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Abstract

Integrated interpretability without sacrificing the predic-

tion accuracy of decision making algorithms has the poten-

tial of greatly improving their value to the user. Instead of

assigning a label to an image directly, we propose to learn

iterative binary sub-decisions, inducing sparsity and trans-

parency in the decision making process. The key aspect of

our model is its ability to build a decision tree whose struc-

ture is encoded into the memory representation of a Recur-

rent Neural Network jointly learned by two models commu-

nicating through message passing. In addition, our model

assigns a semantic meaning to each decision in the form

of binary attributes, providing concise, semantic and rele-

vant rationalizations to the user. On three benchmark image

classification datasets, including the large-scale ImageNet,

our model generates human interpretable binary decision

sequences explaining the predictions of the network while

maintaining state-of-the-art accuracy.

1. Introduction

The decision mechanism of deep Convolutional Neural

Networks (CNNs) is often hidden from the user, hinder-

ing their employment in critical applications such as health-

care, where a thorough understanding of this mechanism

may be required. The aim for analyzing the decision mech-

anism, i.e. introspection, is to reveal the internal process

of the decision maker to a machine learning practitioner or

user [48]. However, models offering explanations through

introspection may result in a performance loss [18, 45].

Incorporating recent advances in multi-agent communi-

cation [15], we formulate the decision process as an itera-

tive decision tree and embed its structure into the memory

representation of a Recurrent Neural Network (RNN). Our

model uses message-passing [20] with discrete symbols

from a vocabulary. A tunable parameter controls whether

to learn this vocabulary from scratch or to map it to human-

understandable attributes assigning a meaning to every de-

cision to improve its interpretability. Further, encoding the

decision tree into the memory of an RNN retains the flexi-

bility and performance of CNNs while being scalable. In-
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Figure 1: Our Recurrent Decision Tree (RDT) (left) asks

questions, Attribute-based Learner (AbL) (right) answers

with a yes/no s.t. the accuracy improves after each step.

stead of requiring an exponential number of tree nodes with

increasing depth, our model learns orders of magnitude

fewer nodes with a constant number of model parameters

for an arbitrary tree depth. After training, our neural model

can be converted exactly into a standard decision tree, being

computationally efficient at test time.

Our framework (see Figure 1) exposes a decision path in

the form of an explainable decision chain by breaking down

the decision process into multiple binary decisions. Our re-

current decision-tree (RDT) (blue) does not see the image,

and has to infer the image class, e.g. dog, by recurrently

asking binary questions, e.g. does it have whiskers? Our

attribute-based learner (AbL) (red) answers these questions

with yes/no by looking at the image, allowing the RDT to

update the class probabilities and the memory representa-

tion of the previous questions and answers. This is repeated

until the RDT reaches a final decision and the decision tree

becomes easily understandable as it associates the binary

answers with semantic attributes, e.g. has whiskers.

Our contributions are: 1) We propose a recurrent deci-

sion tree model (RDTC) with hard node splits and over-

come current limitations of decision trees in terms of depth

scalability and flexibility; 2) We predict attributes in an

end-to-end manner allowing human-interpretable explana-

tions; 3) We showcase on three datasets that our model

generates explainable decision trees more efficiently than

related methods while retaining the performance of non-

explainable CNNs. Our code is publicly available at:

https://github.com/ExplainableML/rdtc.

13518



2. Related Work

Decision Trees with Neural Networks. Decision trees are

used across many machine learning tasks and applications,

including medical diagnosis [1, 31], remote sensing [16, 19]

and judicial decision making [30]. They make no assump-

tions on the data, and are inherently interpretable [26].

To improve their performance, combining decision trees

with neural networks has been explored by building hier-

archical classifiers [46, 4, 65, 64], by transferring mod-

els [25, 55, 17, 23], and through regularization [61]. Re-

cently, [32, 56, 59] have proposed learning decision trees

directly with neural networks. NBDT [59] constructs trees

in the weight space of a neural network and Adaptive Neu-

ral Trees [56] directly model the neural network as a deci-

sion tree, where each node and edge correspond to one or

more network modules. The prior work closest to ours is the

dNDF [32], which first uses a CNN to determine the routing

probabilities on each node and then combines nodes to an

ensemble of decision trees that jointly make the prediction.

