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for all θ ∈ R\{0}, all t ∈ [0, T ], and P-almost surely. We get for all θ ∈ R\{0}
∣∣∣∣∣∣∣
1

θ
[Φ1(u + θv) − Φ1(u)] − E

τ um∫

0

〈
Aγ (y(t; u) − yd(t)), A

γ z(t; u, v)
〉
H dt

∣∣∣∣∣∣∣
≤ I1(θ) + I2(θ) + I3(θ) + I4(θ) + I5(θ), (19)

where

I1(θ) =

∣∣∣∣∣∣∣
1

2θ
E

τ um∧τ u+θv
m∫

0

∥∥Aγ (y(t; u + θv) − y(t; u))
∥∥2
H dt

∣∣∣∣∣∣∣
,

I2(θ) =

∣∣∣∣∣∣∣
E

τ um∧τ u+θv
m∫

0

〈
Aγ (y(t; u) − yd(t)), A

γ z̃θ (t; u, v)
〉
H dt

∣∣∣∣∣∣∣
,

I3(θ) =

∣∣∣∣∣∣∣∣

1

2θ
E

τ u+θv
m∫

τ um∧τ u+θv
m

∥∥Aγ (y(t; u + θv) − yd(t))
∥∥2
H dt

∣∣∣∣∣∣∣∣
,

I4(θ) =

∣∣∣∣∣∣∣∣

1

2θ
E

τ um∫

τ um∧τ u+θv
m

∥∥Aγ (y(t; u) − yd(t))
∥∥2
H dt

∣∣∣∣∣∣∣∣
,

I5(θ) =

∣∣∣∣∣∣∣∣
E

τ um∫

τ um∧τ u+θv
m

〈
Aγ (y(t; u) − yd(t)), A

γ z(t; u, v)
〉
H dt

∣∣∣∣∣∣∣∣
.

Let the process (ym(t; u∗))t∈[0,T ] be the mild solutions of system (6) corresponding
to the control u∗ ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). By definition, we have for every
u∗ ∈ L2

F (Ω; L2([0, T ]; D(Aβ))), all t ∈ [0, τ u∗
m ), and P-a.s. y(t; u∗) = ym(t; u∗)

and ‖y(t; u∗)‖D(Aα) ≤ m. Using Lemma 1 (v), we obtain for all θ ∈ R\{0}

I1(θ) ≤
∣∣∣∣∣
CT

2θ
E sup

t∈[0,T ]
‖ym(t; u + θv) − ym(t; u))‖2D(Aα)

∣∣∣∣∣ .

Due to Lemma 5 with k = 2, we can conclude

lim
θ→0

I1(θ) = 0. (20)

123



S1024 Applied Mathematics & Optimization (2021) 84 (Suppl 1):S1001–S1054

Using the Cauchy–Schwarz inequality and Lemma 1 (v), there exists a constant C̃ > 0
such that for all θ ∈ R\{0}

I2(θ) ≤ C̃

⎛
⎝E sup

t∈[0,τ um∧τ u+θv
m )

∥∥∥∥
1

θ
[y(t; u + θv) − y(t; u)] − z(t; u, v)

∥∥∥∥
2

D(Aα)

⎞
⎠

1/2

.

Due to Theorem 4, we can infer

lim
θ→0

I2(θ) = 0. (21)

Using Lemma 1 (v) and Fubini’s theorem, we get for all θ ∈ R\{0}

I3(θ) ≤
∣∣∣∣∣∣

T∫

0

1

2θ
P
(
τ um ∧ τ u+θv

m ≤ t < τ u+θv
m

) (
2Cm2 + 2 ‖yd(t)‖2D(Aγ )

)
dt

∣∣∣∣∣∣
.

Due to Lemma 7 with k = 1, we have limθ→0
1
θ
P
(
τ um ∧ τ u+θv

m ≤ t < τ u+θv
m

) = 0
for all t ∈ [0, T ]. By Lebesgue’s dominated convergence theorem, we can infer

lim
θ→0

I3(θ) = 0. (22)

Similarly, we find

lim
θ→0

I4(θ) + lim
θ→0

I5(θ) = 0. (23)

Using inequality (19) and Eqs. (20)– (23), we get

lim
θ→0

∣∣∣∣∣∣∣
1

θ
[Φ1(u + θv) − Φ1(u)] − E

τ um∫

0

〈
Aγ (y(t; u) − yd(t)), A

γ z(t; u, v)
〉
H dt

∣∣∣∣∣∣∣
= 0.

Therefore, the Gâteaux derivative of Φ1 at u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) in direc-

tion v ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) is given by

dGΦ1(u)[v] = E

τ um∫

0

〈
Aγ (y(t; u) − yd(t)), A

γ z(t; u, v)
〉
H dt . (24)

Let the stochastic process (zm(t; u, v))t∈[0,T ] be the mild solution of system (13)
corresponding to the controls u, v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). By definition, we
have for all t ∈ [0, τ um) and P-a.s. z(t; u, v) = zm(t; u, v). Using Lemma 9, the
functional dGΦ1(u) is linear. Moreover, by Lemma 1 (v), Lemma 8 with k = 2, and
the Cauchy–Schwarz inequality, the functional dGΦ1(u) is bounded.
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The functional Φ2 is given by the squared norm in L2(Ω; L2([0, T ]; D(Aβ))).
Thus, the Gâteaux derivative of Φ2 at u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) in direction
v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) is given by

dGΦ2(u)[v] = E

T∫

0

〈
Aβu(t), Aβv(t)

〉
H dt . (25)

Obviously, the functional dGΦ2(u) is linear and bounded.
Using the Eqs. (24) and (25), the Gâteaux derivative of the cost functional Jm

at u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) in direction v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) is
given by

dG Jm(u)[v] = dGΦ1(u)[v] + dGΦ2(u)[v].

Since dGΦ1(u) and dGΦ2(u) are linear and bounded, the functional dG Jm(u) is linear
and bounded as well. ��

We get the following necessary optimality condition.

Theorem 6 Let the functional Jm : L2
F (Ω; L2([0, T ]; D(Aβ))) → R be defined by

(11). The optimal control um ∈ U satisfies the following necessary optimality condi-
tion for fixed m ∈ N and every u ∈ U:

dG Jm(um)[u − um] ≥ 0. (26)

Proof Due to Theorem 5, the functional Jm is Gâteaux differentiable at every
u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) in every direction v ∈ L2
F (Ω; L2([0, T ]; D(Aβ))).

Moreover, the set of admissible controls U ⊂ L2
F (Ω; L2([0, T ]; D(Aβ))) is

nonempty and convex. Thus, inequality (26) results from [28, Theorem 1.46]. ��
Note that due to Theorems 5 and 6, the following variational inequality holds for

fixed m ∈ N and every u ∈ U :

E

τ
um
m∫

0

〈
Aγ (y(t; um) − yd(t)), A

γ z(t; um, u − um)
〉
H dt

+ E

T∫

0

〈
Aβum(t), Aβ(u(t) − um(t))

〉
H dt ≥ 0. (27)

For more details on necessary optimality conditions of general optimization problems,
see [28,29].

In order to obtain a sufficient optimality condition, we calculate the Fréchet deriva-
tive of the cost functional (11) of order two. First, we show that Gâteaux derivative of
the cost functional coincides with its Fréchet derivative.
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Corollary 2 Let the functional Jm : L2
F (Ω; L2([0, T ]; D(Aβ))) → R be defined by

(11). Then the Fréchet derivative at u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) in direction

v ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) satisfies

dF Jm(u)[v]

= E

τ um∫

0

〈
Aγ (y(t; u) − yd(t)), A

γ z(t; u, v)
〉
H dt + E

T∫

0

〈
Aβu(t), Aβv(t)

〉
H dt,

where the process (z(t; u, v))t∈[0,τ u) is the local mild solution of system (12) corre-
sponding to the controls u, v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). Moreover, the functional
dF Jm(u)[v] is continuous with respect to u.

Proof The Gâteaux derivative of Jm at u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) in direc-

tion v ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) is stated in Theorem 5. By Lemmas 5 and

10, we get that the processes (y(t; u))t∈[0,τ u) and (z(t; u, v))t∈[0,τ u) are continuous
with respect to u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). Using Lemma 6, one can show that
u �→ dG Jm(u)[v] is a continuous mapping from L2

F (Ω; L2([0, T ]; D(Aβ))) into R.
Therefore, by the mean value theorem, see [45, Theorem 4.1.2], we get

∣∣∣Jm(u + v) − Jm(u) − dG Jm(u)[v]
∣∣∣

≤ sup
θ∈[0,1]

∥∥∥dG Jm(u + θv) − dG Jm(u)

∥∥∥L(U ;R)
‖v‖L2(Ω;L2([0,T ];D(Aβ))).

