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Abstract The subcortical sensory pathways are the fundamental channels for mapping the

outside world to our minds. Sensory pathways efficiently transmit information by adapting neural

responses to the local statistics of the sensory input. The long-standing mechanistic explanation for

this adaptive behaviour is that neural activity decreases with increasing regularities in the local

statistics of the stimuli. An alternative account is that neural coding is directly driven by

expectations of the sensory input. Here, we used abstract rules to manipulate expectations

independently of local stimulus statistics. The ultra-high-field functional-MRI data show that

abstract expectations can drive the response amplitude to tones in the human auditory pathway.

These results provide first unambiguous evidence of abstract processing in a subcortical sensory

pathway. They indicate that the neural representation of the outside world is altered by our prior

beliefs even at initial points of the processing hierarchy.

Introduction
Expectations have measurable effects on human perception; for instance, when disambiguating

ambivalent stimuli like an object in the dark or spoken sentences in a noisy pub (de Lange et al.,

2018). The predictive coding theoretical framework (Rao and Ballard, 1999; Friston, 2005) formal-

ises the active role of expectations on perception by suggesting that sensory neurons constantly

match the incoming stimuli against an internal prediction derived from a generative model of the

sensory input. This strategy increases the efficiency of encoding and naturally boosts the salience of

unexpected events that often have strong relevance for behaviour and survival. Although predictive

coding has been shown for sensory processing in the cerebral cortex (see Kok and de Lange, 2015

for a review), the role of predictability in subcortical sensory coding is unclear (Malmierca et al.,

2019; Carbajal and Malmierca, 2018; Parras et al., 2017; Malmierca et al., 2015). If coding at the

subcortical pathway was based on expectations on the incoming stimuli, that would mean that the

brain does not hold a veridical representation of the environment even at the very early points of the

processing hierarchy.

Several studies in non-human mammals (Parras et al., 2017; Robinson et al., 2016; Ayala et al.,

2015; Gao et al., 2014; Pérez-González et al., 2012; Zhao et al., 2011; Bäuerle et al., 2011;

Antunes et al., 2010; Anderson et al., 2009; Malmierca et al., 2009) as well as in humans (Font-

Alaminos et al., 2020; Cacciaglia et al., 2015; Cornella et al., 2015; Escera and Malmierca, 2014;

Grimm et al., 2011) have shown that single neurons and neuronal ensembles of subcortical sensory

pathway nuclei exhibit stimulus-specific adaptation (SSA). Neurons and neural populations showing

SSA adapt to so-called standards (frequently occurring stimuli) yet show restored responses to so-
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called deviants (rarely occurring stimuli) (Ulanovsky et al., 2003; Antunes et al., 2010; Zhao et al.,

2011). In the auditory modality, SSA is typically elicited using sequences consisting of repetitions of

a standard sound (typically a pure tone of a given frequency) incorporating a single, randomly

located, deviant (a pure tone of the same duration and loudness but with a different frequency).

Although SSA is often taken to support the view of predictive coding (Font-Alaminos et al., 2020;

Carbajal and Malmierca, 2018; Malmierca et al., 2015; Cacciaglia et al., 2015), it can also be

explained in terms of habituation (Malmierca et al., 2014), where neurons show decreased respon-

siveness to increased regularities in their local statistics independently of their predictability (see

Grill-Spector et al., 2006; Kok and de Lange, 2015 for reviews). These local effects have been pro-

posed to be caused by synaptic fatigue (Wang et al., 2014), network habituation (Eytan et al.,

2003; Mill et al., 2011), or sharpening of the receptive fields after stimulus repetition (Grill-

Spector et al., 2006); they occur even at the level of the retina (Hosoya et al., 2005) and the

cochlea (Yates et al., 1990).

Habituation optimises information transmission locally by reducing responsiveness to redundant

information at each stage of the processing hierarchy (Chechik et al., 2006). In contrast, the predic-

tive coding framework (Rao and Ballard, 1999; Friston, 2005) suggests that neural activity repre-

sents prediction error and that such prediction error is minimal for predictable stimuli independently

of their local statistics (Malmierca et al., 2015). It has been previously speculated that predictive

coding optimises the neural code globally; that is, that expectations formed in high-level stages of

the processing hierarchy are used to adapt neural representations even at lower level stages

(Kiebel et al., 2008).

Distinguishing between these two scenarios requires to manipulate abstract predictability orthog-

onally to the local statistics of the stimulus (Summerfield et al., 2008). One way to do this is to con-

trol for behavioural expectations using abstract rules, an unresolved technical challenge for previous

studies that mostly considered SSA in (often anaesthetised) animal models. Here, we used a novel

paradigm in combination with ultra-high-field fMRI in human subjects to disassociate the habituation

and predictive coding views of redundancy reduction in the auditory subcortical sensory pathway.

We focused on the nuclei of the thalamus (medial geniculate body, MGB) and midbrain (inferior colli-

culus, IC) as they are the key nuclei of the ascending subcortical pathway that can be reliably investi-

gated in human participants in vivo (Sitek et al., 2019).

Results

Experimental design and hypotheses
We measured blood-oxygenated-level-dependent (BOLD) responses in the human subcortical audi-

tory pathway using 7 Tesla fMRI with a spatial resolution of 1.5 mm isotropic. We recorded a slab

comprising the MGB and the IC. Nineteen subjects listened to sequences of eight pure tones (seven

repetitions of a standard and one deviant tone; see Figure 1A–B). Tones were taken from a pool of

three tones and used equally often as standards and as deviants. Subjects reported the position of

the deviant for each sequence by pressing one button of a response box as quickly as possible.

Expectations for each of the deviant positions were manipulated by two abstract rules that were

disclosed to the subjects: (1) all sequences have a deviant, and (2) the deviant is always located in

positions 4, 5, or 6. Note that, although the three deviant positions were equally likely at the begin-

ning of the sequence, due to the two abstract rules the probability of finding a deviant in position 4

after hearing three standards is 1/3, the probability of finding a deviant in position 5 after hearing

four standards is 1/2, and the probability of finding a deviant in position 6 after hearing five stand-

ards is 1. This means that participants expected deviants at all positions, but with different

expectations of the probability of finding the deviant. Therefore, habituation and predictive coding

make opposing predictions for the responses at the different deviant positions (Figure 1B). Accord-

ing to the habituation hypothesis (Figure 1C, left), deviants will elicit roughly similar responses inde-

pendently of their position. Conversely, under the predictive coding view the response is

hypothesised to scale with the probability of finding a deviant in the target position (Figure 1C,

right), rendering responses to earlier deviants stronger in contrast to the later deviants.

