
IJNSNS 2023; 24(8): 2915–2935

Cleophas Kweyu*, Lihong Feng, Matthias Stein and Peter Benner

Reduced basis method for the nonlinear
Poisson–Boltzmann equation regularized by
the range-separated canonical tensor format
https://doi.org/10.1515/ijnsns-2021-0103

Received March 11, 2021; accepted April 26, 2022; published online May 17, 2022

Abstract: The Poisson–Boltzmann equation (PBE) is a fundamental implicit solvent continuum model for
calculating the electrostatic potential of large ionic solvated biomolecules. However, its numerical solution
encounters severe challenges arising from its strong singularity and nonlinearity. In (P. Benner, V. Khorom-
skaia, B. Khoromskij, C. Kweyu, and M. Stein, “Regularization of Poisson-Boltzmann type equations with
singular source terms using the range-separated tensor format,” SIAM J. Sci. Comput., vol. 43, no. 1, pp.
A415–A445, 2021; C. Kweyu,V.Khoromskaia, B. Khoromskij,M. Stein, andP.Benner, “Solutiondecomposition
for the nonlinear Poisson-Boltzmann equation using the range-separated tensor format,” arXiv:2109.14073,
2021), the effect of strong singularities was eliminated by applying the range-separated (RS) canonical tensor
format (P. Benner, V. Khoromskaia, and B. N. Khoromskij, “Range-separated tensor format for many-particle
modeling,” SIAM J. Sci. Comput., vol. 40, no. 2, pp. A1034–A1062, 2018; B. N. Khoromskij, “Range-separated
tensor representation of the discretizedmultidimensionalDirac delta and elliptic operator inverse,” J. Comput.
Phys., vol. 401, p. 108998, 2020) to construct a solution decomposition scheme for the PBE. The RS tensor
format allows deriving a smooth approximation to the Dirac delta distribution in order to obtain a regularized
PBE (RPBE) model. However, solving the RPBE is still computationally demanding due to its high dimension
 , where  is always in the millions. In this study, we propose to apply the reduced basis method (RBM)
and the (discrete) empirical interpolation method ((D)EIM) to the RPBE in order to construct a reduced order
model (ROM) of low dimension N ≪ , whose solution accurately approximates the nonlinear RPBE. The
long-range potential can be obtained by lifting the ROM solution back to the -space while the short-range
potential is directly precomputed analytically, thanks to the RS tensor format. The sum of both provides the
total electrostatic potential. The main computational benefit is the avoidance of computing the numerical
approximation of the singular electrostatic potential. We demonstrate in the numerical experiments, the
accuracy and efficacy of the reduced basis (RB) approximation to the nonlinear RPBE (NRPBE) solution and
the corresponding computational savings over the classical nonlinear PBE (NPBE) as well as over the RBM
being applied to the classical NPBE.
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1 Introduction
ThePoisson–Boltzmannequation (PBE) is a secondorder nonlinear elliptic partial differential equation (PDE)
which is ubiquitous in the modeling of biochemical processes [1–4]. It is used to calculate the electrostatic
potential throughout the biomolecular system consisting of the biomolecule and the surrounding ionic or
salt solution. More information about the significance of the electrostatic interactions and the related PBE
post-processing, for instance, the electrostatic forces and energies, can be found in [5–7]. Figure 1 illustrates
the two dimensional (2D) view of the biomolecular system consisting of a low dielectric molecular region
(Ωm) encapsulated by an ionic solution of high dielectric1 inΩs.

One of the fundamental applications of electrostatic potential computations is the Brownian dynamics
simulation which may be used for example, to determine protein association rates and to simulate pro-
tein–protein encounter [5]. Protein association rates highly depend on the ionic strength of the solution. For
instance, high ionic strengths dampen or attenuate the effect of electrostatic forces and energies of proteins,
hence reducing the rates of association and vice versa. Therefore, in this work we consider the solution of the
PBE parameterized by the ionic strength.

The analytical solution to the PBE for biomolecules with complex geometries, strong nonlinearities,
and highly singular charge density distributions is not available [8, 9]. To this end, numerical methods, for
example, the finite difference method (FDM) [10, 11], the finite element method (FEM) [10, 12], the boundary
element method (BEM) [13, 14], are widely used to solve the PBE. Interested readers are referred to [4] for
a thorough review of the aforementioned techniques for solving the PBE. However, the numerical solution
to the PBE faces various challenges. The most severe are: the strong singularities, caused by the Dirac delta
distribution sources; the strong nonlinearity, caused by the exponential nonlinear terms; the unbounded
domain, due to the slow polynomial decay in the form of 1∕‖x̄‖ as ‖x̄‖→∞; and imposing the correct jump
or interface conditions to the rather irregular molecular domain, Γ [15–17].

In [18, 19], the strong singularities are circumvented by using the range-separated (RS) canonical tensor
format, which was introduced and analyzed in [20]. Consequently, a nonlinear regularized PBE (NRPBE)
model is determined, which only solves for smooth long-range electrostatic potential. The jump conditions
are annihilated due to the accurate splitting of the long- and short-range components of the total electrostatic
potential using theRS tensor format.Nevertheless, the computational cost of solving the regularizednonlinear
PBE is still high due to its high dimension  ≈ (106). In this work, we apply the reduced basis method
(RBM), in order to construct an accurate reduced order model (ROM) of much lower dimension, i.e., of (10)
for the NRPBE. The simulations for varying parameter values, in this case, the varying ionic strength, can be

Figure 1: Schematic representation of the electrostatic
interactions of a biomolecule (m) with an atomic charge
distribution and dielectric constant 𝜖m, in a solution (s)
of ions with a dielectric constant 𝜖s.

1 Here, dielectric (or electric permittivity) refers to the ability of a material to transmit electric force without conduction, [52].
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computed much faster by using the parametrized ROM and hence the Brownian dynamics simulations can
be significantly accelerated.

The RBM can also be directly applied to the classical NPBE without any regularization. We demonstrate
that applying theRBMto theNRPBEgives rise tomore robust andefficient solution to theproblemas compared
to applying the RBM to the classical NPBE.

It is worth noting that the RBM has been applied to a simplified variant of the classical nonlinear PBE
in [21] in 1 and 2 dimensions wherein smooth exponential functions were used as the source terms. In this
work, we apply the RBM to the 3-dimensional NRPBE for biomolecular simulation of large (complex) solvated
biomolecules, for example, a protein in an ionic solutions, whose electrostatic potential u(x̄) is characterized
by the slowpolynomial decay in 1∕‖x̄‖, i.e., u(∞) = 0, hence large domains have to be considered for accurate
approximation of boundary conditions, resulting in high dimension of (106) for the discretized system [19].
Furthermore, we consider Dirichlet boundary conditions which are nonaffine in parameter, thereby requiring
the application of (D)EIM in order to reduce the complexity of the boundary conditions, and in turn, to further
reduce the ROM complexity [22–24].

The main contributions of this paper include: we have applied a more efficient numerical method for
solving the NRPBE, which is based on first linearization via the Taylor series truncation of the nonlinear term,
followed by discretization. This approach avoids the computation of the Jacobian of a huge matrix and also
convergesmuch faster than the standard Newton iteration; we have successfully applied the RBM and (D)EIM
in order to reduce the dimension and complexity of the NRPBE; numerical comparison of RBM applied to the
NRPBE and the classical NPBE shows that the former is more efficient and accurate.

