Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Striatal dopamine and reward prediction error signaling in unmedicated schizophrenia patients

MPG-Autoren

Kaminski,  Jakob
Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Germany;
Berlin Institute of Health (BIH), Germany;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons96505

Schlagenhauf,  Florian
Department of Psychiatry and Psychotherapy, Charité University Medicine Berlin, Germany;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Bernstein Center for Computational Neuroscience, Berlin, Germany;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Katthagen_2020.pdf
(Verlagsversion), 20MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Katthagen, T., Kaminski, J., Heinz, A., Buchert, R., & Schlagenhauf, F. (2020). Striatal dopamine and reward prediction error signaling in unmedicated schizophrenia patients. Schizophrenia Bulletin, 46(6), 1535-1546. doi:10.1093/schbul/sbaa055.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-13E7-E
Zusammenfassung
Increased striatal dopamine synthesis capacity has consistently been reported in patients with schizophrenia. However, the mechanism translating this into behavior and symptoms remains unclear. It has been proposed that heightened striatal dopamine may blunt dopaminergic reward prediction error signaling during reinforcement learning. In this study, we investigated striatal dopamine synthesis capacity, reward prediction errors, and their association in unmedicated schizophrenia patients (n = 19) and healthy controls (n = 23). They took part in FDOPA-PET and underwent functional magnetic resonance imaging (fMRI) scanning, where they performed a reversal-learning paradigm. The groups were compared regarding dopamine synthesis capacity (Kicer), fMRI neural prediction error signals, and the correlation of both. Patients did not differ from controls with respect to striatal Kicer. Taking into account, comorbid alcohol abuse revealed that patients without such abuse showed elevated Kicer in the associative striatum, while those with abuse did not differ from controls. Comparing all patients to controls, patients performed worse during reversal learning and displayed reduced prediction error signaling in the ventral striatum. In controls, Kicer in the limbic striatum correlated with higher reward prediction error signaling, while there was no significant association in patients. Kicer in the associative striatum correlated with higher positive symptoms and blunted reward prediction error signaling was associated with negative symptoms. Our results suggest a dissociation between striatal subregions and symptom domains, with elevated dopamine synthesis capacity in the associative striatum contributing to positive symptoms while blunted prediction error signaling in the ventral striatum related to negative symptoms.