Tabas et al. eLife 2020;9:e64501. DOI: https://doi.org/10.7554/eLife.64501 2 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.64501


Behavioural responses
All subjects showed ceiling performances to all deviant positions (90 ± 3%, 95 ± 1%, and 94 ± 2%;

mean accuracies ± standard error of the mean, for deviants in positions 4, 5 and 6, respectively), indi-

cating that subjects were attentive. Reaction times (RT ¼ 541� 43 ms, RT ¼ 447� 32 ms,

RT ¼ 197� 40 ms; for deviants at positions 4, 5, and 6, respectively) were shorter for the more

expected deviants, indicating a behavioural benefit of predictability. RTs were significantly shorter

for deviants at position six than for deviants at positions 4 and 5 (Cohen’s d ¼ �1:9 and d ¼ �1:6,

respectively; p<0:0001), and also shorter for deviants at position 5 than deviants at position 4

(Cohen’s d ¼ 0:6, p ¼ 0:045; statistical significance assessed with two-tailed Ranksum tests with

N ¼ 19 samples, Holm-Bonferroni corrected for three comparisons). The RT difference between devi-

ants 4 and 5 did not reach significance (p=0.1, uncorrected; same test as above, Cohen’s d ¼ 0:22).

SSA in IC and MGB
We estimated BOLD responses to the different stimuli using a general linear model (GLM) with six

different conditions: the first standard (std0), the standards after the first standard but before the

deviant (std1), the standards after the deviant (std2), and deviants at positions 4, 5, and 6 (dev4, dev5,

and dev6, respectively; Figure 1B). The conditions std1 and std2 were parametrically modulated

according to their positions to account for possible variations in the responses over subsequent rep-

etitions (see Materials and methods and Figure 1—figure supplement 1).

In the first step of the analysis, we determined those voxels within the ICs and MGBs that showed

SSA at the mesoscopic level; that is, that adapted to repeated stimuli and had restored responses to

a deviant. We first identified the bilateral IC and MGB (IC and MGB ROIs; yellow patches in Figure 2)

based on an atlas of the subcortical auditory pathway (Sitek et al., 2019). Within these ROIs, we
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Figure 1. Experimental design and hypotheses. (A) Example of a trial, consisting of a sequence of seven pure

tones of a standard frequency (blue waveform) and one pure tone of a deviant frequency (fourth tone in the

example; red waveform), that could be located in positions 4, 5, or 6. Subjects had to report, in each trial, the

position of the deviant. Each subject completed 240 trials in total, 80 per deviant position. All tones had a duration

of 50 ms and were separated by 700 ms inter-stimulus-intervals (ISIs). (B) Schematic view of the expected

underlying responses in the auditory pathway for the sequence shown in A, together with the definition of the

experimental variables (std0: first standard; std1: repeated standards preceding the deviant; std2: standards

following the deviant; dev x: deviant in position x). (C) Expected responses in the auditory pathway nuclei

corresponding to the habituation (h1) and predictive coding (h2) hypotheses. Since the posterior probability of

finding a deviant at locations 4, 5, or 6 after hearing 3, 4 or 5 standards is 1/3, 1/2, and 1, respectively, predictive

coding predicts different BOLD responses to different deviant locations.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Schematic of the GLM’s design matrix of two example trials with deviants in positions 4

and 6, respectively.
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tested: (1) for voxels with adapting responses to repeated standards (contrast std0>0:5std1þ 0:5std2)

and (2) for voxels showing deviant detection, where the deviant elicited a stronger response than

the repeated standards (contrast dev4>0:5std1þ 0:5std2); since all tones were used the same number

of times as deviant and standard, dev4� 0:5std1� 0:5std2 is equivalent to the definition of the SSA

index used in the animal literature (e.g. Parras et al., 2017). We included only dev4 in the contrast

because it is the only deviant for which the habituation and predictive coding hypotheses make the

same prediction. Including dev5 and dev6, which according to the predictive coding hypothesis will

elicit weaker responses, would have biased the SSA regions towards the habituation hypothesis.

We found significantly adapting (p<0:001) and deviant detecting (p<0:0002) voxels in all four ana-

tomical ROIs (Table 1). To test for voxels with significant SSA, we combined the adaptation and

deviant-detection p-values so that pSSA ¼ max ðpadaptation; pdeviant detectionÞ in each voxel. Most voxels

that showed adaptation also showed deviant detection (pSSA<0:0009; purple patches in Figure 2).

z = -14 z = -13 z = -12 z = -11 z = -10

z = -9 z = -8 z = -7 z = -6 z = -5

z = -4 z = -3 z = -2 z = -1 z = 0

Figure 2. Mesoscopic stimulus-specific adaptation (SSA) in bilateral IC and MGB. Regions within the anatomical MGB and IC ROIs showed adaptation

to the repeated standards (adaptation; blue+purple) and deviant detection (red+purple). SSA (i.e. recovered responses to a deviant in voxels showing

adaptation) occurred in bilateral MGB and IC (purple). Contrast patches show the voxels thresholded at p<0:05 FDR-corrected for the number of voxels

in each anatomical ROI.

Table 1. Statistics and MNI coordinates of peak adaptation, deviant detection, and SSA in the four regions of interest.

All p-values are FWE-corrected for the number of voxels in each anatomical ROI and Holm-Bonferroni corrected for 12 statistical

comparisons.