We highlight the main contributions of this paper as follows:
– We construct the state of the art range-separated (RS) tensor-based nonlinear PBEmodel by the RS tensor

format thatwasdeveloped in [20, 25]. This results in the efficient splitting of the electrostatic potential into
two parts, the short-range and long-range parts, within the molecular and solvent regions, respectively.
This avoids the use of some cutoff function of the Laplace operator at the solute-solvent interface that
is inherent in the existing solution decomposition techniques, in which the jump/interface conditions
depend on the short-range (singular) electrostatic potential.

– We solve the high fidelity full order model using an efficient numerical technique, which is based on
a linearization using the Taylor series truncation of the nonlinear term followed by discretization. This
approach avoids the computation of the Jacobian of a huge matrix and also converges much faster than
the standard Newton iteration.

– We for the very first time apply the reduced basismethod (RBM), a parametrizedmodel reduction tool and
the (discrete) empirical interpolationmethod ((D)EIM) to both the classical and the regularized nonlinear
parametric PBE models in order to provide greatly reduced computational costs (i.e., time and storage)
in multi-query contexts, where the ionic strength is varied. We notice that due to the absence of solution
singularities in the regularized PBE model, the reduced order model (ROM) is of much lower dimension
than that for the classical model and of higher accuracy.

The remainder of the paper is structured as follows. Section 3 briefly reviews the approach of regularizing
the PBE model by the RS canonical tensor format as proposed in [18, 19]. In Section 4.2, the RBM framework
and its application to both the regularized PBE (RPBE) and the classical PBE is introduced. Finally, Section 5
presents the numerical experiments to illustrate the computational advantages of the RBM for the RPBE over
the classical PBE. Comparisons with the solutions obtained by the standard FDM-based PBE solvers for the
classical PBE are also presented.
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2 Mathematical model of the PBE
The nonlinear PBE for a symmetric 1:1 salt is given by

−∇ ⋅ (𝜖(x̄)∇u(x̄))+ �̄�2(x̄) sinh(u(x̄)) =
Nm∑
i=1

qi𝛿(x̄ − x̄i), Ω ∈ ℝ3, (2.1)

subject to

u(x̄) = 1
4𝜋

Nm∑
i=1

qie−𝜅(d−ai)
𝜖s(1+ 𝜅ai)d

on the boundary 𝜕Ω, d = ‖x̄ − x̄i‖, x̄ = (x, y, z), (2.2)

where qi = 4𝜋e2czi∕𝜅BT, zi is the partial charge of each atom, u(x̄) represents the dimensionless potential,
𝜅BT, 𝜅B, T, and ec are the thermal energy, the Boltzmann constant, the absolute temperature, and the
electron charge, respectively. The Debye–Hückel screening parameter, 𝜅2 = 8𝜋NAe2cI∕1000𝜖s𝜅BT, describes
ion concentration and accessibility, 𝜖s is the solvent dielectric coefficient, ai is the atomic radius, and Nm is
the sum of the partial charges in the biomolecule. The sum of Dirac delta distributions represents the highly
singular molecular charge density.

The dielectric coefficient 𝜖(x̄) and kappa function �̄�2(x̄) are piecewise constant functions given by

𝜖(x̄) =
{
𝜖m if x̄ ∈ Ωm
𝜖s if x̄ ∈ Ωs

, �̄�(x̄) =
{
0 if x̄ ∈ Ωm√
𝜖s𝜅 if x̄ ∈ Ωs

, (2.3)

whereΩm andΩs are the regions occupied by the protein molecule and by the ionic solution, respectively, as
shown in Figure 1. E.g., for the examples reported in this paper, we set 𝜖m = 2 and 𝜖s = 78.54. See [8, 26, 27]
for discussions regarding the PBE theory and the importance of (2.1) in biomolecular modeling. Please note
that (2.1) has to be understood in the weak derivative sense due to the jump of the coefficients 𝜖 and 𝜅 across
the interface. We will detail our approach to deal with this discontinuity in Section 3.

The PBE in (2.1) can be linearized for small electrostatic potentials by retaining the first term of the Taylor
series expansion of the nonlinear function sinh(u(x̄)) [28]. The LPBE is thus given by

−∇ ⋅ (𝜖(x̄)∇u(x̄))+ �̄�2(x̄)u(x̄) =
Nm∑
i=1

qi𝛿(x̄ − x̄i). (2.4)

The LPBE is much easier to solve and very accurate for lowly charged biomolecules, for example, proteins.
However, for highly charged biomolecules, such as nucleic acids, it is not as accurate as the nonlinear variant
due to the magnitude of the electric field at the interface between the solute and the solvent, Γ [5, 29].

3 Regularization of the PBE by the RS tensor format
The numerical approximation of the PBE is hindered by the highly singular sources described by a sum of
Dirac delta distributions. This is because, for every singular charge zi in (2.1), there corresponds degenerate
behaviour in the electrostatic potential u(x̄i) at each atomic position x̄i in Ωm. To circumvent this drawback,
various researchers have developed solution decomposition approaches for the PBE [15–17, 30]. A common
feature of these approaches is that they circumvent the building of numerical approximations corresponding
to the Dirac delta distributions by solving a regularized PBE model for the smooth long-range electrostatic
potential. This is enhanced by the fact that analytical expansions by the Newton kernel are possible in the
solute sub-regionΩm.
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In principle, the solution decomposition techniques for the PBE involve coupling of two equations for the
electrostatic potential in the solute and solvent regions, through the interface, Γ [16, 30]. Due to the absence
of ions within the molecular regionΩm, it is modeled by the Poisson equation,

−∇ ⋅ (𝜖m∇u) =
Nm∑
i=1

qi𝛿(x̄ − x̄i) in Ωm. (3.1)

On the other hand, no atoms are present in the solvent regionΩs, hence the charge density is purely modeled
by the Boltzmann distribution, leading to

−∇ ⋅ (𝜖s∇u)+ �̄�2 sinh(u) = 0 in Ωs. (3.2)

Therefore, the two Eqs. (3.1) and (3.2) are coupled together via the jump (interface) boundary conditions

[u]Γ = 0, and
[
𝜖
𝜕u
𝜕nΓ

]
Γ
= 0, (3.3)

where Γ := 𝜕Ωm = 𝜕Ωs ∩Ωm and [ f ]Γ = limt→0
(
f (x̄ + tnΓ)− f (x̄ − tnΓ)

)
. Here, we denote nΓ as the unit

outward normal direction of the interface Γ.
In [18, 19], the authors employ the RS canonical tensor format, developed and analyzed in [20], to

construct the solution decomposition of the PBE. This is realized by approximating the singular sources
with a smooth function derived from the long-range component of the Newton potential sum. The resultant
regularized PBE solves for the long-range electrostatic potential, which is then added to the short-range
component that is precomputed from the RS tensor splitting of the Newton kernel. The regularized PBE
(RPBE) model has demonstrated to be much more accurate than the classical PBE model in [18, 19]. We
highlight the core ingredients for obtaining the RPBE in Section 3.1.