Our method differs in that 1) we focus on explainability by

explicitly only considering a hard binary decision and 2)

the depth and branching structure of our decision trees is

learned by an RNN instead of being fixed a priori.

Multi-Agent Communication. Learning to communicate

in a multi-agent setting has gained interest with the emer-

gence of deep reinforcement learning [15, 20, 37, 5, 28, 12,

9, 38, 36]. Most works focus on establishing a novel com-

munication protocol from scratch. [15] and [5] train multi-

ple agents to maximize a shared utility by establishing their

own language. However, large scale multi-agent settings

can suffer from too much communication, as valuable infor-

mation comes with extensive computations [28]. Targeted

communication focuses on key information and allows iter-

ative exchange of information before performing a task that

can improve both performance and interpretability [12].

Image reference games are used to study the emergence

of language [37] and effectiveness in communication also

when concepts are being misunderstood [9]. [20] propose

an agent that composes a message of categorical symbols to

another agent that uses the information in these messages

to solve a referential game. Our model in contrast allows

both to learn a communication protocol from scratch or use

human-understandable concepts as a vocabulary.

Attributes. Attributes are human understandable visual

properties of objects that are shared between classes. At-

tributes have been used for image description [14, 6], cap-

tion generation [47], face recognition [7], image retrieval

[33, 54], action recognition [67, 63], novelty detection [57]

and object classification [35, 53, 42, 52, 8]. In this work

we propose to use attributes as explanations, i.e. they label

the branches in the learned decision tree, allowing users to

easily inspect the reasoning encoded by the tree.

Explainability through sparsity. Optimizing representa-

tions to be sparse [66] when seeking interpretability [60]

draws some resemblance with the working memory of hu-

mans [40], which is limited to a handful of items at the same

time. [13] hypothesizes that the nature of these items (they

need to be understandable per se), their number and the

structure in which they are presented all impact the inter-

pretability of a representation. Furthermore, interpretability

can be achieved by regularizing neural networks such that

their representations, not only to become sparse [43], but

also adopt the structure of a decision tree [61].

Although both sparsity and tree depth have been used as

proxies for interpretability in decision trees, human studies

suggest that the best proxy is problem-dependent [34]. Be-

yond explainable ML, a sparse representation is considered

to be essential for moving towards hybrid deep learning-

symbolic models [11, 44] and for obtaining representations

that are closer to conscious reasoning [2]. Indeed, a recent

model of how human brains work postulate a conceptualiza-

tion step, linked to dimensionality reduction, followed by an

attention mechanism that sparsely selects concepts [10].

3. RDTC Framework

Our Recurrent Decision Tree via Communication frame-

work is a sequential interaction between the Recurrent De-

cision Tree (RDT) and Attribute-based Learner (AbL) mod-

els trained to classify images by communicating (see Fig-

ure 2). RDT learns a decision path allowing introspection

and AbL provides attribute-based rationales to make the

communication human-understandable.

3.1. Communication between RDT and AbL

For any single image x, our RDT model iteratively ag-

gregates information into an explicit memory M that is suf-

ficient to predict the correct class label y ∈ Y . Initially, it

starts with no prior information M(0). To gather more in-

formation, the RDT agent sends a query message c(t) to the

AbL agent. The AbL answers the query c(t) with a binary

response d(t) ∈ {0, 1} that RDT uses to update its explicit

memory M(t) = M(t−1) ⊕ (c(t), d(t)) to improve its class

prediction. This constitutes one iteration t of the agent-to-

agent communication. The interaction repeats until a maxi-

mum number of steps is reached or until convergence.

Communication Protocol. The vocabulary size |A| is set

to the total number of attributes for every dataset. RDT

and AbL learn to communicate with the set of tokens pro-

vided by the vocabulary in an end-to-end manner. Note that,

the AbL agent attaches a human-understandable meaning to

these tokens when annotated attribute data is available.