Since u �→ dG Jm(u)[v] is a continuous mapping from L2
F (Ω; L2([0, T ]; D(Aβ)))

into R, we can conclude

lim‖v‖L2(Ω;L2([0,T ];D(Aβ )))
→0

∣∣Jm(u + v) − Jm(u) − dG Jm(u)[v]∣∣
‖v‖L2(Ω;L2([0,T ];D(Aβ)))

= 0.

Hence, theFréchet derivative of Jm atu ∈ L2
F (Ω; L2([0, T ]; D(Aβ))) in directionv ∈

L2
F (Ω; L2([0, T ]; D(Aβ))) is given by dF Jm(u)[v] = dG Jm(u)[v] and by Theorem

5, the operator dF Jm(u) is linear and bounded. Since dG Jm(u)[v] is continuous with
respect to u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))), the functional dF Jm(u)[v] is continuous
as well. ��

Similarly to Theorem 5, we can obtain that the second order Gâteaux derivative
of the cost functional given by (11) at u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) in directions
v1, v2 ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) satisfies

(dG Jm(u))2[v1, v2] = E

τ um∫

0

〈
Aγ z(t; u, v1), A

γ z(t; u, v2)
〉
H dt
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+ E

τ um∫

0

〈
Aγ (y(t; u) − yd(t)), A

γ dGu (y(t; u))2[v1, v2]
〉
H
dt

+ E

T∫

0

〈
Aβv1(t), A

βv2(t)
〉
H dt, (28)

where (z(t; u, vi ))t∈[0,τ u) are the local mild solutions of system (12) corresponding
to the controls u, vi ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) for i = 1, 2. Following the proof
of Theorem 4, the second order Gâteaux derivative of the velocity field y(t; u) at
u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) in directions v1, v2 ∈ L2
F (Ω; L2([0, T ]; D(Aβ)))

satisfies for all t ∈ [0, τ um) with m ∈ N fixed and P-a.s.

(dGu y(t; u))2[v1, v2] = dGu z(t; u, v1)[v2]

= −
t∫

0

Aδe−A(t−s)A−δ [B(z(s; u, v1), z(s; u, v2)) + B(z(s; u, v2), z(s; u, v1))] ds.

Moreover, the functional (28) coincides with its Fréchet derivative and is continuous
with respect to u, where we can adopt the proof of Corollary 2.

5 The Optimal Control

In this section, we use the variational inequality (27) to derive an explicit formula of
the optimal control um ∈ U based on the corresponding adjoint equation. Since the
control problem considered in this paper is constrained by a SPDE with multiplicative
noise, the adjoint equation is specified by a backward SPDE. For the existence of a
uniquemild solution to a backward SPDE, onemainly uses amartingale representation
theorem, see [30]. Such a martingale representation theorem is stated in Proposition
3. In order to obtain the formula of the optimal control, we need a duality principle
providing a relation between the linearized stochastic Navier–Stokes equations and the
adjoint equation. In general, a duality principle of solutions to forward and backward
SPDEs can be obtained by applying an Itô product formula stated in Lemma 4. This
formula is not applicable to solutions in a mild sense. Hence, we need to approximate
the mild solutions of system (13) and system (29) by strong formulations. One method
is given by introducing the Yosida approximation of the operator A, see [42]. For
applications regarding duality principles, see [46,47]. Note that the mild solutions of
system (13) and system (29) takes values in the domain of fractional power operators.
Since this approximation is done only in the underlying Hilbert space H , we do not
obtain convergence results in the required spaces and hence, we can not use this
approach. Here, we apply the method introduced in [48,49]. The basic idea is to
formulate a mild solution with values in D(A) using the resolvent operator R(λ)

introduced in Sect. 2.1. As a consequence, we get convergence results in the domain
of fractional power operators and the mild solutions coincide with strong solutions.
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Although, convergence results are only available for forward SPDEs, we are also able
to show the convergence for the backward equation. Finally, we obtain the desired
duality principle, which enables us to deduce the explicit formula of the optimal
control. Furthermore, we show that this optimal control satisfies a sufficient optimality
condition.

5.1 The Adjoint Equation

We introduce the following backward SPDE in D(Aδ):

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dz∗m(t) = −1[0,τm )(t)
[

− Az∗m(t) − A2αB∗
δ

(
y(t), Aδz∗m(t)

)

+ G∗(A−2αΦm(t)) + A2γ (y(t) − yd(t))
]
dt + Φm(t) dW (t),

z∗m(T ) = 0,

(29)

where m ∈ N and (y(t))t∈[0,τ ) is the local mild solution of system (5). The stopping
times (τm)m∈N are definedbyEq. (10) and yd ∈ L2([0, T ]; D(Aγ )) is the given desired
velocity field. The operator A and its fractional powers are introduced in Sect. 2.1. The
process (W (t))t≥0 is a Q-Wiener process with values in H and covariance operator
Q ∈ L(H). Moreover, the operators B∗

δ (y(t), ·) : H → D(Aα) for t ∈ [0, τm) and
G∗ : L(HS)(Q1/2(H); D(Aα)) → H are linear and bounded. A precise meaning is
given in the following remark.

Remark 3 (i) By Lemma 3, we obtain that A−δ[B(·, y) + B(y, ·)] : D(Aα) → H is
linear and bounded for every y ∈ D(Aα) satisfying ‖y‖D(Aα) ≤ m. Therefore, there
exists a linear and bounded operator B∗

δ (y, ·) : H → D(Aα) such that for every
h ∈ H and every z ∈ D(Aα)

〈A−δ[B(z, y) + B(y, z)], h〉H = 〈z, B∗
δ (y, h)〉D(Aα).

We can rewrite this equivalently as

〈A−δ[B(z, y) + B(y, z)], h〉H = 〈Aαz, AαB∗
δ (y, h)〉H (30)

for every h ∈ H and z ∈ D(Aα). Moreover, the operator AαB∗
δ (y, ·) : H → H is

linear and bounded due to the closed graph theorem.
(ii) Recall that ‖y(t)‖D(Aα) ≤ m for all t ∈ [0, τm) and P-almost surely.
(iii) Since the operator G : H → L(HS)(Q1/2(H); D(Aα)) is linear and bounded,

there exists a linear and bounded operator G∗ : L(HS)(Q1/2(H); D(Aα)) → H satis-
fying for every h ∈ H and every Φ ∈ L(HS)(Q1/2(H); D(Aα))

〈G(h),Φ〉L(HS)(Q1/2(H);D(Aα)) = 〈h,G∗(Φ)〉H .

We can rewrite this equivalently as

〈AαG(h), AαΦ〉L(HS)(Q1/2(H);H) = 〈h,G∗(Φ)〉H (31)
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for every h ∈ H and every Φ ∈ L(HS)(Q1/2(H); D(Aα)).

Definition 7 A pair of predictable processes (z∗m(t),Φm(t))t∈[0,T ] with values in
D(Aδ) × L(HS)(Q1/2(H); H) is called a mild solution of system (29) if

E sup
t∈[0,T ]

‖z∗m(t)‖2D(Aδ)
< ∞, E

T∫

0

‖Φm(t)‖2L(HS)(Q1/2(H);H)
dt < ∞

and we have for all t ∈ [0, T ] and P-a.s.

z∗m(t) = −
T∫

t

1[0,τm )(s)A
αe−A(s−t)AαB∗

δ

(
y(s ∧ τm), Aδz∗m(s)

)
ds

+
T∫

t

1[0,τm )(s)e
−A(s−t)G∗(A−2αΦm(s)) ds

+
T∫

t

1[0,τm )(s)A
γ e−A(s−t)Aγ (y(s ∧ τm) − yd(s)) ds

−
T∫

t

e−A(s−t)Φm(s) dW (s). (32)

Lemma 11 Let δ, ε ∈ [0, 1
2 ) such that δ + ε < 1

2 . Assume that z ∈ L2(Ω; D(Aδ))

is FT -measurable and ( f (t))t∈[0,T ] is an H-valued predictable process such that

E
∫ T
0 ‖ f (t)‖2Hdt < ∞. Then there exists a unique pair of predictable processes

(ϕ(t),Φ(t))t∈[0,T ] with values in D(Aδ) × L(HS)(Q1/2(H); D(Aε)) such that for
all t ∈ [0, T ] and P-a.s.

