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Summary

Predicting extreme events and variations in weather and climate provides crucial information
for economic, social, and environmental decision-making (Merryfield et al., 2020). However,
quantifying prediction skill for multi-dimensional geospatial model output is computationally
expensive and a difficult coding challenge. The large datasets (order gigabytes to terabytes)
require parallel and out-of-memory computing to be analyzed efficiently. Further, aligning the
many forecast initializations with differing observational products is a straight-forward, but
exhausting and error-prone exercise for researchers.
To simplify and standardize forecast verification across scales from hourly weather to decadal
climate forecasts, we built climpred: a community-driven python package for computationally
efficient and methodologically consistent verification of ensemble prediction models. The code
base is maintained through open-source development. It leverages xarray (Hoyer & Hamman,
2017) to anticipate core prediction ensemble dimensions (ensemble member, initialization
date and lead time) and dask (Dask Development Team, 2016; Rocklin, 2015) to perform
out-of-memory and parallelized computations on large datasets.
climpred aims to offer a comprehensive set of analysis tools for assessing the quality of
dynamical forecasts relative to verification products (e.g., observations, reanalysis products,
control simulations). The package includes a suite of deterministic and probabilistic verifica-
tion metrics that are constantly expanded by the community and are generally organized in
our companion package, xskillscore.

Statement of Need

While other climate verification packages exist (e.g., s2dverification (Manubens et al.,
2018) written in R and MurCSS (Illing et al., 2014) written with python-based CDO-bindings
(Schulzweida, 2019)), climpred is unique for many reasons.

1. climpred spans broad temporal scales of prediction, supporting the weather,
subseasonal-to-seasonal (S2S), and seasonal-to-decadal (S2D) communities.

2. climpred is highly modular and supports the research process from end-to-end, from
loading in model output, to interactive pre-processing and analysis, to visualization.

3. climpred supports dask (Dask Development Team, 2016; Rocklin, 2015) and thus
works across all computational scales, from personal laptops to supercomputers (HPC).
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4. Flexibility and scaling leads to verification of global 5° x 5° resolution climate predictions
in 8 seconds, compared to the 8 minutes required by MurCSS. However, note that
climpred modularizes its workflow such that the verification step is performed on
already pre-processed output, while MurCSS uses a more rigid framework that always
required pre-processing. This time scale of seconds allows for a truly interactive analysis
experience.

5. climpred is part of the wider scientific python community, pangeo (Abernathey et al.,
2017; Eynard-Bontemps et al., 2019). A wide adoption of climpred could standardize
prediction model evaluation and make verification reproducible (Irving, 2015).

Prediction Simulation Types

Weather and climate modeling institutions typically run so-called “hindcasts,” where dynamical
models are retrospectively initialized from many past observed climate states (Meehl et al.,
2009). Initializations are then slightly perturbed to generate an ensemble of forecasts that
diverge solely due to their sensitive dependence on initial conditions (Lorenz, 1963). Hindcasts
are evaluated by using some statistical metric to score their performance against historical
observations. “Skill” is established by comparing these results to the performance of some
“reference” forecast (Jolliffe & Stephenson (2012); e.g., a persistence forecast). The main
assumption is that the skill established relative to the past will propagate to forecasts of the
future.
A more idealized approach is the so-called “perfect-model” framework, which is ideal for
investigating processes leading to potentially exploitable predictability (Bushuk et al., 2018;
Griffies & Bryan, 1997; Séférian et al., 2018; Spring & Ilyina, 2020). Ensemble members are
spun off an individual model (by slightly perturbing its state) to predict its own evolution.
This avoids initialization shocks (Kröger et al., 2017), since the framework is self-contained.
However, it cannot predict the real world. The perfect-model setup rather estimates the
theoretical upper limit timescale after which the value of dynamical initialization is lost due
to chaos in the Earth system, assuming that the model perfectly replicates the dynamics of
the real world. Skill quantification is accomplished by considering one ensemble member as
the verification data and the remaining members as the forecasts (Griffies & Bryan, 1997).

Climpred Classes and Object-Oriented Verification

climpred supports both prediction system formats, offering HindcastEnsemble and Perfec
tModelEnsemble objects. HindcastEnsemble is instantiated with an initialized hindcast
ensemble dataset and requires an observational dataset against which to verify. Perfect
ModelEnsemble is instantiated with an initialized perfect-model ensemble dataset and
also accepts a control dataset against which to evaluate forecasts. Both objects can also
track an uninitialized dataset, which represents a historical simulation that evolves solely
due to random internal climate variability or can be used to isolate the influence of external
forcing (e.g., Kay et al., 2014).
Assessing skill for PredictionEnsemble objects (the parent class to HindcastEnsemble and
PerfectModelEnsemble) is standardized into a one-liner:

PredictionEnsemble.verify(
# Score forecast using the Anomaly Correlation Coefficient.
metric='acc',
# Compare the ensemble mean to observations.
comparison='e2o',
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# Keep the same set of initializations at each lead time.
alignment='same_inits',
# Reduce the verification over the initialization dimension.
dim='init',
# Score performance of a persistence forecast as well.
reference='persistence',

)

Each keyword argument allows flexibility from the user’s end—one can select from a library
of metrics, comparison types, alignment strategies, dimensional reductions, and reference
forecasts. The most unique feature to climpred, however, is the ability for users to choose
the alignment strategy to pair initialization dates with verification dates over numerous lead
times. In other words, initialization dates need to be converted to target forecast dates by
shifting them using the lead time coordinate. This is tedious, since one must remedy disparities
in calendar types between the model and observations and account for the time span of or
gaps in observations relative to the time span of the model.
There is seemingly no unified approach to how hindcast initialization dates are aligned with
observational dates in the academic literature. The authors of climpred thus identified three
techniques, which can be selected by the user:

1. Maximize the degrees of freedom by selecting all initialization dates that verify with the
available observations at each lead. In turn, initializations and verification dates are not
held constant for each lead.

2. Use the identical set of initializations that can verify over the given observational window
at all leads. However, the verification dates change at each lead.

3. Use the identical verification window at each lead, while allowing the set of initializations
used at each lead to change.

These strategies are shown graphically and explained in more detail in the documentation.
Note that climpred offers extensive analysis functionality in addition to forecast verification,
such as spatiotemporal smoothing (Goddard et al., 2013), bias removal (Boer et al., 2016),
significance testing (Boer et al., 2016; DelSole & Tippett, 2016; Goddard et al., 2013), and
a graphics library.

Use in Academic Literature

climpred has been used to drive analysis in three academic papers so far. Brady et al.
(2020) used the HindcastEnsemble class to highlight multi-year predictability of ocean
acidification in the California Current; Spring & Ilyina (2020) and Spring et al. (2021) used
the PerfectModelEnsemble class to highlight predictability horizons in the global carbon
cycle; and Krumhardt et al. (2020) used the HindcastEnsemble class to illuminate multi-
year predictability in marine Net Primary Productivity.
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