At each communication step t, RDT chooses one at-

tribute ac(t) from the vocabulary, identified by its index c(t),
and requests its presence or absence in the image. AbL then

provides its binary prediction of this attribute, i.e. d(t). We
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Figure 2: A single communication step between the RDT (left) and AbL (right) in our RDTC framework. RDT uses the

hidden state h(t−1) of its LSTM (yellow) to requests a single attribute ac(t) by selecting it through its fQuestMLP. AbL uses its

fAttrMLP to predict a binary response d(t) = âc(t) indicating the presence/absence of the attribute. Finally, RDT updates its

state h(t) and explicit memory M(t) with the binary response to improve its classification prediction ŷ(t).

deliberately limit the messages of AbL to be binary as clear

yes/no answers are easier to interpret.

Discrete Messages. RDT asks for the attribute via the index

c(t) and the AbL responds with a binary d(t). The Gumbel-

softmax estimator [27, 41] allows to sample from a discrete

categorical distribution via the reparameterization trick [29,

50] to obtain the gradients of this sampling process. We

sample gi from a Gumbel distribution and then compute a

continuous relaxation of the categorical distribution:

GumbelSoftmax(logπ)i =
exp((log πi + gi)/τ)

∑K

j=1 exp((log πj + gj)/τ)
(1)

where log π are the unnormalized log-probabilities of the

categorical distribution, τ is the temperature that parame-

terizes the discrete approximation. When τ ≈ 0, the output

is a one-hot vector and otherwise, it is a continuous signal.

Stochasticity is important for exploring all possible in-

dices c(t) of vocabulary A to find the most relevant attribute

at each step t. Therefore, we use Gumbel-softmax with

K = |A| to sample the attribute index c(t) for RDT. As

each d(t) corresponds to the presence or absence of an at-

tribute in x, a deterministic prediction is beneficial. By in-

troducing a temperature τ to a regular softmax [23] in AbL,

we approximate the argmax function deterministically as

τ approaches 0:

TempSoftmax(logπ)i =
exp(log πi/τ)

∑K

j=1 exp(log πi/τ)
(2)

Since we use binary attributes, in this case K = 2. Popu-

lar training strategies include (a) annealing τ over time and

(b) augmenting the soft approximation with an argmax that

discretizes the activation in the forward pass and results in

the identity function in the backward pass. Using (b) guar-

antees the communication to be always discrete.

3.2. Recurrent Decision Tree (RDT) Model

RDT consists of three parts: an explicit memory M, an

LSTM [24], and a question-decoder module, Question MLP

(see Figure 2 (left)). M(t) contains all the binary attributes,

i.e. the responses of AbL d1:t up to step t. The LSTM

keeps track of the attribute order with its hidden state h(t)

to encode the current point in the decision tree and decide on

the next question. RDT decodes its last hidden state h(t−1)

into a categorical distribution via fQuestMLP:

log p(c(t)|h(t−1)) = fQuestMLP(h
(t−1)) (3)

where p(c(t)|h(t−1)) indicates the likelihood of requesting

a particular attribute. We denote the attribute index c(t) ∈
{1, . . . , |A|} sampled by:

c(t) = GumbelSoftmax(fQuestMLP(h
(t−1))). (4)

After each iteration of the communication loop, RDT up-

dates its explicit memory M(t) = M(t−1) ⊕ (c(t), d(t)).
Concretely, M ∈ {0, 1}|A|×2 is initialized with all zeros

and at each time step, we set Mc(t),d(t) := 1. Encoding the

attribute in a one-hot vector helps to indicate missing infor-

mation with all zeros. M(t) keeps track of already observed

attributes and their values. RDT updates h(t) with:

h(t) = LSTM(h(t−1),M(t), c(t), d(t)). (5)

and at each time step M is used to predict the class label:

ŷ(t) = fClassMLP(M
(t)). (6)

Since the primary objective of RDT is to maximize the

classification performance, we minimize the CE loss be-

tween the predicted and the true class probabilities:

L =
1

T

T
∑

t=1

LCE(y, ŷ
(t)) = −

1

T

T
∑

t=1

∑

i

yi log ŷ
(t)
i . (7)
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By averaging the LCE over all T time steps, RDT predicts

the correct class in a small number of communication steps

which also allows it to be evaluated at any intermediate step

unlike most other decision tree models that classify only at

the leaf nodes (see supplementary for a comparison).