Contrast ROI Cluster size MNI coordinates (mm) peak-level p-value

Adaptation Left IC 177 voxels ½�4;�34;�11� p ¼ 0:0003

Right IC 196 voxels ½3;�36;�11� p ¼ 0:0002

Left MGB 280 voxels ½�16;�24;�6� p ¼ 0:0001

Right MGB 276 voxels ½18;�24;�7� p ¼ 0:001

Deviant detection Left IC 243 voxels ½�5;�35;�11� p ¼ 0:0002

Right IC 249 voxels ½4;�35;�12� p ¼ 0:0002

Left MGB 278 voxels ½�15;�25;�6� p ¼ 0:0001

Right MGB 280 voxels ½16;�23;�7� p ¼ 0:0001

SSA Left IC 173 voxels ½�4;�34;�11� p ¼ 0:0002

Right IC 194 voxels ½3;�35;�11� p ¼ 0:0002

Left MGB 267 voxels ½�16;�24;�6� p ¼ 0:00009

right MGB 269 voxels ½15;�23;�7� p ¼ 0:0009
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BOLD responses correlate with the predictability of the deviants
We used the SSA ROIs of the ICs and MGBs to study the estimated BOLD responses to the different

deviant positions (Figure 3). On visual inspection, the response profile showed that the more

expected the deviants, the more reduced the responses, fitting with h2 (the predictive coding

hypothesis; Figure 1C). Formal (Ranksum) statistical tests revealed significant differences in

responses to the different deviant positions at a ¼ 0:05 for all contrasts (dev4 6¼ dev5, dev5 6¼ dev6,

dev4 6¼ dev6) in the four ROIs (p<0:005, Holm-Bonferroni corrected for 32 comparisons; jdj>1:00; for

statistical details see Table 2). The results of these tests show that MGB and IC mesoscopic

responses to deviant tones cannot be explained by habituation only.

We tested if the responses to deviants were negatively correlated to the posterior probability of

the deviant positions, as hypothesised by the predictive coding hypothesis (h2; Figure 1C). We com-

puted the correlation between the estimated BOLD response elicited by the different deviant posi-

tions in each SSA ROIs of the ICs and MGBs and the probability of finding the deviant in the nth

position after hearing n� 1 standards (namely: 1/3, 1/2 and 1, for deviant positions 4, 5, and 6,

respectively; Figure 3—figure supplement 1). We found a strong negative Pearson’s correlation

between predictability and BOLD responses in all four ROIs (left IC: r ¼ �0:33, right IC: r ¼ �0:27,

left MGB: r ¼ �0:43, right MGB: r ¼ �0:32; N = 19 and p<4� 10
�7 in the four ROIs).

To explore the robustness of these findings we tested the correlation between the mean BOLD

responses and deviant predictability at the single-subject level. We found negative correlations for

each subject, with Pearson’s r ranging from r ¼ �0:27 to r ¼ �0:72 (Figure 3—figure supplement

1). The correlations were statistically significant for 14 of the 19 subjects (p>0:19 for the non-signifi-

cant correlations, and p 2 ½0:036; 10�10� for the significant ones; Pearson’s test comprised

N ¼ 4� 4� 3 ¼ 48 samples, corresponding to one sample for each ROI, run, and condition).

Deviant detection can be abolished by making the deviant predictable
The correlation analyses suggested that the mesoscopic responses in the IC and MGB to the devi-

ants can be interpreted as prediction error. If that is indeed the case, we expect that the deviant in

position six would elicit similar responses as the standards after a deviant (std2), because the expec-

tation of occurrence is the same (i.e. P ¼ 1). In contrast, responses to a deviant in position four

should show similar behaviour as deviants in traditional SSA designs; namely, higher response to the

deviant than to the first standard (std0; deviant detection) (Cacciaglia et al., 2015; Gao et al., 2014;

Malmierca et al., 2009). The present results are consistent with both predictions: response magni-

tudes for dev6 and std2 are similar and the response to dev4 is significantly higher than to std0 in all

std0 std1 std2 dev4 dev5 dev6 std0 std1 std2 dev4 dev5 dev6 std0 std1 std2 dev4 dev5 dev6 std0 std1 std2 dev4 dev5 dev6

z
-s
c
o
re
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1

2 IC-L IC-R MGB-L MGB-R

n.s.
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Figure 3. BOLD responses in the four ROIs to the three different positions of the deviants. Kernel density estimations of the distribution of z-scores of

the estimated BOLD responses, averaged over voxels of each ROI, to the three deviant positions (dev4, dev5, dev6) in each of the four ROIs: left and

right IC, and left and right MGB (IC-L, IC-R, MGB-L, MGB-R). Responses to the three different standards (std0, std1, std2) are displayed for reference.

Each distribution holds 19 samples, one per subject. Error bars signal the mean and standard error of the distributions. * p<0:05, ** p<0:005, ***

p<0:0005, **** p<0:00005; all p-values are Holm-Bonferroni corrected for 8� 4 ¼ 32 comparisons. Std0, first standard; std1: standards preceding the

deviant; std2: standards following the deviant; dev4, dev5, and dev6: deviants at positions 4, 5, and 6, respectively.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Pearson correlations between the estimated BOLD responses and predictability of the deviants at the group (A) and subject (B)

level.
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four ROIs (Figure 3; Cohen’s d<� 0:8; p<0:02 Holm-Bonferroni corrected for 32 comparisons;

Table 2).

The negligible differences between the responses to the fully expected deviant (dev6) and the

standards after the deviant (std2) fits the predictive coding framework perfectly: although the deviant

is different from the standards in terms of frequency, it elicits the same response as a standard.

Thus, deviance detection can be virtually abolished at the mesoscopic level by manipulating sub-

jects’ expectations; that is, by rendering the deviant predictable.

IC and MGB respond in accordance with the predictive-coding model
To formally test the habituation (h1) and predictive coding hypothesis (h2) against each other in a

voxel-by-voxel manner, we used Bayesian model comparison. Following the methodology described

in Rosa et al., 2010 and Stephan et al., 2009, we first calculated the log-likelihood of each model

in each voxel of the four SSA regions in each subject. Each of the two models associated different

relative amplitudes to different tone positions in the sequences. The habituation model assumed an

asymptotic decay of the standards and recovered responses to the deviants (Figure 4A), whereas

the predictive-coding model assumed that the responses to both deviants and standards would

depend on their predictability (Figure 4A; Figure 1C).

Subject-specific log-likelihoods were used to construct a posterior probability map for each

model at the group level. Posterior maps showed that most voxels in both ICs and MGBs were more

likely to respond according to the principles of predictive coding (red sections in Figure 4B). For the

Table 2. Statistics of the BOLD response differences between conditions.