3.1 Canonical tensor representation of the Newton kernel

Definition 3.1. The Newton potential of an integrable function (or a Radon measure) f with compact support
in ℝ3 is defined as the convolution

u(x̄) = ΓN∗ f (x̄) = ∫
ℝ3

ΓN(x̄ − ȳ) f (ȳ)dy, (3.4)

where the Newton kernel ΓN = 1∕‖x̄‖, has a mathematical singularity at the origin, and ȳ ∈ ℝ3 [31]. The
Newton potential u(x̄) satisfies the Poisson equation

−Δu = f , (3.5)

where f in this case is the source term of the system as defined in (3.7).

Consider the single particle Newton potential (or the Newton kernel) 1∕‖x̄‖, x̄ ∈ ℝ3, which is a funda-
mental solution to the Poisson equation. It is well known that determining a weighted sum of interaction
potentials (or Newton kernels), PN(x̄) in a large Nm-particle system, with the particle locations at x̄i ∈ ℝ3,
i = 1,… ,Nm, i.e.,

PN(x̄) =
Nm∑
i=1

qi
𝜖m‖x̄ − x̄i‖ , x̄i, x̄ ∈ Ω = [−b, b]3, (3.6)

is quite computationally demanding. The Newton kernel exhibits a slow polynomial decay in 1∕‖x̄‖ as‖x̄‖→∞. Obviously, it has a singularity at x̄ = (0,0,0), making its accurate grid representation difficult. The
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RS tensor format [20] can be exploited to construct an efficient grid-based technique for the calculation of
PN(x̄) in multiparticle systems.

Remark 1. Notice that the Newton potential PN(x̄) in (3.6) is a special case of (3.4) for a noncompact function

f (x) = 1
𝜖m

Nm∑
i=1

qi𝛿(x̄ − x̄i). (3.7)

To obtain the canonical tensor representation of the Newton kernel, we follow the procedure in [20],
whereby we first consider the computational domainΩ = [−b, b]3, and introduce the uniform (n⊗3)2 rectan-
gular Cartesian grid Ωn with mesh size h = 2b∕n (n even). Let {𝜓 i} be a set of tensor-product piecewise
constant basis functions, 𝜓i(x̄) =

∏3
𝓁=1𝜓

(𝓁)
i𝓁
(x̄𝓁), for the 3-tuple index i = (i1, i2, i3), i𝓁 ∈ I𝓁 = {1,… , n},

𝓁 = 1, 2, 3. The goal is to discretize the Newton kernel by its projection onto {𝜓 i} as follows

P := [pi] ≡ [p(i1, i2, i3)] ∈ ℝn⊗3
, pi = ∫

ℝ3

𝜓i(x̄)‖x̄‖ dx̄, (3.8)

where pi is obtained from the vectors of the canonical tensor representation of the Newton kernel.
Next, determine the Laplace–Gauss transform representation of 1∕‖x̄‖, and then apply the exponentially

convergent sinc-quadrature approximation to obtain the separable expansion

1‖x̄‖ = 2√
𝜋 ∫

ℝ+

e−t2‖x̄‖2dt ≈ M∑
k=−M

ake−t
2
k‖x̄‖2 = M∑

k=−M
ak

3∏
𝓁=1

e−t2k x̄2𝓁 , (3.9)

where the quadrature points and weights in (3.9) are given by

tk = khM, ak = 2hM∕
√
𝜋, with hM = C0 log(M)∕M, C0 ≈ 3. (3.10)

Themode three tensorP, canbeapproximatedby theR-term(R = 2M + 1) canonical tensor representation

P ≈ PR =
M∑

k=−M
p(1)k ⊗ p(2)k ⊗ p(3)k ∈ ℝn⊗3

, (3.11)

where p(𝓁)k ∈ ℝn are obtained by substituting (3.9) into (3.8) and “⊗ ” 3 denotes the outer (or tensor) product
of vectors.

Notice that the sumin (3.11) reduces tok = 0, 1,… ,M due to the symmetryargumentof theNewtonkernel.
The sequenceof quadraturepoints{tk} in (3.10) canbe split into twosubsequences = {tk|k = 0, 1,… ,M} =
l ∪ s, where l := {tk|k = 0, 1,… ,Rl} includes quadrature points tk condensed near zero, thereby gen-
erating the long-range Gaussians and s := {tk|k = Rl + 1,… ,M} accumulates the increasing in M→∞
sequence of large sampling points tk corresponding to the short-range Gaussians, with an upper bound of
C20 log2(M). For more details, see [19, 20].

Upon splitting the reference canonical tensor representation PR by the procedure presented in [20], we
obtain the following decomposition

PR = PRs + PRl ,
where

PRs =
∑
k∈s

p(1)k ⊗ p(2)k ⊗ p(3)k , PRl =
∑
k∈l

p(1)k ⊗ p(2)k ⊗ p(3)k . (3.12)

Here,l :={k|k = 0, 1,… ,Rl} ands :={k|k = Rl + 1,… ,M} are the sets of indices for the long- and short-
range canonical vectors.

2 n⊗3 = n × n × n is a tensor representation of the 3D Cartesian grid.
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The critical number Rl which specifies the splitting  = l ∪ s is determined by the active support of
the short-range components. In this case, one can cut off the functions pk(x), tk ∈ s, outside of the sphere
B𝜎 of radius 𝜎 > 0 subject to a certain threshold accuracy 𝛿 > 0. The cross-sectional view of the respective
localized and global vector components of theNewton potential in (3.12) on the x-axis is illustrated in Figure 2.

The aforementioned results are only valid for a single particle potential (or the Newton kernel, 1∕‖x̄‖). In
the case of a potential sum generated by a multiparticle system, for example, in (3.6), the two components in
(3.12) are treated independently due to their differences as far as their effective supports are concerned [20].
The following is an overview of the RS canonical tensor representation of PN(x̄) in (3.6).

We first consider the tensor representation of only the long-range component PRl ∈ ℝn⊗3 which can be
constructed by a direct sum of shift-and-windowing transforms, i, of the reference tensor P̃Rl ∈ ℝ2n×2n×2n

from a large (2n)⊗3 domain onto the original n⊗3 domain. See [20, 32] for detailed information.

Pl =
Nm∑
i=1

zi i(P̃Rl ) =
Nm∑
i=1

zi i

(∑
k∈l

p̃(1)k ⊗ p̃(2)k ⊗ p̃(3)k

)
. (3.13)

Remark 2. Note that Pl comprises of a collection of PRl at each atomic position in the entire protein, which
have been shifted and windowed by the transform i of the reference tensor P̃Rl ∈ ℝ2n×2n×2n. Clearly, P̃Rl
consists of PRl in a (2n)⊗3 domain.

The reference tensor P̃Rl is mapped onto its subtensor of smaller size n⊗3, by first shifting the center of P̃Rl
to the grid-point xi, and then windowing (restricting) the result onto the computational gridΩn. The particle
charges are denoted by zi. The canonical rank of the tensor sum Pl, of rank RNm, was proven in [20] to depend
only logarithmically on the number of particles Nm involved in the summation.

Remark 3. It is worth noting that for large biomolecules, the rank RNm and the n⊗3 Cartesian grid can
be very large due to large Nm. In such cases, the canonical-to-Tucker (C2T) and the Tucker-to-canonical
(T2C) transforms can be applied in order to obtain a low rank canonical tensor representation which accu-
rately approximates the original tensor. The C2T transform employs the reduced higher order singular value
decomposition (RHOSVD) to accomplish the rank reduction process [33].