Since our decision tree can be evaluated after every com-

munication step, the depth of the tree is not a fixed hyper-

parameter, but can be adaptively chosen at test time. This

provides a flexible model that can be tuned for higher in-

terpretability (shallow tree) or higher performance (deeper

tree) at test time without the need for retraining.

3.3. Attribute­based Learner (AbL) Agent

The AbL feeds its CNN image features z to fAttrMLP to

predict a set of learned binary attributes queried by the RDT

(Figure 2, right) where softmax with temperature gives us

binary attributes â ∈ {0, 1}|A|, the discretization of p(â|z):

â = TempSoftmax(fAttrMLP(z)). (8)

When the RDT requests the attribute with the index c(t),
the AbL simply returns the binarized response about the at-

tribute using c(t), i.e. d(t) = âc(t) . The attributes are either

discovered in an end-to-end manner by optimizing the loss

in Equation 7 (RDTC, i.e. Recurrent Decision Tree via Com-

munication) or they are predicted as human-interpretable

concepts using an attribute loss (aRDTC, i.e. attribute-based

Recurrent Decision Tree via Communication).

Attribute Loss. Minimizing the classification loss at each

time step is equivalent to finding a binary data split that re-

duces the class-distribution entropy the most, i.e. informa-

tion gain in classical decision trees. However, a split that

best separates the data is not always easy to interpret, es-

pecially when the features used for this split result from a

non-linear transformation as in a CNN.

We propose to integrate further interpretability by learn-

ing â that align with class-level human-annotated attributes

α using a second cross-entropy term weighted by λ:

L =
1

T

T
∑

t=1

[

(1− λ)LCE(y, ŷ
(t)) + λLCE(αy,c(t) , âc(t))

]

.

(9)

Note that the attribute loss is imposed only on those at-

tributes employed by the model. If an attribute is deemed

not to be useful, e.g., if an attribute is weak or hard to pre-

dict, our RDT model learns to ignore that attribute.

When λ > 0, our model (aRDTC) learns to use ground-

truth attributes and gives the binary splits a semantic mean-

ing. For instance, the question of RDT for attribute with

index c(t) can be interpreted as “does it have a black beak?”

with ac(t) : “has black beak”. When λ = 0, RDTC does not

use any human-annotated attributes and automatically dis-

covers them. Either of these settings may be desirable given

the application as we show empirically.

Algorithm 1 RDTC decision tree distillation

Input: Training images X
Stopping threshold

Output: Decision tree DT

1: DT = empty decision tree

2: for x in X do

3: DT.reset to root node()

4: â = AbL(x) # attributes from image

5: for t = 1 to n do

6: ŷ(t), c(t) = RDT.step(d(t)) # class/attribute of node
7: if not DT.node exists() then

8: DT.add node(ŷ(t), c(t))
9: end if

10: if maxi ŷ
(t)
i > threshold then

11: break # prune when confident

12: end if

13: d(t) = âc(t) # attribute yes/no

14: DT.to next branch(d(t)) # 1 → left; 0 → right

15: end for

16: end for

17: return DT

3.4. Decision Tree Distillation

The RDT and AbL are trained end-to-end since the com-

munication between these two models is differentiable. At

test time we distill the RDT into an explicit decision tree,

i.e., the global structure of nodes, including splitting feature

and threshold. The distilled decision tree then models the

trained neural network fRDT ≡ fDT.

Algorithm 1 describes the procedure of extracting a de-

cision tree from RDT. The decision nodes of the decison

tree make hard splits based on the presence/absence of

an attribute. GumbelSoftmax adds stochasticity to RDT,

which is useful for training, but at test time deterministi-

cally choosing the attribute with highest probability is es-

sential for improving the performance and learning a static

tree. Hence, it is replaced with TempSoftmax.