Effect size is expressed as Cohen’s d. Statistical significance was evaluated with two-tailed Ranksum tests between the distributions of

the mean response in each ROI across subjects (N ¼ 19). All p-values in the table are Holm-Bonferroni corrected for 4� 8 ¼ 32

comparisons.

IC-L

dev4 dev5 dev6

std0 d ¼ �1:04 p ¼ 0:046 d ¼ �0:36 p ¼ 1 d ¼ 1:21 p ¼ 0:025

std2 d ¼ �2:97 p ¼ 8:6� 10
6 d ¼ �0:02 p ¼ 0:95

dev4 d ¼ �1:05 p ¼ 0:038 d ¼ �2:45 p ¼ 5:5� 10
5

dev5 d ¼ �1:90 p ¼ 0:00043

IC-R

dev4 dev5 dev6

std0 d ¼ �1:07 p ¼ 0:028 d ¼ �0:50 p ¼ 0:9 d ¼ 0:93 p ¼ 0:061

std2 d ¼ �1:88 p ¼ 0:00044 d ¼ �0:16 p ¼ 1

dev4 d ¼ �0:69 p ¼ 0:18 d ¼ �1:87 p ¼ 0:001

dev5 d ¼ �1:44 p ¼ 0:0053

MGB-L

dev4 dev5 dev6

std0 d ¼ �1:46 p ¼ 0:0024 d ¼ �0:55 p ¼ 1 d ¼ 1:38 p ¼ 0:017

std2 d ¼ �3:78 p ¼ 7:6� 10
6 d ¼ �0:48 p ¼ 1

dev4 d ¼ �1:15 p ¼ 0:016 d ¼ �2:52 p ¼ 2:8� 10
5

dev5 d ¼ �1:93 p ¼ 0:00035

MGB-R

dev4 dev5 dev6

std0 d ¼ �1:15 p ¼ 0:024 d ¼ �0:04 p ¼ 1 d ¼ 1:47 p ¼ 0:0063

std2 d ¼ �2:57 p ¼ 5:6� 10
5 d ¼ �0:17 p ¼ 1

dev4 d ¼ �1:26 p ¼ 0:014 d ¼ �2:44 p ¼ 6:1� 10
5

dev5 d ¼ �1:67 p ¼ 0:0026
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IC, this was the case for 98% (right IC) and 86% (left IC) of the voxels. Only negligible parts of the

four nuclei (maximum of 3%) were more likely to be driven by habituation (blue sections in

Figure 4B). We repeated the analysis without restriction to the SSA regions, but for the anatomical

IC and MGB regions. The results were qualitatively the same (Figure 4—figure supplement 1).

SSA is present and driven by predictive coding in both primary and
secondary MGB
Next, we tested whether voxels showing SSA and responding to the principles of predictive coding

were present in the primary (lemniscal) or only secondary (non-lemniscal) sections of the auditory

pathway. Whilst the primary pathway is characterised by neurons that carry auditory information with

high fidelity, the secondary pathway typically shows contextual and multisensory effects (Hu, 2003).

Both the MGB and the IC contain subregions that contain either primary and secondary pathway

Figure 4. Bayesian model comparison analysis of the BOLD responses. (A) Design of the Bayesian analysis: each model was defined according to the

relative amplitudes it predicted for the different positions of the standards and deviants in the tone sequences. Note that, depending on the deviant

position, standards in positions 4 and 5 were not fully expected in the predictive coding model. (B) Posterior probability map of the predictive coding

model. Since we only used two models to compute the posteriors, p<0:5 means that the habituation model (blue) is the most likely explanation of the

data, and p>0:5 means that the predictive coding model is the most likely explanation of the data. (C) Histograms showing the prevalence of each of

the two models in each of the SSA regions. See also Figure 4—figure supplement 1, which shows the posterior maps and histograms for the

anatomical ROIs.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Posterior probability of each model across the entire anatomical ROIs.
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components. Distinguishing between the primary and secondary subsection of the IC and MGB non-

invasively is technically challenging. A recent study (Mihai et al., 2019) distinguished two distinct

tonotopic gradients of the MGB. The ventral tonotopic gradient was identified as the ventral MGB

(vMGB) which is the primary or lemniscal subsection of the MGB (see Figure 5A, green). Although

the parcellation is based only on the topography of the tonotopic axes and their anatomical location,

the region is the best approximation to-date of the vMGB in humans.

First, we assessed whether the strength of SSA is comparable in the ventral tonotopic gradient

and in the rest of the MGB ROIs. Following the procedures described in previous literature (e.g.

Ulanovsky et al., 2003), we computed the SSA index

SI ¼ ðdev4� std1=2� std2=2Þ=ðdev4þ std1=2þ std2=2Þ for each voxel in each of the subdivisions of the

MGB. Similar distributions of the SI were observed in the vMGB and the rest of the MGB

(Figure 5B). We also observed similar distributions of the posterior probability of the habituation

and predictive coding model across the voxels of each of the subdivisions (Figure 5C). Predictive

coding was the most likely underlying model in the entire left and right vMGB, respectively, and in

97% and 93% of the left and right voxels not belonging to the ventral subdivision. We conclude that

both the vMGB and the rest of the MGB are dominated by responses driven by predictive coding.

Deviant detection can be elicited by unpredictable standards
So far, we assumed that not only the responses to deviants, but also to standards, was modulated

by predictability (Figures 4 and 5). This means that unexpected standards elicit stronger responses

than expected standards: that is, that deviant detection is not restricted to deviant tones, but more

generally to unexpected tones. To validate this choice formally we ran a further Bayesian model

comparison including a model that we call the deviant-only predictive coding model, where only the

responses to deviants but not the standards are modulated by predictability (see Figure 6A).

BOLD responses in most voxels (a minum of 96%) of the four nuclei are best explained by the

level of predictability of both the deviants and standards (Figure 6B and C).