ϕ(t) = e−A(T−t)z +
T∫

t

Aεe−A(s−t) f (s) ds −
T∫

t

e−A(s−t)AεΦ(s) dW (s).

Furthermore, there exists a constant ĉ > 0 such that for all t ∈ [0, T ]

E sup
s∈[t,T ]

‖ϕ(s)‖2D(Aδ)
≤ ĉ

⎡
⎣E ‖z‖2D(Aε) + (T − t)1−2δ−2ε

E

T∫

t

‖ f (s)‖2Hds
⎤
⎦ , (33)

E

T∫

t

‖Φ(s)‖2L(HS)(Q1/2(H);D(Aε))
ds

≤ ĉ

⎡
⎣E ‖z‖2D(Aδ)

+ (T − t)1−2ε
E

T∫

t

‖ f (s)‖2H ds

⎤
⎦ . (34)
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Proof For δ = ε = 0, a proof can be found in [30, Lemma2.1]. For arbitrary ε ∈ [0, 1
2

)
and δ ∈ [0, 1

2 − ε), one can show the result similarly using the properties of fractional
powers of the operator A provided by Lemma 1. ��

Based on the above results, we are able to prove the existence and uniqueness
of the mild solution to system (29). Note that by Theorem 2, we get the existence
and uniqueness of the local mild solution (y(t))t∈[0,τ ) to system (6) for fixed control
u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))).

Theorem 7 Let the parameters α ∈ (0, 1
2 ) and δ ∈ [0, 1

2 ) satisfy 1 > δ + α > 1
2

and δ + 2α ≥ n
4 + 1

2 , and let γ ∈ [0, α] such that γ + δ < 1
2 . Then for fixed

m ∈ N and fixed u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))), there exists a unique mild solution

(z∗m(t),Φm(t))t∈[0,T ] of system (29).

Proof Let the space Z1
T contain all predictable processes (z(t))t∈[0,T ] with values in

D(Aδ) such that E supt∈[0,T ] ‖z(t)‖2D(Aδ)
< ∞. The space Z1

T equipped with the
norm

‖z‖2Z1
T

= E sup
t∈[0,T ]

‖z(t)‖2D(Aδ)

for every z ∈ Z1
T becomes a Banach space. Similarly, let the space Z2

T contain
all predictable processes (Φ(t))t∈[0,T ] with values in L(HS)(Q1/2(H); H) such that

E
∫ T
0 ‖Φ(t)‖2L(HS)(Q1/2(H);H)

dt < ∞. The spaceZ2
T equipped with the inner product

〈Φ1, Φ2〉2Z2
T

= E

T∫

0

〈Φ1(t),Φ2(t)〉2L(HS)(Q1/2(H);H)
dt

for everyΦ1, Φ2 ∈ Z2
T becomes a Hilbert space. Let (zkm, Φk

m)k∈N ⊂ Z1
T ×Z2

T satisfy
for each k ∈ N, all t ∈ [0, T ], and P-a.s.

zkm(t) = −
T∫

t

1[0,τm )(s)A
αe−A(s−t)AαB∗

δ

(
y(s ∧ τm), Aδzk−1

m (s)
)
ds

+
T∫

t

1[0,τm )(s)e
−A(s−t)G∗(A−2αΦk−1

m (s)) ds

+
T∫

t

1[0,τm )(s)A
γ e−A(s−t)Aγ (y(s ∧ τm) − yd(s)) ds

−
T∫

t

e−A(s−t)Φk
m(s) dW (s), (35)
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where z0m(t) = 0 and Φ0
m(t) = 0 for all t ∈ [0, T ]. One can easily obtain that

(zkm, Φk
m)k∈N ⊂ Z1

T × Z2
T resulting from Lemma 11. We obtain for each k ∈ N, all

t ∈ [0, T ], and P-a.s.

zk+1
m (t) − zkm(t)

= −
T∫

t

1[0,τm )(s)A
αe−A(s−t)AαB∗

δ

(
y(s ∧ τm), Aδ

[
zkm(s) − zk−1

m (s)
])

ds

+
T∫

t

1[0,τm )(s)e
−A(s−t)G∗ (A−2α

[
Φk

m(s) − Φk−1
m (s)

])
ds

−
T∫

t

e−A(s−t)
(
Φk+1

m (s) − Φk
m(s)

)
dW (s). (36)

Note that this equation satisfies the assumptions of Lemma 11. Let T1 ∈ [0, T ). Due
to inequality (33), there exist constants C1

T1
,C2

T1
> 0 depending on T1 such that for

each k ∈ N

E sup
t∈[T1,T ]

‖zk+1
m (t) − zkm(t)‖2D(Aδ)

≤ C1
T1E sup

t∈[T1,T ]
‖zkm(t) − zk−1

m (t)‖2D(Aδ)

+ C2
T1E

T∫

T1

∥∥∥Φk
m(t) − Φk−1

m (t)
∥∥∥
2

L(HS)(Q1/2(H);H)
dt .

Using inequality (34), there exist constants C3
T1

,C4
T1

> 0 depending on T1 such that
for each k ∈ N

E

T∫

T1

∥∥∥Φk+1
m (t) − Φk

m(t)
∥∥∥
2

L(HS)(Q1/2(H);H)
dt

≤ C3
T1E sup

t∈[T1,T ]

∥∥∥zkm(t) − zk−1
m (t)

∥∥∥
2

D(Aδ)

+ C4
T1E

T∫

T1

∥∥∥Φk
m(t) − Φk−1

m (t)
∥∥∥
2

L(HS)(Q1/2(H);H)
dt .
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Hence, we obtain for each k ∈ N

E sup
t∈[T1,T ]

‖zk+1
m (t) − zkm(t)‖2D(Aδ)

+ E

T∫

T1

∥∥∥Φk+1
m (t) − Φk

m(t)
∥∥∥
2

L(HS)(Q1/2(H);H)
dt

≤ K1 E sup
t∈[T1,T ]

∥∥∥zkm(t) − zk−1
m (t)

∥∥∥
2

D(Aδ)

+ K2 E

T∫

T1

∥∥∥Φk
m(t) − Φk−1

m (t)
∥∥∥
2

L(HS)(Q1/2(H);H)
dt,

where K1 = C1
T1

+ C3
T1

and K2 = C2
T1

+ C4
T1
. Therefore, we find for each k ∈ N

E sup
t∈[T1,T ]

‖zk+1
m (t) − zkm(t)‖2D(Aδ)

+ E

T∫

T1

∥∥∥Φk+1
m (t) − Φk

m(t)
∥∥∥
2

L(HS)(Q1/2(H);H)
dt

≤ Kk
1 E sup

t∈[T1,T ]

∥∥∥z1m(t)
∥∥∥
2

D(Aδ)
+ Kk

2 E

T∫

T1

∥∥∥Φ1
m(t)

∥∥∥
2

L(HS)(Q1/2(H);H)
dt .

We choose T1 ∈ [0, T ) such that K1 < 1 and K2 < 1. Thus, we can conclude that
the sequence (zkm, Φk

m)k∈N ⊂ Z1
T ×Z2

T is a Cauchy sequence on the interval [T1, T ].
Using Eq. (36), we have for each k ∈ N, all t ∈ [0, T1], and P-a.s.

zk+1
m (t) − zkm(t)

= e−A(T1−t)[zk+1
m (T1) − zkm(T1)]

−
T1∫

t

1[0,τm )(s)A
αe−A(s−t)AαB∗

δ

(
y(s ∧ τm), Aδ

[
zkm(s) − zk−1

m (s)
])

ds

+
T1∫

t

1[0,τm )(s)e
−A(s−t)G∗ (A−2α

[
Φk

m(s) − Φk−1
m (s)

])
ds

−
T1∫

t

e−A(s−t)
(
Φk+1

m (s) − Φk
m(s)

)
dW (s).

Again, we find T2 ∈ [0, T1] such that the sequence (zkm, Φk
m)k∈N ⊂ Z1

T × Z2
T is a

Cauchy sequence on the interval [T2, T1]. By continuing, we can conclude that the
sequence (zkm, Φk

m)k∈N ⊂ Z1
T × Z2

T is a Cauchy sequence on the interval [0, T ].
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Hence, there exist z∗m ∈ Z1
T and Φm ∈ Z2

T such that

z∗m = lim
k→∞ zkm, Φm = lim

k→∞ Φk
m .