We start with an empty decision tree and fill it with nodes

as we run the training data through the whole RDTC model

(lines 1-2). Whenever a previously unseen node is discov-

ered, we add it to the tree including information about the

attribute (c(t)), where the next node is added, i.e., left of

the current node if d(t−1) is 1 or to the right if d(t−1) is 0

(line 14), and the current prediction of the class labels ŷ(t)

(lines 7-9). We prune the distilled decision tree, i.e. we

stop adding nodes to the tree once ŷ is greater than a thresh-

old (=0.95) for a class (lines 10-12). The end result is a

decision tree that outputs the same class predictions as our

trained neural network RDT given the attribute prediction

from our AbL, while being fully explainable by matching

learned attributes with human-annotated attribute data.
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4. Experiments

Datasets and attributes. We validate our model on the

large-scale ImageNet [51] with 1.2M images from 1K

classes. In addition, we use AWA2 [35, 62] and CUB [58],

i.e. two medium-scale benchmark attribute datasets. AWA2

comprises 37K images from 50 animal classes with 85 at-

tributes, while CUB contains 11K images from 200 fine-

grained bird species with 312 attributes. Since our model

considers splits on hard decisions, we binarize the attributes

on all datasets with a threshold at 0.5, i.e., an attribute is

present if more than 50% of the annotations agree. When

an official classification test set is not provided, for all ex-

periments across the datasets, we randomly assign 20% of

each class as test data and 10% of the training data as a val-

idation set to tune hyperparameters.

Architecture and parameters. The MLPs consist of two

layers with a ReLU non-linearity. We learn the temperature

τ of the Gumbel-softmax estimator jointly with the network

from an initial value for τ . During training, we always roll

out the decision sequence to a maximum number of steps.

At test time, we apply our decision tree distillation and stop

as soon as the RDT reaches a confidence level specified by

a threshold parameter (or once the maximum number of de-

cisions is reached). We report the mean per-class accuracy

over 5 runs to avoid bias towards highly populated classes.

4.1. Comparing with the State of the Art

We compare our aRDTC and RDTC with classi-

cal decision trees (aDT and DT) as baselines, ResNet

(ResNet [21] and aResNet) and Deep Neural Decision

Forests (dNDF) [32] as the state of the art.

ResNet and aResNet. ResNet-152 pre-trained on Ima-

geNet and fine-tuned on each of the datasets including its

softmax classifier serves as non-explainable deep neural

network (ResNet). Augmented with attribute data, we train

aResNet by first predicting the attributes with the same ar-

chitecture as our AbL model and then a linear layer on top.

Our aRDTC and RDTC. Our attribute-based recurrent deci-

sion tree (aRDTC) (Section 3.3) uses the attribute loss to

associate a human-understandable meaning to the binary

decisions. On the other hand, our recurrent decision tree

(RDTC) does not use an attribute loss (λ = 0), and therefore

purely optimizes classification performance.

dNDF. The dNDF explicitly models the decision tree by

mapping each inner node to an output neuron with sig-

moid activation. These nodes define the routing probabili-

ties of the input to the leaves through exhaustive tree traver-

sal where each leaf node stores a class distribution. The

final prediction is the averaged class prediction weighted

by the routing probabilities of every leaf. As using multi-

ple randomized trees weakens the interpretability, for a fair

comparison, we use a single tree instead of random forests.

Model AWA2 CUB ImageNet

ResNet [21] 98.2 ± 0.0 79.0 ± 0.2 73.0 ± 0.1

aResNet 98.3 ± 0.0 77.3 ± 0.5 N/A

DT 92.3 ± 0.4 43.5 ± 0.3 55.2 ± 1.0

dNDF [32] 97.6 ± 0.2 73.8 ± 0.3 72.6 ± 0.1

RDTC (Ours) 98.0 ± 0.1 78.1 ± 0.2 72.8 ± 0.1

aDT 97.9 ± 0.9 70.6 ± 1.3 N/A

aRDTC (Ours) 98.1 ± 0.0 77.9 ± 0.6 N/A

Table 1: Comparing our aRDTC (λ = 0.2) and RDTC

(λ = 0) to the decision tree (aDT and DT), closely related

dNDF [32], and ResNet [21] (aResNet, i.e. ResNet with

attribute prediction). As ImageNet do not have attributes,

aResNet, aRDTC and aDT are not applicable (over 5 runs).

aDT and DT. The classical decision tree (DT) is learned on

top of the same image features z by the perceptual module.