On the other hand, the short-range part of the total electrostatic potential is represented by a single small
size tensor Ps ∈ ℝn⊗3 , known as the cumulated canonical tensors (CCT) [20]. The CCT comprises of localized
subtensors whose effective supports are nonintersecting

Ps =
Nm∑
i=1

ziUi, Ui ∈ ℝn⊗3
s , ns ≪ n, (3.14)

where diam(suppUi) ≤ 2𝜎i. Here, 𝜎i is the atomic radius of each atom in the biomolecule.

Remark 4. Notice that for biomolecules whose atoms have varying radii, we adjust the computation of the
short- and long-range range electrostatic potential accordingly by assigning the corresponding vectors from
Figure 2 to atomic clusters of similar radii [19].

(a) (b) (c)

Figure 2: Canonical vector com-
ponents for the long-range and
short-range electrostatic poten-
tials and the logarithmic plot
for magnifying the short-range
vectors.
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3.2 Construction of the nonlinear RPBE (NRPBE)
We now have sufficient information to facilitate the construction of the NRPBE based on the simple splitting
of the Dirac delta distribution [25]. To fix the idea, from Remark 1, the weighted sum of interaction potentials
in a large Nm-particle system as in (3.6) is also the analytical solution to the Poisson equation (PE), i.e.,

−𝜖mΔPN(x̄) =
Nm∑
i=1

qi𝛿(x̄ − x̄i) in ℝ3. (3.15)

Consider the RS tensor splitting of the multiparticle Newton potential into a sum of long-range tensors Pl
in (3.13) and a CCT tensor Ps in (3.14), i.e.,

PN(x̄) = Ps(x̄)+ Pl(x̄). (3.16)

Applying the discretized Laplacian operator to each component of PN(x̄), we obtain,

f s := − AΔPs, and f l := − AΔPl, (3.17)

where AΔ is the 3D finite difference Laplacian matrix defined on the uniform rectangular grid as

AΔ = Δ1⊗ I2⊗ I3 + I1⊗Δ2⊗ I3 + I1⊗ I2⊗Δ3, (3.18)

where −Δ𝓁 = 𝜖mh−2𝓁 tridiag{1,−2, 1} ∈ ℝn𝓁×n𝓁 , 𝓁 = 1, 2, 3, denotes the discrete univariate Laplacian and I𝓁,
𝓁 = 1, 2, 3, is the identity matrix in each dimension. See [18, 19, 25] for more details. Thus, we have

f s + f l =
Nm∑
i=1

qi𝛿(x̄ − x̄i). (3.19)

The nonlinear regularized PBE (NRPBE) can now be derived as an approximation of the PBE (2.1) as
follows {

−∇ ⋅ (𝜖∇(u))+ �̄�2 sinh(u) = f s + f l in Ω,
u = g on 𝜕Ω, (3.20)

along with the interface conditions of (3.3). Here, g denotes the boundary value function given in (2.2).
Using the splitting (3.19) of the Dirac-delta distributions, we split the solution u of (3.20) as

u = us + ul,

where us denotes the short-range component that satisfies the Poisson equation,{
−∇ ⋅ (𝜖∇us) = f s in Ω,

us = 0 on 𝜕Ω, (3.21)

together with the interface conditions on the interface Γ,

[us]Γ = 0, and
[
𝜖
𝜕us
𝜕nΓ

]
Γ
= 0, (3.22)

and ul denotes the long-range component function defined by the nonlinear boundary value problem{
−∇ ⋅ (𝜖∇ul(x̄))+ �̄�2(x̄) sinh(ul(x̄)) = f l in Ω,

ul = g on 𝜕Ω, (3.23)

subject to the interface conditions in (3.22).
Here we have used that

�̄�2 sinh(us + ul) = �̄�2 sinh(ul), (3.24)
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because it was proved and demonstrated in [18] that the function f s and the corresponding short-range
potential us are localized within the molecular regionΩm and vanish on the interface Γ.

4 Numerical approach to solving the NRPBE

4.1 Iterative solution of the NRPBE
LetusconsideraphysicaldomainΩ ⊂ ℝ3 withboundary𝜕Ω, andaparameterdomain ⊂ ℝwhichrepresents
the variation in ionic strength I = 1∕2∑Nions

j=1 c jz
2
j , which is a function of the ionic concentration ci, of the salt

solution. It resides in k̄2 = 8𝜋e2 I∕1000𝜖kBT. One standard way of solving the NRPBE in (3.23) is that it is first
discretized in space to obtain a nonlinear system in vector form

a(ur (𝜇)) = br(𝜇), 𝜇 ∈  , (4.1)

where a(ur (𝜇)) ∈ ℝ , br(𝜇) ∈ ℝ , 𝜇 = I ∈ , and ur (𝜇) is the discretized solution vector.
Then system (4.1) can be solved using several existing techniques. For example, nonlinear relaxation

methods have been implemented in the Delphi software [34], the nonlinear conjugate gradient (CG) method
has been implemented in University of Houston Brownian Dynamics (UHBD) software [35], the nonlinear
multigrid (MG)method [36] and the inexact Newtonmethod are available in the adaptive Poisson–Boltzmann
solver (APBS) software [37].

In this study, we apply a different approach of solving (3.23) [17, 21, 38]. In particular, an iterative
approach is first applied to the continuous NRPBE in (3.23), where at the (n+ 1)st iteration step, the NRPBE is
approximated by a linear equation via the Taylor series truncation. The expansion point of the Taylor series
is the continuous solution (ul(𝜇))n at the nth iteration step.

Consider (ul(𝜇))n as the approximate solution at the nth iterative step, then the nonlinear term
sinh((ul(𝜇))n+1) at the (n+ 1)st step is approximated by its truncated Taylor series expansion as follows

sinh((ul(𝜇))n+1) ≈ sinh((ul(𝜇))n)+ ((ul(𝜇))n+1 − (ul(𝜇))n) cosh((ul(𝜇))n). (4.2)

Substituting the approximation (4.2) into (3.23), we obtain

−∇ ⋅ (𝜖(x̄)∇(ul(𝜇))n+1)+ �̄�2(x̄) cosh((ul(𝜇))n)(ul(𝜇))n+1

= −�̄�2(x̄) sinh((ul(𝜇))n)+ �̄�2(x̄) cosh((ul(𝜇))n)(ul(𝜇))n + br(𝜇). (4.3)

The equation in (4.3) is linear, and can then be numerically solved by first applying spatial discretization. In
this regard, we first define

cosh⊙ur (𝜇) =:𝑤 =

⎡⎢⎢⎢⎢⎣
𝑤1
𝑤2
...
𝑤

⎤⎥⎥⎥⎥⎦
, (4.4)

where⊙ is the elementwise operation on a vector.
Then, we construct the corresponding diagonal matrix from (4.4) of the form

B = diag(𝑤1,𝑤2,… ,𝑤 ).

Finally, we obtain the following iterative linear system

A1(ur (𝜇))n+1 + 𝜇A2Bn(ur (𝜇))n+1 = −𝜇A2 sinh⊙(ur (𝜇))n + 𝜇A2Bn(ur (𝜇))n + br1 + b2(𝜇), (4.5)

where A1 is the Laplacian matrix and A2 is a diagonal matrix containing the net �̄�2 function (i.e., �̄�2∕𝜇). Note
that the diagonalmatrixBn changes at each iteration step, therefore, it cannot be precomputed. The vectors br1
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and b2(𝜇) are the regularized approximation of the Dirac delta distributions and the nonaffine (in parameter)
Dirichlet boundary conditions, respectively.