By Eq. (35), one can verify that the pair of processes (z∗m(t),Φm(t))t∈[0,T ] fulfills Eq.
(32). ��
Remark 4 If yd ∈ L∞([0, T ]; D(Aγ )), then the restriction γ + δ < 1

2 vanishes in the
previous theorem. Moreover, note that we have the additional restrictions α, δ < 1

2 .

Corollary 3 Let (z∗m(t),Φm(t))t∈[0,T ] be the mild solution of system (29). Then we
have for fixed m ∈ N

E sup
t∈[τm ,T ]

‖z∗m(t)‖2D(Aδ)
= 0 and E

T∫

τm

‖Φm(t)‖2L(HS)(Q1/2(H);H)
dt = 0.

Proof By definition, we obtain for all t ∈ [τm, T ] and P-a.s.

z∗m(t) = −
T∫

t

e−A(s−t)Φm(s) dW (s).

The claim follows by Lemma 11. ��

5.2 Approximation by a Strong Formulation

First, we give an approximation of the mild solution of system (13). We introduce the
following system in D(A1+α):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dzm(t, λ) = −[Azm(t, λ) + R(λ)B(R(λ)zm(t, λ), πm(ym(t)))

+ R(λ)B(πm(ym(t)), R(λ)zm(t, λ)) − R(λ)Fv(t)] dt
+ R(λ)G(R(λ)zm(t, λ)) dW (t),

zm(0, λ) = 0,

(37)

where m ∈ N, λ > 0 and v ∈ L2
F (Ω; L2([0, T ]; D(Aβ))). In Sects. 2.1 and 3,

the operators A, B, R(λ), F,G are introduced. The mapping πm is given by (7) and
(ym(t))t∈[0,T ] is the mild solution of system (6). The process (W (t))t≥0 is a Q-Wiener
process with values in H and covariance operator Q ∈ L(H).

Definition 8 A predictable process (zm(t, λ))t∈[0,T ] with values in D(A1+α) is called
a mild solution of system (37) if

E sup
t∈[0,T ]

‖zm(t, λ)‖2D(A1+α)
< ∞
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and we have for all t ∈ [0, T ] and P-a.s.

zm(t, λ) = −
t∫

0

Aδe−A(t−s)R(λ)A−δB(R(λ)zm(s, λ), πm(ym(s))) ds

−
t∫

0

Aδe−A(t−s)R(λ)A−δB(πm(ym(s)), R(λ)zm(s, λ)) ds

+
t∫

0

e−A(t−s)R(λ)Fv(s) ds +
t∫

0

e−A(t−s)R(λ)G(R(λ)zm(s, λ)) dW (s).

Remark 5 Note that the approximation scheme provided in [48,49] differs to the
approximation scheme introduced by system (37). Here, the additional operator R(λ)

is necessary to obtain the duality principle.

Recall that the operators R(λ) and AR(λ) are linear and bounded on H . Hence, an
existence and uniqueness result of a mild solution (zm(t, λ))t∈[0,T ] to system (37) can
be obtained similarly to Theorem 1 for fixed m ∈ N and fixed λ > 0. In the following
lemma, we state a strong formulation of the mild solution to system (37), which is an
immediate consequence of [49, Proposition 2.3].

Lemma 12 Let (zm(t, λ))t∈[0,T ] be the mild solution of system (37). Then we have for
fixed m ∈ N, fixed λ > 0, all t ∈ [0, T ], and P-a.s.

zm(t, λ) = −
t∫

0

Azm(s, λ) + AδR(λ)A−δB(R(λ)zm(s, λ), πm(ym(s))) ds

−
t∫

0

AδR(λ)A−δB(πm(ym(s)), R(λ)zm(s, λ)) ds

+
t∫

0

R(λ)Fv(s) ds +
t∫

0

R(λ)G(R(λ)zm(s, λ)) dW (s).

Furthermore, we get the following convergence result.

Lemma 13 Let (zm(t))t∈[0,T ] and (zm(t, λ))t∈[0,T ] be the mild solutions of system (13)
and system (37), respectively. Then we have for fixed m ∈ N

lim
λ→∞E sup

t∈[0,T ]
‖zm(t) − zm(t, λ)‖2D(Aα) = 0.

Proof We define the operator B̃(y, z) = B(z, y) + B(y, z) for every y, z ∈ D(Aα).
Since B is bilinear on on D(Aα)×D(Aα), the operator B̃ is bilinear as well and using
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Lemma 3, we get for every y, z ∈ D(Aα)

∥∥A−δ B̃(y, z)
∥∥
H ≤ 2M̃‖y‖D(Aα)‖z‖D(Aα). (38)

Recall that the operator G : H → L(HS)(Q1/2(H); D(Aα)) is linear and bounded.
By definition, we find for all λ > 0, all t ∈ [0, T ], and P-a.s.

zm(t) − zm(t, λ)

= −
t∫

0

Aδe−A(t−s)A−δ B̃(πm(ym(s)), [I − R(λ)]zm(s)) ds

−
t∫

0

Aδe−A(t−s)[I − R(λ)]A−δ B̃(πm(ym(s)), R(λ)zm(s)) ds

−
t∫

0

Aδe−A(t−s)R(λ)A−δ B̃(πm(ym(s)), R(λ) [zm(s) − zm(s, λ)]) ds

+
t∫

0

e−A(t−s)[I − R(λ)]Fv(s) ds +
t∫

0

e−A(t−s)G([I − R(λ)]zm(s)) dW (s)

+
t∫

0

e−A(t−s)[I − R(λ)]G(R(λ)zm(s)) dW (s)

+
t∫

0

e−A(t−s)R(λ)G(R(λ) [zm(s) − zm(s, λ)]) dW (s),

where I is the identity operator on H . Let T1 ∈ (0, T ]. Then we get for all λ > 0

E sup
t∈[0,T1]

‖zm(t) − zm(t, λ)‖2D(Aα)

≤ 3 E sup
t∈[0,T1]

‖I1(t, λ)‖2D(Aα) + 3 E sup
t∈[0,T1]

‖I2(t, λ)‖2D(Aα)

+ 3 E sup
t∈[0,T1]

‖I3(t, λ)‖2D(Aα) , (39)

where

I1(t, λ) =
t∫

0

Aδe−A(t−s)R(λ)A−δ B̃(πm(ym(s)), R(λ) [zm(s) − zm(s, λ)]) ds
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+
t∫

0

e−A(t−s)R(λ)G(R(λ) [zm(s) − zm(s, λ)]) dW (s),

I2(t, λ) =
t∫

0

Aδe−A(t−s)A−δ B̃(πm(ym(s)), [I − R(λ)]zm(s)) ds

+
t∫

0

Aδe−A(t−s)[I − R(λ)]A−δ B̃(πm(ym(s)), R(λ)zm(s)) ds

+
t∫

0

e−A(t−s)[I − R(λ)]Fv(s) ds,

I3(t, λ) =
t∫

0

e−A(t−s)G([I − R(λ)]zm(s)) dW (s)

+
t∫

0

e−A(t−s)[I − R(λ)]G(R(λ)zm(s)) dW (s).

By Lemma 1, Eq. (3), Proposition 2, and inequalities (2), (8), and (38), there exist
constants CT1 > 0 depending on T1 such that for all λ > 0

E sup
t∈[0,T1]

‖I1(t, λ)‖2D(Aα) ≤ CT1E sup
t∈[0,T1]

‖zm(t) − zm(t, λ)‖2D(Aα) . (40)

Similarly, there exists a constant C̃ > 0 such that for all λ > 0

E sup
t∈[0,T1]

‖I2(t, λ)‖2D(Aα)

≤ C̃ E sup
t∈[0,T1]

∥∥[I − R(λ)]Aαzm(t)
∥∥2
H

+ C̃ E sup
t∈[0,T1]

∥∥[I − R(λ)]A−δ B̃(πm(ym(t)), R(λ)zm(t))
∥∥2
H

+ C̃ E

T1∫

0

∥∥[I − R(λ)]AβFv(t)
∥∥2
H dt,

E sup
t∈[0,T1]

‖I3(t, λ)‖2D(Aα)

≤ C̃ E

T1∫

0

‖[I − R(λ)]zm(t)‖2H dt
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+ C̃ E

T1∫

0

∥∥[I − R(λ)]AαG(R(λ)zm(t))
∥∥2L(HS)(Q1/2(H);H)

dt .