Figure 5. Analyses of BOLD responses in ventral MGB. (A) Masks from Mihai et al., 2019 of the ventral MGBs (green); blue marks the remaining of the

anatomical MGB ROIs. (B) The distribution of the SSA index SI ¼ ðdev� stdÞ=ðdevþ stdÞ across each of the two subdivisions of the MGB ROIs. (C)

Histograms showing the prevalence of the habituation (hab) and predictive coding (pred) models in each of the subdivisions.
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Discussion
We tested two opposing views on the mechanism of sensory processing in the auditory midbrain

(IC) and auditory thalamus (MGB). In one view, sensory processing can be explained by habituation

to local stimulus statistics (Figure 1C, h1), in the other by predictive coding (Figure 1C, h2). The

study included a novel paradigm that orthogonalised local stimulus statistics and subjects’ expecta-

tions. We used ultra-high-resolution 7-Tesla fMRI optimised for imaging the IC and MGB. There

were three key findings: First, mean BOLD responses in IC and MGB correlated with the subjects’

expectations of the probability of the stimulus occurrence but not with the local stimulus statistics.

Second, events deviating from local stimulus statistics did not lead to increased responses in IC and

MGB if subjects expected these events. Third, Bayesian model comparison showed that the

responses of the majority of voxels in IC and MGB are best explained by a predictive coding model.

Together, the findings indicate that sensory processing in auditory midbrain and thalamus are mostly

driven by expectations of the subject and not by regularities in the local stimulus statistics.

Figure 6. Bayesian model comparison of a variation of the predictive coding model. (A) Design: relative amplitudes assumed by the habituation,

predictive coding, and deviant-only predictive coding model. The first two models are identical to the ones defined in Figure 4A. (B) Posterior

probability map of the deviant-only predictive coding model. Since three models were considered when computing the posteriors, P<0:33 means that

the deviant-only predictive coding model is not the most likely explanation of the data, but P>0:33 does not necessarily mean that the deviant-only

predictive coding model is the most likely explanation of the data. (C) Histograms showing the prevalence of each of the three models in each of the

SSA regions.
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Several previous studies have interpreted response properties of subcortical sensory nuclei within

a predictive coding framework (Font-Alaminos et al., 2020; Carbajal and Malmierca, 2018;

Parras et al., 2017; Malmierca et al., 2015; Cacciaglia et al., 2015; Ulanovsky et al., 2003). These

studies have, however, used designs where predictions were generated based on the regularities of

the local stimulus statistics. Although mesoscopic responses to violation of abstract rules have been

reported in the sensory cortex (e.g., Näätänen et al., 1978; Paavilainen, 2013; Kok and de Lange,

2015; de Lange et al., 2018), they have not been reported in subcortical nuclei to-date. Our study

breaks with a long tradition on research on subcortical SSA (Font-Alaminos et al., 2020;

Parras et al., 2017; Robinson et al., 2016; Cacciaglia et al., 2015; Duque and Malmierca, 2015;

Ayala et al., 2015; Cornella et al., 2015; Gao et al., 2014; Anderson and Malmierca, 2013;

Ayala et al., 2012; Pérez-González et al., 2012; Zhao et al., 2011; Bäuerle et al., 2011;

Antunes and Malmierca, 2011; Antunes et al., 2010; Anderson et al., 2009; Malmierca et al.,

2009; Yu et al., 2009) by defining the predictions based on abstract rules that were orthogonal to

the regularity of the stimulus local statistics. Only one study attempted to investigate the impact of

abstract rules on SSA using alternating tone sequences in anaesthetised rats (Malmierca et al.,

2019). They found that only around 5% of the measured units (comparable to the false discovery

rate a ¼ 0:05 of the study) showed deviant responses to violations of the abstract rules.

A study on SSA in the rodent auditory system (Parras et al., 2017) where predictability was con-

trolled using local stimulus statistics reported that structures at increasingly higher stages of the

auditory pathway show increasing amounts of prediction error. The authors defined prediction error

as the responses to sounds that deviate from the predictions in comparison to the responses to

those same sounds when there were no available predictions. The authors concluded that the IC,

MGB, and AC form a hierarchical network of prediction error. Although the studies use different

paradigms in different species, a similar analysis can be done in our data by comparing the

responses to the most unexpected deviant (dev4) with those for which no prediction is available; that

is, the first standard in the sequences std0. Responses to dev4 are higher than responses to std0 in

both, IC and MGB (Table 2 and Figure 3). This contrast with Parras’ results, where the IC showed lit-

tle or no difference between the responses elicited by deviant and control sounds.

Nuclei in the auditory pathway are organised in primary (or lemniscal) and secondary (or non-lem-

niscal) subdivisions. The lemniscal division of the auditory pathway has narrowly tuned frequency

responses and is considered as responsible for the transmission of bottom-up information; the non-

lemniscal division presents wider tuned frequency responses and is also involved in multisensory

integration (Hu, 2003). In the animal neurophysiology literature the strongest SSA is typically

reported in non-lemniscal areas; that is, in dorsal and medial sections of the MGB (Antunes et al.,

2010; Antunes and Malmierca, 2011; Duque et al., 2014) and the cortices of the IC (Pérez-

González et al., 2012; Gao et al., 2014; Duque et al., 2014; Ayala and Malmierca, 2015;

Ayala and Malmierca, 2018). Subdivisions of IC and MGB are notoriously difficult to assess in

humans in vivo because of their small size and deep location within the brain (Moerel et al., 2015;

Mihai et al., 2019). Nevertheless, our results showed that the SSA index had comparable distribu-

tions in the ventral and dorsal subdivisions of the MGB (Figure 5A). Moreover, our results showed

that MGB regions driven by the predictive coding model were predominant in the ventral (lemniscal)

tonotopic gradient of the MGB (Mihai et al., 2019) as well as in the rest of the MGB. Regarding the

IC, there is to-date no available anatomical or functional atlas delimiting its central section (lemniscal)

from its cortex (non-lemniscal). Nevertheless, our results show that the predictive coding model is

the most likely generator of the data across the entire nuclei. We therefore assume that predictive

coding underlies encoding of both, lemniscal and non-lemniscal subdivisions of the IC and MGB.

This fundamental difference with the animal literature might stem from a number of reasons. First,

our design involved an active task: lemniscal pathways might only be strongly modulated by predic-

tions when they carry behaviourally relevant sensory information. Second, the modulation of the sub-

cortical pathways might be fundamentally different in humans compared to other mammals. Last,

given the strength of the SSA effects reported in this study, it is possible that regions with weak SSA

might have been contaminated with signal stemming from areas with strong SSA due to smoothing

and interpolation necessary for the analysis of fMRI data.