Let
A(⋅) = A1 + 𝜇A2Bn(⋅) (4.6)

and
F : right− hand side of (4.5), (4.7)

we obtain
A(ur (𝜇))n+1 = F((ur (𝜇))n), n = 0, 1,… . (4.8)

Then, at each iteration, system (4.8) is a linear system w.r.t.
(
ul

)n+1
, which can be solved by any

linear system solver of choice. In this study, we employ the aggregation-based algebraic multigrid method
(AGMG)3 [39]. Algorithm 1 summarizes the detailed iterative approach for solving (4.8). This approach of first
linearization, then discretization is shown to be more efficient than the standard way of first discretization
and then linearization, via, for example, the Newton iteration. The advantage of the proposed approach is
that it avoids computing the Jacobian of a hugematrix. It is observed that it converges faster than the standard
Newton approach.

Algorithm 1: Iterative solver for the NRPBE.

Input: Initialize the potential (ur (𝜇))0, e.g., (ur (𝜇))0 = 0 and the tolerance 𝛿0 = 1.
Output: The converged NRPBE solution (ur (𝜇))n at 𝛿n ≤ tol.
1: while 𝛿n ≥ tol do
2: Solve the linear system (4.8) for (ur (𝜇))n+1 using AGMG.
3: 𝛿n+1 ← ‖(ur (𝜇))n+1 − (ur (𝜇))n‖2.
4: (ur (𝜇))n ← (ur (𝜇))n+1.
5: end while

4.2 The reduced basis method for the NRPBE
The reduced basis method (RBM) is an example of popular projection-based parametrizedmodel order reduc-
tion (PMOR) techniques in which the parameter dependence of the PDE solution is exploited by snapshots
(high-fidelity solutions) determinedover theparameter domain [40]. Their core objective is to construct apara-
metric reduced order model (ROM) of low dimension, which accurately approximates the original full order
model (FOM) or high-fidelity model of high dimension over varying parameter values [41–43]. Other PMOR
techniques include proper orthogonal decomposition (POD) [44] and multi-moment matching techniques
[45], among others [41].

The RBM leverages an offline/online procedure to ensure an accurate approximation of the high-fidelity
solution at extremely low computational costs. It is widely applicable in real-time context such as sensitiv-
ity analysis, multimodel simulation, as well as many-query scenarios, e.g., uncertainty quantification and
optimal control. For a thorough review of PMOR techniques, see [41].

In the PBE theory, parametric studies are important to investigate different scenarios, for example,
to determine protein association rates via the Brownian dynamics simulations [5]. These association rates
depend on the ionic strength of the solvent. The RBM is themethod of choice tomake these simulations faster
than doing individual full-order simulations due to the large dimension of the electrostatic potential.

3 AGMG implements an aggregation-based algebraic multigrid method, which solves algebraic systems of linear equations, and
is expected to be efficient for large systems arising from the discretization of scalar second order elliptic PDEs [39].
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It is prohibitively expensive to solve the × system in (4.8) for an accurate approximation of ur (𝜇)
because the dimension ranges between (106) and (108) for typical biomolecules of interest. Therefore,
we exploit the RBM to significantly reduce the computational costs by projecting (via Galerkin) the FOM
(4.8) onto a low dimensional subspace (the reduced basis space) which preserves the parametric properties
and important system configurations of the FOM. The resultant ROM, of greatly reduced dimension N ≪ ,
provides an accurate surrogate approximation of (ur (𝜇))n, n = 0, 1,….

Algorithm 2: Greedy algorithm.

Input: Training set Ξ :={𝜇1,… , 𝜇l} ⊂ , tolerance 𝜖0 = 1, and potential (urN(𝜇))
0.

Output: RB basis represented by V and the ROM in (4.13).
1: Choose 𝜇∗ ∈ Ξ arbitrarily.
2: Solve (3.23) for ur (𝜇∗) using Algorithm 1.
3: V1 =

[
ur (𝜇∗)

]
, N = 1.

4: Orthonormalize V1.
5: whilemax

𝜇∈Ξ
ΔN(𝜇) ≥ 𝜖 do

6: Compute urN(𝜇) from (4.13) using Algorithm 4, and calculateΔN(𝜇) =∥ rN(ûr (𝜇))∥2
in (4.12), ∀ 𝜇 ∈ Ξ.

7: 𝜇∗ = argmax
𝜇∈Ξ

ΔN(𝜇).

8: Solve (3.23) for ur (𝜇∗).
9: VN+1 ←

[
VN ur (𝜇∗)

]
.

10: Orthonormalize the columns of VN+1.
11: N←N + 1.
12: end while

RBM is based on the assumption that the solution manifold

 =
{
ur (𝜇) :𝜇 ∈ } , (4.9)

is of low dimension. The reduced basis space, which is the space spanned by the snapshots ur (𝜇), corre-
sponding to a set of parameter samples, is hierarchically constructed from the solution manifold (4.9), using
the greedy procedure summarized in Algorithm 2. The RB space

range(V) = span
{
ur (𝜇1),… , ur (𝜇l)

}
, 𝜇1,… , 𝜇l ∈  , (4.10)

is nested (hierarchical) in the sense that the previous basis set is a subset of the next until convergence, i.e.,

range(V1) ⊂ range(V2) ⊂… ⊂ range(VN), (4.11)

where N ≪ is the dimension of the ROM. Here, V is the projection matrix which represents the reduced
basis space and is obtained from by the greedy algorithm in Algorithm 2.

The residual in Algorithm 2 is derived from (4.8) and the ROM solution (ûr (𝜇))n = VN(urN(𝜇))
n lifted into

the high-fidelity space of dimension , i.e.,

rN((ûr (𝜇))n+1) = F((ûr (𝜇))n)− A((ûr(𝜇))n)(ûr (𝜇))n+1. (4.12)

The ROM for the system (4.8), is therefore, formulated as follows. Given any 𝜇 ∈ , and an initial guess
(urN(𝜇))

0 ∈ ℝN , the RB approximation (urN(𝜇))
n+1, at the future iteration step n+ 1 satisfies the equation

AN((urN(𝜇))
n)(urN(𝜇))

n+1 = FN((urN(𝜇))
n), n = 0, 1,… , (4.13)
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where (urN(𝜇))
0 is the zero initial guess in this study and AN and FN are defined explicitly as

AN := Â1(urN(𝜇))
n+1 + 𝜇Â2(B̃VN)n(urN(𝜇))

n+1,

and
FN := − 𝜇Â2 sinh⊙(ûr (𝜇))n + 𝜇Â2(B̃VN)n(urN(𝜇))

n + brN + VT
Nb2(𝜇),

where B̃ = diag(�̃�1, �̃�2,… , �̃� ) and

cosh⊙ûr (𝜇) =: �̃� =

⎡⎢⎢⎢⎢⎣
�̃�1
�̃�2
...
�̃�

⎤⎥⎥⎥⎥⎦
. (4.14)

The resuting ROM is given by

Â1(urN(𝜇))
n+1 + 𝜇Â2(B̃VN)n(urN(𝜇))

n+1

= −𝜇Â2 sinh⊙(ûr (𝜇))n + 𝜇Â2(B̃VN)n(urN(𝜇))
n + brN + VT

Nb2(𝜇), (4.15)

where (urN(𝜇))
n+1 is the unknown solution to the ROM.