Using Eq. (4) and Lebesgue’s dominated convergence theorem, we can conclude

lim
λ→∞E sup

t∈[0,T1]
‖I2(t, λ)‖2D(Aα) + lim

λ→∞E sup
t∈[0,T1]

‖I3(t, λ)‖2D(Aα) = 0. (41)

Due to inequalities (39) and (40), we find for all λ > 0

E sup
t∈[0,T1]

‖zm(t) − zm(t, λ)‖2D(Aα)

≤ 3 CT1E sup
t∈[0,T1]

‖zm(t) − zm(t, λ)‖2D(Aα) + 3 E sup
t∈[0,T1]

‖I2(t, λ)‖2D(Aα)

+ 3 E sup
t∈[0,T1]

‖I2(t, λ)‖2D(Aα) .

We choose T1 ∈ (0, T ] such that CT1 < 1. Then we obtain for all λ > 0

E sup
t∈[0,T1]

‖zm(t) − zm(t, λ)‖2D(Aα)

≤ 3

1 − 3CT1

(
E sup

t∈[0,T1]
‖I2(t, λ)‖2D(Aα) + E sup

t∈[0,T1]
‖I2(t, λ)‖2D(Aα)

)
.

By Eq. (41), we can conclude

lim
λ→∞E sup

t∈[0,T1]
‖zm(t) − zm(t, λ)‖2D(Aα) = 0.

Similarly to Lemma 8, we can conclude that the result holds for the whole time interval
[0, T ]. ��

Next, we give an approximation of the mild solution to system (29). We introduce
the following backward SPDE in D(A1+δ):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dz∗m(t, λ) = −1[0,τm )(t)
[−Az∗m(t, λ)

− AαR(λ)AαB∗
δ

(
y(t), R(λ)Aδz∗m(t, λ)

)

+ R(λ)G∗(A−2αR(λ)Φm(t, λ))

+Aγ R(λ)Aγ (y(t) − yd(t))
]
dt + Φm(t, λ) dW (t),

z∗m(T , λ) = 0,

(42)

where m ∈ N and λ > 0. The operators A, R(λ), B∗
δ , and G∗ are introduced in Sects.

2.1 and 5.1, respectively. The process (y(t))t∈[0,τ ) is the local mild solution of system
(5) with stopping times (τm)m∈N defined by Eq. (10) and yd ∈ L2([0, T ]; D(Aγ )) is
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the given desired velocity field. The process (W (t))t≥0 is a Q-Wiener process with
values in H and covariance operator Q ∈ L(H).

Definition 9 A pair of predictable processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] with values in
D(A1+δ) × L(HS)(Q1/2(H); H) is called a mild solution of system (42) if

E sup
t∈[0,T ]

‖z∗m(t, λ)‖2D(A1+δ)
< ∞, E

T∫

0

‖Φm(t, λ)‖2L(HS)(Q1/2(H);H)
dt < ∞

and we have for all t ∈ [0, T ] and P-a.s.

z∗m(t, λ) = −
T∫

t

1[0,τm )(s)A
αe−A(s−t)R(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)
ds

+
T∫

t

1[0,τm )(s)e
−A(s−t)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds

+
T∫

t

1[0,τm )(s)A
γ e−A(s−t)R(λ)Aγ (y(s ∧ τm) − yd(s)) ds

−
T∫

t

e−A(s−t)Φm(s, λ) dW (s).

Recall that the operators R(λ) and AR(λ) are linear and bounded on H . Hence,
an existence and uniqueness result of a mild solution (z∗m(t, λ),Φm(t, λ))t∈[0,T ] to
system (42) can be obtained similarly to Theorem 7 for fixed m ∈ N and fixed λ > 0.
Moreover, we get the following result.

Corollary 4 Let the pair of stochastic processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild
solution of system (42). Then we have for fixed m ∈ N and fixed λ > 0

E sup
t∈[τm ,T ]

‖z∗m(t, λ)‖2D(A1+δ)
= 0 and E

T∫

τm

‖Φm(t, λ)‖2L(HS)(Q1/2(H);H)
dt = 0.

The following lemma provides a strong formulation of the mild solution to system
(42), which results immediately from [50, Theorems 3.4 and 4.1].

Lemma 14 Let the pair of stochastic processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild
solution of system (42). Then we have for fixed m ∈ N, fixed λ > 0, all t ∈ [0, T ], and
P-a.s.
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z∗m(t, λ)

= −
T∫

t

1[0,τm )(s)
[
Az∗m(s, λ) + AαR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)]
ds

+
T∫

t

1[0,τm )(s)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds

+
T∫

t

1[0,τm )(s)A
γ R(λ)Aγ (y(s ∧ τm) − yd(s)) ds −

T∫

t

Φm(s, λ) dW (s).

Furthermore, we get the following convergence result.

Lemma 15 Let (z∗m(t),Φm(t))t∈[0,T ] and (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild solu-
tions of system (29) and system (42), respectively. Then we have for fixed m ∈ N

lim
λ→∞E sup

t∈[0,T ]
‖z∗m(t) − z∗m(t, λ)‖2D(Aδ)

= 0,

lim
λ→∞E

T∫

0

‖Φm(t) − Φm(t, λ)‖2L(HS)(Q1/2(H);H)
dt = 0.

Proof We set z̃∗m(t, λ) = z∗m(t) − z∗m(t, λ) and Φ̃m(t, λ) = Φm(t) − Φm(t, λ) for
all λ > 0, all t ∈ [0, T ], and P-almost surely. Recall that AαB∗

δ (y(t), ·) : H → H
for t ∈ [0, τm) and G∗ : L(HS)(Q1/2(H); D(Aα)) → H are linear and bounded. By
definition, we have for all λ > 0, all t ∈ [0, T ], and P-a.s.

z̃∗m(t, λ)

= −
T∫

t

1[0,τm )(s)A
αe−A(s−t)AαB∗

δ

(
y(s ∧ τm), [I − R(λ)]Aδz∗m(s)

)
ds

−
T∫

t

1[0,τm )(s)A
αe−A(s−t)[I − R(λ)]AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s)

)
ds

−
T∫

t

1[0,τm )(s)A
αe−A(s−t)R(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδ z̃∗m(s, λ)

)
ds

+
T∫

t

1[0,τm )(s)e
−A(s−t)G∗(A−2α[I − R(λ)]Φm(s)) ds

+
T∫

t

1[0,τm )(s)e
−A(s−t)[I − R(λ)]G∗(A−2αR(λ)Φm(s)) ds
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+
T∫

t

1[0,τm )(s)e
−A(s−t)R(λ)G∗(A−2αR(λ)Φ̃m(s, λ)) ds

+
T∫

t

1[0,τm )(s)A
γ e−A(s−t)[I − R(λ)]Aγ (y(s ∧ τm) − yd(s)) ds

−
T∫

t

e−A(s−t)Φ̃m(s, λ) dW (s),

where I is the identity operator on H . Note that the assumptions of Lemma 11 are
fulfilled. Let T1 ∈ [0, T ). Using inequality (33), there exist constants C1

T1
,C2

T1
> 0

depending on T1 and a constant C̃1 > 0 independent of T1 such that for all λ > 0

E sup
t∈[T1,T ]

∥∥z̃∗m(t, λ)
∥∥2
D(Aδ)

≤ 7 I1(λ) + 7 I2(λ) + 7 I3(λ), (43)

where

I1(λ) = C1
T1E sup

t∈[T1,T ]
∥∥z̃∗m(t, λ)

∥∥2
D(Aδ)

+ C2
T1E

T∫

T1

∥∥∥Φ̃m(t, λ)

∥∥∥
2

L(HS)(Q1/2(H);H)
dt,

I2(λ) = C̃1 E sup
t∈[T1,T ]

∥∥[I − R(λ)]Aδz∗m(t)
∥∥2
H

+ C̃1 E sup
t∈[T1,T ]

1[0,τm )(t)
∥∥[I − R(λ)]AαB∗

δ

(
y(t ∧ τm), R(λ)Aδz∗m(t)