At each time step, the dataset is split using a single dimen-

sion of z until a leaf node only contains samples of the same

class or a regularization strategy leads to early stopping. We

incorporate attributes into the DT baseline, i.e. Attribute

Decision Tree (aDT). First, we train a MLP on top of the

image features z to predict class attributes using a binary

cross-entropy loss analogously to the attribute loss of our

aRDTC model. Second, we fit a decision tree on these pre-

dicted attributes for each image to determine the class. Both

DT and aDT are learned using the CART algorithm [3] and

the Gini impurity index as splitting criterion due to its com-

putational advantage over entropy-based methods [49].

Classification results. As observed in Table 1, compared to

the Decision Tree baselines of their kind, our model variants

achieve significantly higher accuracy across all datasets,

e.g. RDTC vs DT achieves 98.0% vs 92.3% and aRDTC

vs aDT achieves 98.1% vs 97.9% on AWA2 because our

model scales better and reaches consistent results through

gradient-based optimization. Moreover, although RDTC

and aRDTC work with constrained single-bit communica-

tions to improve explainability, they succeed in maintaining

the accuracy of the non-explainable state-of-the-art across

all datasets, e.g. 72.8% vs 73.0% on ImageNet.

Fine-grained decision splits are extremely challenging to

explain because objects are visually similar to each other

and the distinguishing factor is nuanced. Despite this chal-

lenge on CUB, the classification accuracy of RDTC is al-

most twice as high than classical decision trees that use

the same deep features, i.e., 78.1% vs 43.5% DT. On the

other hand, our RDTC not only outperforms dNDF (78.1%

vs 73.8%), our model exhibits improved interpretability, be-

cause we use hard instead of soft binary splits. As it is

hard for non-experts to judge the correctness of the pre-

dictions, explanations in this domain are particularly im-
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Figure 3: The user picks which set of 3 attributes best fit the

image or if they match equally well (attributes come from 2

models out of aRDTC, aDT, aResNet at a time).

aRDTC
aRDTC

aDT

29.0% 44.5% 26.5%
48.0% 35.0% 17.0%
46.5% 32.5% 21.0%

aDT
aResNet
aResNet

Figure 4: User study results. We show how often the at-

tributes of one model were preferred over any other and

when both were found equal (middle).

portant. Typically, associating a semantic meaning to the

decision path improves human interpretability with a sig-

nificant loss in accuracy, e.g. aResNet vs ResNet (77.3%

vs 79.0%). On the other hand, on our model this trade-off

is less pronounced. When trained with the attribute loss,

i.e. aRDTC achieves a higher accuracy compared to aDT

(77.9% vs 70.6% on CUB) as well as aResNet in addition

giving a semantic meaning to the splits.

User study. The use of named attributes enables humans

to understand the decision of the model. However, if all

attributes are allowed to be used simultaneously, such as

in aResNet, this decision becomes less comprehensible. In

contrast, aRDTC provides a sparse solution that considers

only a subset of attributes for each prediction. To quantify

the relevance of the selected attributes, we perform a user

study with aRDTC, aDT and aResNet on CUB. Since our

aRDTC predicts the class label at each step, we select the

attributes that change the class probability the most to deter-

mine the most critical attributes for the decision. For aDT

we use the Mean Decrease Impurity (MDI) [39] to find fea-

tures of maximum importance and for aResNet we select

the attributes with the highest weight for the output class.

The user is prompted with an image as well as two sets of

three attributes, i.e., the three most relevant attributes from

two models at a time. As some attributes are difficult to rec-

ognize, e.g. cone beak, we provide attribute icons with their

names and a bird anatomy sketch. The task is to select the

set of three attributes that best match the image (see Fig-

ure 3). The user can also report that both sets of attributes

fit the image equally well. We repeat the study on 600 ran-

domly selected images from the CUB test such that each

model is compared 200 times against every other model.
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Figure 5: Explainability trade-off with aRDTC on AWA2

and CUB. We vary λ of the attribute loss and report image

classification accuracy of RDT (red) and attribute prediction

accuracy of AbL (purple). λ ∈ [0.01, 0.99].

We measure how often the attributes of each model are

chosen over the other models. Since we only show attributes

of two models at a time, we obtain a direct comparison for

all pairs of models. Our results in Figure 4 indicate that de-

cision tree models select more relevant attributes than aRes-

Net. The attributes of aRDTC are preferred much more of-

ten than aResNet (48% vs. 17%). Similarly, aDT is se-

lected more often than aResNet (46.5% vs. 21%). When

comparing the two decision tree models, our aRDTC is

slightly favored at 29% over aDT at 26.5% with the major-

ity of users finding them produce equally fitting attributes

(44.5%). These results suggest that the tree structure of

the decision making also helps in isolating more relevant

attributes by putting more weight on individual attributes

selected early by the decision tree rather than spreading the

contribution among all attributes.