The reduced matrices Â1 :=VT
NA1VN and Â2 :=VT

NA2 and the reduced vector brN = VT
Nb

r
1 (see (4.5)) are

determined via projection with the RB basis VN and can be precomputed in the offline phase of the greedy
algorithm. However, the matrix (B̃VN)n and vector b2(𝜇) are updated and or changed at each iteration and for
varying parameter values, respectively, hence, they cannot be precomputed. This leads to a partial offline-
online decomposition scenario, whereby Galerkin projections to some terms have to be computed in the
online phase.

Note that VT
Nb2(𝜇) in (4.15) is computed by first evaluating a long vector b2(𝜇), then projecting it onto the

low dimensional space N using VN . This is time consuming when b2(𝜇) needs to be evaluated many times for
many values of 𝜇. In Section 4.2.1, we propose to apply DEIM to further reduce the computational complexity
of VT

Nb
r
2(𝜇). Details can be found in [27], where DEIM was applied to PBE problem.

4.2.1 Computational complexity of the regularized reduced order model

It is well known that another key assumption of the RBM, besides the low dimensionality of the solution
manifold, is the parameter affine property, which ensures the efficiency of the offline-online decomposition
by eliminating the dependency of the ROM on the dimension of the truth high-fidelity FOM [40]. However,
note that on the one hand, (4.5) is actually parameter nonaffine with respect to the Yukawa-type boundary
conditions, represented by F in (4.7). On the other hand, the matrix A2 requires updates at each iteration;
hence Galerkin projections are unavoidable in the online phase.

In this study, we apply DEIM to the parametric nonaffine boundary conditions, the term b2(𝜇). The
main idea of DEIM is to significantly reduce the computational complexity of the nonaffine function by
interpolation,whereby only a few entries are computed [22]. Before invokingDEIM, snapshots of the nonaffine
function b2(𝜇) must be computed for a set of parameter 𝜇 in the training set Ξ = {𝜇1,… , 𝜇l} ⊂  and the
snapshot matrix,

G = [b2(𝜇1),… , b2(𝜇l)] ∈ ℝ×l, (4.16)

is constructed.
Then, the singular value decomposition (SVD) of G is computed,

G = UGΣWT , (4.17)
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Figure 3: Decay of singular values of Σ with number of singular values in (4.17).

where UG ∈ ℝ×l, Σ ∈ ℝl×l, andW ∈ ℝl×l. Note that the matrices UG andW are orthogonal, i.e., (UG)TUG =
WTW = Il, Il ∈ ℝl×l and Σ = diag(𝜎1,… , 𝜎l), with 𝜎1 ≥ … ≥ 𝜎l ≥ 0. Figure 3 shows the decay of singular
values of Σ for the protein Fasciculin 1. We truncate the singular values being smaller than 10−13 and retain
r = 3 singular values.

DEIM seeks to approximate the function b2(𝜇) with the linear combination of the basis vectors UG =[
uG1 ,… , uGr

]
∈ ℝ×r, i.e.

b2(𝜇) ≈ UGc(𝜇), (4.18)

where c(𝜇) ∈ ℝr is the corresponding coefficient vector, which is determined under the assumption that
UGc(𝜇) interpolates b2(𝜇) at r selected interpolation points, then,

PTb2(𝜇) = PTUGc(𝜇), (4.19)

where P is an index matrix given by
P = [e℘1

,… , e℘r
] ∈ ℝ×r, (4.20)

which consists of unit vectors e℘i
, i = 1,… , r. Here, the indices℘i, are the DEIM interpolation points which

are selected iteratively with the greedy iteration as presented in Algorithm 3.

Algorithm 3: DEIM algorithm [22, 46].

Input: POD basis
{
uGi
}r
i=1 for G in Eq. (4.17)).

Output: DEIM basis UG and indices ℘⃗ = [℘1,… ,℘r ]T ∈ ℝr .

1:℘1 = arg max
j∈{1,…,}

|uG1 j|, where uG1 =
(
uG11,… ,uG1

)T
.

2: UG =
[
uG1
]
, P = [e℘1

], ℘⃗ = [℘1].
3: for i = 2 to r do
4: Solve

(
PTUG

)
𝛼 = PTuGi for 𝛼, where 𝛼 = (𝛼1,… , 𝛼i−1)T .

5: ri = uGi − UG𝛼.
6: ℘i = arg max

j∈{1,…,}
|ri j|, where ri = (ri1,… , ri )T .

7: UG ←
[
UG uGi

]
, P← [P e℘i

], ℘⃗←

[
℘⃗
℘i

]
.

8: end for

Suppose that PTUG ∈ ℝr×r is nonsingular, then c(𝜇) can be determined from the overdetermined system
(4.19) by

c(𝜇) =
(
PTUG

)−1 PTb2(𝜇). (4.21)

Therefore, the function b2(𝜇) in [9] can be approximated as

b2(𝜇) ≈ UGc(𝜇) = UG
(
PTUG

)−1 PTb2(𝜇). (4.22)
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The ROM in (4.15) with DEIM approximation becomes

Â1(urN(𝜇))
n+1 + 𝜇Â2(B̃VN)n(urN(𝜇))

n+1 = −𝜇Â2 sinh⊙(ûr (𝜇))n + 𝜇Â2(B̃VN)n(urN(𝜇))
n

+ brN(𝜇)+ VT
NUG

(
PTUG

)−1 PTb2(𝜇). (4.23)

The interpolant VT
NUG

(
PTUG

)−1 PTb2(𝜇) can be computed a lot cheaper than VT
Nb2(𝜇) because

VT
NUG

(
PTUG

)−1 can be precomputed independently of the parameter 𝜇. Only those entries in b2(𝜇) that
correspond to the interpolation indices ℘i, i = 1,… , r, r≪ , i.e., PTb2(𝜇) can be computed instead of the
entire  entries in b2(𝜇). This saves significant computational efforts when b2(𝜇) needs to be repeatedly
computed for different values of 𝜇.

Note that at each iteration only a small ROM in (4.23) is solved. With its small size N ≪ , the system
(4.23) can be solved using a direct solver rather than the iterative solver (AGMG), which is applied to the FOM
in (4.3). The iterative approach of obtaining an approximate solution VN(urN(𝜇))

n+1 to (4.1) using the ROM
(4.23) is summarized in Algorithm 4.

Algorithm 4: Iterative solver for the regularized ROM in (4.23).

Input: Initialize the potential (urN(𝜇))
0, e.g., (urN(𝜇))

0 = 0, tolerance tol >0, and 𝛿0 = 1.
Output: The converged ROM solution (urN(𝜇))

n at 𝛿n ≤ tol.
1: Precompute Â1, brN in (4.23) and UG and ℘⃗ in Algorithm 3.
2: while 𝛿n ≥ tol do
3: Assemble the ROM in (4.23) using the precomputed quantities in Step 1.
4: Solve the regularized ROM (4.23) for (urN(𝜇))

n+1.
5: 𝛿n+1 ← ‖(urN(𝜇))n+1 − (urN(𝜇))

n‖2.
6: (urN(𝜇))

n ← (urN(𝜇))
n+1.