)∥∥2
H ,

I3(λ) = C̃1 E

T∫

T1

‖[I − R(λ)]Φm(t))‖2H dt

+ C̃1 E

T∫

T1

∥∥∥[I − R(λ)]G∗(A−2αR(λ)Φm(t))
∥∥∥
2

H
dt

+ C̃1 E

T∫

T1

1[0,τm )(t)
∥∥[I − R(λ)]Aγ (y(s ∧ τm) − yd(s))

∥∥2
H dt . (44)

Using Eq. (4) and Lebesgue’s dominated convergence theorem, we can conclude

lim
λ→∞ I2(λ) + lim

λ→∞ I3(λ) = 0. (45)
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Due to inequality (34), there exist constants C3
T1

,C4
T1

> 0 depending on T1 and a

constant C̃2 > 0 independent of T1 such that for all λ > 0

E

T∫

T1

∥∥∥Φ̃m(t, λ)

∥∥∥
2

L(HS)(Q1/2(H);H)
dt ≤ 7 I4(λ) + 7 I5(λ) + 7 I6(λ), (46)

where

I4(λ) ≤ C3
T1E sup

t∈[T1,T ]
∥∥z̃∗m(t, λ)

∥∥2
D(Aδ)

+ C4
T1E

T∫

T1

∥∥∥Φ̃m(t, λ)

∥∥∥
2

L(HS)(Q1/2(H);H)
dt,

I5(λ) = C̃2 E sup
t∈[T1,T ]

∥∥[I − R(λ)]Aδz∗m(t)
∥∥2
H

+ C̃2 E sup
t∈[T1,T ]

1[0,τm )(t)
∥∥[I − R(λ)]AαB∗

δ

(
y(t ∧ τm), R(λ)Aδz∗m(t)

)∥∥2
H ,

I6(λ) = C̃2 E

T∫

T1

‖[I − R(λ)]Φm(t)‖2H dt

+ C̃2 E

T∫

T1

∥∥∥[I − R(λ)]G∗(A−2αR(λ)Φm(t))
∥∥∥
2

H
dt

+ C̃2 E

T∫

T1

1[0,τm )(t)
∥∥[I − R(λ)]Aγ (y(s ∧ τm) − yd(s))

∥∥2
H dt . (47)

Again, we get

lim
λ→∞ I5(λ) + lim

λ→∞ I6(λ) = 0. (48)

By inequalities (43), (44), (46), and (47), we have for all λ > 0

E sup
t∈[T1,T ]

∥∥z̃∗m(t, λ)
∥∥2
D(Aδ)

+ E

T∫

T1

∥∥∥Φ̃m(t, λ)

∥∥∥
2

L(HS)(Q1/2(H);H)
dt

≤ K1

⎛
⎜⎝E sup

t∈[T1,T ]
∥∥z̃∗m(t, λ)

∥∥2
D(Aδ)

+ E

T∫

T1

∥∥∥Φ̃m(t, λ)

∥∥∥
2

L(HS)(Q1/2(H);H)
dt

⎞
⎟⎠

+ 7 I2(λ) + 7 I3(λ) + 7 I5(λ) + 7 I6(λ),
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where K1 = max
{
C1
T1

+ C3
T1

,C2
T1

+ C4
T1

}
. We choose the point of time T1 ∈ [0, T )

such that K1 < 1. Thus, we get for all λ > 0

E sup
t∈[T1,T ]

∥∥z̃∗m(t, λ)
∥∥2
D(Aδ)

+ E

T∫

T1

∥∥∥Φ̃m(t, λ)

∥∥∥
2

L(HS)(Q1/2(H);H)
dt

≤ 7 I2(λ) + 7 I3(λ) + 7 I5(λ) + 7 I6(λ)

1 − K1
.

Due to Eqs. (45) and (48), we can conclude

lim
λ→∞E sup

t∈[T1,T ]
∥∥z̃∗m(t, λ)

∥∥2
D(Aδ)

= 0, lim
λ→∞E

T∫

T1

∥∥∥Φ̃m(t, λ)

∥∥∥
2

L(HS)(Q1/2(H);H)
dt = 0.

Similarly to Theorem 7, we can conclude that the result holds for the whole time
interval [0, T ]. ��

5.3 The Duality Principle and the Derivation of an Explicit Formula

Based on the results provided in the previous sections, we are able to show a duality
principle, which provides a relation between the local mild solution of system (12)
and the mild solution of system (29). Note that the local mild solution of system (6)
depends on the control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). Hence, the mild solution of
system (29) depends on the control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))) as well. Let us
denote this mild solution by (z∗m(t; u),Φm(t; u))t∈[0,T ].

Theorem 8 Let the processes (y(t; u))t∈[0,τ u) and (z(t; u, v))t∈[0,τ u) be the local mild
solutions of system (5) and system (12), respectively, corresponding to the controls
u, v ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). Moreover, assume that the pair of processes
(z∗m(t; u),Φm(t; u))t∈[0,T ] is the mild solution of system (29) corresponding to the
control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). Then we have for fixed m ∈ N

E

τ um∫

0

〈
Aγ (y(t; u) − yd(t)), A

γ z(t; u, v)
〉
H dt = E

τ um∫

0

〈
z∗m(t; u), Fv(t)

〉
H dt . (49)

Proof For the sake of simplicity, we omit the dependence on the controls. First, we
prove the result for the approximations derived in Sect. 5.2. Let the pair of stochastic
processes (z∗m(t, λ),Φm(t, λ))t∈[0,T ] be the mild solution of system (42). Lemma 14
provides a strong formulation. Hence, we find for all λ > 0, all t ∈ [0, T ], and P-a.s.

z∗m(t, λ) = M(t) +
t∫

0

1[0,τm )(s)Az
∗
m(s, λ) ds
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+
t∫

0

1[0,τm )(s)A
αR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)
ds

−
t∫

0

1[0,τm )(s)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds

−
t∫

0

1[0,τm )(s)A
γ R(λ)Aγ (y(s ∧ τm) − yd(s)) ds,

where

M(t) = −E

⎡
⎣

T∫

0

1[0,τm )(s)Az
∗
m(s, λ) ds

∣∣∣∣Ft

⎤
⎦

− E

⎡
⎣

T∫

0

1[0,τm )(s)A
αR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)
ds

∣∣∣∣Ft

⎤
⎦

+ E

⎡
⎣

T∫

0

1[0,τm )(s)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds

∣∣∣∣Ft

⎤
⎦

+ E

⎡
⎣

T∫

0

1[0,τm )(s)A
γ R(λ)Aγ (y(s ∧ τm) − yd(s)) ds

∣∣∣∣Ft

⎤
⎦ .

Applying Proposition 3 to the process (M(t))t∈[0,T ], there exists a unique predictable
process (Ψm(t, λ))t∈[0,T ] with values in L(HS)(Q1/2(H); H) such that for all λ > 0,
all t ∈ [0, T ], and P-a.s.

z∗m(t, λ) = EM(0) +
t∫

0

1[0,τm )(s)Az
∗
m(s, λ) ds

+
t∫

0

1[0,τm )(s)A
αR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)
ds

−
t∫

0

1[0,τm )(s)R(λ)G∗(A−2αR(λ)Φm(s, λ)) ds

−
t∫

0

1[0,τm )(s)A
γ R(λ)Aγ (y(s ∧ τm) − yd(s)) ds
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+
t∫

0

Ψm(s, λ) dW (s). (50)

As a consequence of Lemma 14, we can conclude Ψm(t, λ) = Φm(t, λ) for all λ > 0,
almost all t ∈ [0, T ], and P-almost surely. Let (zm(t, λ))t∈[0,T ] be the mild solu-
tion of system (37). Applying Lemma 4 to Eq. (50) and the strong formulation of
(zm(t, λ))t∈[0,T ] given by Lemma 12, we get for all λ > 0, all t ∈ [0, T ], and P-a.s.