4.2. Evaluating The Model Components

In this section, we evaluate several aspects of our model

such as its behavior towards accuracy-explainability trade-

off, ablating its memory mechanism and scalability.

Accuracy and Explainability Trade-Off The trade-off be-

tween the classification loss and the attribute loss in our

aRDTCmodel can be measured by varying λ ∈ [0.01, 0.99].
Our results on AWA2 and CUB in Figure 5 show a slight

decrease in the overall classification accuracy (red curve),

when λ approaches to 1.0 which gives more weight to the

attribute prediction as opposed to class label prediction. In-

deed, RDTC achieves a higher accuracy than aRDTC that is

trained with the attribute loss indicating a tradeoff between

explainability and accuracy. Increasing λ leads to a slight

decrease in classification accuracy, and generally similar to

that of fully optimizing class prediction when λ = 0.

Furthermore, we measure the effect of λ to the attribute

prediction accuracy of the decision tree as compared to their

ground-truth (purple curve). We observe a high attribute

prediction accuracy even with a small λ, e.g. λ = 0.2. As

we increase λ in the range of 0.2 to 1.0, there is only a slight
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Figure 6: Accuracy with increasing number of nodes in RDTC and dNDF on AWA2, CUB and ImageNet. As RDTC can reuse

learned nodes in the tree and has adaptive tree depth, we train it once and evaluate it at different depths. dNDF needs to be

retrained for every depth hyperparameter (D) and the number of nodes scales exponentially with tree depth.

Model AWA2 (# att) CUB (# att) ImageNet (# att)

RDTC-L 97.7 (19) 73.0 (50) 60.8 (159)

RDTC-M 97.9 (57) 77.2 (93) 71.6 (82)

RDTC 98.0 (30) 78.1 (42) 72.8 (46)

aRDTC-L 97.9 (29) 69.1 (32) N/A

aRDTC-M 98.0 (37) 76.4 (52) N/A

aRDTC 98.1 (34) 77.9 (38) N/A

Table 2: Ablating the memory mechanism of aRDTC (λ =
0.2) and RDTC (λ = 0). Tree state is encoded as either

only the LSTM (L), only the explicit memory (M) or both (+

median number of distinct attributes the model learns).

increase in attribute prediction accuracy, indicating that our

aRDTC is robust against the choice of λ across datasets as

long as it is chosen to be at least 0.2.

Ablating the Memory Mechanism The LSTM state h and

explicit memory M in RDT contains previously observed

decision nodes and the current decision. While the LSTM

state allows to encode the attribute order, the explicit mem-

ory serves as a more direct representation of all gathered

information about the image. We ablate our RDT model

with respect to its tree encoding-types.

Table 2 shows the classification accuracy of the follow-

ing configurations: aRDTC-L, i.e. with only LSTM and at-

tribute loss, and aRDTC-M, i.e. with only explicit memory,

(vs RDTC-L and RDTC-M without the attribute loss). We

observe that aRDTC-M consistently performs better than

aRDTC-L, e.g. on CUB (76.4% vs. 69.1%). Moreover,

combining the two in our full model generally improves the

performance (up to 1.5% on CUB). These results indicate

that the explicit memory is important for accuracy.

The median number of distinct attributes in paranthe-

sis shows that aRDTC-L retains fewer decision nodes than

aRDTC-M. For instance, aRDTC learns to only use 38 out of

all 312 attributes of CUB (≈ 12%) and on ImageNet RDTC

uses only 46 learned binary attributes as opposed to the

1000 continuous features commonly used in ResNet. This

increases sparsity of our model in the attribute space and

improves interpretability by using fewer nodes when using

the LSTM. We conclude that combining the two memory

types in our RDTC model provides the best of both worlds,

a high classification accuracy in few binary decisions such

that the explanations of our model are concise and accurate.