7: end while

Remark 5. The total electrostatic potential is obtained by lifting the reduced order long-range surrogate
solution into the high-fidelity space and adding to the parameter independent analytically precomputed
short-range component Ps in (3.14), i.e.,

u(𝜇) = Ps + ûr (𝜇), (4.24)

where ûr (𝜇) = VNurN(𝜇).

4.3 The reduced basis method for the classical NPBE
In this section, we apply RBM to the classical nonlinear PBE (NPBE), and compare this version in Section 5
with the suggested approach from Section 4.2. We begin by considering the FOM of the classical NPBE in (2.1)
after discretization in space, i.e.,

A(u (𝜇)) = f (𝜇), 𝜇 ∈  , (4.25)

where f (𝜇) includes both the singular sources from the right-hand side of (2.1) and the parameter non-affine
Dirichlet boundary conditions from (2.2). The corresponding classical ROM is defined as

Â(uN(𝜇)) = f̂ (𝜇), (4.26)

where Â(uN(𝜇)) = VT
NA(VNuN(𝜇)) and f̂ = VT

N f . Here, VN can be constructed using the greedy algorithm in
Algorithm 2 by replacing the snapshots in Step 3 and Step 9 with the solutions to (4.25).

Note that the FOM of the classical NPBE is solved iteratively in a similar way like the NRPBE using
Algorithm 1. The corresponding iterative form of (4.25) is given by

A1(u (𝜇))n+1 + 𝜇A2Bn2 (u
 (𝜇))n+1 = −𝜇A2 sinh⊙(u (𝜇))n + 𝜇A2Bn2 (u

 (𝜇))n + f (𝜇), (4.27)
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where all the quantities except B2, f and the solution (u (𝜇))n+1 are equivalent to those in the NRPBE (4.5).
Here B2 is defined as

B2 = diag(𝑣1, 𝑣2,… , 𝑣 ),

and is constructed from

cosh⊙u (𝜇) =: 𝑣 =

⎡⎢⎢⎢⎢⎣
𝑣1
𝑣2
...
𝑣

⎤⎥⎥⎥⎥⎦
. (4.28)

The ROM of (4.27) is straightforward, i.e., given any 𝜇 ∈ , and an initial potential distribution (uN(𝜇))0,
the RB approximation (uN(𝜇))n+1, at the subsequent iteration steps n+ 1 satisfies

Â1(uN(𝜇))n+1 + 𝜇Â2(B̃2VN)n(uN(𝜇))n+1 = −𝜇Â2 sinh⊙(û (𝜇))n + 𝜇Â2(B̃2VN)n(uN(𝜇))n + f̂ (𝜇), (4.29)

where (û (𝜇))n = VN(uN(𝜇))n and B̃2 = diag(𝑣1, 𝑣2,… , 𝑣 ) is constructed from

cosh⊙û (𝜇) =: 𝑣 =

⎡⎢⎢⎢⎢⎣
𝑣1
𝑣2
...
𝑣

⎤⎥⎥⎥⎥⎦
. (4.30)

The process of iteratively solving (4.29) is similar to that of (4.13), which is provided in Algorithm 4.

5 Numerical results
Consider n⊗3 3D uniform Cartesian grids, in a cubic domain [a, b]3, for computing the reduced basis approxi-
mation of theNRPBEonamodest PCwhichpossesses the following specifications: Intel (R) Core (TM) i7–4790
CPU@ 3.60 GHz with 8 GB RAM. In this study, the NRPBE is discretized by the finite difference method (FDM)
to obtain the FOM and the numerical computations are implemented in MATLAB, version R2017b.

In thenumerical tests, themolecular charge density function (singular source term) for the classicalNPBE
and the regularized Dirac density function for the NRPBE are obtained from PQR4 files which are generated
from the following biomolecules with varying sizes that depend on the number of atoms:
(a) The acetazolamide molecule consisting of 18 atoms, which is used as a ligand in the human carbonic

anhydrase (hca) protein–ligand complex for the calculation of the binding energy [47, 48].
(b) Fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake venom [49] consisting of 1228

atoms.
(c) A 180-residue cytokine solutionNMRstructure of amurine-human chimera of leukemia inhibitory factor

(LIF) [50] consisting of 2809 atoms.

Remark 6. Since the solution of the PBE has a slow polynomial decay in 1∕‖x̄‖, it is paramount that large
domains, approximately 3-times the size of the biomolecule be used in order to accurately approximate the
boundary conditions [8]. In this regard, we use domains of lengths (32 Å)3, (60 Å)3, and (65 Å)3, respectively,
for the aforementioned biomolecules. Here, Å denotes the angstrom unit of length.

4 A PQR (or position, charge (Q), and radius) file is a protein data bank (PDB) file with the temperature and occupancy columns
replaced by columns containing the per-atom charge (Q) and radius (R) using the pdb2pqr software. PQR files are used in several
computational biology packages, including APBS [53].
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To begin with, we demonstrate the solution components of the full order model (FOM) of the NRPBE
via the RS tensor format for the protein Fasciculin 1 in case (b), in a uniform Cartesian grid of 129⊗3 and
a 60 Å domain length. Figure 4 shows the short- and long-range components of the target electrostatic
potential,whichare computedanalytically fromtheCCT tensor (3.14), andnumerically via theNRPBE in (3.23),
respectively,andthecorresponding totalelectrostaticpotential.Notice that themolecularboundary (interface)
is irregular and it encloses the short-range potential componentwhich is represented by the sharp cusps in the
figure.

The behaviour in the scaling among the three electrostatic potentials in Figure 4 shows that the total
potential on the right-hand side inherits the largest potential value of 0.5 from the short-range component (top
left), while the smallest value of (10−5) is obtained from the long-range component (bottom left) towards
the boundary of the domain.

Remark 7. The main computational advantage of applying the RBM technique to the NRPBE is that the RB
approximation is only applied to the smooth long-range component of the potential, see Figure 4 (bottom left),
thereby avoiding the singularities inherent in the short-range component that are known to cause numerical
difficulties. Hence the resultant RB approximation is expected to be of higher accuracy.

5.1 Reduced basis results for the NRPBE
Here, we determine the accuracy and computational efficacy of the RBM approximating the high-fidelity
solution to theNRPBE forbiomolecularmodeling.Weset the soluteandsolventdielectric coefficientsas𝜖m = 2
and 𝜖s = 78.54, respectively, and employ the parameter values from the training setΞ ∈  = [0.05,0.15] with
a sample size of l = 11, greedy tolerance tol = 10−10 for Algorithm 2 to generate the projection matrix VN .
Furthermore the residual in (4.12) is used as an error estimator for the ROM in the greedy algorithm in
Algorithm 2.

First, we consider theNRPBE systemgenerated by all the three cases (a), (b), and (c), in uniformCartesian
grids of 97⊗3 for case (a) and 129⊗3 for cases (b) and (c), respectively. We show in Table 1, the decay of the

Figure 4: Short-range (top left) and long-range (bottom left) contributions to the total electrostatic potential (right) of the
Fasciculin 1 protein in solution.
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Table 1: The comparison between the maximal error estimatorΔmax
N (𝜇) and the true error for the NRPBE during the greedy

iteration at the current RB dimension i = 1,… ,N for the biomolecules in cases (a) to (c).