〈
zm(t, λ), z∗m(t, λ)

〉
H = I1(t, λ) + I2(t, λ) + I3(t, λ) + I4(t, λ) + I5(t, λ),

where

I1(t, λ) =
t∫

0

1[0,τm )(s)
〈
zm(s, λ), Az∗m(s, λ)

〉
H ds −

t∫

0

〈
z∗m(s, λ), Azm(s, λ)

〉
H ds,

I2(t, λ)

=
t∫

0

1[0,τm )(s)
〈
zm(s, λ), AαR(λ)AαB∗

δ

(
y(s ∧ τm), R(λ)Aδz∗m(s, λ)

)〉
H ds

−
t∫

0

〈
z∗m(s, λ), AδR(λ)A−δB(R(λ)zm(s, λ), πm(ym(s)))

〉
H ds,

−
t∫

0

〈
z∗m(s, λ), AδR(λ)A−δB(πm(ym(s)), R(λ)zm(s, λ))

〉
H ds,

I3(t, λ) =
t∫

0

〈R(λ)G(R(λ)zm(s, λ)),Φm(s, λ)〉L(HS)(Q1/2(H),H) ds

−
t∫

0

1[0,τm )(s)
〈
zm(s, λ), R(λ)G∗(A−2αR(λ)Φm(s, λ))

〉
H ds,

I4(t, λ) =
t∫

0

〈
z∗m(s, λ), R(λ)Fv(s)

〉
H ds

−
t∫

0

1[0,τm )(s)
〈
zm(s, λ), Aγ R(λ)Aγ (y(s ∧ τm) − yd (s))

〉
H ds,

I5(t, λ) =
t∫

0

〈zm(s, λ),Φm(s, λ) dW (s)〉H

+
t∫

0

〈
z∗m(s, λ), R(λ)G(R(λ)zm(s, λ)) dW (s)

〉
H .
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By Corollary 4, we obtain for all λ > 0 and P-a.s.

0 = I1(τm, λ) + I2(τm, λ) + I3(τm, λ) + I4(τm, λ) + I5(τm, λ). (51)

Since the operator A is self-adjoint, we have for all λ > 0 and P-a.s.

I1(τm, λ) = 0. (52)

Recall that R(λ) is self-adjoint on H and y(t) = πm(ym(t)) for all t ∈ [0, τm) and
P-almost surely. Using Lemma 2, Eqs. (3), and (30), we find for all λ > 0 and P-a.s.

I2(τm, λ) = 0. (53)

Due to Lemma 1 (i), we get A2αA−2α = I , where I is the identity operator on H .
Using Lemma 2 and Eq. (31), we obtain for all λ > 0 and P-a.s.

I3(τm, λ) = 0. (54)

By Eqs. (51)–(54) and the fact that E I5(τm, λ) = 0, we get for all λ > 0

0 = E I4(τm, λ).

Hence, we have for all λ > 0

E

τm∫

0

〈
R(λ)Aγ zm(t, λ), Aγ (y(t) − yd(t))

〉
H dt

= E

τm∫

0

〈
R(λ)z∗m(t, λ), Fv(t)

〉
H dt . (55)

Next, we show that the left and right hand side of Eq. (55) converges as λ → ∞. Let
(ym(t))t∈[0,T ] and (zm(t))t∈[0,T ] be the mild solutions of system (6) and system (13),
respectively. By definition, we have for all t ∈ [0, τm) and P-a.s. y(t) = ym(t), z(t) =
zm(t), and ‖ym(t)‖D(Aα) ≤ m. Using Lemma 13, we obtain

lim
λ→∞E sup

t∈[0,τm )

‖z(t) − zm(t, λ)‖2D(Aα) = 0. (56)

By the Cauchy–Schwarz inequality, inequality (2), and Lemma 1 (v), there exists a
constant C̃ > 0 such that for all λ > 0
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∣∣∣∣∣∣
E

τm∫

0

〈
Aγ z(t), Aγ (y(t) − yd(t))

〉
H − 〈R(λ)Aγ zm(t, λ), Aγ (y(t) − yd(t))

〉
H dt

∣∣∣∣∣∣

2

≤ 2

∣∣∣∣∣∣
E

τm∫

0

〈[I − R(λ)]Aγ z(t), Aγ (y(t) − yd(t))
〉
H dt

∣∣∣∣∣∣

2

+ 2

∣∣∣∣∣∣
E

τm∫

0

〈
R(λ)Aγ (z(t) − zm(t, λ)), Aγ (y(t) − yd(t))

〉
H dt

∣∣∣∣∣∣

2

≤ C̃

⎛
⎝E

τm∫

0

∥∥[I − R(λ)]Aγ z(t)
∥∥2
H dt + E sup

t∈[0,τm )

‖z(t) − zm(t, λ)‖2D(Aα)

⎞
⎠ .

UsingEqs. (4), (56), andLebesgue’s dominated convergence theorem,wecan conclude

lim
λ→∞E

τm∫

0

〈
R(λ)Aγ zm(t, λ), Aγ (y(t) − yd(t))

〉
H dt

= E

τm∫

0

〈
Aγ z(t), Aγ (y(t) − yd(t))

〉
H dt .

Recall that the operator F : D(Aβ) → D(Aβ) is bounded. Similarly as above, there
exists a constant C̃ > 0 such that for all λ > 0

∣∣∣∣∣∣
E

τm∫

0

〈
z∗m(t), Fv(t)

〉
H − 〈R(λ)z∗m(t, λ), Fv(t)

〉
H dt

∣∣∣∣∣∣

2

≤ 2

∣∣∣∣∣∣
E

τm∫

0

〈[I − R(λ)]z∗m(t), Fv(t)
〉
H dt

∣∣∣∣∣∣

2

+ 2

∣∣∣∣∣∣
E

τm∫

0

〈
R(λ)(z∗m(t) − z∗m(t, λ)), Fv(t)

〉
H dt

∣∣∣∣∣∣

2

≤ C̃

⎛
⎝E

T∫

0

∥∥[I − R(λ)]z∗m(t)
∥∥2
H dt + E sup

t∈[0,T ]
∥∥z∗m(t) − z∗m(t, λ)

∥∥2
D(Aδ)

⎞
⎠ .
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By Eq. (4), Lebesgue’s dominated convergence theorem, and Lemma 15, we can infer

lim
λ→∞E

τm∫

0

〈
R(λ)z∗m(t, λ), Fv(t)

〉
H dt = E

τm∫

0

〈
z∗m(t), Fv(t)

〉
H dt .

We conclude that the left and right hand side of Eq. (55) converges as λ → ∞ and
Eq. (49) holds. ��

Based on the necessary optimality condition formulated as the variational inequal-
ity (27) and the duality principle derived in the previous theorem, we are able
to deduce a formula the optimal control has to satisfy. First, we introduce the
following projection operator. Note that the set of admissible controls U is a
closed subset of the Hilbert space L2

F (Ω; L2([0, T ]; D(Aβ))). We denote by
PU : L2

F (Ω; L2([0, T ]; D(Aβ))) → U the projection onto U , i.e.

‖PU (v) − v‖L2
F (Ω;L2([0,T ];D(Aβ))) = min

u∈U ‖u − v‖L2
F (Ω;L2([0,T ];D(Aβ)))

for every v ∈ L2
F (Ω; L2([0, T ]; D(Aβ))). It is well known that u = PU (v) if and

only if

〈v − u, ũ − u〉L2
F (Ω;L2([0,T ];D(Aβ))) ≤ 0 (57)

for every ũ ∈ U , see [28, Lemma 1.10 (b)]. We get the following result.

Theorem 9 Let (z∗m(t; u),Φm(t; u))t∈[0,T ] be the mild solution of system (29) corre-
sponding to the control u ∈ L2

F (Ω; L2([0, T ]; D(Aβ))). Then for fixed m ∈ N, the
optimal control um ∈ U satisfies for almost all t ∈ [0, T ] and P-a.s.

um(t) = −PU
(
F∗A−2β z∗m(t; um)

)
, (58)

where PU : L2
F (Ω; L2([0, T ]; D(Aβ))) → U is the projection onto U and F∗ is the

adjoint operator of F ∈ L(D(Aβ)).

Proof Using inequality (27) and Theorem 8, the optimal control um ∈ U satisfies for
every u ∈ U

E

τ
um
m∫

0

〈
z∗m(t; um), F(u(t) − um(t))

〉
H dt

+ E

T∫

0

〈
Aβum(t), Aβ(u(t) − um(t))

〉
H dt ≥ 0.
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By Corollary 3, we have 1[0,τ umm )
(t)z∗m(t; um) = z∗m(t; um) for all t ∈ [0, T ] and

P-almost surely. Due to Lemma 1 (i), we get A2β A−2β = I , where I is the identity
operator in H . Using Lemma 2, we obtain for every u ∈ U

E

τ
um
m∫

0

〈
z∗m(t; um), F(u(t) − um(t))

〉
H dt

= E

T∫

0

〈
1[0,τ umm )

(t)z∗m(t; um), F(u(t) − um(t))
〉
H
dt

= E

T∫

0

〈
Aβ A−2β z∗m(t; um), AβF(u(t) − um(t))

〉
H
dt

= E

T∫

0

〈
AβF∗A−2β z∗m(t; um), Aβ(u(t) − um(t))

〉
H
dt .