It is tempting to hypothesise that the predictions on the sensory input that drive the subcortical

responses in our experiment are generated in the cerebral cortex. This hypothesis would be consis-

tent with the strong feedback connections from cerebral cortex to the subcortical sensory pathway
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(Winer, 1984; Winer, 2005). It would also be consistent with the results from animal studies where

the deactivation of unilateral auditory cortex (Bäuerle et al., 2011) or the TRN (Yu et al., 2009) led

to reduction of SSA in the ventral MGB (but also see contradictory findings in non-lemniscal MGB,

Antunes and Malmierca, 2011, and non-lemniscal IC, Anderson and Malmierca, 2013). Our para-

digm was optimised to study prediction error rather than the generation of such predictions, and we

lacked the resolution to study cortical responses in enough detail as to disentangle activity repre-

senting predictions from activity representing prediction error. Thus, although it is unlikely that sub-

cortical sensory nuclei like the MGB or IC are able to generate predictions based on the task

instructions, whether these predictions originate in the cerebral cortex remains an open question.

Higher BOLD responses to attended in contrast to unattended sounds are present in auditory

cortex (Lee et al., 2014; Paltoglou et al., 2011), and to a much weaker extend also in the IC

(Rinne et al., 2007; Rinne et al., 2008; Varghese et al., 2015; Riecke et al., 2018). Our results

showed that responses to fully expected deviants at position 6 (posterior probability of 1) are

strongly attenuated with respect to responses to deviants in positions where standards might also

occur. This strong attenuation might not only be interpreted in terms of predictive coding, but also

additionally by attentional gain modulation: deviants with a posterior probability of 1 might not

need to be examined as carefully as deviants with low posterior probability, because its occurrence

is guaranteed by task design. Two independent arguments support the interpretation that predictive

coding underlies our results. First, although both conditions dev4 and dev5 required full attention of

the participants and are thus not affected by any potential changes in the attentional state of the

subject, BOLD response differences for these two conditions had strong effect sizes, ranging from

d ¼ �1:36 to d ¼ �0:69 (see Table 2).

Second, our results showed that deviance responses were virtually abolished for dev6 (Table 2).

From previous work in animals, we know that deviance detection is salient even in anaesthetised ani-

mals (Malmierca et al., 2015) and effect sizes of SSA in the IC are comparable in the awake and

anaesthetised mouse (Duque and Malmierca, 2015). Using fMRI in humans, Cacciaglia and col-

leagues (Cacciaglia et al., 2015) showed deviance detection in the human subcortical auditory path-

way in passive listening conditions. Despite the much lower BOLD sensitivity of their experimental

setup in comparison to ours, they reported a t-statistic for the deviant versus repeated standard con-

trast (in the e.g. left IC) of t11 ¼ 5:24, corresponding to an effect size of d ¼ 3:15. In contrast, our

effect sizes for the dev6 versus std2 contrast range from d ¼ 0:26 (left IC) to d ¼ �0:74 (right MGB;

Table 2). If the dev6 response in our study was influenced by lack of attention, we would have still

expected similar deviance responses as in Cacciaglia and colleagues’s passive listening design. Only

by interpreting the BOLD responses in our data as a correlate of predictability to abstract rules we

can explain why we measured similar responses to dev6 and std2 in our paradigm.

The present study focused on auditory sensory pathway nuclei. Stimulus-specific adaptation at

early stages of the sensory pathways has, however, also been reported in the visual (Dhruv and Car-

andini, 2014), olfactory (Fletcher and Wilson, 2003), and somatosensory (Maravall et al., 2013)

pathways. Predictive coding serves to optimise the dynamic range of sensory systems

(Brenner et al., 2000), and to maximise information transmission in the neural code by reducing the

responses to expected stimuli (Fairhall et al., 2001) and to redundant portions of the incoming sen-

sory signal (Huang and Rao, 2011). We speculate that abstract expectations are used as well in

other sensory modalities to facilitate sensory processing in subcortical sensory nuclei.

Given the importance of predictive coding on sensory processing (e.g., Sohoglu and Davis,

2016; Davis and Johnsrude, 2007), atypical predictive coding in the subcortical sensory pathway is

expected to result in profound repercussion at the cognitive level (McFadyen et al., 2020). For

instance, individuals with developmental dyslexia, a disorder that is characterised by difficulties with

processing speech sounds, have altered adaption dynamics to stimulus regularities

(Perrachione et al., 2016; Ahissar et al., 2006; Chandrasekaran et al., 2009), altered responses in

the left MGB (Dı́az et al., 2012; Chandrasekaran et al., 2009), and atypical left hemispheric cortico-

thalamic pathways (Müller-Axt et al., 2017; Tschentscher et al., 2019). Understanding the mecha-

nisms underlying SSA and its relation to sensory processing in subcortical sensory pathways could

have valuable applications in clinical contexts.
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Materials and methods
This study was approved by the Ethics committee of the Medical Faculty of the University of Leipzig,

Germany (ethics approval number 273/14-ff). All listeners provided written informed consent and

received monetary compensation for their participation.

Participants
Nineteen German native speakers (12 female), aged 24 to 34 years (mean 26.6), participated in the

study. None of them reported a history of psychiatric or neurological disorders, hearing difficulties,

or current use of psychoactive medications. Normal hearing abilities were confirmed with pure tone

audiometry (250 Hz to 8000 Hz; Madsen Micromate 304, GN Otometrics, Denmark) with a threshold

equal to or below 25 dB SPL. Participants were also screened for dyslexia (rapid automatised naming

test of letters, numbers, and objects [Denckla and Rudel, 1974]; German LGVT 6–12 test

[Schneider et al., 2007]) and autism (Autism Spectrum Quotient [Baron-Cohen et al., 2001]). All

scores were within the neurotypical range (RAN: maximum of 3.5 errors and RT ¼ 30 seconds across

the four categories; AQ: all participants under a score of 23, below the cut-off value of 32; LGVT

scores: all subjects where performing in the normal range). As we had no estimations of the possible

sizes of the effects, we maximised our statistical power by recruiting as many participant as we could

fit in the MRI measurement time allocated to the study. This number was fixed to nineteen before

we started data collection.