System Error at iteration 1 Error at iteration 2 ROM dimension N
𝚫max
N (𝝁) True error 𝚫max

N (𝝁) True error

Acetazolamide 5.0573 × 10−6 1.2719 × 10−8 3.0339 × 10−12 3.0395 × 10−15 2
Fasciculin-1 1.0685 × 10−5 8.9228 × 10−8 3.6895 × 10−12 2.0232 × 10−14 2
LIF 3.2610 × 10−5 1.4510 × 10−7 2.0573 × 10−11 3.2015 × 10−14 2

maximal error estimator, defined as

Δmax
N (𝜇) = max

𝜇∈ ∥ rN
(
ûrN ;𝜇

)
∥2,

and the true error ∥ ur (𝜇)− ûrN(𝜇)∥2, during the greedy algorithm at the current RB dimension i = 1,… ,N
for all of these cases.

Note that the ROMprovides highly accurate approximations, close tomachine precision ((10−15)) for the
NRPBE as demonstrated by the true error in the second iteration. This is due to the smoothness of the long-
range electrostatic potential, which enhances rapid and accurate model reduction process and facilitates, in
general, low-rank approximation.

Next, we validate the final ROM at 100 random 𝜇 ∈  in Figure 5. It is clear that the true error of the ROM
is still below the tolerance for all 100 𝜇 ∈  .

5.2 Comparison of the RB approximation accuracy between the NRPBE and the NPBE
In this section,we demonstrate via the RB approximation, that theNRPBEmodel ismore accurate and compu-
tationally efficient than the classical NPBE. In a similar style as in Section 5.1, we consider the biomolecules in
cases (a) to (c) with the corresponding domain lengths and grid dimensions. We demonstrate the accuracy of
the RB approximation for the classical NPBEmodel in order to compare it with the NRPBEmodel. We begin by
demonstrating in Figure 6, the comparison of the error decay between the maximal error estimator Δmax

N (𝜇)
and the true error for the classical NPBE during the greedy iteration at the current RB dimension i = 1, . . . ,N
for the biomolecules in cases (a) to (c).

We notice that the RBM constructs a small ROM (i.e., N = 2) of high accuracy ((10−12)) for the NRPBE in
Table 1 because of the regularized nature of the model, the RBM applied to the classical NPBE, nevertheless,
generates a ROMof dimensionN = 6 at the accuracy of(10−4) formost biomolecules in Figure 6 [27, 51]. This

(a) (b) (c)

Figure 5: Comparison between the maximal error estimator and the true error for the NRPBE for acetazolamide, fasciculin 1, and
LIF systems for the final ROM at 100 random (varying) parameter values 𝜇 ∈ . Here, tolerance is the allowed maximum error
between the error estimator and the true error. Henceforth, we have error estimator (solid black line), true error (solid blue line),
and tolerance (dashed black line).
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(a) (b) (c)

Figure 6: The comparison
between the maximal error esti-
mator and the true error for
the classical NPBE during the
greedy iteration at the current
RB dimension i = 1,… ,N for
the biomolecules for acetazo-
lamide, fasciculin 1, and LIF
systems.

is because in the latter case, the short-range component of the electrostatic potential impedes the reduction
process due to the sharp cusps or singularities which are hard to capture in the ROM. Furthermore, case (a)
has a slightly smaller ROM dimension due to its small number of atoms as compared to the rest, hence its
small number of solution singularities (cusps) to be captured in the ROM.

The accuracy of the RB approximation of the classical NPBE in Figure 7 is much lower than that of
the NRPBE in Figure 5 due to the inaccurate approximation of the short-range component inherent in the
former. This demonstrates the efficacy of the regularization scheme based on the RS tensor technique. The
oscillations in the error in Figure 7 also justifies the irregularity of the singular solution, which impedes the
model reduction process.

5.2.1 Runtimes and computational speed-ups

We compare the computational runtime of computing both the classical and regularized NPBEmodels as well
as that of the corresponding ROM (using the RBM) in Table 2. The respective PBE models were applied to the
protein fasciculin 1. Given a fixed value of the parameter 𝜇, Table 2 compares the runtimes for solving the
FOM (using the FDM), constructing the ROM (using the RBM), and solving the ROM (using direct methods),
for the classical LPBE and NPBE with those of the regularized LRPBE and NRPBE, respectively. It is clear that
the RBM spends more time in the offline phase of the greedy algorithm to compute snapshots for the classical
NPBE than on the NRPBE model, see Figure 6 and Table 1. This is mainly because of the presence of rapid
singularities in the PBE solution, which provides an onerous task in the construction of the ROM.

Consequently, Table 3, shows that solving the FOM for the NRPBE by the classical numerical techniques
(in this case, the FDM) is sufficient and computationally efficient only for a single parameter value. However,
for many varying parameter values, the RBM is more efficient because it constructs only a small ROM once,
which can then be solved fast to obtain the solutions at any values of the parameter. For instance, for 1000
different parameter values, the ROM runtime is≈ 6.59 × 10−3 sec, leading to a total runtime of≈ 82.97 sec to
solve the NRPBE using the RBM technique instead of ≈ 28300 sec by the FDM solver. Note that the runtimes

(a) (b) (c)

Figure 7: Comparison between
the error estimator and the true
error for the classical NPBE for
acetazolamide, fasciculin 1, and
LIF systems for the final ROM at
100 random (varying) parameter
values 𝜇 ∈ .
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Table 2: Runtimes for the FOM, RBM, and ROM for the linear and nonlinear variants of both the classical and the regularized PBE
models.

Runtime (seconds) for the PBE and the RPBE

LPBE NPBE LRPBE NRPBE

FOM 17.68 34.40 22.83 28.30
RBM 107.98 238.78 90.04 76.38
ROM 2.22 × 10−2 2.40 × 10−2 2.10 × 10−3 6.59 × 10−3

Table 3: Comparison of the runtimes and speed-ups between the FOM and the RBM for the NRPBE in a multiparameter context.

Runtime (seconds) and speed-up using the FDM and the RBM

No. of parameters FOM for NRPBE RBM for NRPBE Speed-up

1 28.30 76.38 0.37
10 ≈283.00 ≈76.44 3.70
100 ≈2830.00 ≈77.04 36.73
1000 ≈28300.00 ≈82.97 341.09

for the 1000 varying parameter values for the FOM are mere approximations based on that of the single
parameter value, since simulating the FOM for so many times is impractical.

6 Conclusions
In this study, we review the salient properties of the RS canonical tensor format as a regularization scheme
for the nonlinear PBE (NPBE) for calculating the electrostatic potential within and around biomolecules
as proposed in [18, 19]. Among these properties is the grid-based RS tensor splitting of the Dirac delta
distribution into the smooth and singular source term components. The NPBE is then discretized with the
smooth approximation of the Dirac delta distribution, yielding a regularized FOM that is devoid of the
singularities in the resultant solution. The RBM leverages this property by constructing a regularized ROM at
extremely low computational costs as compared to that of the classical variant. This avoids constructing a
ROM which comprises of the highly singular component of the electrostatic potential, thereby reducing the
errors in the numerical approximation. The total potential is obtained by adding the regularized component
(solution of the ROM), which is lifted (by projection) to the high-fidelity space, , to the directly precomputed
canonical tensor representation of the short-range component of the Newton kernel.
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