Scalability of the Learned Decision Trees. For our RDTC,

increasing the tree depth simply translates to increasing the

number of binary decisions, i.e., time steps of the model-to-

model communication. Hence, RDTC scales linearly with

the depth of the tree while the number of weights stays con-

stant. On the other hand, DT and dNDF grow exponentially

in their number of parameters with the depth of the tree.

When the same attribute is needed at different locations in

the tree, our model learns the meaning of this attribute once

and reuses it, while DT and dNDF would have to relearn

the split. Finally, RDTC does not require finetuning a depth

parameter. Hence, we have the flexibility of changing the

tree depth at test time without retraining.

We compare the classification accuracy of RDTC and

dNDF with an increasing number of distinct tree nodes on

three datasets. As shown in Figure 6, RDTC (orange line)

is trained only once and evaluated at different tree depths

at test time while we have to retrain dNDF for each depth

parameter. While the number of nodes of dNDF scales ex-

ponentially with depth (note the log-scale on the x-axis),

our model adaptively learns the number of binary attributes

needed to solve these classification tasks. Hence, it stops us-

ing more attributes when no further distinct nodes are nec-

essary. We observe that RDTC uses up to an order of mag-

nitude fewer tree nodes on AWA2, CUB and ImageNet to

achieve the same or better performance. At the same time,

RDTC only needs to be trained once and can be adaptively

reduced in tree depth at test time.

4.3. Qualitative Results

Zooming into the decision process of misclassifications

on CUB, we investigate how our model treats counterfac-
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Figure 7: Top: Two “Green Kingfisher” images follow the same path except for “black wings”, i.e. the flying bird gets

misclassified as a “belted kingfisher” as black wings are not visible. Middle: Baltimore Oriole image (left) gets incorrectly

classified as Prothonotary Warbler because of the missing “black crown” in the female bird. Such discrepancies, e.g. per-

class attributes not reflecting the image content, make CUB difficult. Bottom: Cactus Wren (left) and Bewick Wren (right)

share many characteristics except from “striped wings” which our model uses to split these classes.

tual classes which is useful as explanations are often con-

trastive [22]. We provide further qualitative examples re-

vealing the decision tree of our aRDTC model on the fine-

grained CUB and the decision tree of our RDTC model on

ImageNet without the attributes in the supplementary.

In Figure 7 (Top), we inspect the point in the tree where

the error occurred. The lower path corresponds to the most

probable path taken for birds of class Green Kingfisher.

Both images follow the same path for four decisions, the

error occurs in the fifth decision. For the flying bird, our

model decides that it “does not have black wings” and in-

correctly classifies it as a Belted Kingfisher, a closely re-

lated class to Green Kingfisher, but without black wings. In

addition, our model depicts its current belief of the correct

class at any time during the process, i.e., probability plots at

every branch which reveals some critical binary decisions,

when the predicted class changes drastically, such as the

“black wings” decision. This way, a user inspecting our ex-

plainable decision tree can make a more informed decision

on the value of the prediction of the model.

In Figure 7 (Middle), the Baltimore Oriole image on the

left gets incorrectly classified as Prothonotary Warbler be-

cause of the missing male-specific “black crown” attribute

in the female bird. Such discrepancies, e.g. per-class at-

tributes not reflecting the image content, make CUB an ex-

tremely challenging dataset. In Figure 7 (Bottom), the Cac-

tus Wren image on the left and Bewick Wren image on

the right share many characteristics except from “striped

wings”. The decision path is common until then where our

model uses this attribute to split these classes.

5. Conclusion

In this work, we propose to learn a decision tree recur-

rently through communication between two-agents. Our

RDTC framework adaptively changes tree depth at test time,

allows to reuse of the learned decision nodes and improves

scalability. It also uses human understandable attributes and

hard binary splits for easier interpretation. Our experiments

show that combining an explicit memory and an LSTM is

important to obtain good performances with few inquiries.

Our model maintains the accuracy of non-explainable deep

models and outperforming the state-of-the-art deep deci-

sion tree learners. Qualitatively inspecting individual exam-

ples demonstrates the reasoning behind the failure and other

challenging fine-grained cases, while a user study shows

that RDTC selects more visually relevant attributes than a

comparable linear semantic bottleneck model.
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