Experimental paradigm
All sounds were 50 ms long (including 5 ms in/out ramps) pure tones of frequencies 1455 Hz,

1500 Hz, or 1600 Hz, corresponding to three local minima of the power spectrum of the noise pro-

duced by the MRI during the scanning. From those three tones, we constructed six standard-deviant

frequency combinations that were used the same number of times across each run, so that all tones

were used the same number of times as deviant and standards. We used three rather than two tones

so that each run contained six rather than two different standard-deviant combinations, rendering

the task more engaging.

Each tone sequence consisted of seven repetitions of the standard stimulus and a single event of

the deviant stimulus. Stimuli were separated by 700 ms inter-stimulus-intervals (ISI), amounting to a

total duration of 5300 ms per sequence. To choose the ISI, we run a pilot behavioural study where

we measured the reaction time to deviants 4, 5, and 6 with different ISIs. We took the shortest possi-

ble ISI that allowed the subjects to predict the fully expected deviant, as revealed by a significant

behavioural benefit in the RT for a deviant located in position 6.

In each trial of the fMRI experiment, subjects listened to one tone sequence and reported, as fast

and accurately as possible using a button box with three buttons, the position of the deviant (4, 5,

or 6). The inter-trial-interval (ITI) was jittered so that deviants were separated by an average of 5 s,

up to a maximum of 11 s, with a minimum ITI of 1500 ms. We chose such ITI properties to maximise

the efficiency of the response estimation of the deviants (Friston et al., 1999), while keeping a suffi-

ciently long ITI to ensure that the sequences belonging to separate trials were not confounded.

The experiment consisted in four runs with the same task. Each run contained 6 blocks of 10 trials.

The 10 trials in each block used one of the six possible combinations of pure tones, so that all the

sequences within each block had the same standard and deviant. Thus, within a block only the posi-

tion of the deviant was unknown, while the frequency of the deviant was known. The order of the

blocks within the experiment was randomised. The position of the deviant was pseudorandomised

across all trials in each run so that each deviant position happened exactly 20 times per run but an

unknown amount of times per block. This constraint allowed us to keep the same a priori probability

for all deviant positions in each block. In addition, there were 23 silent gaps of 5300 ms duration

(i.e., null events of the same duration as the tone sequences) randomly located in each run

(Friston et al., 1999).

Each run lasted around 10 minutes, depending on the reaction times of the participant. The runs

were separated by breaks of a minimum of 1 minute, during which the subjects could rest. Fieldmaps

and a whole-head EPI (see Data acquisition) were acquired between the second and third run. The

first run was preceded by a practice run of four randomly chosen trials to ensure the subjects had

understood the task. We acquired fMRI during the practice run in order to allow the subjects to

Tabas et al. eLife 2020;9:e64501. DOI: https://doi.org/10.7554/eLife.64501 12 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.64501


undertake the training with MRI-noise. As we had no estimations of the possible sizes of the effects,

we maximised our statistical power by measuring as many trials as we could fit within the expected

engagement span of the participants, that we estimated of around 45 minutes.

Data acquisition
MRI data were acquired using a Siemens Magnetom 7 Tesla scanner (Siemens Healthineers, Erlan-

gen, Germany) with an eight-channel head coil (RAPID Biomedical, Rimpar, Germany).

Functional MRI data were acquired using echo planar imaging (EPI) sequences. We used a field of

view (FoV) of 132 mm � 132 mm and partial coverage with 30 slices. This volume was oriented in

parallel to the superior temporal gyrus such that the slices encompassed the IC, the MGB, and the

superior temporal gyrus. In addition, we acquired three volumes of an additional whole-head EPI

with the same parameters (including the FoV) and 80 slices during resting to aid the coregistration

process (see Data preprocessing).

The EPI sequence had the following acquisition parameters: TR = 1600 ms, TE = 19 ms, flip angle

65˚, GRAPPA with acceleration factor 2 (Griswold et al., 2002), 33% phase oversampling, matrix

size 88 � 88, FoV 132 mm � 132 mm, phase partial Fourier 6/8, voxel size 1.5 mm isotropic, inter-

leaved acquisition, and anterior to posterior phase-encode direction. During fMRI data acquisition,

heart rate and respiration rate were acquired using a BIOPAC MP150 system (BIOPAC Systems Inc,

Goleta, CA, USA).

Structural images were recorded using an MP2RAGE (Marques et al., 2010) T1 protocol with

700 mm isotropic resolution, TE = 2.45 ms, TR = 5000 ms, TI1 = 900 ms, TI2 = 2750 ms, flip angle 1

= 5˚, flip angle 2 = 3˚, FoV = 224 mm � 224 mm, GRAPPA acceleration factor 2.

Stimuli were presented using MATLAB (The Mathworks Inc, Natick, MA, USA; RRID:SCR_001622)

with the Psychophysics Toolbox extensions (Brainard, 1997) and delivered through an MrConfon

amplifier and headphones (MrConfon GmbH, Magdeburg, Germany). Loudness was adjusted inde-

pendently for each subject before starting the data acquisition to a comfortable level.

Data preprocessing
The preprocessing pipeline was coded in Nipype 1.1.2 (Gorgolewski et al., 2011) (RRID:SCR_

002502), and carried out using tools of the Statistical Parametric Mapping toolbox, version 12 (SPM;

RRID:SCR_007037); Freesurfer (RRID:SCR_001847), version 6 (Fischl et al., 2002); the FMRIB Soft-

ware Library, version 5 (FSL; RRID:SCR_002823) (Jenkinson et al., 2012); and the Advanced Normal-

isation Tools, version 2.2.0 (ANTS; RRID:SCR_004757) (Avants et al., 2011). All data were

coregistered to the Montreal Neurological Institute (MNI) MNI152 1 mm isotropic symmetric tem-

plate (RRID:SCR_014087).