Hence, we find for every u ∈ U

E

T∫

0

〈
−F∗A−2β z∗m(t; um) − um(t), u(t) − um(t)

〉
D(Aβ)

dt ≤ 0.

Thus, we obtain inequality (57) and the solution is given by Eq. (58). We
note that the mild solution of system (29) is a pair of predictable processes
(z∗m(t; u),Φm(t; u))t∈[0,T ] such that especially E supt∈[0,T ] ‖z∗m(t; u)‖2

D(Aδ)
< ∞

holds for every u ∈ L2
F (Ω; L2([0, T ]; D(Aβ))). Therefore, we can conclude that

F∗A−2β z∗m(·; um) ∈ L2
F (Ω; L2([0, T ]; D(Aβ))), which justifies the application of

the projection operator PU . ��
Remark 6 Let us denote by (y(t))t∈[0,τ ) and (z∗m(t),Φm(t))t∈[0,T ] the local mild solu-
tions of system (5) and the mild solution of system (29), respectively, corresponding
to the optimal control um ∈ U . As a consequence of the previous theorem, the opti-
mal velocity field (y(t))t∈[0,τ ) can be computed by solving the following system of
coupled forward-backward SPDEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dy(t) = −[Ay(t) + B(y(t)) + FPU
(
F∗A−2β z∗m(t)

)
] dt + G(y(t)) dW (t),

dz∗m(t) = −1[0,τm )(t)
[

− Az∗m(t) − A2αB∗
δ

(
y(t), Aδz∗m(t)

)+ G∗(A−2αΦm(t))

+ A2γ (y(t) − yd(t))
]
dt + Φm(t) dW (t),

y(0) = ξ, z∗m(T ) = 0.
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Remark 7 Using the technique provided in [6], we can show that system (5) has a
unique global strong solution for a two-dimensional bounded domain D. In this case,
we can consider a control problem subject to the cost functional

J (u) = 1

2
E

T∫

0

∥∥Aγ (y(t; u) − yd(t))
∥∥2
H dt + 1

2
E

T∫

0

∥∥Aβu(t)
∥∥2
H dt

similarly to (11) with the stopping time τ um replaced by the terminal point of time T .
Since a strong solution coincides with a mild solution as shown in [42], we can follow
the approach used in this paper in order to obtain for every u ∈ U the first order
optimalty condition

E

T∫

0

〈
Aγ (y(t; u) − yd(t)), A

γ z(t; u, u − u)
〉
H dt

+ E

T∫

0

〈
Aβu(t), Aβ(u(t) − u(t))

〉
H dt ≥ 0

similarly to inequality (27). Using the adjoint equation

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dz∗(t) = −
[

− Az∗(t) − A2αB∗
δ

(
y(t), Aδz∗(t)

)+ G∗(A−2αΦ(t))

+ A2γ (y(t) − yd(t))
]
dt + Φ(t) dW (t),

z∗(T ) = 0,

we can derive the optimal control

u(t) = −PU
(
F∗A−2β z∗(t; u)

)

as shown in Theorem 9.

5.4 A Sufficient Optimality Condition

To show that the optimal control um ∈ U given by equation (58) satisfies a sufficient
optimality condition, we apply the following result.

Proposition 4 [34, Theorem 4.23] Let X be a Banach space and let K ⊂ X be convex.
Moreover, let the functional f : X → R be twice continuous Fréchet differentiable in
a neighborhood of x ∈ K. If x ∈ K satisfies

dF f (x)[x − x] ≥ 0

123



S1050 Applied Mathematics & Optimization (2021) 84 (Suppl 1):S1001–S1054

for every x ∈ K and there exists a constant ρ > 0 such that

(dF f (x))2[h, h] ≥ ρ‖h‖2X
for every h ∈ X, then there exist constants ε1, ε2 > 0 such that

f (x) ≥ f (x) + ε1‖x − x‖2X
for every x ∈ K with ‖x − x‖X ≤ ε2.

Theorem 10 Let the functional Jm : L2
F (Ω; L2([0, T ]; D(Aβ))) → R be defined

by (11) and let um ∈ U be the optimal control given by Eq. (58). If the residual

E
∫ τ

um
m

0 ‖y(t; um) − yd(t)‖2D(Aγ ) dt is sufficiently small, then um is the global mini-
mum of Jm.

Proof First, we show that the assumptions of Proposition 4 are fulfilled. Note
that the set of admissible controls U is a convex subset of the Hilbert space
L2
F (Ω; L2([0, T ]; D(Aβ))). According to Sect. 4.2, the cost functional Jm is twice

continuous Fréchet differentiable in a neighborhood of the optimal control um ∈ U .
Recall that um ∈ U satisfies the necessary optimality condition (26), which is also
valid for the Fréchet derivative due to Corollary 2. Moreover, we have for every
v ∈ L2(Ω; L2([0, T ]; D(Aβ)))

(dF Jm(um))2[v, v]

= −2E

τ
um
m∫

0

〈
Aγ (y(t; um) − yd(t)),

t∫

0

Aγ+δe−A(t−s)A−δB(z(s; um, v)) ds

〉

H

dt

+ E

τ
um
m∫

0

‖z(t; um, v)‖2D(Aγ ) dt + E

T∫

0

‖v(t)‖2D(Aβ)
dt . (59)

Recall that γ + δ < 1
2 holds due to Theorem 7. Applying the Cauchy–Schwarz

inequality, Lemma 1 (iv), Lemma 3, Young’s convolution inequality, and Lemma 8
with k = 2

E

τ
um
m∫

0

〈
Aγ (y(t; um) − yd(t)),

t∫

0

Aγ+δe−A(t−s)A−δB(z(s; um, v)) ds

〉

H

dt

≤ Mγ+δ M̃ E

τ
um
m∫

0

t∫

0

‖y(t; um) − yd(t)‖D(Aγ ) (t − s)−γ−δ ‖z(s; um, v)‖2D(Aα) ds dt
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≤ Mγ+δ M̃

(
T 3−2γ−2δ

1 − 2γ − 2δ

)1/2
⎛
⎜⎝E

τ
um
m∫

0

‖y(t; um) − yd(t)‖2D(Aγ ) dt

⎞
⎟⎠

1/2

∗ E sup
t∈[0,τ umm )

‖z(t; um, v)‖2D(Aα)

≤ c̃ Mγ+δ M̃

(
T 3−2γ−2δ

1 − 2γ − 2δ

)1/2
⎛
⎜⎝E

τ
um
m∫

0

‖y(t; um) − yd(t)‖2D(Aγ ) dt

⎞
⎟⎠

1/2

∗ E

T∫

0

‖v(t)‖2D(Aβ)
dt . (60)

If

(
E
∫ τ

um
m

0 ‖y(t; um) − yd(t)‖2D(Aγ ) dt

)1/2

<

(
2c̃ Mγ+δ M̃

(
T 3−2γ−2δ

1−2γ−2δ

)1/2)−1

and

substituting inequality (60) in (59) yields a constant ρ > 0 such that

(dF Jm(um))2[v, v] ≥ ρ E

T∫

0

‖v(t)‖2D(Aβ)
dt

for every v ∈ L2(Ω; L2([0, T ]; D(Aβ))). Hence, the optimal control um given by
Eq. (58) is a local minimum of the cost functional Jm using Proposition 4. Due to
Theorem 3, we can conclude that the minimum is also global. ��

6 Conclusion

In this paper,we studied a control problem constrained by the stochasticNavier–Stokes
equations driven by linear multiplicative noise in multi-dimensional domains. Due to
a local existence and uniqueness result of the solution to the stochastic Navier–Stokes
equations, the control problem is formulated as a nonconvex optimization problem.

We stated a necessary optimality condition as a variational inequality using the
Gâteaux derivative of the cost functional related to the control problem. By a suitable
duality principle, we derived an explicit formula of the optimal control based on the
corresponding adjoint equation characterized by a backward SPDE.As a consequence,
the optimal velocity field can be computed by solving a system of coupled forward and
backward SPDEs. Moreover, we showed that the optimal control satisfies a sufficient
optimality condition using the second order Fréchet derivative of the cost functional.

In future work, we will include nonhomogeneous boundary conditions such that
control problems with boundary controls might be considered.
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