First, we realigned the functional runs. We used SPM’s FieldMap Toolbox to calculate the geo-

metric distortions caused in the EPI images due to field inhomogeneities. Next, we used SPM’s

Realign and Unwarp to perform motion and distortion correction on the functional data. Motion

artefacts, recorded using SPM’s ArtifactDetect, were later added to the design matrix (see Estima-

tion of the BOLD responses).

Next, we processed the structural data. We first masked the structural data to eliminate voxels

that contained air, scalp, skull, and cerebrospinal fluid. The masks were computed by segmenting

the white matter with SPM’s Segment and applied with FSLmaths. Then, we used Freesurfer’s recon-

all routine to calculate the boundaries between grey and white matter (these are necessary to regis-

ter the functional data to the structural images) and ANTs to compute the transformation between

the structural images and the MNI152 symmetric template.

Last, we coregistered the functional data to the MNI152 space. The transformation between the

functional runs and the structural image was computed with using Freesurfer’s BBregister using the

boundaries between grey and white matter of the structural data and the whole-brain EPI as an

intermediate step. The final functional-to-MNI transformation, computed as the concatenation of the

functional-to-structural and structural-to-MNI transformations, was then applied using ANTs. Note

that, since the resolution of the MNI space (1 mm isotropic) was higher than the resolution of the

functional data (1.5 mm isotropic), the transformation resulted in a spatial oversampling.
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All the preprocessing parameters, including the smoothing kernel size, were fixed before we

started fitting the general linear model (GLM) and remained unchanged during the subsequent steps

of the data analysis.

Physiological (heart rate and respiration rate) data were processed by the PhysIO Toolbox

(Kasper et al., 2017), that computes the Fourier expansion of each component along time and adds

the coefficients as covariates of no interests in the model’s design matrix.

Estimation of the BOLD responses
First level and second level analyses were coded in Nipype and carried out using SPM. Statistical

analyses of the model estimations in the SSA ROIs were carried out using custom code in MATLAB.

BOLD data acquired during the practice run was not included in the analysis.

The coregistered data were first smoothed using a 2 mm full-width half-maximum kernel Gaussian

kernel with SPM’s Smooth.

The first level GLM’s design matrix included six conditions: first standard (std0), standards before

the deviant (std1), standards after the deviant (std2), and deviants in positions 4, 5, and 6 (dev4,

dev5, and dev6, respectively; Figure 1). Conditions std1 and std2 were modelled using linear

parametric modulation (O’Doherty et al., 2007), whose linear factors were coded according to the

position of the sound within the sequence (see Figure 1—figure supplement 1). We modelled the

first standard separately from the remaining standards preceding the deviant so that we could per-

form a contrast comparing the responses to the first and the adapted standards to locate voxels

showing adaptation. We modelled the standards preceding and following the deviant separately

because we cannot propose a set of linear factors simultaneously valid for both, std1 and std2. On

top of the main regressors, the design matrix also included the physiological PhysIO and artefact

regressors of no-interest.

Definition of the anatomical and SSA ROIs
We used a recent anatomical atlas of the subcortical auditory pathway (Sitek et al., 2019) to locate

the voxels corresponding to the left IC, right IC, left MGB, and right MGB, respectively. The atlas

comprises three different definitions of the ROIs calculated using (1) data from the big brain project,

(2) postmortem data, and (3) fMRI in vivo-data. We used the mask computed with the fMRI data

because this data collection method resembled our experimental setup the most.

We used the coefficients of the GLM or beta estimates from the first level analysis to calculate

the adaptation (Figure 2, blue patches) and deviant detection (red patches) ROIs, defined as the

sets of voxels within the IC and MGB ROIs that responded significantly to the contrasts

std0>0:5std1þ 0:5std2 and dev4>0:5std1þ 0:5std2, respectively. Significance was defined as p<0:05,

false-discovery-rate (FDR)-corrected for the number of voxels within each of the IC/MGB ROIs. SSA

voxels are defined as voxels that show both, adaptation and deviant detection; thus, we calculated

an upper bound of the p-value maps for the SSA contrast as the maximum of the uncorrected p-val-

ues associated to the adaptation and deviant detection contrasts. The SSA ROIs (Figure 2, purple

patches) were calculated by FDR-correcting and thresholding the resulting p-maps at a ¼ 0:05. All

calculations were performed using custom-made scripts (see Data and code availability).

Bayesian model comparison
The Bayesian analysis of the data consisted as well of first and second level analyses. In the first level,

we used SPM via nipype to compute the log-evidence in each voxel of each subject for each of the

four models: habituation, predictive coding, task engagement, and deviant-only predictive coding.

The models were described using a single regressor with parametric modulation whose coefficients

corresponded to a simplified view of the expected responses according to each model. The

expected responses of each model were the same in all trials that had the same deviant position.

The values assigned to each stimulus in the models are schematically shown in Figures 4 and

6. In the habituation model, the amplitude was one for the first standard in the sequences (std0 in

the regression models) and the deviant, 1=n for standards n ¼ 2; 3; . . ., and 1=ðn� 1Þ for the stand-

ards n ¼ d þ 1; d þ 2; . . ., where d is the position of the deviant; for example tones in a sequence with

d ¼ 6 have amplitudes ½1; 1=2; 1=3; 1=4; 1=5; 1; 1=5; 1=6�. For the predictive coding model, the ampli-

tude of the first standard was set to 0.5 and, for the rest of stimuli, to 1� P where P is the
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probability of occurrence of the stimulus; for example tones in a sequence with d ¼ 6 have ampli-

tudes ½0:5; 0; 0; 0:66; 0:5; 0; 0; 0�. For the deviant-only predictive coding model, amplitudes were set as

in the predictive coding model, but turning the standards in positions 4 and 5 also to zero; for exam-

ple, tones in a sequence with d ¼ 6 have amplitudes ½0:5; 0; 0; 0; 0; 0; 0; 0�. Amplitudes of all the mod-

els were normalised to have a mean of zero and a variance of one along the entire run before fitting.

Log-evidence maps were combined using custom scripts (see Data and code availability) and fol-

lowing the procedure described in Rosa et al., 2010 and Stephan et al., 2009 to compute the pos-

terior probability maps associated to each model. Histograms shown in Figures 4 and 6 are kernel-

density estimates computed with the distribution of the posterior probabilities across voxels for

each of the SSA ROIs.
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